VELAGAPUDI RAMAKRISHNA SIDDHARTHA ENGINEERING COLLEGE DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING SCHEME OF INSTRUCTION FOR HONORS & MINORS EIE PROGRAMME [VR20]

Syllabus for IVth- VIth Semesters

Effective from 2021-22

V.R. SIDDHARTHA ENGINEERING COLLEGE (Autonomous) Department of Electronics & Instrumentation Engineering Honors in Electronics and Instrumentation Engineering

S.No	Course	Name of the Course	L	Т	Р	Credits							
5. 1NO	Code	Name of the Course											
	I	Semester IV		1	1								
1.	20EIH4801A	Computational Methods for Linear Control Systems	4	0	0	4							
2.	20EIH4801B	Fiber Optic Sensors	4	0	0	4							
3.	20EIH4801C	Computational Methods for Signal Processing	4	0	0	4							
4.	20EIH4801D	Real Time Operating Systems	4	0	0	4							
	Semester V												
1.	20EIH5802A	4	0	0	4								
2.	20EIH5802B	Micro Electro Mechanical Systems	4	0	0	4							
3.	20EIH5802C	Advanced Digital Signal Processing	4	0	0	4							
4.	20EIH5802D	Reconfigurable Architectures	4	0	0	4							
	I	Semester VI		I	I								
1.	20EIH6803A	Modern Control Systems	4	0	0	4							
2.	20EIH6803B	Principles and Applications of nanotechnology	4	0	0	4							
3.	20EIH6803C	Computer Vision	4	0	0	4							
4.	20EIH6803D	System on chip	4	0	0	4							
		Semester VII		1									
1.	20EIH7804A	Digital Control System Design	4	0	0	4							
2.	20EIH7804B	Multi Sensor Data Fusion	4	0	0	4							
3.	20EIH7804C	Deep Learning for Computer Vision	4	0	0	4							
4.	20EIH7804D	Embedded Control Systems	4	0	0	4							
	20EIM5811	SELF LEARNING				2							
	20EIM7812	SELF LEARNING				2							

Two MOOCS/NPTEL Courses for 04 credits (02 courses @ 2 credits each) are mandatory

Second Year (II Semester)

20EIH4801A-Computational Methods for Linear Control Systems

Course Category:	Honors	Credits:	4
Course Type:	Theory	Lecture- Tutorial - Practice:	4 - 0- 0
Prerequisites:	Laplace transforms and integral	Continuous Evaluation:	30
	calculus, Network theory	Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succes	sful co	ompleti	ion of t	he cou	rse, the	e stude	nt will	be abl	e to:			
outcomes	CO1	Under	stand th	ne linea	r algebr	a and n	umerica	al linear	algebra	a termii	nology	,		
	CO2													
	CO3		Develop numerical algorithms for evaluation of controllability, Observability, and stability Acquire skills in numerical solutions for conditioning of Lyapunov and algebraic Riccati equation and large-scale solutions of control problems											
	CO4	-												
Contributio n of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	
Outcomes towards the achievement	CO1													
of Program Outcomes	CO2	2												
(1–Low, 2–	CO3		3											
Medium, 3 – High)	CO4		2			2								
Course Content	Matrix Nume Condit of the proble transfo UNIT State- Functi order	w of L Norms rical L tioning, Linear m, Sin ormation – II Space ons, In scalar tion Ma	s, Krone inear Efficie system gular M ns Models terconn differei	Algebr ncy, St Ax = Value I s –Can ection ntial eq	a – Ve roduct. a – Flability, b, QR Decomp onical of subs juations ying ma	oating and Ac factoriz oosition, Models ystems. , Syste	point r curacy, cation, (, Canor from Analy em mod	Different	s and o ctorizat onal pro orms o ential E Linear	errors i ion, Nu ojection btained Equation State E	n con umeric s, Lea via ns and quatic	nputat al soli st Sqi orthog d Tra	ions, ution uares gonal nsfer First	

	Control Systems Analysis - Linear State-space models and solutions of the state											
	equations, Controllability, Observability, Stability, Inertia, and Robust Stability,											
	Numerical solutions and conditioning of Lyapunov and Sylvester equations											
	UNIT – IV											
	Control Systems Design – Feedback stabilization, Eigen value assignment, Optimal											
	Control, Quadratic optimization problems, Algebraic Riccati equations, Numerical											
	methods and conditioning, State estimation and Kalman filter. Large scale Matrix											
	computations in control –Krylov subsystem methods											
Textbooks	Text Book:											
and	[T1] B.N. Datta, Numerical Methods for Linear Control Systems, Academic Press /											
Reference	Elsevier, 2005 (Low cost Indian edition available including CD ROM).											
books	[T2] A.Anand Kumar, "Control Systems", 2 nd Ed., PHI, 2014											
	[T3] G.H. Golub & C.F. Van Loan, Matrix Computations, 4 th Ed., John Hopkins											
	University Press, 2007											
	Reference Books:											
	[R1] IJ Nagrath and M.Gopal, "Control System Engineering", 5 th Ed., New Age											
	International Publishers, 2009											
E-resources	1. <u>www.scilab.org</u>											
and other												
digital												
material												

20EIH4801B-Fiber Optic Sensors

Course Category:	Honors	Credits:	4
Course Type:	Theory	Lecture- Tutorial - Practice:	4 - 0- 0
Prerequisites:	Engineering physics, Electronic	Continuous Evaluation:	30
	devices and circuits	Semester end Evaluation:	70
		Total Marks:	100

Course	Upon successful completion of the course, the student will be able to:												
outcomes	CO1	Under	stand th	ne basio	c conce	pts of	fiber o	ptic ser	nsors				
	CO2 Identify wavelength modulated fiber optic sensors to dete parameters												
	CO3		Thoose suitable interferometric and frequency modulated fiber optic ensors to monitor physical parameters elect appropriate fiber optic sensors for various applications										
	CO4	Selec											
Contributio n of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
Outcomes towards the	CO1	1											
achievement of Program Outcomes	CO2		3										
(1–Low, 2–	CO3		3										
Medium, 3 – High)	CO4												
Course Content	Gener applic Basic Accep optica UNIT Wavel Tempe Carbon UNIT Interfe	al Fib ric opt ric opt rations, Fiber otance I fibers - II length erature n dioxic - III eromet	ical fil Issue r Opt angle a s, Optio Modul sensor, le senso ric Se rs mag	ber sen s in op ics: In and Nu cal fibe ated S Humi- or ensors: netic f	nsor, C tical fil ntroduc merica ers for s ensors: dity se Intro- ield/ele	Classifi ber sen tion, 1 1 Aper sensors Introd nsor, C	cation, sors. Light ture (N , Fiber uction, ducose , Inter urrent	Modu propag JA), Fi select Lumin sensor	ulation gation ber cha ion for escence c, pH s e phen Electri	ptical schem in an aracteri sensor e, Displ sensor, nomenor ic field	nes, I opti- istics, s acema Oxyg n, Fi /volta	Fields cal f Type ent se en se ber ge se	of iber, es of nsor, nsor, optic nsor,

	UNIT – IV
	Frequency Modulated Sensors: Introduction, Doppler effect, Raman effect, Doppler
	effect based sensors, Raman scattering based sensors.
	Applications: Displacement sensors, Flow measurement, Acoustic sensor, Detection of
	oil in water, Liquid level sensor, Hydrocarbons detection in water, Oxy-haemoglobin
	concentration measurements
Textbooks	Text Book:
and	[T1] B.D. Gupta, "Fiber Optic Sensors Principles and Applications", 1 st Ed., New India
Reference	publishing agency, 2006. (UNIT I,II,III & IV)
books	
	Reference Books:
	[R1] Eric Udd, William B. Spillman, Jr., "Fiber Optic Sensors: An Introduction for
	Engineers and Scientists", 2 nd Ed., John Wiley & Sons, 2011
E-resources	1. https://nptel.ac.in/courses/114106046/46
and other	1. <u>https://hptci.uc.in/courses/11+1000+0/40</u>
digital	
material	

20EIH4801C - Computational Methods for Signal Processing

Course Category:	Honors	Credits:	4
Course Type:	Theory	Lecture- Tutorial - Practice:	4 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon successful completion of the course, the student will be able to:													
outcomes	CO1	CO1 Design optimal filtering algorithms												
	CO2		Use Linear algebraic techniques for signal analysis											
	CO3		Apply Probability theory and random process for LTI system analysis.											
	CO4	Use S	Jse SVD and Wavelet Transforms in signal processing applications											
Contributio		PO 1	01 PO 2 PO 3 PO 4 PO 5 PO 6 PO 7 PO 8 PO 9 PO PO PO 10 11 12											
n of Course		101	102	103	104	105	100	107	100	109	10	11	12	
Outcomes	CO1			3										
towards the	COI			3										
achievement														
of Program Outcomes	CO2		3											
Outcomes														
(1–Low, 2–	CO3			3										
Medium, 3 –														
High)	CO4			3										
Course														
Content	system spaces Least Appro of lea square least Minim UNIT Linean operate a linea vector Diagon	ematica as and , linear Squa ximatio st squa s filteri squares um-nor C – II r Oper ors and ar opera s: Eigen nalizatio	signals transfo re an n probl ure pro ng, Mi and r cm solut ators a transpo ator, Ps en valu	, Vector rmation d Mi em in H blems, nimum ninimum tion of u and Ma oses, Ge eudo in ues an matrix	or space as, proje nimum Hilbert s Minim mean s m mea underde atrix In eometry verses, d linea , Geom	es and cetions a Mea pace, C um err square o n squa termine verses: of line Inverse ar syst hetry of	e Conce linear and orth n Squ Orthogor or in l estimati res, Fr ed equat Linear ear equa e of a l ems, I invaria	algebra logonal nality p Hilbert- ion, MI equency tions.	: norm ization Filterin rinciple space VISE fil y- don tors, Op four fun natrix. 1 depend spaces,	s, Hilb of vector g and , Matrix approxi- lapproxi- lering, nain op perative ndamen Eigen v lence of Geome	ert an ors. I Es (matio Comp timal norm tal sub alues of eig try of	timat esenta ns, L parison filter ns, Ad p spac and E genvec	ion: tion east n of ing, ljoint es of Eigen ctors, ratic,	

subspace techniques

	 UNIT – III Probability Theory: Basic set theory and set algebra, basic axioms of probability, Conditional Probability, Random variables - PDF/PMF/CDF - Properties, Bayes theorem/Law of total probability, random vectors - marginal/joint/conditional density functions, transformation of Random Variables, characteristic/moment generating functions, Random sums of Random variables, Law of Large numbers (strong and Weak), Limit theorems - convergence types, Inequalities - Chebyshev/Markov/Chernoff bounds. Random Processes: classification of random processes, wide sense stationary processes, autocorrelation function and power spectral density and their properties. Examples of random process models - Gaussian/Markov Random process, Random processes through LTI systems UNIT – IV Singular Value Decomposition: Theory of SVD, Matrix structure from the SVD, Pseudo inverses, Numerically sensitive problems, Rank-reducing approximations. Applications of the SVD: System Identification, Total least square problems, Partial total least squares, Rotation of subspaces, Computation of SVD. Wavelet Transforms: Limitations of standard Fourier analysis. Windowed Fourier transforms. Continuous wavelet transforms. Time-frequency resolution. Wavelet bases. Multiresolution analysis. (MRA). Construction of wavelets from MRA. Fast wavelet algorithm, Wavelet Filter banks, 1D, 2D Wavelet Filter banks, Subband Coding
Textbooks and Reference books E-resources and other digital material	Text Book: [T1] Todd K. Moon, Wynn C. Stirling, 'Mathematical Methods and Algorithms for signal processing', 1 st Ed., Pearson education, 2005. [T2] Peter J. Schreier and Louis L. Scharf, "Statistical Signal Processing of Complex-Valued Data", 1 st Ed., Scharf, Cambridge University Press, 2010. Reference Books: [R1] Steven M. Kay, "Intuitive Probability and Random Processes using Matlab", 1 st Ed., Springer, 2006. [R2] Richard E. Blahut, Fast Algorithms for Signal Processing, 1 st Ed., Cambridge University Press, 2011 1. https://wavelet-tour.github.io/

20EIH4801D - Real Time Operating Systems

Course Category:	Honors	Credits:	4
Course Type:	Theory	Lecture- Tutorial - Practice:	4 - 0- 0
Prerequisites:	Microcontrollers and Embedded	Continuous Evaluation:	30
_	Systems	Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	Upon successful completion of the course, the student will be able to:												
outcomes	CO1	CO2 CO2 Describe the programming logic of modeling Process based on range of OS features												
	CO2													
	CO3	CO4 Compare types and Functionalities in commercial OS												
	CO4													
	CO4	CO4 Application development using RTOS												
Contributio n of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	
Outcomes towards the achievement	CO1		3											
of Program Outcomes	CO2			3										
(1–Low, 2–	CO3			2										
Medium, 3 – High)	CO4		3			2								
Course Content	Applic Semap UNIT Real 7 Model Synch UNIT Basic Compa RTOS UNIT	iew of cation - ohores - C – II Fime N s – Rea ronizati – III Princip arison a – C Ex – IV	Task Messag fodels al Time on – Co les – D and Bas secutive	and Ta ge queu and La Langua ontrol B esign is sic stud	ple Pro ask stati es– Ma ages – I blocks – ly of va Using (e – Sh il boxes es: Eve RTOS T Memo Polled arious I	ared da –pipes nt Base Tasks –I ry Requ Loop S RTOS I	ed – Pr RT scho uiremen like –	nterproo ocess E eduling ts – RTC VX wo	cess Co Based A - Interr OS Porti rks – I	and Grand Gr	a Tar suppo	on - based ing – get – ortive	

	Executive for development of RTOS Application –introduction to Android Environment
	-The Stack – Android User Interface – Preferences, the File System, the Options Menu
	and Intents, with one application
Textbooks	Text Book:
and	[T1] Brian Amos, "Hands on RTOS with Microcontroller", 1 st Ed., Packt Publishing,
Reference	2020.
books	[T2] Raj Kamal, "Embedded Systems- Architecture, Programming and Design" Tata
	McG0raw Hill, 2006.
	Reference books [R1] Marko Gargenta,"Learning Android ",O'reilly 2011. [R2] Herma K., "Real Time Systems – Design for distributed Embedded Applications", Kluwer Academic, 1997.
E-resources	1. <u>http://etutorials.org/Linux+systems/embedded+linux+systems</u>
and other	2. <u>http://www.freertos.org</u>
digital	
material	

Third Year (I Semester)

20EIH5802A-Optimization Techniques

Prerequisites: Course outcomes UI CO		sful co				C		torial			4 - ()- ()		
Prerequisites: Course outcomes UI	1 To d	sful cc				-	Continu	none E						
outcomes CC	1 To d	sful co			Continuous Evaluation:30Semester end Evaluation:70Total Marks:100									
outcomes CO	1 To d		ompleti	on of t	he cou	rse, the	e stude	nt will	be abl	e to:				
	CO1 To define an objective function and constraint functions in terms of design variables, and then state the optimization problem.													
CC	To ex	To explain linear programming technique to an optimization problem												
CO	O3 or co	nstrain	-	d defi		progra erior a		0	- ·					
CO		princip				grammi orithm	0	-						
Contributio n of Course	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12		
Outcomes towards the achievement	01 2													
C D	02	3												
(1– Low, 2– Medium, 3 –	03 2													
	O4			3										
Int pro Ob op con So con UN Lin lin sin to me	NIT- I atroduction oblem, Des bjective fur otimization, onditions for olution by m onstraints, K NIT – II mear program multaneous the simplex ethod NIT – III	sign ve nction s Multi v minim nethod uhn – tu rammir nming j equatio	ctor, D surfaces variable um/max of lagra ucker co ng: Star problem ons, Pivo	besign of , Class optimi ximum, ange mo ondition ndard fo ns, Defi otal red	constrai ification zation multiva ultiplier as orm of nitions luction	nts, Co n of op without ariable s, Mult a linear and the of a get	onstrain otimizat constr optimiz ivariab	t surfaction pro aints, N ation w le optim amming Solutio ystem o	ce, Obj oblems, Vecessar with equ nization proble on of a f equat	jective Singl ry and ality c with m, Ge system ions, I	funce e var suffi onstra ineque cometra n of li Motiva	etion, iable cient aints, aality ry of inear ation		

	 Nonlinear Programming: Unconstrained cases, One, dimensional minimization methods: Classification, Fibonacci method and Quadratic interpolation method, Univariate method, Powell's method and steepest descent method. Constrained Cases: Characteristics of a constrained problem, Classification, Basic approach of Penalty Function method, Basic approaches of interior and exterior penalty function methods. Introduction to convex programming problem UNIT – IV Introduction to Evolutionary Methods: Evolutionary programming methods, Introduction to Genetic Algorithms (GA), Control parameters, Number of generation, population size, selection, reproduction, crossover and mutation, Operator selection criteria, Simple mapping of objective function to fitness function, constraints, Genetic algorithm steps, Stopping criteria, Simple examples.
	Introduction to Swarm Intelligence Systems: Swarm intelligence programming methods, Basic Partial Swarm Optimization Method, Characteristic features of PSO procedure of the global version, Parameters of PSO, Comparison with other evolutionary techniques, Engineering applications of PSO.
Textbooks and Reference books	 Text Book: [T1] S. S.Rao, "Engineering optimization: Theory and practice", 3rdEd., New AgeInternational (P) Limited, 1998 (Unit-I, II and III) [T2] N.P.Padhy and S.P.Simson, "Soft Computing with Matlab Programming", OxfordUniversity Press, 2015. (Units- IV) Reference Books: [R1] K.V.MitalandC.Mohan, "Optimization methods in operations Research and Systems Analysis", New Age International (P) Limited, 1996. [R2] DavidE.Goldberg , "Genetic Algorithms in search, optimization, and Machine Learning", PearsonPvt.Ltd
E-resources and other digital material	1. <u>https://www.youtube.com/watch?v=aJKuM4U-eYg</u>

20EIH5802B- Micro Electro Mechanical Systems

Course Category:	Honors	Credits:	4
Course Type:	Theory	Lecture- Tutorial - Practice:	4 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succes	sful co	mpleti	ion of t	he cou	rse, the	e stude	nt will	be abl	e to:		
outcomes	CO1 Demonstrate knowledge on fundamental principles and concepts of technology CO2 Analyse various techniques for building micro-devices in silicon, polynetic principles and concepts of technology												
	CO2		Analyse various techniques for building micro-devices in silicon, polymer, metal and other materials										
	CO3	including sensors and actuators.											
	CO4	•	Analyse physical, chemical, biological, and engineering principles involve the design and operation of current and future micro-devices										
Contributio n of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
Outcomes towards the achievement	CO1	2											
of Program Outcomes	CO2		3										
(1–Low, 2–	CO3		2										
Medium, 3 – High)	CO4		3										
Course Content	mecha /Autor Telecco Metals UNIT Scalin in eleco MEM Oxidat Surfac UNIT Micro	luction nical s notives ommuni s.	ystems sensor cation, in Mir c forces rication /D, Spu omachin	, Appl s, Medi Materi hiaturiz , MEM h Tech uttering ing, LI MS Sen	ications ical syst ials for ation , l S desig anologie etching GA.	of m tems, A MEM Introducen n consides: Pho technices: Pho technic	nicro e Aircraft IS: Sili ction to deration otolithog ques, M	lectrom sensors icon, S scaling n. graphy, licroma	echanic s, Struc filicon g, Scalin Ion i chining e sensor	cal sys tural he compor ng in go mplanta : Bulk rs, Vibr	tems: ealth r unds, eomet ation, micro	Indu nonito Polyı ry, Sc Diffu machi	strial pring, mers, aling sion, ning,

	 Micro Actuators: Design of actuators: Actuation using thermal forces, Actuation using shape memory Alloys, Actuation using piezoelectric crystals, Actuation using electrostatic forces, Case study: RF switch UNIT – IV MOEMS and Microfluidic Systems: Principle of MOEMS – Light modulator, Beam splitter, Digital micro- mirror device, Light detectors and optical switch. Micro-fluidic system – Fluid actuation method, Dielectro phoresis, Electro wetting, Micro fluid Dispenser, Micro needle, Micro pumps
Textbooks and Reference books	 Text Book: [T1] Marc Madou, "Fundamentals of Microfabrication", CRC press 1997. [T2] Tai-Ran Hsu, "MEMS & Microsystems Design and Manufacture", Tata McGraw Hill [3] G.K. Ananthsuresh, K.J. Vinoy, S. Gopalakrishnan, K.N. Bhat and V.K. Atre, "Micro andSmart Systems", Wiley India, New Delhi, 2010. Reference Books: [R1]Stephen D. Senturia,"Micro system Design",Kluwer Academic Publishers,2001. [R2] Chang Liu, "Foundations of MEMS", Pearson education India limited, 2006, [R3] Sergey Edward Lyshevski, "MEMS and NEMS: Systems, Devices, and Structures", CRC Press, 2002 [4] NitaigourPremchandMahalik, "MEMS ", McGraw Hill,2011.
E-resources and other digital material	1.https://nptel.ac.in/courses/117105082

20EIH5802C - Advanced Digital Signal Processing

Course Category:	Honors	Credits:	4
Course Type:	Theory	Lecture- Tutorial - Practice:	4 - 0- 0
Prerequisites:	Digital Signal Processing	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succes	sful co	ompleti	ion of t	he cou	rse, th	e stude	ent will	be abl	e to:		
outcomes	CO1	Expla	in the p	rinciple	s of Mu	ltirate s	signal p	rocessi	ng.				
	CO2	-	-	epts of I						oing app	plicati	ons.	
	CO3			aramet		0	1	0					
	CO4		se the parametric methods for power spectrum estimation.										
Contributio n of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
Outcomes towards the achievement	CO1		3										
outcomes Contributio n of Course Outcomes	CO2			3		2							
	CO3			3		2							
	CO4			3		2							
	a facto of Sat conver UNIT Applid digital filters, Quadra UNIT Non-P finite Blackt UNIT Paran Proper	Rate S or I, San mpling rsion C – II cations system Imple ature m C – III Parame duratio man-Tu C – IV netric ties, Re	npling Rate of Mul as with mentati irror fil tric Me n obset key me Metho elation	rocessi rate con Conversi Iti Rate differen on of ters, Tra- ethods rvation thods, C ds of between hods, N	of Power of auto of nation of sig	h by a r ilter de l Proce s ling rat filter l ltiplexes er Spec nals, N ison of s • Spec correlati	ational esign & ssing: I ces, Imp banks, rs, Over ctral E lon-par- all non- trum ion & r	factor 1 & Impl Design olement Sub-ba r Sampl stimati ametric parame Estima nodel p	 I/D, Mu ementa of phase ation of cod ind cod ling A/I on: Est Method etric me ation: arametod 	Iltistage tion fo e shifter f narrov ling of D and D imation ods: Ba thods Autoco ers, AR	r sam r sam rs, Inte w band speed /A con a of sp artlett, rrelatio	ement apling erfacin d low ch sig nversi ectra Welc on & els - Y	ation rate ng of pass mals, on from th & th & th & th & th & th & th & th &

	word length effect in IIR digital Filters – Finite word-length effects in FFT algorithms.
Textbooks and	Text Book: [T1] J. G. Proakis and D. G. Manolakis, "Digital Signal Processing: Principles,
Reference	Algorithms, and Applications", 4 th Ed., Pearson, 2007.
books	[T2] A.V.Oppenheim and R.W.Schafer, "Digital Signal Processing", 2 nd Ed., Pearson, 2004
	Reference Books:
	[R1] Emmanuel C. Ifeacher, Barrie. W. Jervis, "DSP – A Practical Approach", 2 nd Ed., Pearson Education.
	[2] S. M .Kay, "Modern Spectral Estimation: Theory & Application", PHI, 1998.
	[3] P.P.Vaidyanathan, "Multi Rate Systems and Filter Banks", Pearson Education
E-resources	1http://ocw.mit.edu/resources/res-6-008-digital-signal-processing-spring-2011.
and other	2. nptel.ac.in/digital signal processing
digital	
material	

20EIH5802D - Reconfigurable Architectures

Course Category:	Hor	nors								Cre	dits:	4	
Course Type:	The	eory					Lectu	4 - ()- ()				
Prerequisites:		5			Contin mester	uous E	30 70 100						
C													
Course outcomes	Upon	succes	ssful co	ompleti	ion of t	the cou	rse, the	e stude	nt will	be abl	e to:		
outcomes	CO1	Create the knowledge of high level VLSI design coding language to carry out research and development in the area of digital IC design. Model the digital designs including FSMs to Processor architectures using the											
	CO2				esigns i Languag		g FSM	s to Pr	ocessor	archite	ectures	using	g the
	CO3			-	ge of Rogital IC	-	urable a	architec	tures li	ke FPG	As in	desig	ning
	CO4	11 0		-	s to imp					0			
	CO5				and sta lication		e art of	Digita	I VLSI	design,	suital	ole for	real
Contributio n of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
Outcomes towards the achievement	CO1				3								
of Program Outcomes	CO2					3							
(1– Low, 2– Medium, 3 –	CO3	3											
High)	CO4	3											
	CO5			3									
Course Content	Logist Recon UNIT Basic delay Archit signal Entitie Concu	luction tics, Ch figurab	ts of hang, Structure of even arrays chitecture nd sequ	ization vare ardware uctural, t driver and a re spe uential	of reco e descri Data-f n simula ttribute cificatio constru	ption la low an ators, S s, Oper	able co anguage d behav yntax a rators, confi	mputing es (VHI vioral s ind sem Express guratio	g & re DL, Ve styles o antics o sions a ns, Co	erilog H f hardv of VHE nd sign	IDL), vare d DL, Va nal as nt ins	hardv Logic escrip triable signm	and otion, e and ents, ttion,

	UNIT – III Types of reconfiguration, Details study of FPGA, Design tradeoffs, Bidirectional wires and switches, FPGA Placement: Placement algorithms, FPGA routing, Timing analysis,
	Network virtualization with FPGAs, On-chip Monitoring Infrastructures.
	UNIT – IV Multi-FPGA system software, Logic emulation, Applications, High level compilation VLSI/FPGA design for wireless communication systems, Reconfigurable coprocessors, Power reduction techniques.
Textbooks	Text Book:
and	[T1] J. C. H. Roth, "Digital Systems Design Using VHDL", Thomson
Reference books	Publications, 2002 [T2] Scott Hauck and Andre DeHon, "Reconfigurable Computing", Morgan
DUOKS	Kaufmann, 2008
	Reference Books:
	[R1] R. C. Cofer and B. F. Harding, "Rapid System Prototyping with FPGAs:
	Accelerating the Design Process", Elsevier/Newnes , 2005
	[2] J Bhasker, "A Verilog Primer", Star Galaxy Publishing
E-resources	1 <u>http://nptel.iitg.ernet.in</u>
and other	
digital	
material	

Third Year (II Semester)

20EIH6803A - Modern Control Systems

Course Category:	Honors	Credits:	4
Course Type:	Theory	Lecture- Tutorial - Practice:	4 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	Upon successful completion of the course, the student will be able to:											
outcomes	CO1	Desig	n suita	ble co	mpens	ators u	sed in	contro	l syster	ns			
	CO2	Under	nderstand the fundamental concepts of nonlinear systems										
	CO3		alyze the concept of stability of nonlinear systems										
	CO4	formu	mulate the optimal control problems identified in real time systems										
Contributio n of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
Outcomes											10	11	12
towards the	CO1			2									
achievement of Program Outcomes	CO2												
(1– Low, 2– Medium, 3 – High)	CO3		3										
	CO4		2										
Course Content	compe lag-lea lag con UNIT Non I Satura Introdu Descri analys plane a plane a UNIT Stabili	ensatio ensator, ad comp mpensa – II Linear S tion – uction t bing fu is of N analysis analysis – III ity Ana	Realization, lag bensator tion, lag Dead-2 o Lineation- ton-Lin of non	ation of r, Casca g-lead c s-Introc Zone – arization –descril ear sys od of Is linear c	f basic ade con ompens luction Backla n of no bing fu tems th oclines ontrol s lity in	comper- npensation, I sation, I – Non ash – A nlinear unction for Con- systems the ser	nsators ion in f PID con Linear Jump H system analys describ nstructin	- lead frequence itroller System Phenom s, Prop is of p bing fur ng Traje	s – Typ enon e erties o nonlinea nctions. ectories	nsators, lsator, 1 ain –lea bes of N tc;– Si f Non-I ar syste Introdu , singul	ag co d con Jon-Li ngular Linear ems - uction ar poi	mpensa npensa inearit r Poir syste - Stal to pl nts, pl bility,	ties – nts – ms – bility hase- hase- and

invariant systems by Lyapunov second method Generation of Lyapunov functions –

	 Variable gradient method – Krasooviski's method. State feedback controller design through Pole Assignment – State observers: Full order and Reduced order. UNIT – IV Optimal Control - Introduction to optimal control – Formulation of optimal control problems – calculus of variations – fundamental concepts, functional, variation of functional – fundamental theorem of theorem of Calculus of variations – boundary conditions – constrained minimization – formulation using Hamiltonian method – Linear Quadratic regulator.
Textbooks and Reference books	Text Book:[T1]Anand Kumar, Control Systems, 2 nd Ed., PHI, 2015.[T2]M.Gopal, "Modern Control System Theory", 2 nd Ed., New AgeInternational publishers, 1993.[t3] J.Nagrath and M Gopal, "Control System Engineering, 4 th Ed., New AgeInternational publishers, 2009Reference Books:[R1] Ogata. K, " Modern Control Engineering", 5 th Ed, Pearson Publishers, 2010.
E-resources and other digital material	1 https://nptel.ac.in/courses/108103007

20EIH6803B -Principles and Applications of Nanotechnology

Course Category:	Honors	Credits:	4
Course Type:	Theory	Lecture- Tutorial - Practice:	4 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon successful completion of the course, the student will be able to:												
outcomes	CO1			-									
	CO1 CO2		amiliarize about the science of nanomaterials.										
	CO3		evelop the knowledge in characterization of nano samples.										
	CO4		strate the various applications of nanotechnology.										
Contributio													
n of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	10	11	12
Outcomes		_											
towards the	CO1	3											
achievement													
of Program	CO2	3											
Outcomes													
	CO3					2							
(1–Low, 2–	005					2							
Medium, 3 –	004			1									
High)	CO4			1									
Course		1	1		•		1		1	1			•
Content	UNIT	- I											
	Introd	luction	to Na	notechi	nology:	Nanosc	ale scie	ence an	d techn	ology-	Impli	cation	s for
	Physic	es, Che	emistry,	Biolo	ogy and	d Engi	neering	g- Clas	ssificati	ons of	nano	ostruc	tured
	-		-		quantu	-	-						
	materi		F		1		,					;	,,
	11140011												
	Nonor	notorio	le: Nor	oform	s of car	hon	Buokmi	notor f	ulloron	arant	nono c	and or	rhon
			115. INAI	IOTOTINS	or car	0011 -	DUCKIIII	lister 1	unerene	- grapi		inu ca	u boli
	nanotu	IUC											
		тт											
			41 1	6 5				~					
	Gener				reparat					-			
	CoPre	cipitatio	on, Ultı	rasonica	ation, N	1echani	cal Mil	ling, C	olloida	l routes	s, Self	-asser	nbly,
	Vapou	ir phase	e depos	sition, S	Sputteri	ng, Eva	aporatio	on, Mol	lecular	Beam 1	Epitax	xy, At	omic
	Layer	Epitaxy	7.										
	UNIT	ш											
		octeriza	tion '	Techni	ques:X	-rav I	Diffracti	ion te	chnique	Sca	nning	Ele	ctron
		112a		- centil	Yuus.M	Iuy I	mact		u	., 50a	ming		

Microscopy - environmental techniques, Transmission Electron Microscopy including

	 high-resolution Imaging, Surface Analysis techniques- AFM, SPM. UNIT IV Applications: Nano Electro Mechanical Systems (NEMS)- Nano sensors, Nano crystalline silver for Bacterial inhibition, Nanoparticles for sun barrier products - Solar cell, battery, Nano bio technology - Nanoprobes in Medical Diagnostics
Textbooks and Reference books	Text Book: [T1]A.S. Edelstein and R.C. Cammearata, eds., "Nanomaterials: Synthesis, Properties and Applications", Institute of Physics Publishing, Bristol and Philadelphia, 1996. [T2]N John Dinardo, "Nanoscale Charecterisation of surfaces & Interfaces", 2 nd Ed., Weinheim Cambridge, Wiley-VCH, 2000. Reference Books: [R1] G Timp, "Nanotechnology", AIP press/Springer, 1999. [R2] AkhleshLakhtakia, "The Hand Book of Nano Technology, Nanometer Structure, Theory, Modeling and Simulations". Prentice-Hall of India (P) Ltd, New Delhi, 2007
E-resources and other digital material	1. <u>https://nptel.ac.in/courses/118102003</u> 2. <u>https://archive.nptel.ac.in/courses/118/102/118102003/</u>

20EIH6803C - Computer Vision

Course Category:	Honors	Credits:	4
Course Type:	Theory	Lecture- Tutorial - Practice:	4 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon successful completion of the course, the student will be able to:												
outcomes	CO1	Expla	in the fu	indame	ntals of	image	formati	on tech	niques				
	CO2	quality											
	CO3	for im	yze various image restoration techniques used in mid and high level vision mage quality										
	CO4	Apply	ly vision techniques for Classifying and Detecting Objects In Images										
Contributio n of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
Outcomes towards the achievement	CO1												
of Program Outcomes	CO2	2											
(1-Low, 2-	CO3	2	2			3							
Medium, 3 – High)	CO4	2	2										
Course Content	Model colour UNIT Early Repres Pooled	Form lling pize percep II Vision senting l textur ipolar c	tion, Re tion, Re : Linea the im e repres	htness, epresent ar filter age gra sentatio	Inferenting colors, Loc ndient, ns by c	nce from our al imag Texture liscover	n shadi ge featu e, Local ring tex	ng, Mo ures, C l textur tons, B	odelling omputin e repre Sinocula	interre ng the sentatic r came	image image ons us ra geo	on, Hu e grac ing fi ometry	lient, lters, and

Mid and High Level Vision: Segmentation by clustering, Human vision, Grouping and gestalt, Grouping and model fitting, The Hough transform., Tracking, Simple tracking strategies, Registration, Registering rigid objects, Smooth surfaces and their outlines, Elements of differential geometry, Range data.

UNIT IV

	Classifying and Detecting Objects In Images: Building good image features,										
	Classifying images of single objects, Image classification in practice, The sliding										
	window method, Detecting deformable objects, Applications.										
Textbooks	Text Book:										
and	[T1] D. Forsyth, J. Ponce. "Computer Vision - A Modern Approach", 2 nd Ed.,										
Reference	Pearson Education, 2015.										
books	Reference Books:										
	[R1] Simon J.D. Prince. "Computer vision-models, learning and inference", 2 nd										
	Ed., Cambridge University, 2012.										
	[R2] E. R. Davies. "Computer and Machine Vision: Theory, Algorithms,										
	Practicalities", 4 th Ed., Elsevier, 2012.										
E-resources	1. http://www.cs.ubc.ca/spider/lowe/vision.html										
and other	2. <u>http://kercd.free.fr/linksKCD.html</u>										
digital											
material											

20EIH6803D - System on Chip

Course Category:	Honors	Credits:	4
Course Type:	Theory	Lecture- Tutorial - Practice:	4 - 0- 0
Prerequisites:		Continuous Evaluation:	30
_		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon successful completion of the course, the student will be able to:												
outcomes	CO1	Design	, optimi	ze, and	program	a mode	rn Syste	m-on-a-	Chip.				
	CO2	Analyz	alyze a computational task; characterize its computational requirements for SOC.										
	CO3	Caches											
	CO4		lement hardware and software solutions, formulate hardware/software tradeoffs, and form hardware/software co-design.										
Contributio n of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
Outcomes towards the achievement	CO1				2								
of Program Outcomes	CO2		3										
(1– Low, 2– Medium, 3 –	CO3		3										
High)	CO4				3								
Course Content	Hardwintercological Process Microldelays UNIT Memo Scratcs Strateg Multill process UNIT	luction vare & onnectionssors: 1 archite , Branchite ,	softwar on, An a Process cture, E hes. ign for and ca line re ches, V Iemory	re, Proc approac or sele Basic ele SOC: che me placeme irtual t interact		rchitect DC desi or SOC in instru- iew of S Cache niss tim ranslati	Eures, M gn, Sys C, Basic uction h SOC ex organi ne, Typo on, SO	Aemory tem arc c conce handling ternal m ization, es of ca C mem	and ad hitectur epts in g. Buffe nemory Cache ache, Sp nory sys	ddressir re and c proces ers: Min , Interna e data, plit – i,	ng. Sy omple sor an imizin al mer Write and c Iodels	stem exity. rchitec ng pip nory, e poli l – ca of si	level eture, eline Size, icies, ches, mple

Interconnect Customization and Configuration: Inter connect architectures, Bus:

	Basic architectures, SOC standard buses, Analytic bus models, Using the bus model, Effects of bus transactions and contention time. SOC customization: An overview, Customizing instruction processor. Reconfiguration technologies, Mapping design onto reconfigurable devices. UNIT- IV
	SOC Design Methodologies and Tools: HW/SW co-design: Analysis, Partitioning, Real-time scheduling, Hardware acceleration, Virtual platform models, Co-simulation and FPGAs for prototyping of HW/SW systems.
	Application Studies / Case Studies : SOC Design approach, AES algorithms, Design and evaluation, Image compression – JPEG compression
Textbooks	Text Book:
and	[T1]Michael J. Flynn and Wayne Luk, "Computer System Design System-on-
Reference	Chip", Wiely India Pvt. Ltd.
books	[T2]W. Wolf, "Modern VLSI Design: IP Based Design", Person Education [T3]M. J. Flynn, W. Luk, "Computer System Design: System-on-Chip", John Wiley & Sons.
	Reference Books:
	[R1]Steve Furber, "ARM System on Chip Architecture", 2 nd Ed., 2000, Addison Wesley Professional.
	[R2] Prakash Rashinkar, Peter Paterson and Leena Singh L, "System on Chip
	Verification – Methodologies and Techniques", 2001, Kluwer Academic
	Publishers
E-resources	
and other digital	
material	

EIE MINORS Program

V.R.SIDDHARTHA ENGINEERING COLLEGE (Autonomous) Department of Electronics & Instrumentation Engineering Minors in Electronics and Instrumentation Engineering

S.No	Course Code	Name of the Course	L	Т	Р	S	Credits
1	20EIM4701	Principles of Measurements and Instrumentation	4	0	0	IV	4
2	20EIM5702	Process Instrumentation	4	0	0	V	4
3	20EIM6703	Programmable Logic Controllers	4	0	0	VI	4
4	20EIM7704	Embedded Systems for Automation	4	0	0	VII	4
	20EIM5711	SELF LEARNING					2
	20EIM7712	SELF LEARNING					2

Two MOOCS/NPTEL Courses for 04 credits (02 courses @ 2 credits each) are mandatory

Second Year (II Semester)

20EIM4701 - Principles of Measurements and Instrumentation

Course Category:	Minors	Credits:	4
Course Type:	Theory	Lecture- Tutorial - Practice:	4 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon successful completion of the course, the student will be able to:												
outcomes	CO1	•		-							0 10.		
	CO1	11.	Apply suitable technique to measure electrical parameters Apply suitable technique to measure physical parameters										
	CO3		Inderstand the fundamental characteristics of instrumentation system.										
			oply the principles of self-generating transducers to measure the										
	CO4		sprivice principles of self generating transducers to measure the										
Contributio n of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
Outcomes towards the	CO1	3											
achievement of Program Outcomes	CO2	3											
(1– Low, 2– Medium, 3 –	CO3												
High)	CO4	2											
Course Content	Electr , DC resisto ohmm Instrum factor UNIT Bridg bridge Electr	 UNIT- I Electrical Measurements: Permanent magnet moving coil mechanism- Torque equation , DC ammeters - Shunt resistor, Multirange ammeters, DC voltmeters - Multiplier resistor, Multirange voltmeter, Ohms per volt rating, Series type ohmmeter, Shunt type ohmmeter, Alternating current indicating instruments - Electrodynamometer, Thermo Instruments, Electrodynamometers in power measurements, Watt hour meter, Power factor meters UNIT-II Bridges: Wheatstone bridge, Kelvin bridge, Maxwell bridge, Hay bridge, Schering bridge, Wien bridge. Electronic Instruments: AC Voltmeter using rectifiers, True RMS voltmeter, Digital voltmeters - Successive approximation type DVM, Q Meter - Impedance measurement 											

Oscilloscopes: Block diagram of oscilloscope, Cathode Ray Tube, Electrostatic deflection, Vertical amplifier, Horizontal deflecting system, Typical CRT connections,

	Delay line in triggered sweep.
	UNIT- III
	Instrument Characteristics: Block diagram of generalized instrument system, Static characteristics - Desirable & Undesirable characteristics; Dynamic characteristics - Transfer function.
	Transducers: Classification of transducers, Characteristics of transducers.
	Variable Resistance Transducers : Principle of operation, Construction details, Characteristics and applications of Resistance potentiometers, Strain gauge, Resistance thermometer, Thermistors
	UNIT- IV
	Reactance Transducers Variable Inductance Transducers: Principle of operation, Construction, Characteristics and applications of LVDT - RVDT, Variable reluctance accelerometer.
	Capacitive Transducers – Principle of operation, Construction, Characteristics and applications of Variable air gap, Variable distance, Variable permittivity capacitive transducer, pressure measurement using capacitive transducer.
	Self-generating transducers: Thermocouples, photo-electric transducers, piezo- electric transducers
Textbooks and Reference books	Text Book:[T1] W D Cooper & A D Helfrick, "Electronic Instrumentation and Measurement Techniques", PHI, 1998 (Unit-I)[T2] H.S.Kalsi, "Electronic Instrumentation", 2 nd Ed., TMH. (Units-II)[T3] A.K.Sawhney & Puneet Sawhney," A Course in Electrical and Electronic Measurements And Instrumentation", 19 th Ed., Dhanapat Rai & Co., 2015[4] A.K.Ghosh, "Introduction to Measurements & Instrumentation", 3 rd Ed., PHI, 2009.
	Reference Books: [R1] D.V.S.Murty, "Transducers & Instrumentation", 2 nd Ed., PHI, 2013 [R2] R.K.Jain "Mechanical And Industrial Measurements", 2 nd Ed., Khanna Publishers, 1995
E-resources and other digital material	1.https://www.youtube.com/watch?v=3eYmFjHnQjY&list=PLbRMhDVUMng coKrA4sH- zvbNVSE6IpEio 2. https://nptel.ac.in/courses/108/108/108108147

Third Year (I Semester)

20EIM5702- Process Instrumentation

Course Category:	Minors	Credits:	4
Course Type:	Theory	Lecture- Tutorial - Practice:	4 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon successful completion of the course, the student will be able to:												
outcomes	CO1												
	CO2	Identify suitable transducer for measurement of industrial process variables.											
	CO3	variab	nalyze the performance of various measurement techniques in industrial process ariables.										
	CO4	Explai	plain the fundamental concepts of control schemes and tuning methods.										
Contributio n of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
Outcomes towards the	CO1	2											
achievement of Program Outcomes	CO2	3											
(1-Low, 2-	CO3		3										
Medium, 3 – High)	CO4	3											
Course Content	dimena electric SAW UNIT Pressu device	erature sions - city – thermou – II ure Me s – Di	Bimeta Thermo neter, U asurem aphragi	als; Cha ocouple Jltrason nent: In ms, Be	ange in s; IC s lic therr troducti llows, I	electri sensors, nomete on, pre Bourdo	cal pro Radia r. ssure st n tubes	perties tion py andards	e senso – RTE vromete s, Mano ndary t), Ther rs, Fibo meters; ransduc	mistor er-opt Force ers –	rs; Th ic ser e sum Resis	ermo isors, ming stive,

$\mathbf{UNIT}-\mathbf{III}$

Pirani & Ionization gauges.

Flow Measurement: Introduction, Head type flow meters - Orifice plate, Venturi tube and Pitot tube; Variable area type flow meters – Rotameter; Velocity measurement type flow meters – Electromagentic.

Level Measurement: Introduction, Mechanical level indicators - Differential pressure

	type; Optical – Laser sensors; Radiative methods - Ultrasonic, Gamma; UNIT – IV Process Characteristics and Control : Elements of process control, Process variables, Controller modes – P, I, D, PI, PD, and PID; Actuators – Pneumatic, Hydraulic and Electrical (Introduction); Control valves – Types and characteristics; Multiloop control schemes – Cascade control, Feed forward control; Z-N and C-C methods of controller tuning.
Textbooks and	Text Book: [T1] A.K.Ghosh, "Introduction to Measurements & Instrumentation", 3 rd Ed.,
Reference books	 PHI, 2009. (Unit-I, II and III) [2] Donald P.Eckman, "Automatic Process Control", Wiley Eastern Ltd., 1993. (Unit-IV).
	Reference Books: [R1] A.K. Sawhney, "A Course in Electrical and Electronic Measurements and Instrumentation", Dhanpat Rai & Co [R2] Oliver & Cage, "Electronic Measurements and Instrumentation", Mc Graw Hill, 1975 [R3] C.D.Jojnson, "Process Control Instrumentation Technology", 8 th Ed., Pearson Education, New Delhi,2013.
E-resources and other digital material	1.http://nptel.ac.in/courses/108105064 2.http://nptel.ac.in/courses/108106074

Third Year (II Semester)

20EIM6703- Programmable Logic Controllers

Course Category:	Minors	Credits:	4
Course Type:	Theory	Lecture- Tutorial - Practice:	4 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succes	sful co	ompleti	ion of t	he cou	rse, the	e stude	ent will	be abl	e to:		
outcomes	CO1	Summ	ummarize the concepts of programmable logic controller										
	CO2		Understand the operation of PLC hardware										
	CO3		escribe the basics of PLC ladder logic										
	CO4	Desig	esign simple PLC programs using Timers and counters										
Contributio n of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
Outcomes towards the achievement	CO1	2											
of Program Outcomes	CO2	2											
(1– Low, 2– Medium, 3 –	CO3		2										
High)	CO4			2		2							
Course Content	Princip progra Human UNIT PLC H I/O see Electro switch UNIT Progra Funda level J	iew of ples of of mming n machine - II nardwa ction ad omagne es, Sen - III ammin mentals logic in ctions, F	pperatic - Programe ine inter re ddressin tic con sors, Ou g of PL of Log structic	on, PLC ram SC rface (H g, Discr ttrol rel utput co C: gic, Hau ons, Bas	versus AN,Pro IMI). rete I/O lays. M ontrol de rdware sics of	compu gramm module lanually evices, logic v PLC p	ter, PL0 ing lan; es, Ana opera ersus p rogram	C size a guages, log I/O ted sw program ming, I	module module itches, med lo	uction, lications mming es, Spec Mechas gic, pro ype ins instruc	s, Bas termin termin truction	ics of nal de D mod y ope ning y	PLC evice, lules, rated

	Programming Timers and Counters									
	Timer instructions, On-Delay timer instruction. Off-Delay Timer instruction, Retentive									
	timer, Programming counters- Counter instructions, Up-Counter, Down-Counter,									
	Combining Counter and Timer instructions									
Textbooks	Text Book:									
and	[T1] D. Petruzella, "Programmable Logic Controllers", 4th Ed, Glencoe									
Reference	McGraw Hill									
books										
	Reference Books:									
	[R1] B R Mehtha, Y J Reddy, "Industrial Process Automation Systems",									
	Butterworth Heinmann imprint of Elsevier, 2015.									
E-resources	1. <u>https://instrumentationtools.com/basics-of-plc-programming/</u>									
and other	2. <u>https://basicplc.com/plc-programming/</u>									
digital										
material										