VELAGAPUDI RAMAKRISHNASIDDHARTHA ENGINEERING COLLEGE DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING SCHEME OF INSTRUCTION FOR FOUR YEAR UG PROGRAMME VR23

Second Year – Third & Fourth Semester Syllabus

Effective from 2023-24

Velagapudi Ramakrishna Siddhartha Engineering College

ELECTRONICS & INSTRUMENTATION ENGINEERING

Scheme of Instructions for Four Year B.Tech Programme-VR23

SEMESTER I

S. No	Course Code	Course	Subject	L	Τ	Р	Credits
1.	23BS1101	Basic Science	Linear Algebra & Calculus		0	0	3
2.	23BS1102B	Basic Science	Chemistry	3	0	0	3
3.	23BS1103B	Basic Science	Basic Electrical & Electronics Engineering	3	0	0	3
4.	23ES1104	Engineering Science	Introduction to Programming	3	0	0	3
5.	23ES1105	Engineering Science	Engineering Graphics	1	0	4	3
6.	23BS1151B	Basic Science	Chemistry Lab		0	2	1
7.	23ES1152	Engineering Science	Computer Programming Lab		0	3	1.5
8.	23ES1153	Engineering Science	Electrical and Electronic Engineering Lab	0	0	3	1.5
9.	23BS1154B	Basic Science	Health and wellness, Yoga and Sports		0	1	0.5
	Total			13	0	13	19.5
10.	23MC1106	Mandatory Course	Induction Program				-

Category	Credits
Basic Science Courses	3+3+3+1+1.5=11.5
Engineering Science Courses	3+3+1.5+0.5=8
Humanities and Social Science	0
Mandatory Courses	0
TOTAL CREDITS	19.5

SEMESTER II

S.No	Course Code	Course	Subject	L	Т	Р	Credits
1.	23BS2101	Basic Science	Differential Equations & Vector Calculus	3	0	0	3
2.	23BS2102	Basic Science	Engineering Physics	3	0	0	3
3.	23ES2103A	Engineering Science	Basic Civil and Mechanical Engineering	3	0	0	3
4.	23PC2104C	Professional Core	Network Analysis	3	0	0	3
5.	23HS2105	Basic Science	Communicative English	2	0	0	2
6.	23BS2151	Basic Science	Engineering Physics Lab	0	0	2	1
7.	23PC2152C	Professional Core	Network Analysis & Simulation Lab	0	0	3	1.5
8.	23HS2153	Basic Science	Communicative English Lab	0	0	2	1
9.	23ES2154	Engineering Science	Engineering Workshop	0	0	3	1.5
10.	23ES2155	Engineering Science	IT Work shop	0	0	2	1
11.	23BS2156	Basic Science	NSS/NCC/Community Service	-	-	1	0.5
Total				14	0	13	20.5

Category	Credits
Basic Science Courses	3+3+2+1+1+0.5=10.5
Engineering Science Courses	3+1.5+1=5.5
Humanities and Social Science	0
Mandatory Courses	0
Professional Core	3+1.5=4.5
TOTAL CREDITS	20.5

II Year I Semester (Semester III)

S.No	Course Code	Course	Subject	L	Τ	P	Credits
1.	23BS3101C	Basic Science	Complex Analysis and Numerical Methods	3	0	0	3
2.	23HS3102	Humanities and Social Sciences	Universal Human Values – Understanding Harmony	2	1	0	3
3.	23ES3103F	Engineering Science	Analog Electronic Circuits	2	0	0	2
4.	23EI3304	Professional Core	Digital Circuits and Systems	3	0	0	3
5.	23EI3305	Professional Core	Sensors and Transducers	3	0	0	3
6.	23TP3106	Soft Skills - 1	Logic and Reasoning	0	0	2	1
7.	23MC3107	Audit	Environmental Science	2	0	0	-
8.	23EI3651	Skill Enhancement	Numerical Computing using MATLAB	0	0	2	1
9.	23ES3152	Engineering Science	Electronic Circuits Lab	0	0	2	1
10.	23EI3353	Professional Core	Digital System Design Lab	0	0	3	1.5
11.	23EI3354	Professional Core	Transducers Lab	0	0	3	1.5
			Total	15	1	12	20

Category	Credits
Basic Science Courses	3
Engineering Science Courses	2+1=3
Humanities and Social Science	3
Mandatory Courses	-
Professional Core	3+3+1.5+1.5 =9
Elective: Skill Enhancement course	1+1=2
TOTAL CREDITS	20

II Year II Semester (Semester IV)

S.No	Course Code	Course	Subject	L	Τ	Р	Credits
1.	23HS4101	Humanities	Engineering Economics and	2	0	0	2
		and Social	Management				
	2255 4102 G	Sciences		-	0	0	-
2.	23ES4102C	Engineering	Linear Integrated Circuits and	2	0	0	2
		Science	Applications				
3.	23EI4303	Professional	Control Systems	3	0	0	3
		Core					
4.	23EI4304	Professional	Industrial Instrumentation	3	0	0	3
		Core					
5.	23EI4305	Professional	Electrical and Electronic	3	0	0	3
		Core	Measurements				
	22TD4106	$\mathbf{G} = \mathbf{f} \cdot \mathbf{G} = \mathbf{f} \cdot \mathbf{G}$		0	0	0	1
6.	231P4106	Soft Skills - 2	English for Professionals	0	0	2	1
7.	23EI4651	Skill	Virtual Instrumentation Lab	0	0	2	1
		Enhancement					
		course					
8	23ES4152	Engineering	Design Thinking & Innovation	1	0	2	2
0.	2326 1132	Science		1	Ŭ	-	2
-					-		
9.	23EI4353	Professional	Linear Integrated Circuits Lab	0	0	3	1.5
		Core					
10.	23EI4354	Professional	Control Systems Lab	0	0	2	1
		Core	-				
11.	23EI4355	Professional	Measurements Lab	0	0	3	1.5
		Core					
	1	То	tal	14	0	14	21

Category	Credits					
Basic Science Courses	-					
Engineering Science Courses	2					
Humanities and Social Science	2+2 =4					
Mandatory Courses	-					
Professional Core	3+3+3+1+1.5+1.5 =13					
Elective: Skill Enhancement course	1+1=2					
TOTAL CREDITS	21					

Second Year (III Semester)

23BS3101C - Complex Analysis and Numerical Methods

Course Category:	Basic Science	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	23BS1101LinearAlgebra	Continuous Evaluation:	30
	& Calculus	Semester end Evaluation:	70
	23BS2101DifferentialEqua	Total Marks:	100
	tions& Vector Calculus		

Course Upon successful completion of the course, the student will be able to:									to:							
outcomes	CO1 Determine analytic, non-analytic functions and evaluate complex integrals															
	CO2	Ana defii	lyze Taylor, Laurent series and apply residue theorem for computing real nite integrals													
	CO3	Find poly	d solutions for algebraic, transcendental equations and estimate functions using ynomial interpolation													
	CO4	Solv	ve initial value problems numerically													
Contributi on of		PO 1	PO PO<								PS O1	PS O2	PS O3			
Course Outcomes	CO1	3	2													
towards achieveme																
nt of Program	CO2	3	2													
Outcomes (L – Low,	CO3	3	2			2								L		
M - Medium, H – High	CO4	3	2			2								L		
Content	CO4322LUNIT- I Complex Analysis: Introduction, Continuity, Cauchy-Riemann equations. Analytic functions, Harmonic functions, Orthogonal systems, Applications to flow problems, Complex integration, Cauchy's integral theorem, Cauchy's integral formulaUNIT- II Taylor's series, Laurent's series, Zeros and Singularities of an analytic function, Residue theorem, Calculation of Residues, Evaluation of real definite integrals:(i) Integration around the unit circle (ii) Integration around a small semi-circle, Bilinear transformationUNIT- III Numerical Methods & Interpolation: Solution of Algebraic and Transcendental Equations with Newton - Raphson method, Interpolation Introduction, Finite Differences- Forward, Backward and Central differences, Symbolic Relations, Newton's interpolation formulae-forward and backward differences, Central difference interpolation formulae-									llytic ems, sidue ation on ental nces- ation ulae- nge's						

	UNIT- IV Numerical Differentiation: First and second order derivatives using Newton's forward and backward difference formulae, Numerical integration with Trapezoidal rule and Simpsons 1/3 Rule, Numerical Solutions of Differential Equations-Taylor's series method, Euler's method, Modified Euler's method and Runge - Kutta method of 4th order.
Text books and Reference books	 Text Book: [T1] B.S.Grewal, "Higher Engineering Mathematics", 44th Ed., Khanna Publishers, 2019 Reference Books: [R1] Erwin Kreyzig, "Advanced Engineering Mathematics", 10th Ed., John Wiley & Sons, 2015. [R2] R.K.Jain, S.R.K.Iyengar, "Advanced Engineering Mathematics", 5th Ed., Narosa Publishers, 2016. [R3] N.P.Bali, Manish Goyal, "A Textbook of Engineering Mathematics", 9th Ed., Lakshmi Publications (P) Limited, 2016. [R4] H. K. Das, Er. Rajnish Verma, "Higher Engineering Mathematics", 3rd Revised Ed., S.Chand & Co., 2014. [R5] S. S. Sastry, "Introductory Methods of Numerical Analysis", 5th Ed., PHI Learning, 2012.
E- resources and other digital material	 Prof.Pranav Haridas, Kerala School of Mathematics, Complex Analysis, Available: https://onlinecourses.nptel.ac.in/noc21_ma39/preview Prof. Ameeya Kumar Nayak, Sanjeev Kumar, IIT Roorkee, Numerical methods, Available: https://onlinecourses.nptel.ac.in/noc21_ma45/preview Jeremy Orloff, Massachusetts Institute of Technology: MIT Open Courseware, Complex Variables with Applications, Available: https://ocw.mit.edu. Henrik Schmidt, Massachusetts Institute of Technology: MIT Open Courseware, Introduction to Numerical Analysis for Engineering, Available: https://ocw.mit.edu.

23HS3102 – Universal Human Values – Understanding Harmony

Course Category:	Humanities and Social Sciences	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	2 - 1 - 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon successful completion of the course, the student will be able to:															
outcomes	CO1	Und soci	Understand and aware of themselves and their surroundings (family, society and nature). Handle problems with sustainable solutions, while keeping human relationships and human nature in mind Exhibit critical ability and become sensitive to their commitment towards their understanding of human values, human relationship and human society Apply what they have learnt to their own self in different day-to-day settings in real life													
	CO2	Han rela														
	CO3	Exh towa hum														
	CO4	App setti														
Contributi on of		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PSO 3
Course Outcomes towards	CO1						1			1						
nt of Program	CO2			3												
Outcomes (L – Low,	CO3						2									
Medium, H – High	CO4								3				2			
<u>H – High</u> Course Content	UNIT Course Educat Part-1: explora validati look at Part-2: for ful Unders scenari	- I - Intr tion: Pur tion: con- A basic Righ fillmo tandir o, Me	roduce pose What as the huma at und ent of ag hagethod	and is it proce n asp erstar f asp ppine to fu	Need motiv ? Its ess fo iration ading, piration ss and ilfill t	d, Ba vation conte r self- ns. Relat ns o d pros	for for nt and explo- tionsh f eve sperity	Guide the of protoration ip and ery h y corn	elines, course cess, n. Cor d phys uman rectly n aspi	, Cor , rec 'Natu ntinuo sical f beir – A ratior	ntent apitul ral ac us ha facilit ag wi critic ns: U	and ation ccepta ppines y – Tl ith th al app nderst	Proc from nce' a ss and he bas he bas he ir c praisal andin	eess UH and e l pros sic re correct l of t g and	for IV-I, experit sperit quire t pr the c d livi	Value Self- iential y - A ments iority, urrent ing in

harmony at various levels.

(Practice sessions are to be included to discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and co-existence) rather than as arbitrariness in choice based on liking-disliking).

UNIT- II

Understanding Harmony in the Human Being – Harmony in Myself:

Part-1: Understanding human being as a co-existence of the sentient 'I' and the material 'Body'. Understanding the needs of self ('I') and 'body' – Happiness and physical facility, Understanding the body as an instrument of 'I' (I being the doer, seer and enjoyer).

Part-2: Understanding the characteristics and activities of 'I' and harmony in 'I'. Understanding the harmony of I with the body: Sanyam and health; Correct appraisal of physical needs, Meaning of prosperity in detail, Programs to ensure sanyam and health.

(Practice sessions are to be included to discuss the role others have played in making material goods available to me. Identifying from one's own life. Differentiate between prosperity and accumulation. Discuss program for ensuring health vs. dealing with disease).

UNIT- III

Understanding Harmony in the Family and Society – Harmony in Human-Human Relationship:

Part-1: Understanding values in human-human relationship; Meaning of justice (nine universal values in relationships) and program for its fulfillment to ensure mutual happiness; Trust and respect as the foundational values of relationship, Understanding the meaning of trust; Difference between intention and competence, Understanding the meaning of respect, Difference between respect and differentiation; The other salient values in relationship.

Part-2: Understanding the harmony in the society (society being an extension of family); Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive human goals, Visualizing a universal harmonious order in society–Undivided society, Universal order– From family to world family.

(Practice sessions are to be included to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education, etc. Gratitude as a universal value in relationships. Discuss with scenarios. Elicit examples from students' lives).

UNIT- IV

Part-1: Understanding Harmony in Nature & Existence – Whole existence as Coexistence: Understanding the harmony in the nature, Interconnectedness and mutual fulfillment among the four orders of nature – Recyclability and self-regulation in nature, Understanding existence as co-existence of mutually interacting units in all-pervasive space, Holistic perception of harmony at all levels of existence.

	Part-2: Implications of the above Holistic Understanding of Harmony on Professional Ethics: Natural acceptance of human values, Definitiveness of ethical human conduct, Basis for humanistic education, Humanistic constitution and humanistic universal order, Competence in professional ethics: a) Ability to utilize the professional competence for augmenting universal human order, b) Ability to identify the scope and characteristics of people-friendly and eco-friendly production systems, c) Ability to identify and develop appropriate technologies and management patterns for above production systems, Case studies of typical holistic technologies, management models and
	order: a) At the level of individual: as socially and ecologically responsible engineers, technologists and managers, b) At the level of society: as mutually enriching institutions and organizations.
	(Part-1: Practice sessions are to be included to discuss human being as cause of imbalance in nature (film "Home" can be used), pollution, depletion of resources and role of technology, etc. Part-2: Practice exercises and case studies are to be taken up in practice (tutorial) sessions eg. to discuss the conduct as an engineer or scientist, etc.).
Text	Text Book:
books and	[T1] R. R. Gaur, R. Sangal and G. P. Bagaria, "Human Values and Professional Ethics",
Reference	Excel Books Private Limited, New Delhi (2010).
books	Reference Books:
	[R1] A. Nagaraj, Jeevan Vidya Prakashan, Amarkantak, "Raman Jeevan Vidya: Ek
	Parichaya (1999).
	[R2] A. N. Tripathi, "Human Values", New Age International Publishers, New Delhi (2004).
	[R3] Annie Leonard, "The Story of Stuff: The Impact of Overconsumption on the Planet, our Communities, and our Health and how we can make it better", Free Press, New York (2010).
	[R4] Mohandas Karamchand Gandhi, "The Story of my Experiments with Truth: Mahatma Gandhi Autobiography", B. N. Publishing (2008).
	[R5] E. F. Schumacher, "Small is Beautiful: A Study of Economics as if People Mattered", Vintage Books, London (1993).
	[R6] Cecile Andrews, "Slow is Beautiful: New Visions of Community", New Society Publishers, Canada (2006).
	[R7] J. C. Kumarappa, "Economy of Permanence", Sarva-Seva-Sangh Prakashan Varanasi (2017)
	 [R8] Angreji Raj, Pandit Sunderlal, Prabhath Prakashan, "Bharat Mein"Delhi (2018). [R9] Dharampal, "Rediscovering India Society for Integrated Development of Himilayas" (2003).

	[R10] M. K. Gandhi, "Hind Swaraj or Indian Home Rule", Navajivan Publishing House,
	Ahmedabad (1909)
	[R11] Maulana Abul Kalam Azad, "India Wins Freedom: The Complete Version", Orient
	Blackswan (1988).
	[R12] Romain Rolland, "The Life of Vivekananda and the Universal gospel", Advaitha
	Ashrama, India (2010).
	[R13] Romain Rolland, "Mahatma Gandhi: The Man who become one with the Universal
	Being", Srishti Publishers & Distributors, New Delhi (2002).
E-	1. AICTE – SIP Youtube Channel
resources	https://www.youtube.com/channel/UCo8MpJB_aaVwB4LWLAx6AhQ
and other	2. AICTE – UHV Teaching Learning Material
digital	https://fdp-si.aicte-india.org/download.php#1
material	

23ES3103F – Analog Electronic Circuits

Course Category:	Engineering Science	Credits:	2
Course Type:	Theory	Lecture - Tutorial - Practice:	2 - 0- 0
Prerequisites:	Basic Electronics,	Continuous Evaluation:	30
	Network Theory	Semester end Evaluation:	70
		Total Marks:	100

Course	Upon successful completion of the course, the student will be able to:															
outcomes	CO1	Ana	lyze v	ariou	s stab	ility	biasir	ig tec	hniqu	ies in	BJT a	and FE	Т			
	CO2	Ana	lyze a	mplif	ier ci	rcuits	at lo	w fre	quen	cies						
	CO3	Des	ign di	fferen	t osci	llatoı	circı	iits								
	CO4	Ana	lyze v	ariou	s pow	ver an	nplifi	er cir	cuits	with	respec	t to eff	ficiency	,		
	CO5	Dev	elop a	inalog	; elect	tronic	circı	iits u	sing 1	node	rn too	ls	1	T		Γ
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
towards	CO1		3												2	
achievement of Program	CO2	3													2	
Outcomes	CO3			2											2	
(L – Low, M – Medium. H	CO4		2												2	
– High	CO5					2										2
Course Content	Transi Collect compe- therma UNIT- Transi BJT A parame configu FET A CS/CD UNIT- Feedba output Voltag Oscilla	istor tor to nsatio l stab II istor 4 istor 4 i i i i i i i i	& Fl b base on for ility, J Ampli fiers: model ns, Ca ifiers: config model ns, Ca ifiers: config	ET B e bias V _{BE a} IFET ifiers Hybri , Sim sscade FET guratic fers: s, Ger Meth rrent s	iasing s, Se and Ic biasir at Lc d par plific ed stag smal ons.	g: In If bi co, Th ng cir ow fro cameto ed C ge (C 1 sign chara f anal feedl	trodu as; S nermi cuits equer er mo E hy E-CE nal m cteris lysis pack a	ction tabili stor a - Fixe odel o brid b), Ca bodel, codel, tics o of fea ampli	, Op ity fa and S ed bia f trar mod scode Ana of Neg edbac fiers.	eratin actors ensis as, Vo el, S e (CE llysis gative ck am	ng poi s, Bia tor co oltage r, Ana Simpli -CB), of FF	nt, Bia s com mpensa dividen lysis o fied ca Darlin ET amp Dack A rs - Vo	asing c pensati ation; T r bias. f transis alculatio gton Pa plifiers mplifier	ircuits on circ Thermal stor ampons for ir(CC-C at low rs, Inpu eries, C	- Fixed uits - runawa olifier u CC a CC). frequen t resista	I bias, Diode ay and Using h & CB Accies -

	oscillator using BJT, Wein bridge oscillator, LC oscillators- Hartley and Colpitts Oscillator.
	UNIT- IV Power Amplifiers : Classification of Power amplifiers, Class A series fed and Transformer Coupled, Second Harmonic distortion, Class B Transformer coupled Push-Pull and
	Complementary Symmetry Push-Pull, Cross over distortion.
Text books and	Text Book
Reference books	 Jacob Millman and Christos C Halkias, "Integrated Electronics: Analog and Digital Circuits and Systems", 12thed, TMH, 1991. G.K.Mithal, "Electronic Devices and circuits", 23rded, Khanna Publishers 2010.
	Reference books
	[1]A.P.Godse and U.A.Bakshi "Electronic Circuit Analysis", 1 st ed, fourth reprint, Technical Publications,2010.
	 [2] Robert Boylestad and Louis Nashelsky, "Electronic Devices and Circuit Theory", 6thed, PHI 2000.
E-resources and other digital material	http://nptel.iitm.ac.in/courses.php?branch=Ece

23EI3304 – Digital Circuits and Systems

Course Category:	Professional Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon a	succe	ssful	com	pletio	n of	the co	ourse	, the	stude	nt wi	ll be	able	to:		
outcomes	CO1	Ana	Analyze digital electronic circuits using analytical tools													
	CO2	Des	ign d	igital	elect	ronic	circu	iits w	vith an	nd wi	thout	men	nory	eleme	ents	
	CO3	Sele	ect su	itable	e men	nories	s and	logic	fami	lies f	or di	gital	syste	m des	ign	
	CO4	Use	the s	pice	softw	are to	o desi	gn th	e dig	ital e	lectro	onic c	ircui	ts		
Contributi on of		PO 1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
Outcomes towards	CO1		3												1	
achieveme nt of Program	CO2		3												2	
Outcomes (L – Low,	CO3	2													1	
Medium, H – High	CO4					2										2
Course Content	UNIT Digital forms, Karnau UNIT Combi Full - S Binary Combi design design,	- I Fun Stand gh ma - II natio Subtra code natio using Enco	dame lard f ap min nal L actor, conve nal L multi ders,	ntals: orms, nimiz: ogic l BCD orters ogic plexe Priori	: 1's Simp ation : Design to 7 s Design rs, De ty enc	and 2 olifica and Q n: Par segme gn Us emulti coder.	is control tion of uine-l rallel ent de ing N plexes	mpler of Bo McCh adder coder. /ISI (rs / D	nents, olean uskey , Carr , Desi C ircu i	Min funct meth y Loc gn of i ts: M rs and	terms tions od of a Bin fultip l their	and using minir ead ac nary t lexer, use i	Maxta algel nizati lder, l o G+ Com n con	erms, braic on. Half - +ray a Ibinati	Cano techni subtr and G onal 1	nical ques actor, ray to logic logic

	UNIT- III
	Flip-Flops : Clocked S-R flip-flop, Preset and clear, J-K flip-flop, Race around condition, Master slave J-K flip-flop, D flip-flop, T flip-flop, Excitation table of a flip-flop, Flip-Flop conversions.
	Sequential Logic Design : Shift register, Bi-directional shift register, Applications of shift resisters: Ring counter, Twisted ring counter, Sequence generator. Asynchronous counters – Up/Down counters, Modulus of the counter, Design of synchronous counters.
	UNIT- IV
	Memory Devices : Functional block diagram and operation - ROM, PROM, EPROM, EEPROM, Flash memory, RAM: Static and dynamic RAM, ROM as a PLD, PAL and PLA Programming.
	Digital Integrated Circuits : Characteristics of Digital ICs, Logic Families: MOS and CMOS logic families
Text	Text Book:
books and Reference	[T1] R P Jain "Modern Digital Electronics", 4th Ed., TMH
books	Reference Books: [R1] M. Morris Mano, "Digital Logic and Computer Design" PHI 2003
	[R2] A. Anand Kumar, "Fundamentals of Digital Circuits", PHI, 2006
E-	
resources	
and other	
material	

23EI3305 – Sensors and Transducers

Course Category:	Professional Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succe	ssful	com	pletic	on of	the co	ourse	, the	stude	ent wi	ll be	able	to:		
outcomes	CO1	Ana qual	lyze lity o	vario f mea	ous p Isurei	perfoi nent.	mano	ce ch	narac	terist	ics c	of in	strun	nent	and	the
	CO2	Ider	ntify t	he ty	pe of	tran	sduce	r bas	ed or	n tran	sduct	ion p	rinci	ples		
	CO3	Sele para	ect a imete	rele rs	vant	tran	sduce	er fo	r me	easur	emen	t of	vari	ous	phys	ical
	CO4	App	apply the concepts of signal conditioning circuit for various transducers													
Contributi on of		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
Course		1	2	5	-	5	0	,	0		10	11	12	01	02	05
Outcomes towards	CO1		2											1		
achieveme																
nt of	CO2	2												1		
Program		_												-		
Outcomes (L – Low,	CO3		3											2		
M - Medium, H – High	CO4	2														1
Content	UNIT Instrum charact Transfe instrum Measu of limit UNIT Transo Variab Charac thermo conditi	- I ment eristic er fur hents t rement ting er - II lucers ble R teristi meter oning	Chan cs - nction to step nt Er tror, S s: Cla s: Cla cs an cs an , The of res	racter Desira , Dyn inpu rors a statisti ssifica ance d app ermist sistive	istics able namic t. and S acal tro ation of Tran lication cors, e trans	: Blo & Un resp tatist eatme of tran of tran of tran of tran usduc	ck di ndesir onse ical A nt, Cu nsduce ers: f Res vire a s	agram able of Z Analy s urve fi ers, Cl Princ: istanc	n of g chara ero c sis: I itting haract iple e pot omete	genera cteris order, Defini metho ceristic of o entior r, Re	alized tics; First tion c ods cs of t perati neters esistiv	instr Dyna orde of para ransd on, 0 , Stra e hy	umen mic er and amete ucers Const in ga grom	t syst charac 1 Sec rs, Co ructio iuge, eter a	em, S eteristi ond o ombin n de Resist nd S	Static les - order ation tails, ance ignal

	UNIT- III
	Reactance Transducers
	Variable Inductance Transducers: Principle of operation, Construction, Characteristics
	and applications of LVDT - RVDT, Variable reluctance accelerometer, Signal
	conditioning of inductive transducers
	Capacitive Transducers – Principle of operation, Construction, Characteristics and applications of Variable air gap, Variable distance, Variable permittivity capacitive transducer, Frequency response, Signal conditioning of capacitive transducers
	UNIT- IV
	Special Sensors: Introduction, Smart sensors, Micro Sensors, IR radiation Sensors,
	Ultrasonic Sensors, Fiber optic sensors, Colour sensor, Proximity sensors, Chemical
	sensor, IC sensor, Bio Sensors.
Text	
Reference	[11] A.K.Sawhney & Puneet Sawhney,"A Course In Electrical And Electronic
books	IT21 D.V.S. Murtu, "Transducers & Instrumentation", 2 nd Ed. DIII 2012
	[12] D.V.S.Murty, Transducers & Instrumentation, 2 Ed., PHI, 2015
	[P1] A K Chech "Introduction to Monsurements & Instrumentation" 2 rd Ed. DHI 2000
	[R2] Raman Pallas & John G Webster "Sensors & Signal Conditioning" 2 nd Ed. J
	[K2] Kaman Fanas & John G. Webster, "Sensors & Signar Conditioning", 2 Ed., J. Wiley 2012
	witey,2012
E-	1. https://nptel.ac.in/courses/108/108/108108147
resources	
digital	
material	

23TP3106 – Logic and Reasoning

Course Category:	Soft Skills-1	Credits:	1
Course Type:	Learning by Doing	Lecture - Tutorial - Practice:	0 - 0- 2
Prerequisites:		Continuous Evaluation:	100
		Semester end Evaluation:	0
		Total Marks:	100

Outcomes CO1 Think reason logically in any critical situation CO2 Analyze given information to find correct solution CO3 To reduce the mistakes in day to day activities in practical life CO4 Develop time management skills by approaching different shor methods CO5 CO6 Apply logical thinking to solve problems and puzzles in qualify exams for companies and in other competitive exams Contributi on of PO	successful completion of the course, the student will be able to:											
CO2Analyze given information to find correct solutionCO3To reduce the mistakes in day to day activities in practical lifeCO4Develop time management skills by approaching different shor methodsCO4Develop time management skills by approaching different shor methodsCO5Use mathematical based reasoning to make decisionsCO6Apply logical thinking to solve problems and puzzles in qualify exams for companies and in other competitive examsContributi on of Course Outcomes towards achieveme nt ofPO PO POPO PO PO POPO PO PO POPO PO PO PO POPO PO PO PO POPO PO PO PO PO POPO PO PO PO PO PO POPO <b< th=""><th></th></b<>												
CO3To reduce the mistakes in day to day activities in practical lifeCO4Develop time management skills by approaching different shor methodsCO5Use mathematical based reasoning to make decisionsCO6Apply logical thinking to solve problems and puzzles in qualify exams for companies and in other competitive examsContributi on of Course Outcomes towards achieveme nt ofPO PO PO POPO <b< th=""><th></th></b<>												
CO4Develop time management skills by approaching different shorm methodsCO5Use mathematical based reasoning to make decisionsCO6Apply logical thinking to solve problems and puzzles in qualify exams for companies and in other competitive examsContributi on of Course Outcomes towards achieveme nt ofPO PO POPO PO PO POPO PO PO PO POPO <br< th=""><th></th></br<>												
CO5Use mathematical based reasoning to make decisionsCO6Apply logical thinking to solve problems and puzzles in qualify exams for companies and in other competitive examsContributi on of CoursePO 1PO 2PO 3PO 4PO 5PO 6PO 7PO 8PO 9PO 10PO 11PO 12PS 01PS 02PS 01P	evelop time management skills by approaching different shortcut ethods											
CO6Apply logical thinking to solve problems and puzzles in qualify exams for companies and in other competitive examsContributi on of 1PO 2PO 3PO 4PO 5PO 6PO 7PO 8PO 9PO <b< th=""><th></th></b<>												
Contributi on of Course PO PO <th>ing</th>	ing											
Course Outcomes towards achieveme nt of OutcomesCO121CO22211Program OutcomesCO221	PS O3											
achieveme nt of Program CO2 2 Outcomes CO2												
Outcomes CO2												
(L - Low, COS)												
Medium, H – High												
CO5 2												
CO6 1												
Course												
Content UNIT-1 1. Series Completion 2. Coding-Decoding 3. Blood Relation Blood 4. Puzzles test 5. Direction sense test	 NIT- I 1. Series Completion 2. Coding-Decoding 3. Blood Relation Blood 4. Puzzles test 5. Direction sense test 											
UNIT- II												

	2. Number test. Ranking test
	3 Mathematical operations
	Λ Arithmetical Reasoning
	5. Sullagism
	5. Synogishi
	UNIT- III
	1. Binary Logic
	2. Inserting missing character
	3. Data sufficiency
	4. Analogy
	5. Classification
	UNIT- IV
	1. Water images,
	2. Mirror images,
	3. Paper folding,
	4. Paper cutting,
	5. Embedded Figures,
	6. Dot situation,
	7. Cubes & Dice
Text	Text Book:
books and	[T1] S. Aggarwal, "Verbal and Non-Verbal reasoning", S Chand Publication, 2017
Reference	
books	
E-	1. <u>https://www.indiabix.com/</u>
resources	2. <u>https://treeknox.com/</u> 2. https://www.executede.com/
digital	5. <u>https://www.examveda.com/</u>
material	
mattiai	

23MC3107 – Environmental Science

Course Category:	Audit Course	Credits:	-
Course Type:	Theory	Lecture - Tutorial - Practice:	2 - 0- 0
Prerequisites:		Continuous Evaluation:	100
		Semester end Evaluation:	0
		Total Marks:	100

Course	Upon	pon successful completion of the course, the student will be able to:														
outcomes	CO1	Iden cont	ntify trol n	vario neasu	us fa res	ctors	caus	sing	degra	datio	on of	natu	ıral r	esou	rce a	ind
	CO2	Ider	ntify v	vario	us ec	osyste	em ai	nd ne	ed fo	r bio	diver	sity				
	CO3	Rea its n	Realize and explore the problems related to environmental pollution and ts management													
	CO4	App asso	pply the information and technology to analyse social issues, use acts ssociated with environment													
Contributi on of		РО 1	PO 2	РО 3	PO 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
Course																
Outcomes towards	CO1	1							1							
achieveme nt of	CO2		1	1							1					
Outcomes (L – Low,	CO3				1	1										
M - Medium, H – High	CO4						1	1	1							
Course Content	UNIT The mu Need for Natura Renew (a)For (a)For (b) Wat Drough (c) Min using m (d) Foo overgra Salinity	- I altidis or pub al Res rable a est re g, Dan ter R nt, Con ter al ninera d Re azing, y.	ciplin olic av ource and N source ns and esour nflicts Resou l reso sourc Effec	ary na varence es : lon-re ees: U l their ces: U s over urces. urces. urces. ves: V	ature o ess. enewa Use an effec Use a water Use World mode	ble R ad over ts on t and over r, Dan and e fooo rn agr	vironm er-exp foresta ver-ut ns-ber exploi d pro- icultu	nental rces: 1 loitati s and ilizati nefits tation bblems re, Fe	studio Natura ion, I tribal on of and p , Env s, Ch ertilize	es, De al reso Defore peopl surfa robler rironn anges er-pes	efinitio ources estatio e. ace an ns. nental s cau ticide	on, Sc and a n. Tin nd gro effec sed b probl	cope a associ mber ound ets of by ag	nd im ated p extra water extra gricul Wate	porta proble ction, c, Flo cting ture r logg	nce, ms. ods, and and ging,

(e) Energy Resources: Growing energy needs, Renewable and non-renewable energy sources, Use of alternate energy sources.

(f) Land Resources: Land as a resource, Land degradation, Man induced landslides, Soil erosion and desertification. Role of an individual in conservation of natural resources. Equitable use of resources for sustainable lifestyles

UNIT- II

Ecosystems: Concept of an ecosystem. Structure and function of an ecosystem. Producers, Consumers and decomposers. Energy flow in the ecosystem. Ecological succession. Food chains, Food webs and ecological pyramids. Introduction, Types, Characteristic features, Structure and function of the following ecosystem: (a) Forest ecosystem (b)Grassland ecosystem (c)Desert ecosystem

(d)Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

Biodiversity and its Conservation

Introduction, Definition: Genetic, Species and ecosystem diversity. Biogeographically classification of India. Value of biodiversity: Consumptive use, Productive use, Social, Ethical, Aesthetic and option values. Biodiversity at global, National and local levels. India as a mega-diversity nation. Hot-spots of biodiversity. Threats to biodiversity: Habitat loss, Poaching of wildlife, Man-wildlife conflicts. Endangered and endemic species of India. Conservation of biodiversity: in-situ and ex-situ conservation of biodiversity

UNIT- III

Environmental Pollution: Definition, Causes, Effects and control measures of (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards

Solid waste management: Causes, Effects and control measures of urban and industrial wastes. Role of an individual in prevention of pollution.

Disaster management: Floods, Earthquake, Cyclone and landslides

UNIT- IV

Social Issues and the Environment: From unsustainable to sustainable development. Urban problems related to energy. Water conservation, Rain water harvesting, Watershed management. Resettlement and rehabilitation of people; Its problems and concerns.

Environmental ethics Issues and possible solutions. Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Wasteland reclamation, Consumerism and waste products.

Environment Protection Act: Air (Prevention and control of pollution) act. Water

	(Prevention and control of pollution) act. Wildlife protection act. Forest conservation act. Issues involved in enforcement of environmental legislation.
	Public awareness: Human population and the environment, Population growth, Variation among nations, Population explosion - Family Welfare Programme.
	Environment and Human Health: Human rights, Value education, HIV/AIDS, Women and child welfare, Role of information technology in environment and human health.
	Field Work/ Case Studies: Visit to a local area to document environmental assets – River/ Forest/ Grassland/ Hill/ Mountain. Visit to a local polluted site – Urban/Rural/Industrial/Agricultural. Study of common plants, insects, birds. Study of simple ecosystems - Pond, river, hill slopes, etc.
	Self-Study : Water resources, Threats to biodiversity, Solid waste management, Role of information technology in environment and human health
Text books and Reference books	 Text Book: [T1] "Grants Commission", New Delhi, Bharati Vidyapeeth Institute of Environment Education and Research Reference Books: [R1]AnjaneyuluY. "Introduction to Environmental Sciences", B S Publications PVT Ltd, Hyderabad [R2].Anjireddy.M "Environmental Science & Technology", BS Publications PVT Ltd, Hyderabad. [R3]Benny Joseph, "Environmental Studies", The Tata McGraw- Hill publishing company limited, New Delhi, 2005. [R4]. P.VenuGopalaRao, "Principles of Environmental Science. &Engineering", Prentice-Hall of India Pvt. Ltd., New Delhi, 2006. [R5]Santosh Kumar Garg, RajeswariGarg, "Ecological and Environmental Studies", Khanna Publishers, New Delhi 2006. [R6] Kurian Joseph & R Nagendran, "Essentials of Environmental Studies",Pearson Education publishers, 2005. [R7] A.K Dee, "Environmental Chemistry",New Age India Publications.
E- resources and other digital	[Ko] BharuchaErach, Biodiversity of India ⁺ , Mapin Publishing Pvt.Ltd
material	

23EI3651 – Numerical Computing using MATLAB

Course Category:	Skill Enhancement	Credits:	1
Course Type:	Learning by Doing	Lecture - Tutorial - Practice:	0 -0- 2
Prerequisites:		Continuous Evaluation:	100
		Semester end Evaluation:	0
		Total Marks:	100

Course	Upon	Upon successful completion of the course, the student will be able to:														
outcomes	CO1	Deve	elop a	progr	am u	sing N	MATI	LAB								
	CO2	Deve	elop a	soluti	on us	sing N	IATL	AB f	for line	ear al	gebra	ı				
	CO3	Develop a solution using MATLAB for curve fitting and interpolation														
	CO4	Deve	Develop a solution using MATLAB for differential equations													
Contributi		PO	PO P													
on of		1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
Course	CO1			3		3									3	
Outcomes	CO2			3		3									3	
towards	CO3			3		3									3	
achieveme	005			5		5									5	
nt of																
Program																
Outcomes	004			2		2									2	
	CO4			3		3									3	
(1-Low, 2)																
- Medium,																
3 - High	**7 1															
Course	Week	Week 1: Introduction to MATLAB														
Content	Week	2: Eri	ror est	imati	on an	id met	hods	of ro	ots fin	iding						
	Week	Week 3: Order of convergence of various methods														
	Week	4: 50	iving	Syste	m oi Laivin	Linea	r Alg		c equa	lach		matia				
	Wook	5: C0	munu muo fi	ings	nd I	ig Sys	lation		leal A	igeoi		Juano	115			
	Wook	7. Co	ntinui	ng l	niu n Curv	a fittir	nation	I I Into	rnolat	ion						
	Week	8. Co	ntinui	ng (Curv	e fittir	ig and	i Inte i Inte	rpolat	ion						
	Week	9. Co	meric	ng v al dif	feren	tiation	ig and 1	1 mic	ipoia	1011						
	Week	10· N	umer	ical Ir	teor	ation	1									
	Week	11: N	umer	ical so	olutio	n to o	rdina	rv dif	ferent	tial ec	matic	ons (O	DE's)			
	Week	12: C	ontin	ling v	vith r	numer	ical so	olutic	on to C	DDE's	1 auro		223)			
T	T . 4			0 '						_ 5						
1 ext Dooks	I ext I	500K	0 1171	a a 41	66 🛦	12	J NI-	•	aal 4	.				F 424		17
and Deference	[1] Ge	eraid d	x Wh	eatie	y, "A	ppile	a inui morie	meri	cal Ar	iaiysi	IS [~] , P	earso	n - 7th	I Editi()n, 200 Igo	13.
books		3. GU reity r	pta "I	Dieiiit 2015	-111S (JI INUI	neric	ai Al	narysi	s , se	cond	euiti	uii, Ca	amprid	ige	
NUURS	unive	isity h	n coo,	2013												
	Refer	ence b	ooks													
	[1] Ma	athew	& Fin	ık, "N	umei	rical N	/letho	ds Us	sing M	1ATL	AB"	, Pear	son, 1	998.		
	[2] Ru	ıdra Pr	atap,	"Gett	ing st	tarted	with	MAT	LAB:	A qu	ick i	ntrodu	uction	for scie	entist &	ż
	engine	eers", (Oxfor	d, 201	10.					1						
E -	https:/	/in.ma	thwo	rks.co	<u>m/</u>											
resources																

and other	
digital	
material	

23ES3152 – Electronic Circuits Lab

Course Category:	Engineering Science	Credits:	1
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0- 2
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	Jpon successful completion of the course, the student will be able to:														
outcomes	CO1	Des	ign v	ariou	s ana	log e	electro	onic	circui	its						
	CO2	Ana circi	Analyze the outputs and intercept the data generated by electronic circuits, such as waveforms and characteristics of devices.													
	CO3	Con and	onduct experiments as an individual or team using discrete components d using spice software such as NI Multisim													
	CO4	Prep	epare an effective report based on experiments.													
Contributi on of		PO 1	YO PO PO<									PS O1	PS O2	PS O3		
Course Outcomes towards	CO1		3 3													
achieveme nt of Program	CO2				3										3	
Outcomes (L – Low,	CO3					3				1		1				3
M - Medium, H – High	CO4															
Course Content	List of A. Har 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.	Expe dwar Chara Desig Drain Desig Chara Chara Frequ Frequ Desig CRO	rimer e Mo acteris gn of t gn of t gn of t gn of t acteris acteris acteris gn of I gn of V gn of V	nts dule: stics o ransis transfo unbias clippe stics o respo respo Hartle Wein ation	of tran stor se er cha sed cla rs. of Uni of SC nse of nse of nse of sy Osc Bridg and it	sistor elf-bia racter amper i Junc R Cha f CE a f CS A f CS A cillato e osci s Mea	in con s circu istics s. tion T uracter umplif Ampli r. Ilator isuren	mmor uit. of jur Yransis ristics Yier. fier. hents	n emition action stor.	ter con	nfigur	ration.	istor.			

23EI3353 – Digital System Design Lab

Course Category:	Professional Core	Credits:	1.5
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0- 3
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon s	Upon successful completion of the course, the student will be able to:														
outcomes	CO1	Cor	nstruc	t scal	lar ar	nd wi	ide c	ombi	nato	rial c	ircuit	s usin	g HDL	and F	PGA	
	CO2	Cor	nstruc	t the	sequ	entia	l ciro	cuits	usin	g HE	DL an	d FPG	A			
	CO3	Ana	alyze	outpu	its ai	nd in	terpr	et the	e dat	a for	a giv	en pro	blem			
	CO4	Cor	nduct	expe	rime	nts a	s an i	indiv	idua	l or t	eam ł	oy usir	ng mod	lern too	ols	
	CO5	Pre	pare a	an eff	ectiv	ve rep	oort b	based	l on e	expei	rimen	ts.		1		
Contribution		PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
Outcomes		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
towards	CO1			3		2										
achievement	CO2			3		2										
Outcomes	CO3				3											
(L – Low, M	CO4									2			2			
– Medium, H	04															
– High	CO5															
Course	1. 2. 3. 4. 5. 6.	Mod LED Num Mult dataf Desi Impl LED Task	eling s and bering i-Out flow n gn an gn a 2 ement s.	Conce 7-seg g Syst put Ci nodeli 8-to-3 -bit co t 2-bit	epts- ment ems (ircuitang an prio prio pmpa by 2	Write displ Create s-Des d the rity e rator -bit n	e mo ays e a 4- ign a deco ncode that c nultip	dels bit rij ind ir ider. er. compa blier u	to rea pple c nplen ares t using	ad sw carry nent a wo 2- a RC	vitches adder a popu bit nu DM. O	and p using c ular IC mbers. utput tl	bush bu lataflov , 74138 he prod	ttons, a v model 3, functi uct in b	ind out ling. ionality pinary o	using on four
Content	8. 9. 10. 11. 12. 13.	deve valid Mod Assig Mod Beha beha Arch clock	lop fu late a eling eling gn Cll eling vioral vioral itectu cing ro nters,	Inction desigr Latch Regiss c, D ir Count I Mode mode ral W esourc Timer	ns for n unde es and ters- nput, n ters leling, leling, /izarc ee, Us	mod er tes d Flip Mode reset, and Com d and e the d Rea	eling t. -Flop el a 4- set, 1 Timi muni I IP IP Ca 1-Tim	a con os. -bit re oad, a ing C cate t Cata atalog ne Clo	mbina egiste and o constr imina log- g tool pock- (atoria er with utput aints- g exp Use to co Gener	l circu h sync Q. Ve - Use ectation the A ponfigure rate se	hronou erify the variou ons thro archited re and u veral k	elop a is reset, e design s langu ough tirr ctural V use cou inds of	test ben set, an n in har age con ning con Wizard nters an counter	ch to te d loads dware. nstructs nstraint to cor ad mem	using s. ufigure ories. rs, and

13. Counters, Timers, and Real-Time Clock- Generate several kinds of counters, timers, and

	real-time clocks. 14. Finite State Machines- Model Mealy FSMs, Model Moore FSMs. 15. Sequential System Design using Algorithmic State Machine (ASM) Charts.
Text books and Reference books	 Text Book [T1] M. Rafiquzzaman, Steven A. McNinch, "Digital Logic: With an Introduction to Verilog and FPGA-Based Design", 1st Ed., Wiley, 2019. [T2] Cem Unsalan, Bora Tar, "Digital System Design with FPGA: Implementation Using Verilog and VHDL", 1st Ed., McGraw Hill Professional, 2017. [T3] Frank Bruno, "FPGA Programming for Beginners: Bring your ideas to life by creating hardware designs and electronic circuits with SystemVerilog", Packt Publishing Ltd., 2021
E-resources and other digital material	1.https://www.xilinx.com/ 2.https://digilent.com/reference/learn/programmable-logic/tutorials/start

23EI3354 – Transducers Lab

Course Category:	Professional Core	Credits:	1.5
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0- 3
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	Jpon successful completion of the course, the student will be able to:														
outcomes	CO1	Use t	ransdu	icers	for me	easure	ement	of va	rious	param	neters					
	CO2	CO2 Analyze the characteristics of various transducers														
	CO3	CO3 Conduct experiments as an individual or team.														
	CO4	CO4 Write an effective report based on experiments.														
Contributi		РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PS	PS	PS
on of		1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
Course																
Outcomes	CO1	3				1								3		
towards						_								-		
achieveme																
nt of	CO2				3									2		
Program																
Outcomes	CO3									1			1	2		
(L - Low, M -	0.00									-			-	-		
Medium	CO4															
H – High	C04															
Course																
Content	List of Experiments															
	1. Cha	aracte	ristics	of Re	esistar	nce Te	emper	ature	Detec	tor (R	TD)					
	2. Ter	nperat	ture m	leasur	emen	t usin	g The	rmoco	ouple	,	,					
	3. Cha	aracter	ristics	of Li	ght D	epend	lent R	esisto	r (LE	DR) ar	nd pho	ototrai	nsistor	•		
	4 Me	asurei	nent o	of mag	metic	flux	densit	v usir	o Hal	ll effe	ct trar	nsduce	-r			
	5 Spe	ed me		ment	using	maor	netic r	vick-u	n and	nhote	electi	ric nic	·k-un			
	6 Flo	w me	asurer	nent i	using 1	Iltras	onic f	Tow t	ransm	itter			n up			
	7 Cal	ihrati	n of	nrecei	ire ga	lloes i	ising	dead y	weigh	t teste	r					
	7. Car 8 Die	nlace	ment i	neacu	reme	nt nei	ısıng 1σ I ir	lear V	ariah	le Dif	r. ferent	ial Tr	anctor	mer (יחע ו	Г)
	$\begin{array}{c} 0. D18 \\ 0 Dra \end{array}$	coure	measu	iromo	nt usi	na etr	ain aa		anao		i ci ci li	141 11	ansioi			•)
	9. 1 le	ssuic Interfe	nieast		ivo In	frorac	ann ga 1 (DID	luge	or w	th Are	Juino	form	otion	dataa	tion	
	10. I	Interfe	oing a	1 F ass			i (FIK		w		uino f				1011 n	
		interra	cing a			: prox	mity	sense	n witt	i Ardl	IIIO I	or obj	ect de	iecti0	11	
	12. 1	nterfa	cing a	a soll :	moist	ure se	nsor v	with A	Arduin	10						
	ът / ∸	10	C .1				1 1	1.		1. 1		1.	11	1 .	1 /	c
	Note: A	ny 10	of the	e expe	rimen	its in f	he ab	ove li	st, neo	ed to I	be cor	nplete	ed by t	the stu	ident	tor
	n1m/her	to be	eligib	le to v	write	Unive	rsity l	Practi	cal Ex	amin	ations					

Text	[T1] A.K.Ghosh, "Introduction to Measurements & Instrumentation", 3rd Ed., PHI,
books and	2009.
Reference	[T2] A.K.Sawhney & Puneet Sawhney, "A Course in Mechanical Measurements
books	& Instrumentation", 7 th Ed., Dhanapat Rai & Co., 2012
E-	https://create.arduino.cc/
resources	https://www.allaboutcircuits.com/
and other	
digital	
material	

Second Year (IV Semester)

23HS4101 – Engineering Economics and Management

Course Category:	Humanities and Social Sciences	Credits:	2
Course Type:	Theory	Lecture - Tutorial - Practice:	2 - 0- 0
Prerequisites:		Continuous Evaluation:	30
-		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	oon successful completion of the course, the student will be able to:														
outcomes	CO1	CO1 Understand various forms of organizations and principles of management.														
	CO2	CO2 Understand the various aspects of business economics.														
	CO3	Perc	eive t	he kn	owled	lge or	h Hum	an res	source	es and	l Marl	ceting	funct	ions.		
~	CO4	Eva	luate	variou	is alte	rnativ	es eco	onomi	cally.		1	1	1			
Contributio		PO 1	PO	PO 2	PO	PO	PO	PO 7	PO	PO	PO 10	PO 11	PO 12	PS O1	PS	PS
n of Course		1	Z	3	4	5	0	/	0	9	10	11	12	01	02	05
towards the	CO1	2														
achievement																
of Program Outcomes	CO2	2				3										
(1– Low, 2– Medium, 3 –	CO3	2														
High)	CO4	CO4 2 3 3														
Course Content	UNIT Forms Joint s Mana scienti UNIT Introd Margin margir Deman inelast Supply functio	Y-I s of H tock of geme fic m Y – II luctional ut hal ut hal ut hal sch ic den y Ana on.	Busing compa nt: In anage on to tility ility. nalys nedule mand, alysis	ess O any, C ntrodu ment, Econ and t is: Th e and . Type : Supj	rgani Co-ope action Mod omics otal neory dema es of e ply sc	zation erative to m ern pr s: Intr utility of de nd cu lastic hedul	n: Sal e socie hanage fincipl oduct , Law mand rve, S ity. e and	lient f ety an ement les of ion to 7 of o : Dem hift ir suppl	Feature d pub , Fun mana o basic dimin nand f n dem y cur	es of lic sec actions gemen c ecor ishing function and, I ve, Fa	sole j ctor. s of i nt. nomic g mar on, Fa Elastic	conc ginal actors city of influe	etorsh gemen epts, utility influ f dem	t, Pri t, Pri Utility y, La encin and: I	artner nciple y anal w of g den Elastic ly, Su	ship, es of ysis: equi hand, c and

	UNIT – III
	Human Resource Management: Meaning and difference between personnel
	management and human resource management, Functions of human resource
	management.
	Marketing Management: Concept of selling and marketing – Differences, Functions of
	marketing, Product life cycle, Concept of advertising, Sales promotion, Types of
	distribution channels, Marketing research, Break-Even analysis
	UNII – IV Financial Management: Functions of financial management. Time value of money with
	cash flow diagrams. Concept of simple and compound interest
	easi now diagrams, concept of simple and compound increst.
	Depreciation : Causes of depreciation Factors influencing depreciation Common
	methods of depreciation: Straight line method. Declining balance method. Sum of year's
	digits method –Problems
	Economic Alternatives: Methods of evaluating Alternatives under present worth
	method Future worth method Annual equivalent method - Problems
	method, i utare worth method, i minual equivalent method - i roblems.
Textbooks	Text Book:
and	[T1] M.Mahajan, "Industrial Engineering and Production Management", 2 nd
Reference	Ed., DhanpatRaiPublications
books	[T2]MartandTelsang" Industrial & Business Management" S.Chand
	publications
	Reference Books:
	[R1] R.Paneerselvam "Production and Operations Management" PHI
	[R2]Philip Kotler & Gary Armstrong "Principles of Marketing", Pearson
	Prentice Hall,NewDelhi,2012
	[R3] IM Pandey, "Financial Management", 11 th Ed., Vikas Publications
	[R4]B.B.Mahapatro, "Human Resource Management", New Age International
F	
E-resources	1. <u>nttps://www.toppr.com/guides/fundamentals-of-economics-and-</u>
and other	function/
digital	2. https://keydifferences.com/difference-between-personnel-management-and-human-
material	resource- management.html
	3. <u>http://productlifecyclestages.com/</u>
	+. <u>mups.//speecinoouie.com/casi-now-utagrafils/</u>

23ES4102C – Linear Integrated Circuits and Applications

Course Category:	Engineering Science	Credits:	2
Course Type:	Theory	Lecture - Tutorial - Practice:	2 - 0- 0
Prerequisites:	Electronic Devices and	Continuous Evaluation:	30
	Circuits, Network Theory	Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	on successful completion of the course, the student will be able to:														
outcomes	CO1	Und	lersta	nd th	e cha	racte	ristic	s of 7	741IC	1						
	COO	App	Apply the concepts of 741IC to implement various linear and non-linear													
	CO2	appl	applications.													
	CO3	Des	ign d	iffere	ent IC	circ	uits u	sing	741,5	555 a	nd 72	23 IC	s.			
	CO4	Illus	Illustrate the operation of Special purpose ICs and their applications.													
Contributi		РО	РО	РО	РО	PO	РО	PO	РО	РО	PO	РО	РО	PS	PS	PS
on of		1	2	3	4	5	6	7	8	9	10	11	12	O1	O2	O3
Course																
Outcomes	CO1	2													2	
towards																
achieveme																
nt of	CO2	3													2	
Program																
Outcomes	CO3		3												3	
(L - Low, M)																
Medium	CO4	2														
H – High	CO4	2														
Course	UNIT															
Content	Operat	ational Amplifier: Integrated circuits - Package types and temperature ranges,														
	Power	Power supplies; Block diagram representation of Op amp. Ideal Op amp. Ideal and														
	practic	ower supplies; Block diagram representation of Op amp, Ideal Op amp, Ideal and														
	charact	eristi	ve - D	C and		Chara	octeris	tice c	of an ($On \Delta$	mn -	Ereau	ency	Resno	, Op	Slew
	Doto	CIIStic	.s - D		IAC	Chara				орл	mp -	ricqu	ency	Respt	<i>msc</i> , 1	SICW
	Kale.															
	Linear	appl	icatio	ns of	Op-A	Amp -	Inve	rting	ampli	fier, l	Non-i	nverti	ng an	nplifie	r, Vo	ltage
	followe	er. Dif	feren	tial ar	nplifie	er. Su	mmin	g amr	olifier	. Instr	umen	tation	ampl	ifier.	Integr	ator.
	Voltag	e to ci	irrent	conve	erter a	nd cu	rrent	to vol	tage c	onvei	ter		··· I	- 1	0	,
	. shug			20111												
	UNIT	- II														
	Non-li	near a	applic	ation	s of C)p-Ar	np: P	recisi	on die	ode, A	pplic	ations	- Pre	cision	full v	wave
	rectifie	r, Clip	ppers,	clam	pers a	nd Pe	ak De	tector	; Sam	ple a	nd ho	ld circ	cuit.			
	~						~		_							_
	Compa	arator	rs an	d W	avefo	rm (Gener	ators	:Basi	c coi	npara	tor,	Appli	cation	s –	Zero
	crossin	g det	tector,	, Wi	ndow	dete	ctor,	Volta	ige li	imiter	s; Sc	chmitt	trig	ger,	Wave	form
	generat	ors - S	Squar	e wav	e gen	erator	, I rian	igular	wave	gene	rator.					
	UNIT	. 111														
	UINI															
	Active	Filter	rs: Ac	tive I	P and	HP	filters	. Salle	en kev	LP a	nd H	P filte	ers. Ba	and pa	ss filt	ters -

	notch filters;All pass filter.
	 Analog to Digital and Digital to Analog Converters:Introduction, Basic DAC techniques - Weighted resistor DAC, R-2R ladder D/A converter; A/D conversion - Parallel comparator type ADC, Successive approximation ADC and Dual slope ADC;DAC and ADC specifications UNIT- IV Special Purpose ICs and Applications: 555 Timer - 555 as Monostable and Astable operation, Applications, Schmitt trigger;IC 566 Voltage controlled oscillator; Phase locked loops - Operating principle,565 Monolithic PLL, 565 PLL Applications; IC voltage regulators- Fixed voltage regulators- LM78XX, LM79XX; Variable voltage regulators – LM 317, LM 723 IC.
Text books and Reference books	 Text Book: [T1] D. Roy Choudhry and Shail B. Jain, "Linear Integrated Circuits" - (4/e), New Age International Pvt. Ltd, 2011. [T2] Rama Kant A. Gayakwad, "Op-Amps and Linear Integrated Circuits", 4th Ed,PHI, 2012. Reference Books: [R1] S. Franco, "Design with Operational Amplifiers and Analog Integrated Circuits", TMH, 2016. [R2] R. F. Coughlin & F. F. Driscoll, "Operational Amplifiers and Linear Integrated Circuits", 6thEd,PHI, 2012. [R3] Jacob, "Applications and Design with Analog Integrated Circuits", 2nd Ed., PHI 1996 [R4] Sanjay Sharma, "Op-Amps and Linear Integrated circuits", 1st Ed, Katson educational series,2008. [R5] S.Salivahanan & V.S. KanchanaBhaskaran, Linear Integrated Circuits, TMH, 2nd edition, 2015.
E- resources and other digital material	 www.analog.com https://nptel.ac.in/courses/108106068/ https://www.allaboutcircuits.com/ https://www.linkwitzlab.com/filters.htm

23EI4303 - Control Systems

Course Category:	Professional Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Laplace transforms and	Continuous Evaluation:	30
	integral calculus, Network	Semester end Evaluation:	70
	theory	Total Marks:	100

Course Upon successful completion of the course, the student will											be a	be able to:					
outcomes	CO1	Defi	ine ar	nd exp	olain	the co	oncep	ts of	contro	ol sys	tems.						
	CO2	Moc and	lel th signa	e tra l flov	nsfer v grap	funct oh app	ions proac	of pł hes	nysica	al sys	tems	using	g blo	ck dia	ıgram		
	CO3	Ana freq	lyze uency	the ro	espon nain a	ses a pproa	nd st iches	abilit	y of	contro	ol sys	stems	usin	g tim	e and		
	CO4	Ana	lyze (the sta	abilit	y of tl	ne giv	en co	ontrol	syste	em us	ing m	oder	n tool	s.		
Contributio n of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 3		
achievement	CO1													2			
of Program Outcomes	CO2	2												2			
(1 – Low, 2 – Medium, 3 –	CO3		3												2		
High	CO4		2			2									2		
Content	UNIT Intro syster overa Math equati Zeros syster UNIT Time impul respon and o doma consta UNIT Stabii and B loop t	C-I ductions ll gain emations , Ch ms, Si C - II bon ver di in spants, l C - II lity A ound ransf	on: Open n, Sta ical for e aracte gnal nain fime f seco ampeo cific Propo	Contra loop bility Mod electriceristic flow Anal respond o ed sys- cation ortion	rol s o and c, Sen els o cal, c equ graph ysis: onse o rder s stems al, Int (BIB a, Abs	ystem close sitivit of Ph mech latior is and Stan of fir syster , Tin teady tegral mpley O) stasolute	n terr ed loc ty and nysica anica n, Bl l Mas dard st-orc ns-un ne do stat and o stat and o	minol pp co l exte l and ock on's g test s damp main e er damp main e er damp main s e er damp	logy, ntrol rnal i s stem l elec diagr gain f signal ystem bed, u spec ror a ative	Exa syste noise. s: Fo ctrom a si formu ls - b inder ification ification contro ty de study bility	mples ms, E ormul echar repres la. Step, atanda damp ions, static ol act finition y base y, Rou	s of Effect ation nical sentat ramp rd te bed, c Expr and ions ons – ed on th–H	simp of fo of syste ion o, par est si ritica ession dyn	differ edba differ ems, 1 of co rabolio gnals, 11y da ns for amic unded s of cl tz crit	ontrol ck on ential Poles, ontrol c and Step mped time error Input losed- erion.		

	Root Locus Technique: The root locus concept, Magnitude and angle conditions, Properties and construction of the root loci (For positive K only),Effect of adding poles and zeros to root locus
	UNIT – IV Frequency Domain Analysis: Frequency domain specifications, Correlation between time and frequency response, Bode plot – Magnitude plot, Phase plot, Determination of phase margin and gain margin, Stability analysis from Bode plots, Polar plots, Nyquist stability criterion, Nyquist Plot.
Text books and Reference books	Text Book: [T1] A.Anand Kumar, "Control Systems", 2 nd Ed., PHI, 2014 [T2] I J Nagrath& M Gopal, "Control Systems Engineering", 5 th Ed., New Age International, 2008
	Reference Books: [R1] Katsuhiko Ogata, "Modern Control Engineering", 4 th Ed., Pearson Education, 2003 [R2] A.NagoorKani, "Control Systems", 2 nd Ed., RBA Publications, 2006
E-resources and other digital material	 <u>http://www.nptelvideos.com/control_systems/</u> <u>https://nptel.ac.in/courses/108101037/</u>

Г

23EI4304 – Industrial Instrumentation

Course Category:	Professional Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Sensors and Transducers	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succ	essful	comp	letio	n of th	ne cou	rse, tl	he stu	ident	will be	e able t	0:		
outcomes	CO1	Exp	lain tl	ne bas	ic co	ncepts	s of in	dustr	ial pr	ocess	variat	oles			
	CO2	App	ly the	concep	ots of	industı	rial pro	cess v	variab	les to s	solve th	ne engir	neering	proble	ems
	CO3	Idei	ntify s	uitabl	e trar	isduce	er for 1	measu	urem	ent of	indus	trial pr	ocess	variab	les
	CO4	Ana vari	lyze tl ables	ne per	forma	nce of	f vario	us me	easure	ement	technic	jues in	indust	rial pr	ocess
Contribution		PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO 1	PSO 2
of Course		1	2	3	4	5	6	/	8	9	10	11	12	1	2
towards	CO1														
of Program Outcomes	CO2	3													
(L – Low, M Modium H	CO3	3													
– High	CO4		2												
Content	UNIT Temp based Chang Therm therm UNIT Press summ Resist measu	- I orat on ge in nocou omet - II ure ing c ive, irema	 I erature Measurement: Introduction, Classification of temperature sensors on change in dimensions - Bimetals & Liquid-in-Glass thermometers; e in electrical properties – RTD, Thermistor; Thermoelectricity – ocouples; IC sensors, Radiation pyrometers, Fiber-optic sensors, Quartz ometer, Ultrasonic thermometer. II II me Measurement: Introduction, pressure standards, Manometers; Force ing devices – Diaphragms, Bellows, Bourdon tubes; Secondary transducers – ive, Inductive, Capacitive, Piezoelectric and Hall Effect; Low pressure rement – Meleod, Knudsen, Pirani, & Ionization, gauges: Calibration of the second sec												
	UNIT Flow tube measu Anem meters chann	T- III Mea and urements; Po el flo	 ve, Inductive, Capacitive, Piezoelectric and Hall Effect; Low pressure ement - Mcleod, Knudsen, Pirani & Ionization gauges; Calibration of e gauges using dead weight tester. III Measurement: Introduction, Head type flow meters - Orifice plate, Venturi nd Pitot tube; Variable area type flow meters - Rotameter; Velocity rement type flow meters - Electromagentic, Turbine, Ultrasonic flow meters, ometers; Mass flow measurement type - Coriolis and Thermal mass flow ; Positive displacement flow meters - Nutating disc and lobed impeller; Open 1 flow meters- Weirs, Flumes. 												

UNIT-IV

	Level Measurement: Introduction, Mechanical level indicators - Differential
	pressure type; Optical level sensors; Electrical type - Resistive, inductive and
	Capacitive; Acoustic Level Sensors – Ultrasonic; Radiative methods - Gamma ray
	and Radar Level Sensors.
	Humidity, Density & Viscosity Measurement: Introduction, Hygrometers-Wet
	and dry bulb, Electrolytic, piezoelectric hygrometers; Moisture Analyzer-Neutron
	back scatter Moisture analyzer; Densitometers- Ultrasonic and gamma ray
	densitometers: Viscometers-Sav bolt. Rotational and Float viscometers.
Text books	Text Book:
and	[T1] A.K.Ghosh, "Introduction to Measurements & Instrumentation", III rd ed. PHI.
Reference	2009.
books	[T2] A.K.Sawhney & Puneet Sawhney."A Course in Mechnanical Measuremnets &
	Instrumentation", XII th ed. Dhanapat Raj & Co., 2012.
	Reference Books:
	[R1] Ernest O Doebelin/Dhanesh, N Manik, "Measurement systems", VI th ed Tata
	Mc Grawhill
	[R2] C S Rangan G R Sarma & V S V Mani "Instrumentation Devices &
	Systems" II nd ed TMH 2011
F-resources	[1]http://pptel.ac.in/courses/108105064
E-resources	[2]http://nptel.ac.in/courses/108105004
and other	12 mup.//mpte1.ac.m/courses/1001000/4
aigitai	
material	

23EI4305 – Electrical and Electronic Measurements

Course Category:	Professional Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Circuit analysis	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon successful completion of the course, the student will be able to:														
outcomes	CO1	Apply suitable Null or Deflection type technique to measure prescribed electrical parameter.													ribed
	CO2	Sele para	ect a ameter	suita rs.	ble c	ligital	instr	umer	nt to	meas	sure p	ohysica	l and	elect	trical
	CO3	Cor	npare	the op	berati	on of	variou	is osc	cillos	copes	and p	robes.			
	CO4	Exp	lain tl	he prii	nciple	es of v	arious	s sigr	nal ge	nerato	ors and	d wave	analy	zers.	
Contribution		PO	РО	PO	PO	РО	РО	PO	PO	РО	РО	РО	PO	PSO	PSO
of Course		1	2	3	4	5	6	7	8	9	10	11	12	1	2
Outcomes	CO1	3													
towards	COI	5													ĺ
achievement of Program	a a														
Outcomes	CO2		3												
(L – Low, M	CO3		2												
- Medium, H – High	CO4														
Content	UNIT Electr Torqu mecha band s Electr Multin Multin Shunt instrum power UNIT Bridg bridge Electr Digita ramp measu electro	Y-I rome anism suspe rical range range type ment remea Y-II ges: We , Wi ronic al vol DVI aremea	echani quatio is; Pei ension Mea e amn e voltr ohmi s - El suren Vheati en bri en bri timete M, S ent us	ical I on at rmane , Tem nsuren neters, neter, neter, neter, ectroon nents, stone dge, V rume rs - R uccess ing Q	indic stea ont m perat nents The Ohm Cali lynar Watt bridg Vagn nts: amp sive Mete	ating ady s agnet ure co s: D(e Ayrt s per bration hour f hour f e, Kel er grow AC V techn appro- er, An	Instructure movin mpena C am ton s volt r n of d er, Th meter, volt r n of d er, Th meter, volt r und co Voltme ique, ximati	rume defle ng co sation amete shunt ating c ins nermo , Pow ridge onnec eter u Dual ion	ents: ection il me n. ers - , DC , Loa trume o Ins ver fac , Maz etion. using slope type eter -	Susp , Dy echani Shu Volti ding c ents, A trume ctor m kwell recti e inte e DV – pH n	ension namic sm – nt re meters effect, Alterna nts, E leters. bridge fiers, grating M, Q measu	n type beha Torque sistor, s - Mu Series ating cu lectrod e, Hay True g type Mete rement	e galv avior, e equa Ayrt altiplic type urrent ynam bridge RMS DVM er -	vanom Dam tion, 1 on sl er res ohmm indica omete e, Scho voltm i, Stain Imped g hydr	eter- iping Faut- hunt, istor, ieter, ating rs in ering heter, rcase lance ogen

	UNIT- III Oscilloscopes: Block diagram of oscilloscope, Cathode Ray Tube, Vertical amplifier, Horizontal deflecting system, Typical CRT connections, Delay line in triggered sweep, Dual beam CRO, Dual trace oscilloscope (basic block diagram), Sampling oscilloscope, Digital storage oscilloscope, Probes for CRO - Direct probes, Passive voltage probe, Active probes, Attenuators - Uncompensated attenuators, Simple compensated attenuator
	UNIT- IV Signal Generators : Basic standard sine wave generator, Standard signal generator, Function generator, Laboratory square wave and pulse generator.
	Wave Analyzers: Basic wave analyzer, Frequency selective wave analyzer, Heterodyne wave analyzer, Harmonic distortion analyzers, Spectrum analyzer.
	Frequency Counters And Time-Interval Measurements : Digital frequency meter - Principle of operation, Basic circuit of a digital frequency meter, Digital measurement of time - Principle of operation, Time base selector, Period measurement
Text books	Text Book:
and	[T1] W D Cooper & A D Helfrick, "Electronic Instrumentation and Measurement
Reference	Techniques", PHI, 1998 (Unit-I)
books	[T2] H.S.Kalsi, "Electronic Instrumentation", 2ndEd., TMH. (Units-II, III and IV)
	Reference Books:
	[R1] A.K. Sawhney, "A Course in Electrical and Electronic Measurements and
	Instrumentation", Dhanpat Rai & Co
	[R2] Oliver & Cage, "Electronic Measurements and Instrumentation", Mc Graw Hill, 1975
E-resources	https://www.youtube.com/watch?v=3eYmFjHnQjY&list=PLbRMhDVUMngcoKr
and other	A4sH-zvbNVSE6IpEio
digital	
material	

23TP4106 – English for Professionals

Course Category:	Soft Skills-2	Credits:	1
Course Type:	Learning by Doing	Lecture - Tutorial - Practice:	0 - 0- 2
Prerequisites:		Continuous Evaluation:	100
		Semester end Evaluation:	0
		Total Marks:	100

Course	Upon	succe	ssful	com	pletio	on of	the co	ourse	, the	stude	nt wi	ll be	able	pon successful completion of the course, the student will be able to:										
outcomes	CO1	Pres their	sent t r inhi	hems bitio	elves	effe	ctivel omm	y in unica	the pr ting i	rofes n En	siona glish	l woi	ld by	shee	lding	off								
	CO2	Intro	oduce	e ther	nselv	es as	well	as ot	hers a	appro	priat	elv												
	CO3	Use thin	se vocabulary to form sentences and narrate stories by using creative inking skills																					
	CO4	Invo deve	volve in practical activity-oriented sessions and respond positively by eveloping their analytical thinking																					
	CO5	Lea	arn about various expressions to be used in different situations																					
Contributi on of		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3								
Course Outcomes towards	CO1										3	3												
nt of Program	CO2									3	3	3												
Outcomes (L – Low, M -	CO3										3	3												
Medium, H – High	CO4																							
	CO5										3	3												
Course Content	UNIT 1. 2. UNIT 1. 2. 3. UNIT 1. 2. 3.	CO5 3 3 UNIT- I 1. Beginners, Functional, Situational conversations 2. Practicing on functional conversations UNIT- II 1. Errors in usage of parts of speech with a thrust on verbs, adjectives and conjunctions, idioms/phrases. 2. Introducing basic grammar 3. Practicing on functional conversations UNIT- III 1. Introducing self & Others																						
	1. 2.	Introe Struc	ducing tures	g self and fo	& Oth orming	ners g sent	ences									_								

	3. Telephonic etiquette, Social etiquette and table manners
	4. Practicing on functional conversations
	UNIT- IV
	1. Direct, Indirect/Reporting speech
	2. Public speaking basics
	3. Versant test preparation
	4. Practicing on situational conversations
Text	Text Books:
books and	[T1] Swaroopa, Polineni, "Practicing on Situational Conversations - Strengthen Your
Reference	Communication Skills", 1 st Ed., Maruthi Publications, 2013.
books	[T2] Mamta Bhatnagar & Nitin Bhatnagar, "Communicative English", 1 st Ed., Pearson
	India, 2010.
Е-	
resources	
and other	
digital	
material	

23EI4651 – Virtual Instrumentation Lab

Course Category:	Skill Enhancement	Credits:	1
Course Type:	Learning by Doing	Lecture - Tutorial - Practice:	0 - 0- 2
Prerequisites:		Continuous Evaluation:	100
		Semester end Evaluation:	0
		Total Marks:	100

Course	Upon	Jpon successful completion of the course, the student will be able to:														
outcomes	CO1	Unde	erstar	d the	e gra	phica	l pro	gram	ming	tern	ninol	ogy a	and a	ble t	o cre	eate a
		virtu	al ins	trum	ent fo	or sin	nple p	oroble	ems			0.				
	CO2	Able	to us	se the	vario	ous lo	oopin	g cor	nstruc	ts, ar	rays,	matr	ices a	and c	luste	rs
	CO3	CO3 Able to use various data plotting techniques and structures														
	CO4	CO4 Able to use the data acquisition device to acquire the measurement data														
		from real world into PC														
Contributi		РО	РО	РО	PO	РО	PO	РО	РО	PO	РО	РО	РО	PS	PS	PS
on of		1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
Outcomes																
towards	CO1	3				3										
achieveme																
nt of	CO2				2	2										
Program					2	3										
Outcomes	CO3				2	3										
(L - Low,	005				2	5										
M -																
Medium,	CO4				2	3										
Course		l														
Content	List of	List of Experiments														
	1.Introc	luction	n to V	'irtual	Instru	ument	ation	and L	abVI	EW						
	2.Progra	ams or	1 cont	rols a	nd ind	licato	rs									
	3.Progra	ams or	n arith	metic	opera	ations										
	4.Progra	ams or	n Boo	lean c	perati	ions										
	5.Progra	ams or	ı sub	VI's	1											
	6.Progra	ams or	n repe	tition	and lo	oops										
	7.Progra	ams or	n arrag	ys		-										
	8.Progra	ams or	n matı	rices												
	9.Progra	ams or	n clus	ters												
	10. Prog	grams	on da	ta plo	tting											
	11. Prog	grams	on str	ucture	es											
	12. Prog	grams	on for	rmula	node	s and	math	script	nodes	5						
	13 Pro	grams	on st	rings,	file I/	/O		-								
	14. Tem	perati	ire ac	quisit	ion us	ing 3	-wire	RTD.								
	15. Prog	grams	on da	ta log	ging	-										
	16.Prog	rams u	ising	NI my	, DAQ) .										

	Note : Any 10 of the experiments in the above list need to be completed by the student, by choosing a minimum of 3 experiments from part- A and 7 from part-B for him/her to be eligible to write University Practical Examinations
Text	Text Books:
books and	[T1] Jovitha Jerome, "Virtual Instrumentation using LabVIEW", 1st Ed., PHI, 2013.
Reference	Reference Books:
books	[R1] Sanjay Gupta, Joseph John, "Virtual Instrumentation using LabVIEW", 1st Ed.,
	TataMcGraw-Hill, 2005
	[R2] Gary Johnson, Richard Jennings, "LabVIEW Graphical Programming", Tata
	McGraw-Hill, 2006
E-	http://www.ni.com
resources	
and other	
digital	
material	

23ES4152 – Design Thinking & Innovation

Course Category:	Humanities and Social Sciences	Credits:	2
Course Type:	Theory	Lecture - Tutorial - Practice:	1 - 0- 2
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

23EI4353 – Linear Integrated Circuits Lab

Course Category:	Professional Core	Credits:	1.5
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0- 3
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	Upon successful completion of the course, the student will be able to:														
outcomes	CO1	Des	ign lii	near a	pplic	ations	ofor	o-amp	circu	iits,						
	CO2	Des	ign no	on-lin	ear ap	oplica	tions	of op-	amp	circu	its,					
	CO3	Des	ign ap	oplica	tions	of 55	5 time	er and	IC v	oltage	e regula	ators				
	CO4	Con an ii	Conduct the experiment as well as analyze the outputs for given specifications as an individual or a team.													
	CO5	Prep	Prepare an effective report based on experimental results.													
Contribut		РО	PO P													
ion of		1	2	3	4	5	6	7	8	9	1010	11	12	01	02	3
Course	CO1				3										2	
Outcomes																
towards	CO2				3										2	
nt of	CO3				3											
Program	COA				2					2		1			2	
Outcomes	C04				3					2		1			2	
(1 - Low,																
2 - Modium	CO5										2				2	
3 - High																
Course	List o	f Ex	perin	nent	5											
Content	Analo	g ICs	Expo	erime	ents u	sing o	liscre	ete con	mpon	ents						
	1.	Bas	ic aj	pplic	ation	s of	74	IIC	–Inv	ertin	g am	plifie	er, N	lon	Inve	rting
		amp	lifier	and	sum	ming	amp	lifier.								
	2.	Des	ign o	f Ins	trum	entati	on A	mpli	fier u	ising	741IC	-				
	3.	Des	ign o	t Inte	egrate	or usi	ng 7	411C			74	110				
	4. 5	Prec	is on	I FUII	wav	e rec	umer	s usii rator	ig Oj	p-An 2 741	np /4.	nc				
	5.	Way	vefor	piica m ge	nerat	ion u	sing	7411 6	using C (so	g 741 Diare	triand	mlar)			
	7.	Des	ign o	f W	ein b	ridge	Osci	llato	r usir	ופ 74	, in ang	Sului)			
	8.	Des	ign o	f Fir	st or	der A	ctive	Low	pas	s and	l high	pass	filter	usin	g 7 41	IC
	9.	Des	ign o	f IC	555 1	Гітеі	Asta	able	circu	it	0	-			-	
	10	.Des	ign o	f Sc	hmitt	trigg	ger us	sing I	C 55	5 Ti	mer					
	11	.Des	ign o	fav	oltag	e Reg	gulato	or usi	ng IO	C 723	3					
	12	.D/A	Con	verte	ers us	ing 7	'41IC	2 4 bit	t R-2	R la	dder ci	rcuit	•			
Note:	Any 1	0 of t	he ex	perin	nents	in the	e abov	ve list	need	l to b	e com	pleted	l by tl	he stu	Ident	to be
	eligible	e to w	rite U	Jnive	rsity I	ractio	cal Ex	amin	ations	5.						

23EI4354 – Control Systems Lab

Course Category:	Professional Core	Credits:	1
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0- 2
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	Upon successful completion of the course, the student will be able to:														
outcomes	CO1	Appl	y cor	ntrol s	syster	n tec	hniqu	ies/ai	oproa	ches	to so	lve p	roble	ms		
	CO2	Anal	yze t	he res	spons	es an	d sta	bility	of th	ne giv	ven co	ontro	l syst	em		
	CO3	Cond	luct t	he ex	perin	nents	as in	divid	lual o	r tea	m		2			
	CO4	Make an effective report based on experiments														
Contributi		РО	PO	РО	PO	PO	РО	PO	РО	РО	РО	РО	РО	PS	PS	PS
on of		1	2	3	4	5	6	7	8	9	10	11	12	01	O2	03
Course																
Outcomes towards	CO1	2				2										1
achieveme																
nt of	CO2				2	\mathbf{r}										2
Program					3	Z										Z
Outcomes	CO3															
(L - Low,	005									2			1			
M -																
Medium, H – High	CO4										2					
Course																
Content	List of	List of Experiments														
	Part-A	urt-A														
	1.Dete	- rmination of transfer functions of first order systems.														
	2.Time	respo	response P, PI and PID controllers of second order systems. cteristics of synchro transmitter and receiver.													
	3.Char	acteris														
	4.DC n	notor	positi	on con	ntrol ı	ising 1	PI cor	ntrolle	r							
	5.Char	acteris	stics o	f Mag	gnetic	Amp	lifier									
	Part-B	5														
	1.	Using	MAT	LAB/	SIMU	LINK	for co	ontrol	syster	ns						
]	Part I	: Intro	oducti	on to	MATI	LAB/S	SIMU	, LINK	/LabV	JIEW					
		Part II	: Pol	vnomi	als in	MAT	LAB									
		Part II	[: Scr	ipts. F	unctic	ons &	flow o	ontro	l in M	ATL/	AB					
	2.	Block	diagra	m red	uction	n tech	niques	for de	etermi	natior	n of tra	nsfer	functi	on of	a give	n
		system	using	g MA	ΓLAB	/LabV	/IEW.	101 00			- or ut					
	3.	Simul	ation c	of stan	dard to	est sig	nals u	sing N	ЛАТІ	AB/I	abVII	EW				
	4	Detern	ninati	on of a	ten in	nnule	and a	amn 1	resnon	ises fo	r firet	order	unity	feedb	ack ev	stem
	· · ·	using N	MATI	AR/I	abVI	EW		unp	copon	505 10	- 1113t	order	unity		ach sy	500111
	5	Detern	ninati	on of a	ten i	nnule	and 1	amn 1	resnon	ises fo	r seco	nd or	ler uni	itv fee	dhacl	r
		system	using	MA'	ΓLAB	/LahV	/IEW	unp I	-spon	505 10	1 5000		act uil		aoacr	•
	6.	Detern	ninatio	on of s	sten ar	nd imr	ulse n	espon	ses foi	r a tvn	e '0' t	vne '1	' and	tvne '	2' svs	tems
	7.	Root le	ocus n	lot for	a giv	en tra	nsfer f	unctic	on usir	ng MA	TLA	B/Lah	VIEW	/	_ 5,6	

	 8. Stability studies using Bode and Nyquist plots for a given transfer function using MATLAB/LabVIEW Note: Any 10 of the experiments in the above list need to be completed by the student, by choosing a minimum of 3 experiments from part- A and 7 from part-B for him/her to be eligible to write University Practical Examinations
Text	Text Book:
books and	[T1] A.Ananda Kumar, "Control Systems", PHI Learning, 2nd Ed.
Reference	[T2] I.J.Nagrath & M.Gopal, "Control systems Engineering", New Age publisher, 5th Ed
books	Reference Books:
	[R1] B.C.Kuo, "Automatic Control Systems", 7 th Ed., PHI.
Е-	1. <u>www.linearcontrolsystems.com</u>
resources	2. <u>www.linearcontrols.net</u>
and other	
digital	
material	

23EI4355 – Measurements Lab

Course Category:	Professional Core	Credits:	1.5
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0- 3
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	Upon successful completion of the course, the student will be able to:														
outcomes	CO1	Appl	y the	basi	c me	asure	emen	t tecł	niqu	es to	mea	sure	the p	aram	eters	such
		as re	sistar	ice, c	apaci	tance	e, ind	uctar	ice, e	tc						
	CO2	Anal	yze 1	the c	outpu	ts an	d int	egrat	te the	e dat	a ge	nerat	ed fr	om 1	he b	oridge
		meas	urem	ents			•	1								
	CO3	Conc	ake an effective report based on experiments													
Contributi	04	маке	Take an effective report based on experiments													
on of		PO 1	PO 2	PO 3	PO	PO 5	PO	PO 7	PO 8	PO	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
Course		1	2	5	-	5	0	,	0	,	10	11	12	01	02	05
Outcomes	COL	2														
towards	COI	5														
achieveme																
nt of	CO2				3											
Program																
(L - Low)	CO3									1	2					
(L Low, M -										-						
Medium,	CO4											1				
H – High																
Course																
Content	List of	t of Experiments														
	1.DC m	eters ı	ising	D'Ars	sonval	l galva	anome	eter ai	nd the	ir ran	ge ext	tensio	n.			
	2. AC r	neters	using	gD'A	rsonv	al gal	vanon	neter	and th	eir ra	nge ez	xtensi	on.	~- ~		
	3. Meas	surem	ent of	volta	ge, fre	equen	cy, ph	ase a	ngle a	nd ph	ase st	iift us	ing a	CRO.		
	4. Simu	ilation	of C	RO, I	uncti	on ge	nerato	or usii	ng An	alog c		ery ki	it.			
	5. Meas	surem	ent of	resist	ance	of sm	all res	1stors	using	g Kelv	'in do	uble t	oridge			
	6. Meas	surem	ent of	induc		using	g Max	well i	bridge							
	7. Ivieas	surem		capa		e usin	ig sne	anng	oriag log di		my 1-14					
	$\begin{array}{c} 0 \mathbf{M} \\ 0 \mathbf{M} \\ 0 \mathbf{M} \\ 0 \\ 0 \end{array}$	nation	ont of	recit	ini all	induc	usiii tanaa	s Alla	iog ul	tance	ny Kil		D mot	or		
	$\frac{9.100}{10}$	Surem	ent of	ampl	ituda	and fr	rance	anu c	diffe	ront ty	using	f way	A IIIC		20	
	funct	tion ge	ent or	or	nuuc		cquei	icy of	unic	ient ty	pes o	vi wav	CIOIII	15 0.511	ig	
	11 Meas	surem	ent of	amnl	itudes	ofdi	fferen	t type	es of v	vavefo	orme i	ising	True l	SWS		
	voltn	neter.		ampi	nuuee	, 01 u i	neren	n type	25 OI V	vaven	511115 (using	IIuc I			
	12.Meas	surem	ent of	induc	ctance	of hi	gh Q o	coils ı	using	Hay b	oridge	•				
	13.Meas	surem	ent of	frequ	ency	using	a Wie	en bri	dge.							
	14.Calit	oratior	n of vo	oltmet	er usi	ng po	tentio	meter								
	15.Calit	oration	n of ar	nmete	er usir	ng pot	entior	neter								

	Note : Any 10 of the experiments in the above list need to be completed by the student, by choosing a minimum of 3 experiments from part- A and 7 from part-B for him/her to be eligible to write University Practical Examinations
Text	
DOOKS and Deference	
hooks	
DOOKS	
E-	
resources	
and other	
digital	
material	