TABLE OF CONTENTS

CHAPTER-1 Introduction	Page No
1.1Motivation	Page No
1.2 Basic definitions and Background	Page No
1.3Problem Statement with Objectives and Outcomes	Page No
1.4 Real time Applications of Proposed work	Page No
CHAPTER-2 Literature Review	Page No
2.1Description of Existing Systems2.3Summary of Literature Study	Page No Page No
CHAPTER-3 Software Requirement Analysis	Page No
3.1 Functional Requirements	Page No
3.2 Non-Functional Requirements	Page No
3.3 Software Requirements	Page No
3.4 Hardware Requirements	Page No
CHAPTER-4 Software Design	Page No
4.1 Software Development Life Cycle	Page No
4.2 UML Diagrams	Page No
CHAPTER-5 Proposed Method 5.1 Proposed System Architecture	Page No Page No
5.2 Methodology	Page No
5.3Description of Algorithms	Page No
5.4 Description of datasets, Study area	Page No
CHAPTER-6 Results and Observations 6.1Stepwise description of Results	Page No Page No
6.2 Test case results/Result Analysis	Page No
6.3 Performance Metrics and Analysi	Page No
CHAPTER-7 Conclusion and Future work	Page No

5.1 Conclusion	Page No
5.2 Future Work	Page No
References Appendix	Page No Page No

LIST OF FIGURES

Figure	Page
Figure 1.1: Figure Name	Page No
Figure 1.2: Figure Name	Page No
Figure 2.3: Figure Name	Page No

LIST OF TABLES

Table Name	Page
Table 1.1: Name of the Table	Page No
Table 2.3: Name of the Table	Page No

ABSTRACT

The urbanization rate of India in 35.9 percent approximately by 2022 reports. Among 35.percent, 45.23 percent of urbanization is happening in Maharashtra and it is the third most urbanized states of India after Tamil Nadu and Kerala. Over the decades, remote sensing has focused on the classification of land cover from Satellite images in urban areas. Classifying buildings in urban areas from very high resolution (VHR) satellite images is a complex task due to the presence of complex structures and limited labelled data. Traditional approaches for building classification include handcrafted features, transfer learning methods. These methods often struggle with the variability in building shapes, orientation, and viewpoint, leading to low accuracy in densely populated urban areas and limited performance when dealing with highresolution satellite images. A deep learning based approach for semantic segmentation using U-Net with backbone of ResNet34 is proposed for building classification. Urban area Dataset with Images of 0.5m resolution is prepared from SAS planet. Median Filter and Gaussian filter are used for noise removal. False Color composite and Canny Edge detection are used for image enhancement. One hot Encoding is applied for classifying buildings. U-Net is trained with encoded data. The proposed model is evaluated on the Indian dataset, specifically the urban areas of Nashik, Maharashtra and the accuracy obtained for the dataset is 60%.

Keywords: Feature Extraction, Convolutional Neural Networks, VHR images, Semantic Segmentation, Resnet 34, Building Classification