SCHEME OF INSTRUCTION AND SYLLABUS

M.TECH IN STRUCTURAL ENGINEERING

w.e.f 2019-2020 (VR19)

DEPARTMENT OF CIVIL ENGINEERING VELAGAPUDI RAMAKRISHNA SIDDHARTHA ENGINEERING COLLEGE (An Autonomous Institution affiliated to Jawaharlal Nehru Technological University Kakinada, Kakinada NBA Accredited & ISO 9001:2008 Certified) (Sponsored by Siddhartha Academy of General & Technical Education)

Kanuru, Vijayawada-520007, A.P. India

INSTITUTE VISION

To nurture excellence in various fields of engineering by imparting timeless core values to the learners and to mould the institution into a centre of academic excellence and advanced research.

INSTITUTE MISSION

To impart high quality technical education in order to mould the learners into globally competitive technocrats who are professionally deft, intellectually adept and socially responsible. The institution strives to make the learners inculcate and imbibe pragmatic perception and proactive nature so as to enable them to acquire a vision for exploration and an insight for advanced enquiry.

DEPARTMENT VISION

To impart teaching, research and develop consultancy that serves the society and to strive continuously for excellence in education.

DEPARTMENT MISSION

To provide quality education for successful career and higher studies in Civil Engineering that emphasizes academic and technical excellence in profession and research, effective communication, team work and leadership to meet the challenges of the society.

PROGRAM OUTCOMES

After completion of the program graduates will be able to

PO (A). Apply the knowledge of science, mathematics, and engineering principles for developing problem solving attitude.

PO (B). Identify, formulate and solve engineering problems in the domain of structural engineering.

PO (C). Use different software tools for Analysis and Design in the domain of structural engineering.

PO (D). Design and conduct experiments, analyze and interpret data, for development of simulation experiments.

PO (E). Function as a member of a multidisciplinary team with sense of ethics, integrity and social responsibility.

PO(F).Apply current techniques and skills in the field of structural engineering

PO(G).Apply Building Information Modeling (BIM) to optimize team collaboration in project management.

VELAGAPUDI RAMAKRISHNA SIDDHARTHA ENGINEERING COLLEGE SCHEME OF INSTRUCTION FOR TWO YEAR PG PROGRAMME [M.TECH 19]

SCHEME OF INSTRUCTIONS

SEMESTER I 23

Contact Hours:

S.N 0	Course Type	Course Code	Title of the Course	L	Τ	Р	Cr edi ts
1.	Programme Core - I	19CESE100 1	Advanced Structural Analysis	3	0	0	3
2.	Programme Core - II	19CESE100 2	Theory of Plates & Shells	3	0	0	3
3.	Programme Core - III	19CESE100 3	Advanced Steel Design	3	0	0	3
4.	Programme Elective - I	19CESE101 4	 Structural Health Monitoring Sub-Structure Design Analytical and Numerical Methods for Structural Engineering Industry Oriented Subject 	3	0	0	3
5.	Programme Elective - II	19CESE101 5	 Prefabricated Structures Fracture Mechanics of Concrete Structures Structural Optimization Design of Prestressed Concrete Structures 	3	0	0	3
6.	Mandatory Learning Course	19CESE102 6	Research Methodology and IPR	2	0	0	0
7.	Laboratory - I	19CESE105 1	Advanced Concrete Lab	0	0	3	1.5
8.	Laboratory - II	19CESE105 2	Numerical Analysis Lab	0	0	3	1.5
			Total	17	0	6	18

SEMESTER II

Contact Hours: 25

S.No	Course Type	Course Code	CourseTitle of the CourseCode		Τ	Р	Credits
1.	Programme	19CESE2001	FEM in Structural	3	0	0	3
	Core – IV		Engineering				
2.	Programme	19CESE2002	Stability of Structures	3	0	0	3
	Core – V						
3.	Programme	19CESE2003	Structural Dynamics	3	0	0	3
	Core – VI						

S.Frogramme Elective – IV19CESE2013• Repair and Rehabilitation of Structures50003Elective – IVRehabilitation of StructuresRehabilitation of StructuresDesign of Steel- Concrete Composite Structures.Design of Steel- Concrete Composite StructuresDesign of Formwork Earthquake Resistant Design of StructuresAudit Course19CESE2036Technical Report Writing Proposed problem#20019CESE2057Term Paper seminar – Literature Review for the proposed problem#19CESE2051Structural Dynamics lab0031.5<	4.	Programme Elective – III	19CESE2014	 Design of High-Rise Structures Soil Structure Interaction Advanced Bridge Engineering Industry Oriented Subject 	3	0	0	3
6.Audit Course19CESE2036Technical Report Writing200-7.Term Paper19CESE2067Term Paper seminar – Literature Review for the proposed problem#20018.Laboratory - I19CESE2051Structural Dynamics lab0031.59.Laboratory - 19CESE205219CESE2052Structural Design0031.5	5.	Programme Elective – IV	19CESE2015	 Structures Design of Steel- Concrete Composite Structures Design of Formwork Earthquake Resistant 	3	0	0	3
7.Term Paper19CESE2067Term Paper seminar – Literature Review for the proposed problem#20018.Laboratory - I19CESE2051Structural Dynamics lab0031.59.Laboratory - I19CESE2052Structural Design0031.5	6.	Audit Course	19CESE2036	÷	2	0	0	-
III9. Laboratory -19CESE2052Structural Design0031.5		Term Paper	19CESE2067	Term Paper seminar – Literature Review for the	2	0	0	1
	8.	_ •	19CESE2051	Structural Dynamics lab	0	0	3	1.5
Total 19 0 6 19	9.		19CESE2052	Lab/Industry Oriented lab	-	-	_	

L – Lecture, T – Tutorial, P – Practical, C – Credits

*Students to be encouraged to go industrial training for at leastSix weeks during semester break

#Students should conduct the Literature Survey for the proposed research topic and they need to develop a prototype or simulationbased (must be outcome oriented) – the same to be presented in any conference (national or international)

Semester III Hours:21

Contact

				_		_	
S.No	Course	Course	Title of the Course		T	P	Credits
	Туре	Code					
1.	Programme	19CESE3011	Choice for students to	3	0	0	3
	Elective -		complete course in any				
	V		MOOCS Platform				
2.	Project	19CESE3062	Dissertation*/ Project/	0	0	18	10
	(Part-A)		Research Organization				
3.	Internship	19CESE3051	Internship/Summer	0	0	0	2
			Training in Research				
			Organizations/				
			Institutions of Higher				
			Learning (After II Sem)				
			Total	3	0	18	15

L – Lecture, T – Tutorial, P – Practical, C – Credits

*To be continued in the IV Semester

Program Elective V may be completed in semester I or II by satisfying the prerequisites those who are going for industrial project

Seme Hour	ster IV s:32			Contact			
S.No	Course Type	Course Code	Title of the Course	L	T	Р	Credits

	Туре	Code						
1.	Project	19CESE4061	Dissertation/		0	0	32	16
	(Part-B)		Industrial Project					
				Total	0	0	32	16

L – Lecture, T – Tutorial, P – Practical, C – Credits

Total Credits:68

Semester	Credits
1	18
2	19
3	15
4	16

19CESE1001 ADVANCED STRUCTURAL ANALYSIS

Course Category:	Programme Core-1	Credits:	3
Course Type:	Theory	Lectures	3 hrs/week
		Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

Course outcomes	On successful completion of the course, the student will be able to:
	CO1: apply energy principles for the analysis of determinate/indeterminate structures.
	CO2: analyze structures comprising axial elements, Beams, Grids, Plane and space frames using matrix methods.
	CO3:analyse continuous beams and grids by flexibility and stiffness matrix methods.

Contribution of Cours	se		PO(A)	PO(B)	PO(C)	PO(D)	PO(E)	PO(F)	PO(G)
achievement of Prog Outcomes (L – Low, M - Medium		CO1	Н	Н	М	L	L		
High)									
		CO2	н	н	М	L	L		
		CO3	Н	Н	М	L	L		
		CO4	н	Н	М	L	L		
Course Content	Review UNIT-I Matrix UNIT-I	v of ba Ana Fran disp deriv v of an Force Displ Struc I analy Intro- Space II analys Conv meth beam	lysis of nes)App lacemen ving stiff alysis of e method lacemen tures; N vsis of S duction; e trusses sis of bear rentional od for b	statically lications t based finess and f indetern ls - Stati t Met Aatrix co tructures One dim ams and Stiffne eams,Fle	structura y determ and for and for grids: s with ax ensional grids: ss meth exibility od for gr	inate str rinciple orce -ba lity coeff tructures letermine Kinem and matri ial eleme axial St od for 1 method	ents: peams,R	tual we ergy pr ctures, indet sis of str	ork ar rinciple ermina uctures russes;
Γext books	Analys	Conv Stiffr frame sis of e Effec defle Devd Publi	rentional ness met es,Stiffn lastic in ets of ax ction me lasMeno	Stiffne hod for j ess meth stability ial force ethod, Sc n, "Adv ouse,200		hod for mes,Fle pace Fra ond orde cural stif y matrix	xibility p nmes. r effects fness, S method al Ana	method olution	for plan by slop Naros

Reference books:	 AsslamKassimali, "Matrix Analysis of Structures", Brooks/ Cole Publishing Co., USA ,1999 Amin Ghali, Adam M Neville and Tom G Brown," Structural Analysis: A Unified Classical and matrix Approach", Sixth Edition, 2007, Chapman &Hall.
E-resources and other digital material	https://nptel.ac.in/courses/105106050/

19CESE 1002 THEORY OF PLATES AND SHELLS

Course Category:	Programme Core	Credits:	3
Course Type:	Theory	Lectures	3 hrs/week
		Continuous Evaluation: Semester end Evaluation: Total Marks:	40 60 100

Course outcome	es O	n success	On successful completion of the course, the student will be able to:						
		CO1: identify the concept of thin plates using various approaches.							
	C	CO2: analyze the thin plates subjected to different loading and boundary conditions.							
		O3: discutrain and fo				heir classi	fications a	nd stress	
	С	O4: analy criter		nt types of oundary co		ojected to	different lo	ading	
Contribution of Course		PO(A)	PO(B)	PO(C)	PO(D)	PO(E)	PO(F)	PO(G)	
Outcomes towards achievement of	CO1	Н	Н	М	L	L			
Program Outcomes	CO2	Н	н	М	L	L	М		
(L – Low, M - Medium, H –	CO3	Н	Н	М	L	L			
High)	CO4	н	н	М	L	L	M		
	Ir Is So U R Ca th U S		d orthotroj /y's solutic , circular , Numeric ducing to s	bic plates, on and ene plates with cal solutio stability of	bending a ergy metho h variable ns. Plastic plates.	and twistir d. rigidity in c analysis	Cartesian of plates	s, Navier and pol	
Shell behavior, shell surfaces and characteristics, classifica equilibrium equations in curvilinear co-ordinates. Stress- displacement relations. Membrane analysis of shells of revo UNIT-IV: Cylindrical shells under different loads. Shallow shell solution of elliptic paraboloids and hyperboloids. Solution of problems. Introducing to stability of shells									

Text books	 Theory of plates and shells by S.P.Timoshenko and S.Woinowsky-Krieger, McGraw-Hill, 1959.
	2. N. K. Bairagi, "Shell Analysis", Khanna Publishers.
Reference Books:	 R. Szilard, "Theory & Analysis of Plate - Classical & Numerical Methods", John Wiley & Sons Publishing Company. Ramaswamy, G. S., "Design & Construction of Concrete Shell Roofs", McGraw-Hill Publishing Company.
E-resources and other digital material	http://nptel.ac.in/video.php?subjectId=112101095

19CESE1003 ---- ADVANCED STEEL DESIGN

Course Category:	Programme Core	Credits:	3
Course Type:	Theory	Lectures	3 hrs/week
		Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

Course outcomes	On successful completion of the course, the student will be able to:
	CO1:analyse wind loads on buildings and pitched roof trusses
	CO2: analyze and design tower structures.
	CO3:analyze and design various connections
	CO4:analyze and design truss bridges

Contribution of Course		PO (A)	PO (B)	PO (C)	PO (D)	PO (E)	PO (F)	PO (G)
Outcomes towards	CO1	М		L	Н		Н	М
achievement of Program	CO2	М	Н	L	Н		Н	М
Outcomes (L – Low, M -	CO3	М	Н	L			Н	
Medium, H – High)	CO4	М	Н	L	Н		Н	

Course Content

UNIT-I

Wind Loads on Buildings

Introduction to wind load; Design wind speed and pressure; Wind pressure on roofs; Wind effect on cladding and louvers; Design of purlins for roofs and rails for cladding; Open sheds – Pitched roofs.

UNIT-II

Towers

Basic structural configurations - free standing and guyed towers - wind loads - foundation design - design criteria for different configurations and transmission line towers.

UNIT-III

Connections

Bearing type joints - unstiffened and stiffened seat connections (bolted & welded); bracket connections type I & II (bolted and welded)-semi-rigid connections.

UNIT-IV

Design Of Steel Truss Girder Bridges:

	Types of truss bridges, component parts of a truss bridge, economic proportions of trusses, self weight of truss girders, design of bridge compression members, tension members, stringer breams, cross beams; wind load on truss girder bridges; wind effect on top lateral bracing; bottom lateral bracing; portal bracing; sway bracing
Text books	 Design of steel structures by N Subramanian, oxford university press, 2018 Limit state design of steel structures by S K Duggal, McGraw Hill Education (India) Pvt Ltd., 2017
Reference Books:	 Design of Steel Structures by A S Arya and J L Ajmani, Nam Chand Brothers Publication, 2011 Steel structures: Design and behaviour by C G Salmon and J E Johnson, Prentice-Hall, 1997.
E-resources and other digital material	https://nptel.ac.in/courses/105106113/ https://nptel.ac.in/courses/105106112/

19CESE1014/1 ---- Structural Health Monitoring

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lectures	3 hrs/week
		Continuous Evaluation: Semester end Evaluation: Total Marks:	40 60 100

Course outcom	es	On successful completion of the course, the student will be able to:							
		CO1:acq	uire fundam	entals of stru	uctural health	n monitoring			
		CO2: as	sess the hea	alth of struct	ure by using	Vibration te	chniques		
		CO3: des	sign conside	rations for s	tructural hea	Ith monitorir	ng of bridge	s.	
		CO4: applyrepairs and rehabilitation measures of the structure							
achievemen t of Program Outcomes (L – Low, M - Medium, H – High)		PO (A)	PO (B)	PO (C)	PO (D)	PO (E)	PO (F)	PO (G)	
	CO1	L	L				L		
	CO2	L	М				L		
	CO3	L	М				L		
	CO4	М	М			н	М		

UNIT-I **Course Content** Introduction to Structural Health Monitoring: Definition of Structural Health Monitoring, Motivation for Structural Health Monitoring, Structural Health Monitoring as a way of making materials and structures smart, SHM and biomimetics, Process and pre-usage monitoring as a part of SHM,SHM as a part of system management, Passive and active SHM,NDE, SHM and NDECS, Variety and multidisciplinary the most remarkable characters of SHM UNIT-II Vibration-Based Techniques for Structural Health Monitoring: Introduction, Basic vibration concepts for SHM, Local and global methods, Damage diagnosis as an inverse problem, Model-based damage assessment, Mathematical description of structural systems with damage Structural Health Monitoring General dynamic behavior UNIT-III Applications of structural health monitoring in Civil infrastructure systems: Structural health monitoring of bridges: general issues and applications, Introduction: bridges, Integrated structural health monitoring systems, Designing and implementing a structural health monitoring system, Bridge monitoring, Application examples. **UNIT-IV** Introduction to Repairs and Rehabilitations of Structures: Case Studies (Site Visits), piezo-electric materials and other smart materials, electro-

	mechanical impedance (EMI) technique, adaptations of EMI technique.
Text books	 Structural Health Monitoring, Daniel Balageas, Claus Peter Fritzen, Alfredo Güemes, John Wiley and Sons, 2006. Health Monitoring of Structural Materials and Components Methods with Applications, Douglas E Adams, John Wiley and Sons, 2007.
Reference books	 Structural Health Monitoring and Intelligent Infrastructure, Vol1, J. P. Ou, H. Li and Z. D. Duan, Taylor and Francis Group, London, UK, 2006. Structural Health Monitoring with Wafer Active Sensors, Victor Giurglutiu, Academic Press Inc, 2007.
E-resources and other digital material	https://nptel.ac.in/courses/112104160/3

19CESE1014/2 ---- SUB-STRUCTURE DESIGN

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lectures	3 hrs/week
		Continuous Evaluation: Semester end Evaluation: Total Marks:	40 60 100

Course outcomes		CO1 : plan applied loa		gation and	calculate th	e stresses	on soil due	to
		CO2: calculate bearing capacity of soil to design shallow foundations & calculate the settlements in soils						
		CO3: desi	gn pile four	ndations for	structures			
		CO4: desi	gn well fou	ndations				
Contribution of Course		PO(A)	PO(B)	PO(C)	PO(D)	PO(E)	PO(F)	PO(G)
Outcomes towards	CO1	М			М			
(L – Low, M - Medium, H –	CO2	Н	М					
High)	CO3	Н	М				L	
	CO4	Н	М				L	
		borings; E Static con Vane she Stress-stra concentrat Influence distribution Unit - II: S Different k inclined lo capacity fi load test Settlemen	Bore hole I ne penetr ar tests. due to app ain param ted loads; diagram; h bearing cap ad, eccentr rom in-situ	ogging; In ation test lied loads eters; Ver Boussines Newmark' undations bacity equa ic load and tests; Meth	-situ tests , Dynamic tical and aq and W s influenc ations; Type water tabl nods of imp	 Standard cone per horizontal estergarrd e charts; es of shea e on bearir proving bea 	solutions; Contact ar failures; ng capacity aring capac	ion test, test and due to Isobars; pressure Effect of ; Bearing ity; Plate
		Allowable		Proportion			idation set a given set	
		Necessity	of pile four	ndation; Cla			onstruction amic and in	

foundation; Negative skin friction; Under-reamed pile foundation in swelling soils. Unit - IV: Well Foundations Forces acting on well foundation; Types, different shapes of wells;		
Forces acting on well foundation; Types, different shapes of wells; Analysis of well foundation; Individual components of well; Sinking of wells; Measures for rectification of tilts and shifts.Text books1. Basic and Applied Soil Mechanics, GopalRanjan and A.S.R.Rao, New Age International (P) Limited Publishers, 2 nd Edition, 2006 2. Soil Mechanics and Foundation Engineering K.R.Arora; Standard Publishers and Distributors, 2009Reference books1. Advanced Foundation Engineering, V.N.S.Murthy, CBS Publishers and Distributors, New Delhi, 2007 2. Foundation Analysis and Design, Joseph E. Bowles,McGraw – Hill International Editions, 4 th Edition, 1988E-resources and otherhttp://nptel.ac.in/courses/105101083		methods; Pile load tests; Pile group and its efficiency; Settlement of pile foundation; Negative skin friction; Under-reamed pile foundation in swelling soils.
Age International (P) Limited Publishers, 2 nd Édition, 20062. Soil Mechanics and Foundation Engineering K.R.Arora; Standard Publishers and Distributors, 2009Reference books1. Advanced Foundation Engineering, V.N.S.Murthy, CBS Publishers and Distributors, New Delhi, 2007 2. Foundation Analysis and Design, Joseph E. Bowles,McGraw – Hill International Editions, 4 th Edition, 1988E-resources and otherhttp://nptel.ac.in/courses/105101083		Forces acting on well foundation; Types, different shapes of wells; Analysis of well foundation; Individual components of well; Sinking of
Publishers and Distributors, New Delhi, 2007 Publishers and Distributors, New Delhi,	Text books	Age International (P) Limited Publishers, 2 nd Édition, 2006 2. Soil Mechanics and Foundation Engineering K.R.Arora; Standard
	Reference books	Publishers and Distributors, New Delhi, 2007 2. Foundation Analysis and Design, Joseph E. Bowles, McGraw
		http://nptel.ac.in/courses/105101083

19CESE1014/3 ---- ANALYTICAL AND NUMERICAL METHODS FOR STRUCTURAL ENGINEERING

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lectures	3 hrs/week
		Continuous Evaluation: Semester end Evaluation: Total Marks:	40 60 100

Course outcomes	On successful completion of the course, the student will be able to:					
	CO1: solve one dimensional wave equation and one dimensional heat conduction problems.					
	CO2: explain functional dependency and solve Laplace and Euler's equations.					
	CO3: apply separable kernel iterative method to solve integral equations of second kind					
	CO4: estimate functional relationship between variables and parameters.					

Contribution		PO(A)	PO(B)	PO(C)	PO(D)	PO(E)	PO(F)	PO(G)
of Course Outcomes	CO1	н	Н					
towards achievement	CO2	н	Н					
of Program	CO3	Н	Н					
Outcomes (L – Low, M - Medium, H – High)	CO4	Н	Н					

Course Content

UNIT-I

TRANSFORM METHODS

Laplace transform methods for one-dimensional wave equation -Displacements in a long string - Longitudinal vibration of an elastic bar - Fourier transforms methods for one-dimensional heat conduction problems in infinite and semi-infinite rod.

UNIT-II

ELLIPTIC EQUATIONS

Laplace equation - Properties of harmonic functions - Fourier transform methods for Laplace equation

CALCULUS OF VARIATIONS

Variation and its properties - Euler's equation - Functionals dependent on first and higher order derivatives - Functionals dependent on functions of several independent variables - Some applications - Direct methods - Ritz and Kantorovich methods

UNIT-III

INTEGRAL EQUATIONS

Fredholm and Volterra integral equations - Relation between differential and integral equations - Green's function -Fredholm equation with separable kernel - Iterative method for solving

	equations of second kind. UNIT-IV RANDOM VARIABLES AND ESTIMATION THEORY Probability - Probability distributions - moments, M.G.F-Two						
	dimensional random variables correlation, regression multiple ar partial correlation and regression - Curve fitting - Principle of lea squares - Fitting of straight line and parabola. Estimation theory basic concepts (Review) - Estimation of parameters - Maximum likelihood estimates - method of moments						
Text books	Text Book: 1. Sankara Rao. K, "Introduction to Partial Differential Equations", PHI, New Delhi, 1995. 2. Sneddon. I.N, "Elements of Partial Differential Equations", McGraw Hill, 1986						
Reference books	 Elsgolts. L, "Differential Equations and Calculus of Variations", Mir Publishers, Moscow, 1966. Gupta. S.C,&Kapoor. V.K, "Fundamentals of Mathematical Statistics", Sultan Chand & Sons, Reprint 1999. Venkataraman. M.K, "Higher Engineering Maths for Engg. And Sciences", National Publishing Company, Chennai 						
E-resources and other digital material	https://nptel.ac.in/courses/105105043/						

19CESE1014/4 ---- PRE ENGINEERED BUILDINGS

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lectures	3 hrs/week
		Continuous Evaluation: Semester end Evaluation: Total Marks:	40 60 100

Course outcomes		On success	ful complet	ion of the co	ourse, the s	tudent will b	On successful completion of the course, the student will be able to:							
		CO1 classify different materials used for pre-engineered buildings												
		CO2 classify pre-engineered building components												
		CO3 classif	y different c	lesign loads	s on pre-enç	gineered bu	ildings							
		CO4 apply p	ore-enginee	ered building	g design me	ethodology								
Contribution of Course		PO(A)	PO(B)	PO(C)	PO(D)	PO (E)	PO(F)	PO(G)						
Outcomes towards	CO	1	Н											
achievement of Program	CO2	2	Н											
Outcomes (L – Low, M -	CO3	3	н											
Medium, H – High)	CO4	4 Н	н				М	М						
		UNIT-II: PRE-ENGINEERED BUILDING COMPONENTS Primary System: Main frames, Gable End Frame - Secondary frame - Sizes and Properties of Purlins & Girts – Bracing System: Rod, angle, Pipe bracing – Sheeting and Cladding: Roof Sheeting and Wall she Accessories: Turbo Ventilators, Ridge vents, Sky Lights, Louvers, Ins						e, Portal, neeting –						
		Stair cases.												
			ADS ON P											
		DESIGN LOADS ON PRE-ENGINEERED BUILDINGS. Design of PEB frame under the influence of Dead, Live, Collateral, Win Seismic and Other applicable Loads. Serviceability Limits as per code.												
				under the	influence o	of Dead, Liv	,							
		0												

Text books	 Alexander Newman, Metal Building SystemsDesign and Specifications, 2nd Edition
Reference books	 K.S.Vivek&P.Vaishavi – Pre Engineered Steel Buildings, Lambert Academic Publishing
E-resources and other digital material	Open Web

19CESE1015/1 ---- PREFABRICATED STRUCTURES

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lectures	3 hrs/week
		Continuous Evaluation: Semester end Evaluation: Total Marks:	40 60 100

	U	On successful completion of the course, the student will be able to:								
	C	D1 identify	design pri	nciples an	d IS code s	pecifications	i.			
	C	CO2 analyze and design shear walls.								
	C	CO3 analyze and design different types of floors and roof slabs.								
	C	04 design	industrial b	ouildings.						
Contribution of Course		PO(A)	PO(B)	PO(C)	PO (D)	PO (E)	PO (F)	PO(G)		
Outcomes towards	CO1		М							
achievement of Program	CO2	М	М				М	М		
Outcomes (L – Low, M -	CO3		М		L		М	М		
Medium, H – High)	CO4		М		L		м	м		
	re	quirements	s for plai		Civil Eng I layout o		equirement cates plan			
	re sp D Pr re	quirements ecifications ESIGN PI efabricates ovisions, s	s for plan s RINCIPLE s, producti safety facto	nning and S: Modula on, transp ors, mater	l layout o ar coordinat ortation, ere	f prefabri ion, standa ection, stage es, Deflectio	cates plan rdization, E es of loadir	it. IS Cod Disuniting, on ag and code		
	re- sp D Pr pr- re- UI bu wa pa typ	quirements ecifications ESIGN PF efabricates ovisions, s sistance, L NIT-II ALLS: Pr ildings, fra all panels, nels, verti- pes of wall	s for plan s RINCIPLE s, producti safety facto ocation an efabricate med build Partition cal loads, joints, the	nning and S: Modula on, transp ors, mater id types of d structur ings with p and load Eccentrici eir behavic	ar coordinat ortation, err ial propertions shear walls es, Long beartial and co bearing wa ty and stab our and des	f prefabri ion, standa ection, stage es, Deflectio	rdization, E es of loadir on control, single stor nsfer from panels, De evention, jo	it. IS Cod Disuniting, c ing and coda Lateral loa large pane rey. Types c floor to wa sign Curves		
	re- sp D Pr pr- re- UI W bu wa pa typ sa	quirements ecifications ESIGN PF efabricates ovisions, s sistance, L NIT-II ALLS: Pr ildings, fra all panels, nels, verti- pes of wall	s for plan s RINCIPLE s, producti safety facto ocation an efabricate med build Partition cal loads, joints, the	nning and S: Modula on, transp ors, mater id types of d structur ings with p and load Eccentrici eir behavic	ar coordinat ortation, err ial propertions shear walls es, Long beartial and co bearing wa ty and stab our and des	f prefabri ion, standa ection, stage es, Deflections surtain walls ils, load tra ility of wall ign, Leak pr	rdization, E es of loadir on control, single stor nsfer from panels, De evention, jo	it. IS Cod Disuniting, o ng and coda Lateral loa large pano rey. Types o floor to wa sign Curves		
	rea sp D Pr pro- rea UI W bu wa pa typ sa UI FL ex ins rea	quirements ecifications ESIGN PF efabricates ovisions, s sistance, L NIT-II ALLS: Pr ildings, fra all panels, nels, verti- bes of wall ndwich wa NIT-III OORS, S ample of c sulation rec	s for plan s RINCIPLE s, producti safety facto ocation an efabricate med build Partition cal loads, joints, the ill panels, a TAIRS AI sored and p quirements s, deflectio	nning and S: Modula on, transp ors, mater id types of d structur ings with p and load Eccentrici eir behavic approxima ND ROOF panel type s, Descript on control	a layout o ar coordinat ortation, err ial propertions shear walls es, Long beartial and co bearing wa ty and stab our and des te design of S: Types co s and two w ion of joints for short to	f prefabri ion, standa ection, stage es, Deflections surtain walls ils, load tra ility of wall ign, Leak pr	rdization, E es of loadir on control, sross wall , single stor nsfer from panels, De evention, jo s, analysis , types of ro viour and ro	it. IS Cod Disuniting, o and coda Lateral loa large pane rey. Types o floor to wa sign Curves bint sealants and design pof slabs an einforcemen		

	DESIGN OF INDUSTRIAL BUILDINGS: Components of single storey industrial sheds with crane gantry systems, design of R.C. Roof Trusses, roof panels, design of R.C. crane gantry girders, corbels and columns, wind bracing design, Design of shell roofs for Industrial sheds.
Text books	Text Books: 1.S.R.Damodaraswamy&S.Kavitha, Basics of Dynamics and Aseismic Design, PHI Learning ,2009. 2.PankajAgarwal&shrikhande , Earth quake resistant Design of Structures, PHI Learning ,2009. Chopra A.K., "Dynamics of Structures - Theory and Applications to Earthquake Engineering", Second Edition, Pearson Education, 2007
Reference books	1 V.Soundararajan,R.Jagadeeshkumar, S KalpanaDevi Pre fabricated structures ars publications
E-resources and other digital material	https://www.youtube.com/watch?v=wXNICrqbOwg

19CESE1015/2 FRACTURE MECHANICS OF CONCRETE STRUCTURES

Course Category:	Programme Elective-II	Credits:	3
Course Type:	Theory	Lectures	3 hrs/week
		Continuous Evaluation: Semester end Evaluation: Total Marks:	40 60 100

Course outcome	S	On successful completion of the course, the studen						nt will be able to:	
	_	CO1 Apply the principles of linear elastic fracture mechanics							
	-	CO2 Apply theprinciples of non-linear fracture mechanics							
	-	CO3 Evaluate the fracture process of concrete							
		CO4 App	ly the fract	ture mech	anics to c	oncrete s	tructures		
Contribution of Course		PO(A)	PO(B)	PO(C)	PO(D)	PO(E)	PO(F)	PO(G)	
Outcomes towards	CO1	М			М				
achievement of Program	CO2	М			М				
Outcomes (L – Low, M -	CO3	М	Н		L				
Medium, H – High)	CO4	М	Н		L				

Course Content

UNIT-I

Introduction to fracture mechanics of concrete

Structural failure based on material performance; Concepts of linear elastic fracture mechanics; Fracture mechanics of concrete.

Principles of linear elastic fracture mechanics

Airy stress functions for problems in elasticity; Complex stress function; Elastic stress and displacement fields at crack tip; Stress intensity factors and crack opening displacements for useful geometries; Superposition of stress intensity factors; Plastic zone at crack tip; Griffith's fracture theory; Strain energy release rate for crack propagation; Relationship between stress intensity factor and strain energy release rate.

UNIT-II

Principles of non-linear fracture mechanics Energy principles for crack propagation in non – linear materials; J-integral for non-linear elastic materials; Fracture resistance (R curve); Crack tip opening displacement;	
UNIT-III	
Structure and fracture process of concrete Constituents and microstructure of concrete; Fracture behavior and strain localization of concrete; fracture process zone and	

	 toughening mechanisms; Influence of fracture process zone on fracture behavior of concrete. UNIT-IV Applications of fracture mechanics to concrete structures Behavior of concrete structures and fracture mechanics; Size effect on nominal strength of plain concrete specimen; Tension of concrete specimen; Tension and fracture mechanics of concrete specimen; Tension of concrete specimen; Tension of concrete specimen; Tension of concrete specimen; Tension of concrete specimen; Tension 							
	of reinforced concrete members; Bending of reinforced concrete beams; Minimum reinforced ratios of concrete members.							
Text books	 Fracture mechanics of concrete: Applications of fracture mechanics to concrete, rock, and other quasi-brittle materials by Surendra P. Shah, Stuart E. Swartz &ChengshengOuyang, John Wiley & Sons, 1995. Elements of fracture mechanics by Prashant Kumar, Tata- McGraw-Hill, 2009. 							
Reference books	 Fracture Mechanics of Concrete Structures edited by ZDENEK P. BAZANT Walter P. Murphy Professor of Civil Engineering, Northwestern University, Evanston, Illinois, USA 							
E-resources and other digital material	nptel.ac.in/courses/105106053/18							

19CESE1015/3 STRUCTURAL OPTIMIZATION

Course Category:	Programme Elective-II	Credits:	3
Course Type:	Theory	Lectures	3 hrs/week
		Continuous Evaluation: Semester end Evaluation: Total Marks:	40 60 100

Course outcomes		On successful completion of the course, the student will be able to:								
	C	CO1 classify optimization and various techniques								
	C	CO2 solve various linear and Non-linear problems								
		CO3 solve programmir		em by ge	eometric	program	ming and	d dynam		
		CO4 apply	/ optimiza	tion to va	rious stru	ctural ele	ments.			
Contribution of Course		PO(A)	PO(B)	PO(C)	PO(D)	PO(E)	PO(F)	PO(G)		
Outcomes towards	CO1	L	L	Н						
achievement of Program	CO2	L	L	Н						
Outcomes (L – Low, M -	CO3	L	L	Н						
Medium, H – High)	CO4	L	L	Н						

Course Content	UNIT-I
	Introduction to Optimization Statement of an Optimization problem, Classification Applications, Optimization literature
	Classical Optimization Techniques Single Variable Optimization, Multivariable Optimization with and without constraints, Kuhn-Tucker Conditions
	UNIT-II
	Linear Programming Graphical Method, Analytical Method, Two Phase Simplex Method, Z _i -C _i Method, Primal Dual Algorithm, Big M Method.
	Non Linear Programming (Numerical Methods) Unimodal Function, Elimination Methods, Interpolation Methods, Direct Search Methods, Indirect Search Methods.
	UNIT-III
	Geometric Programming Unconstrained Minimization Problem, Constrained Minimization, Primal Dual Relationships
	Dynamic Programming

	Bellman's principle of optimality, multistage decisions processes, concept of sub optimization, conversion of final value problem to initial value problem.
	UNIT-IV
	Non Traditional Optimization Techniques Multi-objective Optimization, Genetic Algorithms, Simulated Annealing, Neural Network Based Optimization, Optimization of Fuzzy Systems
	Structural Optimization Methods of Optimum Structural elements, minimum weight design of truss members, optimum reinforced design of RCC slabs and beams, principles of optimization of design of multistorey structures, shell roofs, folded plates, water tanks
Text books and	 Singiresu S. Rao (2011). "Engineering Optimization: Theory and Practice" New Age International Publishers, ISBN 978- 81-224-2723-3 G. Hadley,"Linear programming", Narosa Publishing House, New Delhi, 1990.
Reference books	 Deb K, (1995), "Optimization for Engineering Design: Algorithms and Examples", Prentice Hall, New Delhi. RGallagher R.H. and O.C. Zienkiewicz, "Optimum Structural Design: Theory and Applications", John Wiley and Sons, ISBN 0-471-29050-5.
E-resources and other digital material	http://www.nptel.ac.in/courses/105108127/

19CESE1015/4 DESIGN OF PRESTRESSED CONCRETE STRUCTURES

Course Category:	Programme Elective-II	Credits:	3
Course Type:	Theory	Lectures	3 hrs/week
		Continuous Evaluation: Semester end Evaluation: Total Marks:	40 60 100

Course outcomes	On successful completion of the course, the student will be able to:
	CO1 Analyse and design statically determinate and statically indeterminate members
	CO2 Analyze and design the cylinder and non cylinder pipes and tanks
	CO3 Analyze and design the prestressed concrete slabs

Contribution		PO(A)	PO(B)	PO(C)	PO(D)	PO(E)	PO(F)	PO(G	
of Course Outcomes	CO1	L	Н				L	М	
towards achievement of Program	CO2	L	Н				L	M	
Outcomes (L – Low, M -	CO3	L	н				L	М	
Medium, H – High)	CO4	L	Н				L	М	
Course Conte	ent	UNIT-I				1	<u> </u>	<u> </u>	
		Difference Principles structures steel- Los (Pressure beams. Statically Design of and linea continuous UNIT-II	of pre-stre – Materia ses in p line ,load indetermi continuous r transfo	essing – (ls – High re-stress. balancing i nate pre - s beams;	Classifica strength Analysi concept stressed Cable	tion of pr concrete s of pre s)Design d concret profile -	and Hig estressed of post- te structor - Concord	h streng concre tension ures dant cat	
		Advantage concrete p Prestress General f	es of prest ipes(cyling ed concre eatures d concre	ressed co der,Non c ete tanks of prestre	g; Types of prestressed concrete pipe essed concrete pipes, Design of prestress er,Non cylinder); te tanks f prestressed concrete tanks; Analysis e tanks; Design of circular pre-stress				
		UNIT-III Pre-stress Types of p concrete c way slabs;	sed concr pre-stresse	ed concret slabs; D	te floor sl Design of	pre-stres	ssed con	crete tw	
		UNIT-IV Pre-stress Advantage concrete p piles, Ty considerat	es of pres piles, De pes of	tressed c sign cons prestres	oncrete sideration sed co	piles ,Ty s of pro ncrete	pes of pr estressed	estress concre	
		Pre-stress Advantage pre-stressi concrete s	s of pre-s ng shell s	tressing lo structures	ong span				
	;	1. Pr	e-stressed	d concr	ete by	N.Kri	shnaRajı	ı, Tat	
Text books			cGraw-H e-stressed	<i>,</i>		by		agopala	

	NarosaPublishing House, 2005.
Reference books	 Pre-stressed concrete by T.Y.Lin&N.H.Burns, John Wiley & Sons,198 Design of Prestressed Concrete Book by Neil C. ickleborough and R. I. Gilbert, published by Unwin Hyman Ltd,
E-resources and other digital material	https://nptel.ac.in/syllabus/105106118

19CESE1026RESEARCHMETHODOLOGY AND IPR

Course Category:	MLC	Credits:	0
Course Type:	Theory	Lectures	2hrs/week
		Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

Course outcomes	On succes	ssful comp	letion of th	ne course	, the stuc	lent will b	e able to:		
	CO1: Acquire an overview of the research methodology and techniques to define research problemCO2: Review the literature and identify the problemCO3: Analyze the optimum sampling techniques for collected data								
	CO4: Apply various forms of the intellectual properties for research work								
Contribution of Course		PO(A)	PO(B)	PO(C)	PO(D)	PO(E)	PO(F)	PO(G)	
Outcomes towards	CO1		М						
achievement of Program	CO2	L	М						
Outcomes (L – Low, M -	CO3		М	L	М				
Medium, H – High)	- CO4 L M								
Course Content	UNIT-I Research Methodology: Introduction, Meaning of Research, Objectives of Research, Motivation in Research, Research Approaches, Significance of Research, Research and Scientific Methods, Research Process, Criteria of Good								

Research, and Problems Encountered by Researchers in India.
Research Problem: Defining the Research Problem, Selecting the Problem, Necessity of Defining the Problem, Technique Involved in Defining a Problem, an Illustration
UNIT-II Reviewing the literature : Place of the literature review in research, improving research methodology, broadening knowledge base in research area, enabling contextual findings.
ResearchDesign :MeaningofResearchDesign,NeedforResea rchDesign,FeaturesofaGood Design, Important Concepts Relating to Research Design, Basic Principles of experimental Designs, Important ExperimentalDesigns.
UNIT-IIIDesign of Sampling: Introduction, Sample Design, Sampling and Non-sampling Errors, SampleSurveyversusCensusSurvey,MeasurementandScalin g:QualitativeandQuantitative Data, Classifications of Measurement Scales, Goodness of Measurement Scales, sources of error in measurementtools.
Data Collection : Experimental and Surveys, Collection of Primary Data, Collection of Secondary Data, Selection of Appropriate Method for Data Collection, Case Study Method
Testing of Hypotheses: Hypothesis, Basic Concepts, Testing of Hypothesis, Test Statistics and Critical Region, Critical Value and Decision Rule, Procedure for Hypothesis Testing.
 UNIT-IV Interpretation and Report Writing: Meaning of Interpretation, Technique of Interpretation, Precaution in Interpretation, and Significance of Report Writing Intellectual Property: The Concept, Intellectual Property System in India, Development of TRIPSCompliedRegimeinIndia,PatentsAct,1970,TradeMar kAct,1999,TheDesignsAct, 2000, The Geographical Indications of Goods (Registration and Protection) Act1999, CopyrightAct,1957,TradeSecrets,UtilityModelsWTO,Paris ConventionfortheProtection of Industrial Property, National Treatment, Right of Priority, Common Rules, Patents, Marks, Industrial Designs, Trade Names, Indications of Source, Unfair Competition, Patent Cooperation Treaty (PCT), Trade Related Aspects of Intellectual Property

Text books	 Research methodology: Methods and Techniques, C.R. Kothari, GauravGarg, New Age International, 4th Edition,2018. Research Methodology a step-by-step guide for beginners. Ranjit Kumar, SAGE Publications Ltd.,3rd Edition,2011 Study Material, Professional Programme Intellectual Property Rights, Law and Practice, The Institute of Company Secretaries of India, Statutory Body under an Act of Parliament, September2013.
Reference books	 An introduction to Research Methodology, Garg B.L et al ,RBSA Publishers2002 An Introduction to Multivariate Statistical Analysis Anderson T.W, Wiley 3rdEdition, Research Methodology, Sinha, S.C, Dhiman, EssEssPublications2002 Research Methods: the concise knowledge base ,Trochim ,Atomic Dog Publishing,2005 How to Write and Publish a Scientific Paper, Day R.A, Cambridge University Press1992 Conducting Research Literature Reviews: From the Internet to Paper, Fink A, Sage Publications, 2009 Proposal Writing, Coley S.M. Scheinberg, C.A, Sage Publications,1990 Intellectual Property Rights in the Global Economy, Keith Eugene Maskus, Institute for InternationalEconomics
E-resources and other digital material	Open web

19CESE1051 ADVANCED CONCRETE LAB

Course Category:	Laboratory	Credits:	2
Course Type:	Practical	Lectures	3
		Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

Course outcomes		On successful completion of the course, the student will be able to:							
		CO1 distinguish the effect of water cement ratio on strength of concrete							
	C	CO2 distinguish the effect of aggregate cement ratio							
		CO3 determine the properties of fresh and hardened concrete.							
			gn the co 1 ACI Co	oncrete m de	ix for va	rious grac	les by us	ing	
Contribution of Course		PO(A)	PO(B)	PO(C)	PO(D)	PO(E)	PO(F)	PO(
Outcomes towards	CO1				Н				
achievement of Program	CO2				Н				
Outcomes (L – Low, M - Medium, H –	CO3				Н				
High)	CO4				H				
Course Content	1 s 3 4 5 a (trength of trength of trength of . Influence . Study or . Mix Des . I.S. Cod Design of o. ACI Coo	Concrete. ne effect of concrete. e of Different n propertie ign method	of aggregat ent Chemic es of cemer ds using gth and hig	e cement al Admixtu nt and aggi	ratio on W res on con regate for N	orkability crete Mix design	and	
	1 6 2	lastic prop	perties of n correlati	riour of fres hardened o on betweer and moduli	concrete n cube stre	ength, cylin	der streng		

	3. A study on the effect of span to depth ratio on the failure pattern of RC beams.
	4.Study of Non-Destructive Testing Methods on Concrete
	5.A study on behavior of under reinforced and over reinforced beams.
Description and testing based on availability of material	Fibre reinforced Concrete, Polymer Concrete, Epoxy resins and screeds for rehabilitation – properties and application – Emerging trends in replacement of fine and coarse aggregates. Durability tests(ANY TWO)

19CESE1052 – Numerical Analysis Lab

Course Category:	Laboratory	Credits:	2
Course Type:	Practical	Lectures	3
		Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

Course outcomes		On successful completion of the course, the student will be able to:							
		CO1: find root of algebraic and transcendental equations							
		CO2: fit a curve for given data							
	CO3: solve system of linear equations numerically								
		CO4: evalu	ate nume	erical solu	tion to ore	dinary dif	ferential o	equation.	
Contribution of Course		PO(A)	PO(B)	PO(C)	PO(D)	PO(E)	PO(F)	PO(G)	
Outcomes towards	CO1	L		М					
achievement of Program	CO2	L	L	М					
Outcomes (L – Low, M -	CO3	L	L	М					
Medium, H – High)	CO4	L	L	М					
Course Content		 Find the Find the Method. Curve Fit Solve the Elimination Solve the Iteration Method. Solve the Method. Integrate Integrate Integrate Numerica Euler's Method. Runge- Kut 	Roots of I ting by Le e System Method. e System ethod. e System numerica al Solution hod. cal Solutio	Non-Linea of Linear of Linear of Linear ally using n of Ordin	ar Equation Equation Equation Equation Trapezoi Simpson ary Differ	on Using ximations ns Using s Using (s Using (dal Rule. 's Rules. rential Eq	Newton's Gauss - Gauss - S Gauss - J Juations E	s Seidal Iordan By	

19CESE2001 FEM IN STRUCTURAL ENGINEERING

Course Category:	ProgrammeCore	Credits:	3

Course Type:	Theory	Lectures	3 hrs/week
		Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

Course outcomes	On successful completion of the course, the student will be able to:								
	CO1: interpret the concepts behind formulation methods in FEM								
CO2: identify the application and characteristics of FEA elements as bars, beams, plane and iso-parametric elements									
	CO3: develop element characteristic equation and generation of global equation								
	CO4: apply suitable boundary conditions to a global equation for bars, trusses beam and axisymmetric and elements and solve them displacements, stress and strains induced								
Contribution of Course	PO (A) PO (B) PO(C) PO (D) PO (E) PO (F) PO (G)								

Contribution			10 (D)	10(0)	10(D)	10(1)	10(0)
of Course						 	
Outcomes	CO1	М	Н				
towards achievement of	CO2	М	Н				
Program Outcomes	CO3	М	Н				
(L – Low, M -							
Medium, H – High)	CO4	М	Н				

Course Content	UNIT-I				
	Approximate solution of boundary value problems-Methods of weighted residuals, Approximate solution using variational method, Modified Galerkin method, Boundary conditions and general comments. Basic finite element concepts-Basic ideas in a finite element solution, General finite element solution procedure, Finite element equations using modified Galerkin method, Application: Axial deformation of bars, Axial spring element.				
	UNIT-II				
	Analysis of trusses-Two dimensional truss element, Three dimensional space truss element, Stresses due to lack of fit and temperature changes.				
	Beam bending-Governing differential equation for beam bending, Two node beam element, and Exact solution for uniform beams subjected to				
	distributed loads using superposition, Calculation of stresses in beams,				
	Thermal stresses in beams.				
	UNIT-III				
	Higher order elements for one dimensional problems-Shape functions for second order problems, Isoparametric mapping concept, Quadratic				
	isoparametric element for general one dimensional boundary value				
	problem, One dimensional numerical integration, Application: Heat conduction through a thin film.				
	Two dimensional boundary value problems using triangular elements,				
	Equivalent functional for general 2D BVP,A triangular element for general 2D BVP, Numerical examples. Isoparametric quadrilateral				

	 elements-Shape functions for rectangular elements, Isoparametric mapping for quadrilateral elements, Numerical integration for quadrilateral elements, Four node quadrilateral element for 2D BVP, Eight node serendipity element for 2D BVP. Isoparametric triangular elements. Natural (or Area) coordinates for triangles, Shape functions for triangular elements, Natural coordinate mapping for triangles, Numerical integration for triangles, Six node triangular element for general 2D BVP. UNIT-IV Numerical integration-Newton-Cotes rules, Trapezium rule, Simpson's rule, Error term, Gauss-Legendre rules, Changing limits of integration, Gauss-Leguerre rule, Multiple integrals, Numerical integration for triangular elements. Two dimensional elasticity-Governing differential equations, Constant strain triangular element, Four node quadrilateral element, and Eight node isoparametricelement.Axisymmetric elasticity problems-Governing equations for axisymmetric four node isoparametric linear triangular element.
Text books	 Bhatti, M.A., Fundamental Finite ElementAnalysis and Applications: with Mathematica and Matlab Computations, Wiley, 2005 Reddy, J. N., An Introduction to the Finite Element Method, 3rd Edition, McGraw-Hill Science/Engineering/Math, 2005.
Reference books	 Logan D. L., A First Course in the Finite Element Method, Thomson Engineering, 3rd edition, 2001. Cook, R. D., Malkus, D.S., Plesha, M.E., and Witt, R.J., Concepts and applications of Fi Element Analysis, 4th Edition, Wiley-India, 2007
E-resources and other digital material	nptel.ac.in/courses/105106053/18

19CESE 2002 STABILITY OF STRUCTURES

Course Category:	Programme Core	Credits:	3
Course Type:	Theory	Lectures	3 hrs/week
		Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

Course outcomes		On successful completion of the course, the student will be able to:						
		CO1:analyze the buckling of columns, beam-columns and find critical loads using energy and non-energy methods						
		CO2: analyze the lateral buckling of beams by energy and non-energy methods						
CO3:analyze the buckling of rectangular plates and find compressive loads for various boundary conditions					ind critical			
		CO4: analyze the buckling of axially loaded cylindrical shells						
achievement of Program		PO (A)	PO (B)	PO (C)	PO(D)	PO (E)	PO (F)	PO (G)
	CO1	Н	М	L	L			
	CO2	Н	М	L	L			
	CO3	Н	М	L	L			
- Medium, H – High)	CO4	Н	Н	Н				

Course Content	UNIT-I
	Buckling of columns:
	Introduction; Methods of finding critical loads; Critical loads
	for straight columns with different end conditions and loading;
	Inelastic buckling of axially loaded columns; Energy methods;
	Prismatic and non-prismatic columns under discrete and
	distributed loading.
	Beam Columns – Theory of Beam column – Stability analysis
	of beam column with different types of loads.
	UNIT-II
	Lateral Buckling of Beams:
	Beams under pure bending; Cantilever and simply supported
	beams of rectangular and I sections; Beams under transverse
	loading; Energy methods; Solution of simple problems.
	UNIT-III
	Buckling of Rectangular Plates:
	Plates simply supported on all edges and subjected to constant
	along two opposite sides perpendicular to the direction of

	compression and having various edge conditions along the other two sides UNIT-IV Buckling of Shells: Introduction to buckling of axially compressed cylindrical shells,Linear theory of cylindrical shells-donnell equations,critical load of an axially loaded cylinder,failure of axially compressed cylindrical shells
Text books	 Text Book: 1. Theory of elastic stability by Timoshenko & Gere, McGraw Hill, 1961. 2. Background to buckling by Allen and Bulson, McGraw-Hill, 1980.
Reference Books:	 Elastic stability of structural elements by N.G.R.Iyengar, Macmillan India Ltd., 2007. Principles of Structural stability theory by AlexandarChajes
E-resources and other digital material	https://nptel.ac.in/courses/105/105/105105108/

19CESE 2003 DYNAMICS OF STRCUTURES

Course Category:	Programme Core	Credits:	3
Course Type:	Theory	Lectures	3 hrs/week
		Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

Course outcomes		On successful completion of the course, the student will be able to:							
		CO1 classify the principles of structural dynamics.							
		CO2 summarize the solution technique for dynamics of MDOF systems.							
		CO3 desig frequencie		-	alytical sl	kills to ca	lculate nat	ural	
		CO4 analy	ze for lat	eral load	on struct	ures			
Contribution of Course		PO (A)	PO(B)	PO(C)	PO(D)	PO (E)	PO (F)	PO	
Outcomes towards	CO1								
achievement of Program	CO2	L	М						
Outcomos	CO3	М	М	Н	М				
- Medium, H – High)	CO4	L	L		L				
Course Content		UNIT-I Introduct Fundamen prescribed different m of motion/ and Hamil Single Deg Formulation vibration vibration vibrations, vibration c impulsive integral; Newmark' UNIT-II Multi Deg Selection structural equations of Eigen	tal object loading- nethods- ' D'Alem' ton princi gree of Fi on and s of SDOF of SDOF and g Numeric 's method gree of Fr of singl property of motion	ctives of Formula direct eq bert's pri- iple. reedom S olution co of syste damping, systems - eneral co al evalu reedom S e degree matrice ns- Unda	f dynam ation of o uilibratic inciple, p Systems: of the econst of the econst logarith response lynamic uation of Systems: e of Fr s- Form mped Fro	ic analys equations on using N rinciple o quation of damped mic decre e to harm loadings of dynar eedom- l ulation o ee vibratio	of motion Newton's I f virtual w f motion-I and dam ement, For onic, perio s, Duham nic respo Evaluation f the ME ons- Soluti	The by Law vork vork vork vork vork vork vork vork	

	shapes, Stodola- Vainello method - Analysis of dynamic response-Normal co-ordinates – Uncoupled equations of motion- orthogonal properties of normal modes- Mode superposition procedure- Review of time history and spectrum methods of analysis UNIT-III Continuous Systems Introduction – Flexural and Axial Vibrations of beams- Elementary case- derivation of governing differential equation of motion- analysis of undamped free vibrations of beams in flexure- Natural frequencies and mode shapes of simple beams with different end conditions. Response of continuous systems to dynamic loads UNIT-IV Introduction to Earthquake Response of Structures Introduction- response of single degree of freedom system to earthquake excitation- Response spectra; Response of MDOF systems to Earthquake excitations; Discussions on IS 1893-2016Codal provisions for building structures- I.S.Code methods of analysis for obtaining response of multi storied buildings.
Text books	 Dynamics of Structures: Theory and application to Earthquake Engineering by A.K.Chopra , Prentice- Hall of India, 2001. Dynamics of Structures by R.W. Clough and P.E. Penzien , McGraw-Hill, 1993. Structural Dynamics: Theory and Computation by Mario Paz, Kluwer Academic Publishers , 2003.
Reference Books:	 Theory of Vibration An Introduction by A.A.Shabana, Springer International Edition, 2010 Dynamics of Structures by J L Humar, Prentice-Hall Structural Dynamics An Introduction to Computer Methods by Roy R. Craig.Jr., JOHN WILEY & SONS, Inc., Earthquake resistance design of building structures vinodhosur WILEY Vibrations structural dynamics by m mukhopadhaya oxford
E-resources and other digital material	http://nptel.ac.in/courses/105101006/

19CESE2014 /1 DESIGN OF TALL STRUCTURES

Course Category:	Programme Core	Credits:	3
Course Type:	Theory	Lectures	3 hrs/week
		Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

Course Outcome	On Su	Iccessful (Completio	n of the c	course, the	e student	will be a	ble to:	
		CO1: identify about different systems and various loads in Tall structures							
	CO2:	identify a	about vario	ous struct	tural syste	ems and t	heir beha	vior	
	CO3:	interpret s	static, dyna	amic and	stability	analysis o	of variou	s systems	
	CO4: structu	•	various Fl	looring s	ystems ai	nd moder	rn progre	ess of tall	
Contribution of		PO(A)	PO (B)	PO(C)	PO(D)	PO(E)	PO(F)	PO(G)	
Course Outcomes towards achievement	CO1								
of Program Outcomes	CO2								
(L – Low, M - Medium, H – High)	CO3	М	М		L		М	М	
	CO4	М	М				М	М	
	high-r Loads andco Analy Equiv	rise archite s: Gravity instruction rtical and ralent late	and form ecture; stru y loading n loads; V wind tunn eral force; philosophi	uctural co – Dead Vind load nel experi Modal	oncepts. and Live ding- stat imental m	e load ca ic and d nethod; E	alculation ynamic a arthquak	n; Impact approach- eloading-	
	Unit -	- II		03.					
	Structural Systems: Behavior of High Rise structures- Different systems for load distribution in steel and concrete; Vertical and horizontal load resista systems; Rigid frames; braced frames; in- filled frames; shear wall wall frames; tubular systems; outrigger braced systems; mega system Unit – III							l resistant ear walls-	
	Analy horizo accura Stabil approx braceo	v sis And ontal load ate analy ity analys ximate m	Design: l transfer s ysis- 3D sis- overal tethods. D for earthq	systems; analysis analysis ll bucklir ynamic a	approxim ; membo ng analys analysis- j	ate meth er forces is of fran principles	ods; moo s; displa mes; wal s of desi	leling for acements. 1 frames; gn of tall	

	Unit – IV Flooring Systems & Advanced Topics: Introduction to various flooring systems in concrete and steel. Structural systems for future generation buildings; economics; need of new materials for design of tall buildings.					
Text Books:	 Tall Building Structures by B.S.Smith and A.Coull, John Wiley & sons, 1991. Structural Analysis and Design of Tall Buildings by B.S.Taranath, McGraw Hill Co 1988. 					
Reference Books:	 Structural Concepts and Systems for Architects and Engineers" by Lyn T.Y. and Burry D.Stotes, John Wiley, 1994. High Rise Building Structures" by Sehuller .W.G, John Wiley & sons, 1977 					
E-resources	https://www.youtube.com/watch?v=EIDXE28_8eQ					

19CESE2014/2 ---- SOIL STRUCTURE INTERACTION

Course Category:	Programme Core	Credits:	3
Course Type:	Theory	Lectures	3 hrs/week
		Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

Course	On Succ	essful C	ompletio	n of the c	ourse, the	studen	t will be	able to:					
Outcome		1											
		CO1: elucidatesoil structure interaction concept and complexities											
		nvolved.											
		CO2: evaluate soil structure interaction for different types of											
			various c	onditions	of loadin	g and s	ubsoil						
	characte			1 .	0 1	1 1							
		luate int	eraction	analysis c	of pile and	l pile gi	roups wi	ith rigid					
	cap.	valuata a	ation of		ilaa uu daa	10+0401	landing						
					oiles under stics of rea								
Contribution	1	PO	PO	PO	PO(D)	PO (E)	PO (E)	PO(G)					
of Course		(A)	(B)	(C)		(E)	(F)						
Outcomes towards	CO1	L	L	М	L								
achievement of Program	CO2	L	L	М	L								
Outcomes (L – Low, M	CO3	L	L	М	L		M	М					
- Medium, H – High)	CO4	L	L	М	L								
content	behavior models, Elastic p Unit – I	on prob , Scope Winkle blastic be	lems, So of soil f r, Elastic ehavior, T	oundatior continuu ime depe	n interactio m, Two j endent beh	ation b on anal parame avior	behavior ysis, soi ter elast	foundation , Interface il response ic models,					
	paramete	ers, Isot	ropic ela	stic half		alysis	of beam	eam, Two is of finite fness.					
						± ·		is of finite					
	-		ai anaiysi	s of finite	plates, sin	npie sc	nutions						
	Unit – III Elastic Analysis of Pile: Elastic analysis of single pile, Theoretical solutions for settlement and load distributions, Analysis of pile group, Interaction analysis, Load distribution in groups with rigid cap												
	Unit – I	V											
	Laterall	y Load			Unit – IV Laterally Loaded Pile: Load deflection prediction for latera loaded piles, Subgrade reaction and elastic analysis, Interacti								

Text books	 Foundation analysis and design - J E Bowles, McGraw Hill, NY Design of Foundation System- Principles & Practices, Kurian N. P., Narosa Publishing
Reference books	 Analysis & Design of substructures, Swami Saran, Oxford & IBH Publishing Co. Pvt. Ltd. Selvadurai, A.P.S., Elastic Analysis of Soil Foundation Interaction, Elsevier, 1979.
E-resources	https://www.youtube.com/watch?v=Ng2tH7CX-WU

19CESE 2014/3 ADVANCED BRIDGE ENGINEERING

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lectures	3 hrs/week
		Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

	On successful completion of the course, the student will be able to:										
		evelop a s									
Course outcomes	geologic	al details	including	flood dis	scharge e	stimation	for maj	or bridge			
	proposal	S.									
	CO2: de	sign beam	and slab	bridge dec	ks.						
	CO3: de	2O3: design various components of a bridge sub structure.									
	CO4: de	sign box g	girder conc	rete bridg	es and be	arings.					
Contribution of Course Outcomes	·	PO (A)	PO (B)	PO (C)	PO(D)	PO(E)	PO(F)	PO(G)			
towards	CO1	L	L	М	L						
achievement of Program	CO2	L	L	М	L		М	М			
Outcomes (L – Low, M -	CO3	L	L	М	L		М	М			
Medium, H – High)	CO4	L	L	М	L		М	М			
Course Content	Investig Coverag particula requirem forecast. Design of Introduc flood; U discharg UNIT-I Design of Classific Bridge s Bridge g	UNIT-I Investigation for Major Bridges Coverage; Topographical details; Catchment area map; Hydrological particulars; Geotechnical details; Seismology of the area; Navigational requirements; Construction resources; Particulars of nearest bridges; Traffic forecast. Design of flood discharge Introduction; Contribution factors; Methods of determination of design flood; Unit hydrograph method; Choice of method; Foundation design discharge UNIT-II Design of Beam and slab bridge decks Classification of bridges; Loads on bridges I.R.C. loading standards – Bridge slabs – Effective width method as per I.R.C. – Pigeaud's method –									
	of reinfo Bridge	orced concr decks and ks; Voided	ete Tbeam Structura	n bridge fo I <mark>l Forms</mark>	or Class A	A tracked	d loading				

	beam; Beam and slab; Box girders; Curved and skew deck							
	UNIT-III							
	Piers and abutments							
	Types of piers and abutments; Materials of construction; Design of piers							
	and abutments.							
	Foundations for bridges							
	Types of bridge foundations; Design of well foundations.							
	UNIT-IV							
	Bearings							
	Classification and types of bearings; Guidelines for selection of							
	bearings; Design considerations; Basis for metallic bearings;							
	Ferrous bearings of traditional type; Design of elastometric bearings							
	Box Girder bridge decks							
	Box culvert (Single vent only) – Single span rigid frame bridges							
	(Barrel of solid slab type only)							
Text books								
	 Bridge engineering by S.Ponnuswamy, TataMcGraw-Hill, 1986. 							
	 Bridge superstructure by N.Rajagopalan, Narosa Publishing House, 2006. 							
	 Essentials of bridge engineering by D. John Victor, Oxford & IBH, 2001. 							
Reference books	 Swami Saran, "Analysis and Design of Substructures", Oxford & IBH Publishing Co., 1996. 							
	2. R.E. Rowe, "Concrete Bridge Design", 1 st Edition, Elsevier Science							
	and Technology							
	3. L.G. Hendry and A.W. Jaeger, "The Analysis of Grid Frameworks and							
	Related Structures", Chatto&Windus							
E-resources and	https://nptel.ac.in/courses/105/105/105105165/							
other digital material								

19CESE 2014/4 ADVANCED PRE-ENGINEERED BUILDINGS

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lectures	3 hrs/week
		Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

	On suc	On successful completion of the course, the student will be able to:								
	CO1:	CO1: classify structural stability system of pre-engineered buildings.								
Course outcomes	CO2: c	lesign pre-ei	ngineered	buildings	with cran	e systems	•			
	CO3:	design pre-e	engineered	buildings	s with me	zzanine f	loor syste	ms.		
	CO4: :	analyse and	design pre	e-engineer	red buildir	ngs with c	ptimizati	on.		
Contribution of		PO (A)	PO (B)	PO(C)	PO (D)	PO(E)	PO(F)	PO(G)		
Course Outcomes towards	CO1	L	М							
achievement of Program	CO2	L	М	Н			М	М		
Outcomes (L – Low, M -	CO3	М	М				М	М		
Medium, H – High)	CO4	М	М				М	М		
Course Content	UNIT-	UNIT-I								
	Shear	STRUCTURAL STABILITY SYSTEM OF PEB Shear buckling effect (d/t ratio exceeding 67ɛ), Effective Cross-sectional area concept for Compression Members d/t ratio exceeding 42s : Effect of								

Shear buckling effect (d/t ratio exceeding $6/\epsilon$), Effective Cross-sectional area concept for Compression Members d/t ratio exceeding 42ϵ ; Effect of d/t ratio for flexural members according to section classifications, Lateral Torsional Restraint system : Flange Bracing and design considerations. Global and Local behavior of Frame system depending on Slenderness ratio, d/t and b/t ratio. Bracing system : Rod Bracing, Angle Bracing, Portal Bracing.

UNIT-II

CRANE SYSTEM

Different types of Cranes – EOT Cranes, Monorail Cranes, Underslung and Wall mounted - Design of Crane beams with and Without Top Channels (Surge Beam), Design of Crane Brackets – Frame design with different types of Cranes using software.

UNIT-III

MEZZANINE FLOOR SYSTEMS

Design of Mezzanine Beams, Columns and joists – Mezzanine decking, Different types of Mezzanine Floor systems – Grating, Chequered plate and Rigid floor System.

	UNIT-IV									
	ANALYSIS AND DESIGN OF PRE-ENGINEERED BUILDINGS 2D and 3D Modelling of Portal Frames, Optimization Techniques, Comparison of software output with manual calculations. Design of Cold Formed Sections i.e., Purlins and Girts, Design of Roof Sheeting , trapezoidal , Standing seam sheeting , Erection Procedures. Welding Technology and process for the PEB Sections									
Text books	 Alexander Newman, Metal Building Systems Design and Specifications, 2nd Edition 									
Reference books										
E-resources and	Open Web									
other digital material										

19CESE2015/1 REPAIR AND REHABILITATION OF STRUCTURES

Course Category:	Programme Elective-IV	Credits:	3
Course Type:	Theory	Lectures/week	3
		Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

Course outcomes	Upon to:	successi	ful comple	etion of tl	ne course	, the st	udent will	l be able
	CO1 identify the causes for deterioration of structures and remedies through damage assessment.							
	CO2		various m ni destruc					age
	CO3	repairs	fy the eff s in chen ment throu	nical env	vironmen			
	CO 4	identif procec	fy various lures	s retrofit	ting tecl	nniques	and rep	pair
Contribution of Course		PO (A)	PO(B)	PO(C)	PO(D)	PO (E)	PO(F)	PO(G)
Outcomes towards	CO1	L	L				L	ĺ
achievement of Program	CO2	L	Н			Н	L	
Outcomes	CO3	L	М			Н	L	
(L – Low, M - Medium, H – High)	CO4	М	L			Н	L	L
Course Content	Age a Failur Introd year,R structu Accide errors, settlen	UNIT – I Age and performance response in structures and causes for Failure of Structures: Introduction, service life and syndrome year, Repair, maintenance, rehabilitation; Causes of distress in structural members and mechanism, symptoms, prevention for Accidental loadings, chemical attack, construction errors, corrosion, designerrors, erosion, freezing and thawing, settlement and movement, shrinkage, temperature changes, fire, weathering.						
	visual assess	Trained Damage assessmentfor source visual examination, Action plan, common observations damage assessment procedure pre and post repair evaluation UNIT – II						

Diagnosis and Assessment of Distress by various tests:

SEMI DESTRUCTIVE TESTS:

purpose, methods ,Core test, LOK Test, CAPO Test, North American pull-out test, pull off test,Figg's Air and water – permeability test

NON DESTRUCTIVE TESTS : Purpose, methods

Compressive strength of concrete -rebound hammer test, Windsor probe test Cracks, voids, changes in condition of concrete tests – ultra pulse velocity test, acoustic method, pulse echo method, radiography.Surface absorption test on concrete, Deterioration of concrete -radar technique,infra red thermograph test

Chloride test-quntabtest, corbonationtest, Corrosion test –open circuit and surface potential measuring techniques, electro chemical noise analysis, resititivity of concrete test Strain guages – vibrating type and contact type strain guages

UNIT – III

REPAIRS IN CHEMICAL ENVIRONMENT

Investigations and recommendations for repairs

DAMAGE DUE TO EARTHQUAKE: Various damages to structures,

Strengthening of buildings – provisions of BIS 1893 and 4326. FIRE DAMAGE ASSESSMENT AND RESTORATION: Case studies of Large auditorium structure and Tower podium of Five star hotel

UNIT-IV

MODERN TECHNIQUES OF SEISMIC RETROFITTING:

Introduction,

Global level and local level and Local level retrofitting techniques

REPAIR MATERIALS AND REPIR METHODS

Epoxyresins, epoxymortor, quicksettingcement,gypsumcementmortar.Mechanicalanchors, Crack repair techniques, stitching, blanketing, jacketing and types, shotcrete, guniting, grouting, pressure injection of epoxy.

Text books	 R.N.Raikar , Diagnosis and Treatment of Structures in Distress, R&D Centre,SDCPL,New Bombay,1994.
	 Repair of concrete structures R.T.Allen and S.C.Edwards, Blakie and Son UK 1987

Reference books	 CPWD Hand book on Repair and Rehabilitation of RCC Buildings. Pankajagarwal&ManishshikhakondeEarth quake resistant design of structures,Prentica-Hall of India, new delhi,2006 Raikar, R., Learning from failures- deficiencies in design, construction and service- R&D Centre(SDCPL), RaikarBhavan, Bombay 1987. A.R.Santhakumar ,Concrete technology ,Schand, second edition ,2018.
E-resources	Open web

19CESE2015/2 DESIGN OF STEEL-CONCRETE COMPOSITE STRUCTURES

Course Category:	Programme Elective-IV	Credits:	3
Course Type:	Theory	Lectures/week	3
		Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

Course outcomes	Upon able to		ful comp	letion o	f the co	urse, th	e student	will be	
	CO1 identify the behaviour of composite beams and columns								
	CO2	design composite beams, columns and trusses							
	CO3	design	connecti	ons in co	omposite	e structu	ires		
	CO 4	Identif	y the beh	aviour o	of compo	site gir	der bridge	s.	
Contribution of Course Outcomes		PO (A)	PO(B)	PO (C)	PO (D)	PO (E)	PO(F)	PO(G)	
towards achievement of	CO1								
Program Outcomes (L – Low, M -	CO2	М	М	L			М	М	
	CO3	М	М	L			М	М	
Medium, H – High)	CO4								
	UNIT I								
	INTRODUCTION								
Course Content	Introduction to Steel - Concrete Composite Construction - Theory of Composite Structures -Introduction to Steel - Concrete - Steel - Sandwich Construction - Behaviour of composite beams and columns .								
	UNIT	II							
	DESI	GN OF	СОМРО	DSITE N	MEMBH	ERS			
	Design of Composite beams – Design of Composite Columns - Design of Composite Trusses.								
	UNIT	III							

	 DESIGN OF CONNECTIONS Types of Connections - Design of Connections in Composite structures - Shear Connections - Design of Connections in composite trusses. UNIT IV COMPOSITE GIRDER BRIDGES & CASE STUDIES Behaviour of girder bridges - Design concepts. Case Studies on steel - concrete composite construction structures in buildings - Seismic behaviour of composite structures and design methods
Text books	 Teaching Resource Material for Structural Steel Design", Volume 2/3 jointly prepared by 1. I.I.T., MS 2. Anna University SERC, MS 4. "Institute for Steel Development and growth", Calcutta. Owens .G.W, &Knowels.P. "Steel Designs Manual", (sixth Edition) Steel Concrete
Reference books	1) Composite structures of steel and concrete Johnson R.P Blackwell Scientific Publications(Second Edition), UK 2001 2)Steel Designers manual (Fifth edition) Owens, G.W. and Knowels.P Oxford Blackwell Scientific Publications 200
E-resources	https://www.youtube.com/watch?v=h-rQCvxH61c http://www.steel-insdag.org/TM_Contents.asp

19CESE2015/3 FORM WORK DESIGN

Course Category:		Credits:	2
Course Type:	Practical	Lectures	2
		Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

Course outcomes	On successful completion of the course, the student will be able to:									
	CO1 select a right material for manufacturing false work and form work suiting specific									
	CO2	identify	the press	ure of con	ncrete on f	form wor	k			
	CO3	Design d	ecking, fo	orm work	and false	work.				
	struc				nstruction ved in the					
Contribution of		PO(A)	PO(B)	PO(C)	PO (D)	PO(E)	PO(F)	PO(G)		
Course Outcomes towards	CO1	М	М	L						
achievement of Program	CO2	L	М							
Outcomes (L – Low, M -	CO3	L	М	L			М	М		
Medium, H – High)	CO4		M	M	L		М	M		
	plann formv UNI Formv forms UNIT Desig formv Found	ing and s vork and fa (T-II work – De , Loading a `-III n of Decl vork, Desi	ite constra lse work syns sign: Conc and momer ks and Fa	aints, Mata ystems, Spo crete presso at of formw	: Types of se work do	s, Design beam, de	n of the rms. of timber ecking and	common and steel		
	Specia and S	al Forms: T			ns of specia ence of const					

Reference Books	 Austin, C.K., Formwork for concrete, Cleaver - Hume Press Ltd., London, 1996 Michael P. Hurst, Construction Press, London and New York., 2003
E-References	Open web

19CESE2015/4 EARTHQUAKE RESISTANT DESIGN OF STRUCTURES

Course Category:	Programme Core	Credits:	4
Course Type:	Theory	Lectures	4 hrs/week
		Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

Course outcomes			On successful completion of the course, the student will be able to:						
		CO1: Plan a good structural configuration for seismic resistance.							
						arthquak r IS 1893	•		es using
						of Ducti stant struc		Base iso	olation in
		С	04: De	sign the s	structure	e using IS	13920 c	ode prov	visions.
Contribution of Course			PO (A)	PO(B)	PO (C)	PO(D)	PO(E)	PO(F)	PO(G)
Outcomes towards	CO	1	Н		L				
achievement of Program	CO	2	L		Н				
Outcomes (L – Low, M -	CO	3	Н		L			L	
Medium, H – High)	СО	4	М		Н			M	М
Course Content		UNIT-I							
	Seismo-resistant building architecture Introduction; Lateral load resisting systems- more resisting frame, Building with shear wall or bearing system, building with dual system; Building configurati Problems and solutions; Building characteristics – M shape and fundamental period, building frequency ground period, damping, ductility, seismic we					ring wall uration – – Mode ency and weight, elements, ality of			
		UNIT-II							

	Design forces for buildings Introduction; Equivalent static method; Mode superposition technique; Dynamic inelastic-time history analysis; Advantages and disadvantages of these methods; Determination of lateral forces as per IS1893(Part 1) – Equivalent static method, Model analysis using response spectrum, Estimate of deflection and drift, P- Δ Effects in frame structures, Torsional effects.
	UNIT-III Ductility
	Ductility relationships; Ductility considerations in earthquake resistant design of RCC buildings Introduction; Impact of ductility; Requirements for ductility; Assessment of ductility– Member/element ductility, Structural ductility; Factor affecting ductility; Ductility factors; Ductility considerations as per IS13920::2016-Aspects of detailing- Detailing of columns for ductility-Transverse reinforcement for confinement, spacing of column vertical reinforcement; Bond and anchorage-Development of bar strength, lapped splices, Additional considerations for anchorages. Design and detailing of a exterior joint as per IS13920:2016.
	UNIT-IV
	Base isolation of structures
	Introduction; Isolation from seismic motion, Considerations for seismic isolation-Seismic isolation using flexible bearings-Seismic isolation using flexible piles and energy dissipators; Basic elements of seismic isolation; seismic- isolation design principle; Feasibility of seismic isolation; Seismic isolation configurations ;codal provisions for seismic isolation.
	Seismic Evaluation and Retrofitting of structures Seismic evaluation of structures or condition appraisal; Seismic Retrofitting.
Text books	 Earthquake resistant design of structures by PankajAgarwal and Manish Shrikhande, Prentice-Hall of India, 2006. Seismic design of reinforced concrete and masonry buildings by T.Paulay and M.J.N.Priestley, John Wiley & Sons, 1991. Earthquake-Resistant Design of Building Structures by Dr. VinodHosur, WILEY, 2013.

Reference books	 Earthquake Resistant Design and Risk Reduction by David Dowrick, WILEY Student Edition, 2012. Earthquake Resistant Design of Structures by S.K.Duggal, OXFORD Higher Education. Elements of Earthquake Engineering by Jai Krishna &Brijesh Chandra, South Asian Publishers Private Limited, 2000.
E-resources and other digital material	http://nptel.ac.in/courses/105102016/

19CESE2051 STRUCTURAL ENGINEERING LABORATORY

Course Category:	Laboratory	Credits:	1.5
Course Type:	Practical	Lectures	3
			hrs/week
		Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

Course outcomes	On successful completion of the course, the student will be able to:
	CO1: Obtain the unknown resistance and static strain using accepted principles
	CO2: Determine the principal stresses for various loadings
	CO3: Determine the response of three storeyed building under harmonic and non-harmonic base motions
	CO4: Understand and apply the concept of Vibration isolation and vibration absorber

Contribution of		PO (A)	PO(B)	PO(C)	PO(D)	PO(E)	PO(F)	PO(G)
Course Outcomes towards	CO1	L			Н			
achievement of Program	CO2	L			Н			
Outcomes (L – Low, M -	CO3	L			Н			
Medium, H – High)	CO4	L			Н			

Course Content	1. Measurement of unknown resistance using Wheatstone bridge.
	2. Measurement of static strain by electrical resistance strain gauge.
	3. Determination of the material fringe value of a given photo elastic material.
	4. Determination of principal stress difference in a circular disc subjected to diametrical compression.
	5. Determination of principal stresses in a bar subjected to axial tension.
	6. Determination of stress concentration factor.
	7. Dynamics of a three storey building frame subjected to harmonic base motion.
	8. Dynamics of three storey building frame subjected to non- harmonic (periodic) base motion.
	9. Dynamics of a one-storey building frame with planar asymmetry subjected to harmonic base motion.
	10. Vibration Isolation of a secondary system.
	11. Dynamics of a vibration absorber.

19CESE2052 STRUCTURAL DESIGN LAB

Course Category:	Laboratory	Credits:	1.5
Course Type:	Practical	Lectures	3
			hrs/week
		Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

Course outcomes	On successful completion of the course, the student will be able to:
	CO1: analyze and design the structural components like beams, slabs &columns.
	CO2:analyze&design framed buildings for earthquake & wind loads
	CO3:prepare detailed drawings for structural elements
	CO4:generate Building Information Model

		1		1			1	1
Contribution of		PO(A)	PO(B)	PO(C)	PO(D)	PO(E)	PO (F)	PO(G)
Course Outcomes	CO1	M	М	Н	М	М		
towards achievement of	CO2	M	M	Н	М	М	M	
Program Outcomes	CO3	L		Н	L	М	М	
(L – Low, M -		L		Н	L	М	M	Н
Medium, H – High)	CO4							

Course Content	Design and Drawing the reinforcement details of the following RCC Structural elements				
	 Concrete beam (singly/doubly) Concrete column subjected to uniaxial/biaxial bending. Concrete slab (One-way/Two-way) 				
	 4. Design of G+5 concrete frame building for gravity, seismic ar wind loads. 				
	5. Design of G+5 steel frame building for gravity, seismic and wind loads including connections.				
	6. Steel frame building as per relevant is codes including connections.7. Building Information Modeling through CYPE CAD.				
	Note: The above problems are to be solved using Computer programs/Application software's like Staad.Pro/CYPE CAD/ETABS (any two)				