w.e.f. 2017-18 # B. Tech. COMPUTER SCIENCE AND ENGINEERING (B.Tech Syllabus) Department of Computer Science and Engineering (B. Tech. CSE Programme Accredited by NBA) #### VELAGAPUDI RAMAKRISHNA SIDDHARTHA ENGINEERING COLLEGE (An Autonomous, ISO 9001:2015 Certified Institution) (Approved by AICTE, Accredited by NAAC with 'A' Grade, Affiliated to JNTUK, Kakinada) (Sponsored by Siddhartha Academy of General & Technical Education) Kanuru, Vijayawada Andhra Pradesh - 520007, INDIA. www.vrsiddhartha.ac.in #### **INSTITUTE VISION** To nurture excellence in various fields of engineering by imparting timeless core values to the learners and to mould the institution into a centre of academic excellence and advanced research. #### **INSTITUTE MISSION** To impart high quality technical education in order to mould the learners into globally competitive technocrats who are professionally deft, intellectually adept and socially responsible. The institution strives to make the learners inculcate and imbibe pragmatic perception and pro-active nature so as to enable them to acquire a vision for exploration and an insight for advanced enquiry. #### **DEPARTMENT VISION** The department vision is clearly defined and is in line with the college's vision. The vision of the department is: "To evolve as a centre of academic excellence and advanced research in Computer Science and Engineering discipline." #### **DEPARTMENT MISSION** This mission of the Department is concise and supports the College's mission. The mission of the Computer Science and Engineering Department is: "To inculcate students with profound understanding of fundamentals related to discipline, attitudes, skills, and their application in solving real world problems, with an inclination towards societal issues and research." #### **Program Educational Objectives(UG)** We have program educational objectives for our Computer Science and Engineering Program. Program educational objectives are broad statements that describe the career and professional accomplishments that the program is preparing graduates to achieve. #### Our Computer Science and Engineering program objectives are: - I. The graduates of the Program will have solid foundation in the principles and practices of computer science, including mathematics, science and basic engineering. - II. The graduates of the Program will have skills to function as members of multi-disciplinary teams and to communicate effectively using modern tools. - III. The graduates of the Program will be prepared for their careers in the software industry or pursue higher studies and continue to develop their professional knowledge. - IV. The graduates of the program will practice the profession with ethics, integrity, leadership and social responsibility. #### **PROGRAM OUTCOMES** **PO1:** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. **PO2:** Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. **PO3:** Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. **PO4:** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. **PO5:** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations. **PO6:** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. **PO7:** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmentalcontexts, and demonstrate the knowledge of, and need for sustainable development. **PO8:** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. **PO9:** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. **PO10:** Communication: Communicate effectively on complex engineering activities with the engineering community and with society atlarge, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. **PO11:** Project management and finance: Demonstrate knowledge and understanding of the engineering and managementprinciples and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinaryenvironments. **PO12:** Lifelong learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. #### **PROGRAM SPECIFIC OUTCOMES** **PSO1:** Develop software applications/solutions as per the needs of Industry and society **PSO2:** Adopt new and fast emerging technologies in computer science and engineering. ## VELAGAPUDI RAMAKRISHNA SIDDHARTHA ENGINEERING COLLEGE B.Tech. COMPUTER SCIENCE AND ENGINEERING SCHEME OF INSTRUCTION [VR17] SEMESTER I Contact Hours: 26 | S.No | Course Code | Title of the Course | | T | P | C | CE | SE | T | |------|-------------|------------------------------------|----|---|----|-----|-----|-----|-----| | 1. | 17MA1101 | Matrices And Differential Calculus | 3 | 1 | 0 | 4 | 30 | 70 | 100 | | 2. | 17PH1102B | Applied Physics | 3 | 0 | 0 | 3 | 30 | 70 | 100 | | 3. | 17CS1103 | Problem Solving Methods | 2 | 1 | 0 | 3 | 30 | 70 | 100 | | 4. | 17EE1104 | Basics of Electrical Engineering | 3 | 0 | 0 | 3 | 30 | 70 | 100 | | 5. | 17HS1105 | Technical English and | 2 | 0 | 2 | 3 | 30 | 70 | 100 | | | | Communication Skills | | | | | | | | | 6. | 17PH1151B | Engineering Physics Laboratory | 0 | 0 | 3 | 1.5 | 30 | 70 | 100 | | 7. | 17CS1152 | Computing and Peripherals | 0 | 0 | 2 | 1 | 30 | 70 | 100 | | | | Laboratory | | | | | | | | | 8. | 17ME1153 | Basic Workshop | 0 | 0 | 3 | 1.5 | 30 | 70 | 100 | | | | Total | 13 | 2 | 10 | 20 | 240 | 560 | 800 | | 9. | 17MC1106A | Technology and Society | 1 | 0 | 0 | - | 100 | 0 | 100 | | 10. | 17MC1107 | Induction Program | | | | - | | | | L – Lecture, T – Tutorial, P – Practical, C – Credits **CE - Continuous Evaluation, SE - Semester-end Evaluation, T - Total Marks** SEMESTER II Contact Hours: 27 | S.No | Course Code | Course | | T | P | C | CE | SE | T | |------|-------------|-----------------------------------|----|---|----|-----|-----|-----|-----| | 1. | 17MA1201 | Laplace Transforms And Integral | 3 | 1 | 0 | 4 | 30 | 70 | 100 | | | | Calculus | | | | | | | | | 2. | 17CH1202A | Engineering Chemistry | 3 | 0 | 0 | 3 | 30 | 70 | 100 | | 3. | 17CS1203 | Programming in C | 3 | 0 | 0 | 3 | 30 | 70 | 100 | | 4. | 17EC1204A | Basic Electronic Engineering | 3 | 0 | 0 | 3 | 30 | 70 | 100 | | 5. | 17ME1205 | Engineering Graphics | 2 | 0 | 4 | 4 | 30 | 70 | 100 | | 6. | 17CH1251 | Engineering Chemistry Laboratory | 0 | 0 | 3 | 1.5 | 30 | 70 | 100 | | 7. | 17CS1252 | Computer Programming Laboratory | 0 | 0 | 3 | 1.5 | 30 | 70 | 100 | | | | Total | 14 | 1 | 10 | 20 | 210 | 490 | 700 | | 8. | 17MC1206B | Professional Ethics& Human Values | 2 | 0 | 0 | ı | 100 | 0 | 100 | L – Lecture, T – Tutorial, P – Practical, C – Credits CE - Continuous Evaluation, SE - Semester-end Evaluation, T - Total Marks | Semester III Contact Hours: 27 | | | | | | | | | | | | |--------------------------------|-------------|--|---|---|----|----|-----|-----|------|--|--| | S.No | Course Code | Course | L | T | P | C | CE | SE | T | | | | 1. | 17MA1301B | Probability and Statistics | 3 | 1 | 0 | 4 | 30 | 70 | 100 | | | | 2. | 17CS3302 | Object Oriented Programming using Java | 3 | 0 | 0 | 3 | 30 | 70 | 100 | | | | 3. | 17CS3303 | Data Structures | 3 | 1 | 0 | 4 | 30 | 70 | 100 | | | | 4. | 17CS3304 | Digital Logic Design | 3 | 0 | 0 | 3 | 30 | 70 | 100 | | | | 5. | 17HS2305 | Humanities Elective | 1 | 0 | 0 | 1 | 100 | 0 | 100 | | | | 6. | 17TP1306 | Logic & Reasoning | 0 | 0 | 2 | 1 | 100 | 0 | 100 | | | | 7. | 17CS3351 | Object Oriented Programming Laboratory | 0 | 0 | 2 | 1 | 30 | 70 | 100 | | | | 8. | 17CS3352 | Data Structures Laboratory | 0 | 0 | 2 | 1 | 30 | 70 | 100 | | | | 9. | 17HS1353 | Communication Skills
Laboratory | 0 | 0 | 2 | 1 | 30 | 70 | 100 | | | | 10. | 17CS3354 | Digital Logic Design
Laboratory | 0 | 0 | 2 | 1 | 30 | 70 | 100 | | | | | Total | | | | 10 | 20 | 440 | 560 | 1000 | | | | 11. | 17MC1307A | Environmental Studies | 2 | 0 | 0 | - | 100 | 0 | 100 | | | #### **List of Humanities Electives** | | 0 | | | |----|---|----|----------------------------| | A. | Yoga & Meditation | G | Film Appreciation | | B. | Music | Н | Sanskrit Bhasa | | C. | Human Rights and Legislative Procedures | I1 | Foreign Languages (French) | | D. | Philosophy | I2 | Foreign Languages (German) | | E. | Development of societies | J | Psychology | | F. | Visual Communication | | | #### L – Lecture, T – Tutorial, P – Practical, C – Credits #### CE - Continuous Evaluation, SE - Semester-end Evaluation, T - Total Marks Semester IV **Contact Hours: 28** S.No **Course Code** Course P CE SE T \mathbf{C} 100 1. 17CS3401 Discrete Mathematical 0 0
3 30 70 Structures 17CS3402 Web Technologies 3 0 3 30 70 100 3. 17CS3403 Advanced Data 3 0 0 3 30 70 100 Structures 17CS3404 Computer Organization 0 30 70 4. 3 0 3 100 5. 0 0 2 0 17TP1405 1 100 100 English for Professionals 6. 17CS3406 Operating Systems 0 0 30 70 100 3 3 30 70 100 17CS3408 **Python Programming** 3 0 0 7. 3 0 2 30 70 8. Web Technologies 0 100 17CS3451 Laboratory 2 9. 17CS3452 **Python Programming** 0 0 1 30 70 100 Laboratory 10. 17CS3453 0 0 2 30 70 100 Competitive Coding -I 1 **Total** 18 0 22 370 630 1000 8 17MC1407B Indian Constitution 100 L – Lecture, T – Tutorial, P – Practical, C – Credits CE - Continuous Evaluation, SE - Semester-end Evaluation, T - Total Marks | Semester | ·V | | | | Con | tact Ho | ours: 30 | | | |----------|-------------|---|----|---|-----|---------|----------|-----|------| | S.No | Course Code | Course | L | T | P | C | CE | SE | T | | 1. | 17CS3501 | Database Management Systems | 3 | 0 | 0 | 3 | 30 | 70 | 100 | | 2. | 17CS3502 | Design and Analysis of Algorithms | 3 | 0 | 0 | 3 | 30 | 70 | 100 | | 3. | 17CS3503 | Computer Networks | 3 | 0 | 0 | 3 | 30 | 70 | 100 | | 4. | 17CS2504 | Open Elective - I A. Advanced Programming in JAVA B. Computer Graphics C. Industry Need Based Elective | 3 | 0 | 0 | 3 | 30 | 70 | 100 | | 5. | 17CS2505 | Open Elective – II (Inter Disciplinary Elective) A. Data Structures through C B. Web Designing C. Fundamentals of Operating System | 3 | 0 | 0 | 3 | 30 | 70 | 100 | | 6. | 17CS2506 | Open Elective – III (Self Learning Elective)* A. Introduction to R Programming B. Product Design and Innovation C. Social Networks D. Programming in C++ E. Advanced Computer Architecture F. Any other MOOC Course decided by the department | 0 | 0 | 0 | 2 | 30 | 70 | 100 | | 7. | 17TP1507 | Personality Development | 0 | 0 | 2 | 1 | 100 | 0 | 100 | | 8. | 17CS3509 | Micro Processors and Micro
Controllers | 3 | 0 | 0 | 3 | 30 | 70 | 100 | | 9. | 17CS3551 | Database Management Systems
Laboratory | 0 | 0 | 2 | 1 | 30 | 70 | 100 | | 10. | 17CS3552 | Micro Processor Laboratory | 0 | 0 | 2 | 1 | 30 | 70 | 100 | | 11. | 17CS2553 | Open Elective – I Laboratory A. Advanced Programming in JAVA B. Computer Graphics C. Industry Need Based Elective | 0 | 0 | 2 | 1 | 30 | 70 | 100 | | 12. | 17CS3554 | Competitive Coding - II | 0 | 0 | 2 | 1 | 30 | 70 | 100 | | | | Total | 18 | 0 | 10 | 25 | 430 | 770 | 1200 | | 13. | 17MC1508 | Biology for Engineers | 2 | 0 | 0 | - | 100 | 0 | 100 | L – Lecture, T – Tutorial, P – Practical, C – Credits CE - Continuous Evaluation, SE - Semester-end Evaluation, T - Total Marks ^{*}Students can opt any one of the self-learning courses prescribed by the department. Students should register and complete the opted course in the approved MOOCS platform on or before the Last Instruction Day of \underline{V} Semester. They have to submit the certificate before the Last Instruction Day of \underline{V} Semester. | Semester | ·VI | | | | Cont | tact Hou | ırs: 26 | | | |----------|-------------|---|----|---|------|----------|---------|-----|------| | S.No | Course Code | Course | L | T | P | C | CE | SE | T | | 1. | 17CS3601 | Theory of Computation | 3 | 0 | 0 | 3 | 30 | 70 | 100 | | 2. | 17CS3602 | Software Engineering | 3 | 0 | 0 | 3 | 30 | 70 | 100 | | 3. | 17CS4603 | Programme Elective -I A. Cloud Computing B. Linux Essentials C. Statistics with R D. Industry need based Elective | 3 | 0 | 0 | 3 | 30 | 70 | 100 | | 4. | 17CS4604 | Programme Elective -II A. Internet of Things B. Mobile Application Development C. Data Compression | 3 | 0 | 0 | 3 | 30 | 70 | 100 | | 5. | 17CS2605 | Open Elective -IV A. Artificial Intelligence Techniques, Tools and Applications B. Bioinformatics C. Image Processing D. Fundamentals of Java Programming** | 3 | 0 | 0 | 3 | 30 | 70 | 100 | | 6. | 17TP1606 | Quantitative Aptitude | 0 | 0 | 2 | 1 | 100 | 0 | 100 | | 7. | 17CS4651 | Programme Elective –I Laboratory A Cloud Computing B Linux Essentials C Statistics with R D Industry need based Elective | 0 | 0 | 2 | 1 | 30 | 70 | 100 | | 8. | 17CS4652 | A. Internet of Things B. Mobile Application Development C. Data Compression | 0 | 0 | 2 | 1 | 30 | 70 | 100 | | 9. | 17CS5653 | Engineering Project for Community Services* | 0 | 1 | 2 | 2 | 30 | 70 | 100 | | 10. | 17CS3654 | Competitive Coding -III | 0 | 0 | 2 | 1 | 30 | 70 | 100 | | | | Total | 15 | 1 | 10 | 21 | 370 | 630 | 1000 | L – Lecture, T – Tutorial, P – Practical, C – Credits CE - Continuous Evaluation, SE - Semester-end Evaluation, T - Total Marks ^{*}Students will go to the society(Villages/Hospitals/Towns etc..,) to identify the problem and survey the literature for a feasible solution. The work will be carried out during summer vacation after IV Semester. The students are encouraged to take up the real life problems leading to innovative model building. ^{**}Only students belonging to branches except for CSE and IT are eligible to opt for this course | Semester | r VII | | | | Conta | ict Houi | rs: 25 | | | |----------|-------------|---|----|---|-------|----------|--------|-----|-----| | S.No | Course Code | Course | L | T | P | C | CE | SE | T | | 1. | 17CS3701 | Compiler Design | 3 | 1 | 0 | 4 | 30 | 70 | 100 | | 2. | 17CS4702 | Programme Elective - III A. Data Analytics B. High Performance Computing C. Industry Need Based Elective | 3 | 0 | 0 | 3 | 30 | 70 | 100 | | 3. | 17CS4703 | Programme Elective -IV A. Cryptography and Network Security B. Mobile Computing C. Agile Software Development (TCS) | 3 | 0 | 0 | 3 | 30 | 70 | 100 | | 4. | 17CS4704 | Programme Elective -V A. Machine Learning B. Software Testing Methodology C. Routing and Switching Essentials (CISCO NetAcad) | 3 | 0 | 0 | 3 | 30 | 70 | 100 | | 5. | 17HS1705 | Engineering Economics and Finance | 2 | 0 | 0 | 2 | 30 | 70 | 100 | | 6. | 17CS4751 | Programme Elective – III Laboratory A. Data Analytics B. High Performance Computing C. Industry Need Based Elective | 0 | 0 | 3 | 1.5 | 30 | 70 | 100 | | 7. | 17CS4752 | Programme Elective – V Laboratory A. Machine Learning B. Software Testing Methodology C. Routing and Switching Essentials (CISCO NetAcad) | 0 | 0 | 3 | 1.5 | 30 | 70 | 100 | | 8. | 17CS5753 | Mini Project* | 0 | 0 | 4 | 2 | 30 | 70 | 100 | | 9. | 17CS6754 | A. Internship B. Industry offered Course C. Global Professional Certification | 0 | 0 | 10 | 2 | • 10 | 100 | 100 | | | | Total | 14 | 1 | 10 | 22 | 240 | 660 | 900 | L – Lecture, T – Tutorial, P – Practical, C – Credits **CE - Continuous Evaluation, SE - Semester-end Evaluation, T - Total Marks** ^{*}Could be done in a group of students; involves working under a faculty member and carrying out a detailed feasibility study, literature survey and preparing a work plan for major project. | Semestei | · VIII | | | | Conta | act Hour | s: 19 | | | |----------|-------------|----------------------------------|---|---|-------|----------|-------|-----|-----| | S.No | Course Code | Course | L | T | P | C | CE | SE | T | | 1. | 17CS4801 | Programme Elective - VI | 3 | 0 | 0 | 3 | 30 | 70 | 100 | | | | A. Business Intelligence | | | | | | | | | | | B. M Commerce | | | | | | | | | | | C. Information Retrieval Systems | | | | | | | | | | | D. Data Visualization | | | | | | | | | | | E. Cyber Security | | | | | | | | | | | F. Industry Need Based | | | | | | | | | | | Elective | | | | | | | | | 2. | 17CS2802 | Open Elective – V* | 3 | 0 | 0 | 3 | 30 | 70 | 100 | | | | A. Blockchain Technologies | | | | | | | | | | | B. Cyber Forensics | | | | | | | | | | | C. Deep Learning | | | | | | | | | | | D. User Interface and Experience | | | | | | | | | | | Design | | | | | | | | | | | E. Pattern Recognition | | | | | | | | | | | F. Innovation and | | | | | | | | | | | Entrepreneurship | | | | | | | | | 3. | 17CS5851 | Major Project** | 0 | 5 | 8 | 9 | 30 | 70 | 100 | | | | Total | 6 | 5 | 8 | 15 | 90 | 210 | 300 | L – Lecture, T – Tutorial, P – Practical, C – Credits CE - Continuous Evaluation, SE - Semester-end Evaluation, T - Total Marks *Open Elective- V may also opt as self-learning course. Students should register and complete the opted course in approved MOOCS platform on or before Last Instruction Day of VIII Semester. They have to submit the certificate before the last Instruction Day of VIII Semester. Students who have not opted as a self-learning are required to attend for the class work and internal assessment as per the regular theory course. **Major project involves continuation of Mini Project. The objective is to complete the work as per the prepared work plan and prepare a detailed project report. | Full Scheme and Syllabus | VR17 | |--------------------------|------| SEMESTER - | - I | 17MA1101
MATRICES AND DIFFERENTIAL CALCULUS | | | | | | | | | | |--|---------------------------|-------------------------------------|-----------|--|--|--|--|--|--| | Course Category: | Institutional Core | Credits: | 4 | | | | | | | | Course Type: | Theory | Lecture - Tutorial-Practice: | 3 - 1 - 0 | | | | | | | | Prerequisites: | Fundamentals of | Continuous Evaluation: | 30 | | | | | | | | _ | Matrices, Fundamentals | Semester end Evaluation: | 70 | | | | | | | | | of Calculus, Integration, | Total Marks: | 100 |
| | | | | | | | Differentiation. | | | | | | | | | VR17 | COU | RSE O | UTCO | MES | | | | | | | | | | | | |------|--------------------|--|---------|----------|----------|----------|-------------|----------|----------|----------|----------|-----------|-------------|-------| | Upon | succes | sful co | mpleti | on of t | he cou | rse, th | e stude | ent wil | l be ab | le to: | | | | | | CO1 | Deter | mine E | igen va | alues, E | Eigen v | ectors | of a ma | ıtrix. | | | | | | | | CO2 | Estim | stimate Maxima and Minima of Multi Variable Functions. | | | | | | | | | | | | | | CO3 | Solve | the Li | near di | fferenti | ial equa | ations v | with co | nstant (| coeffici | ents. | | | | | | CO4 | Solve | the Li | near di | fferenti | ial equa | ations v | with va | riable o | coeffici | ents. | | | | | | | | n of Co | ourse (| Outcom | es tow | ards a | chieve | ment o | of Prog | ram O | utcom | es (1 – L | ow. 2 - | | | Medi | um, 3 - | - High) | | | | | | | 8 | | | (1 _ | o, <u>-</u> | | | Medi | um, 3 -
PO
1 | PO 2 | | PO
4 | PO 5 | PO 6 | PO 7 | PO
8 | PO 9 | PO
10 | PO 11 | PO 12 | PSO 1 | PSO 2 | | CO1 | PO | PO | PO | PO | РО | РО | РО | РО | РО | РО | PO | PO | PSO | | | | PO
1 | PO | PO | PO | РО | РО | РО | РО | PO 9 | PO | PO
11 | PO | PSO | | | CO1 | PO 1 3 | PO | PO | PO | PO | РО | РО | РО | PO 9 | PO | PO
11 | PO | PSO | | #### **COURSE CONTENT** #### UNIT I **Matrices:** Rank of a Matrix, Elementary transformations, Inverse of a Matrix (Gauss Jordan Method), Consistency of Linear System of Equations, Linear Transformations, Vectors, Eigen values, Properties of Eigen values, Finding Inverse and Powers of a Matrix by Cayley-Hamilton Theorem. Reduction to Diagonal form, Reduction of Quadratic form to Canonical form, Nature of a Quadratic form, Complex matrices. #### UNIT II **Differential Calculus:** Rolle's Theorem, Lagrange's Mean Value Theorem, Cauchy's Mean Value Theorem, Taylor's Theorem, Maclaurin's Series. Application: Curvature, Radius of Curvature. **Functions of two or more Variables**: Partial Derivatives, Change of Variables, Jacobians, Taylor's Theorem for Function of two Variables, Maxima and Minima of Functions of two Variables, Lagrange's Method of Undetermined Multipliers. #### UNIT III Differential Equations of First Order: Formation of a Differential Equation, Solution of a Differential Equation, Linear Equations, Bernoulli's Equation, Exact Differential Equations, Equations Reducible to Exact Equations. **Applications:** Orthogonal Trajectories, Newton's Law of Cooling. **Linear Differential Equations of Higher Order**: Definitions, Operator D, Rules for Finding the Complementary Function, Inverse Operator, Rules for finding Particular Integral, Working Procedure to Solve the Equation. #### UNIT IV Linear Dependence of Solutions, Method of Variation of Parameters, Method of Undetermined Coefficients, Equations Reducible to Linear Equations with Constant Coefficients: Cauchy's Homogeneous Linear Equation, Legendre's Linear Equation, Simultaneous Linear Differential Equations with Constant Coefficients. **Applications:** L-C-R Circuits. #### TEXT BOOKS [1] B.S.Grewal, "Higher Engineering Mathematics", Khanna Publishers, 43rd Edition, 2014. #### REFERENCE BOOKS - [1] Erwin Kreyszig, "Advanced Engineering Mathematics", John Wiley & Sons, 10th Edition,2015 - [2] B.V.Ramana, "Higher Engineering Mathematics", Tata MC Graw Hill, 1st Edition, 2007 - [3] N.P.Bali, Dr.Manish Goyal, "A Text Book of Engineering Mathematics", Laxmi Publications, 9th Edition,2014 #### E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] www.nptel videos.com/mathematics/ (Math Lectures from MIT,Stanford,IIT'S) - [2] nptel.ac.in/courses/122104017 - [3] nptel.ac.in/courses/111105035 - [4] Engineering Mathematics Open Learning Project. www.3.ul.ie/~mlc/support/Loughborough%20website/ | 17PH1102B
APPLIED PHYSICS | | | | | | | | | | |------------------------------|---------------------|-----------------------------|-----------|--|--|--|--|--|--| | Course Category: | Institutional Core | Credits: | 3 | | | | | | | | Course Type: | Theory | Lecture -Tutorial-Practice: | 3 - 0 - 0 | | | | | | | | Prerequisites: | Basics of Classical | Continuous Evaluation: | 30 | | | | | | | | _ | Mechanics | Semester end Evaluation: | 70 | | | | | | | | | | Total Marks: | 100 | | | | | | | | | | | | | | | | | | #### Upon successful completion of the course, the student will be able to: | CO1 | Understand the importance of quantum mechanics. | |-----|--| | CO2 | Analyse and understand various types of lasers and their applications. | | CO3 | Elaborate different types of optical fibers and understand holography. | | CO4 | Understand the fabrication of nanomaterials and carbon Nanotubes. | ### Contribution of Course Outcomes towards achievement of Program Outcomes (1– Low, 2 - Medium, 3 – High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO 6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-------------------|---------|---------|---------|---------|---------|------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | 3 | 2 | | | | | | | | | | | | | | CO2 | 3 | | 2 | | | | | | | | | | | | | CO3 | 3 | | 2 | | | | | | | | | | | | | CO1
CO2
CO3 | 3 | | 1 | | | | | | | | | | | | #### **COURSE CONTENT** #### UNIT-I **Quantum Mechanics:** Dual nature of light, Matter waves and Debroglie's hypothesis, G. P. Thomson experiment, Heisenberg's uncertainty principle and its applications (Non existence of electron in nucleus, Finite width of spectral lines), One dimensional time independent Schrödinger's wave equation, physical significance of wave function, Particle in a box (One dimension). #### UNIT-II **Lasers:** Introduction, Characteristics of laser, absorption, spontaneous emission, stimulated emission, pumping, population inversion, cavity resonance, Einstein's coefficients, different types of lasers: solid-state lasers (Ruby, Neodymium), gas lasers (He-Ne, CO₂), dye lasers, applications of lasers in science, engineering and medicine. #### **UNIT-III** **Fibre Optics:** Introduction, Fundamental of optic fibre, Propagation of light through optical fiber, Types of optical fibers, Numerical aperture, Fractional Refractive Index change, V- number and cut-off Parameters of fibres, Fibre attenuation (losses), Fiber optics in communication and its advantages. **Holography:** Basic Principle of Holography, construction of the hologram, reconstruction of the image, applications of holography. #### **UNIT-IV** Nanotechnology: Basic concepts of Nanotechnology, Nano scale, Introduction to nano materials, Surface to volume ratio, General properties of Nano materials, Fabrication of nano materials: Plasma Arcing, Chemical vapour deposition, Characterization of nano materials: AFM, SEM, TEM, STM, Carbon nano tubes: SWNT, MWNT, Formation of carbon nanotubes: Arc discharge, Laser ablation, Properties of carbon nano tubes, Applications of CNT's & Nanotechnology. #### **TEXT BOOKS** - [1] M.N. Avadhanulu & P.G. Kshirsagar, Engineering Physics, S. Chand publications, Revised Edition, 2014 - [2] P.K. Palanisamy, "Applied Physics", Scitech Publications(INDIA) Pvt. Ltd., Fifth Print, 2008. #### REFERENCE BOOKS - [1] B. K. Pandey and S. Chaturvedi, 'Engineering Physics' Cengage Learning', Delhi, 2012. - [2] O. Svelto, Principles of Lasers, 5th Edition, Springer, London, 2010 - [3] M.R. Srinivasan, "Engineering Physics", New age international publishers, First Edition, 2011. #### E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] https://ocw.mit.edu/courses/physics/8-04-quantum-physics-i-spring-2013/lecture-videos/ - [2] https://ocw.mit.edu/resources/res-6-005-understanding-lasers-and-fiberoptics-spring-2008/laser-fundamentals-i/ - [3] http://nptel.ac.in/courses/112106198/19 - [4] https://www.peterindia.net/NanoTechnologyResources.html | 17CS1103
PROBLEM SOLVING METHODS | | | | | | | | | | | | |-------------------------------------|--------------------|-----------------------------|---------|--|--|--|--|--|--|--|--| | Course Category: | Institutional Core | Credits: | 3 | | | | | | | | | | Course Type: | Theory | Lecture -Tutorial-Practice: | 2 -1- 0 | | | | | | | | | | Prerequisites: | - | Continuous Evaluation: | 30 | | | | | | | | | | _ | | Semester end Evaluation: | 70 | | | | | | | | | | | | Total Marks: | 100 | | | | | | | | | #### Upon successful completion of the course, the student will be able to: | CO1 | Understand the Computer problem solving approaches, efficiency and analysis of algorithms | |-----|---| | CO2 | Apply the factoring methods to solve the given problem | | CO3 | Apply the array techniques to find the solution for the given problem | | CO4 | Solve the problems using MATLAB | ### Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2 - Medium, 3 - High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO 6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-------------|---------|---------|---------|---------|---------|------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | 3 | 2 | | | | | | | | | | | | | | CO1 CO2 CO3 | 1 | | 3 | | | | | | | | | | | | | CO3 | 1 | | 3 | | | | | | | | | | | | | CO4 | 1 | 1 | | | | | | | 3 | | | | | | #### COURSE CONTENT #### UNIT - I **Introduction to Computer Problem Solving:** Programs and Algorithms, characteristics of an algorithm, Requirements for solving problems by computer; Flowchart, pseudo-code **The Problem – Solving Aspect**: Problem definition phase, Getting started on a problem, Similarities among problems, Working backwards from the
solution, General problem-solving strategies; **Top-Down design**: Breaking a problem into subproblems, Construction of loops, Establishing initial conditions for loops, Finding the iterative construct, Termination of loops; **The Efficiency of Algorithms**: Redundant Computations, Referencing array elements, Inefficiency due to late termination, Early detection of desired output conditions, Trading storage for efficiency gains; **Analysis of Algorithms**: Computational complexity, The order notation, Worst and average case behavior. **UNIT - II** **Fundamental Algorithms:** Problem, Algorithm Development, Algorithm Description - Exchanging values of two variables, Counting, Summation of a set of numbers, Factorial computation, Generation of Fibonacci sequence, Reversing the digits of an Integer. Using pseudo-codes and flowcharts to represent fundamental algorithms. Factoring Methods: Finding the Square Root of a number: Smallest Divisor of an Integer, GCD of two Integers, Generating Prime numbers, Computing the Prime Factors of an Integer, Raising a Number to a Large Power, Pseudo random number generation, Computing nth Fibonacci number. #### UNIT - III **Array Techniques:** Introduction, Array Order Reversal, Array counting, Finding the maximum number in a set, Removal of duplicates from an ordered array, Partitioning an array, Finding The Kth Smallest Element. **Merging, Sorting and Searching:** Sorting By Selection, Sorting By Exchange, Linear Search, Binary search; #### UNIT - IV **MATLAB Environment:** User Interface, Syntax and Semantics Operators, Variables and constants: Simple arithmetic calculations. Data types, Control Structures: if...then, loops, Functions, Matrices and Vectors: Matrix manipulations and operations MATLAB Programming: Reading and writing data, file handling, MATLAB Graphic functions. #### **TEXT BOOKS** - [1] R.G. Dromey, "How to Solve it By Computer", Prentice-Hall International Series in Computer Science, 1982. - [2] Bansal.R.K, Goel.A.K, Sharma.M.K, "MATLAB and its Applications in Engineering", Pearson Education, 2012. #### REFERENCE BOOKS - [1] Michael Schneider, Steven W. Weingart, David M. Perlman, "An Introduction to Programming and Problem Solving With Pascal", John Wiley and Sons Inc ,1984. - [2] David Gries, "The Science of Programming", Springer Verlag, 1981. - [3] ReemaThareja, "Computer Fundamentals and C Programming", Oxford, 2012 #### E-RESOURCES AND OTHER DIGITAL MATERIAL [1] MATLAB Getting Started Guide http://www.mathworks.com/help/pdf_doc/ matlab/getstart.pdf Last accessed on 01-06-2017 | 17EE1104
BASICS OF ELECTRICAL ENGINEERING | | | | | | | | | | | | |--|----------------------|-------------------------------|-----------|--|--|--|--|--|--|--|--| | Course Category: | Engineering Sciences | Credits: | 3 | | | | | | | | | | Course Type: | Theory | Lecture -Tutorial-Practice: | 3 - 0 - 0 | | | | | | | | | | Prerequisites: | - | Continuous Evaluation: | 30 | | | | | | | | | | | | Semester end Evaluation: | 70 | | | | | | | | | | | | Total Marks: | 100 | #### Upon successful completion of the course, the student will be able to: | CO1 | Analyze Electric Circuit fundamentals. | |-----|---| | CO2 | Understand the basic concepts of Alternating Quantities and Magnetic Circuits | | CO3 | Analyze the basic concepts of Electric Machines | | CO4 | Understand Measuring Instruments & Solar Photo Voltaic System concepts | ### Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2 - Medium, 3 - High) | | | | | | , | | | | | | | | | | |-------------|---------|---------|---------|---------|---------|------|-------------|---------|---------|----------|----------|----------|----------|----------| | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO 6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | | CO1 | 3 | 1 | | | 2 | | | | | | | | | | | CO2 | 4 | 1 | | | | | | | | | | | | | | CO1 CO2 CO3 | 2 | | | | 2 | | | | | | | | | | | CO4 | 2 | | | | | | | | | | | | | | #### **COURSE CONTENT** #### UNIT I **Introduction to Electrical Engineering:** Electric Current, Electromotive force, Electric power and energy, Basic circuit components- Resistors-Inductors-Capacitors. Electromagnetic Phenomenon and Related Laws, Kirchhoff's laws. **Network Analysis:** Network sources-Ideal independent voltage source, Ideal independent current source, Dependent sources, Practical voltage and current sources, Source conversion, Voltage and Current division rule, series and parallel connection of R, L and C, Star-Delta or, Delta- Star transformation. Mesh and Nodal Analysis (with independent sources only). #### UNIT II Alternating Quantities: Introduction; Generation of a.c. voltages, Waveforms and Basic Definitions, Relationship between frequency, speed and number of poles, Root Mean Square and Average values of alternating current and voltages, Form Factor and Peak Factor, Phasor representation of alternating quantities. Magnetic Circuits: Introduction, Magnetic Circuits, Magnetic Field Strength (H), Magneto motive Force, Permeability, Reluctance, Analogy between Electric and Magnetic Circuits, Magnetic potential drop, Magnetic circuit computations, Self and Mutual Inductance, Energy in Linear Magnetic Systems. #### UNIT III **DC Machines:** Introduction, Construction of dc machines, Armature Windings, Generation of dc voltage and torque production in a dc machine, Torque production in a dc Machine, Operation of a dc machine as a generator, Operation of dc machine as a motor. **Induction Motors:** Introduction, Constructional features of three-phase induction motors, Principle of operation of three-phase induction motor- Slip and rotor frequency, Voltage and current equations and equivalent circuit of an induction motor. #### UNIT IV **Measuring Instruments:** Introduction, Classification of instruments, Operating Principles, Essential features of measuring instruments, Ammeters and Voltmeters, Measurement of power. **Solar photovoltaic Systems:** Solar cell fundamentals, characteristics, classification, module, panel and array construction, Maximizing the solar PV output and load matching, Maximum Power Point Tracker(MPPT), Balance of system components, solar PV systems and solar PV applications. #### **TEXT BOOKS** [1] T.K. Nagasarkar and M.S. Sukhja, "Basic Electric Engineering", 2nd ed., Oxford University press 2011. #### REFERENCE BOOKS - [1] B.H.Khan, "Non Conventional Energy Resources", 2nd ed., Mc.Graw Hill Education Pvt Ltd., New Delhi, 2013. - [2] Ashfaq Husain, Haroon Ashfaq, "Fundamentals of Electrical Engineering", 4th ed., Dhanpat Rai & Co, 2014. - [3] I.J.Nagrath and Kothari, "Theory and problems of Basic Electrical Engineering", 2nd ed., Prentice-Hall of India Pvt.Ltd.,2016. #### E-RESOURCES AND OTHER DIGITAL MATERIAL | I | 1 | http://nptel.ac.in/courses/108108076/ | Last accessed on 01-06-2017 | |---|---|---|-----------------------------| | ı | - | intep://inpter.actini/coarbeb/rooroo/o/ | East accessed on or oc 2017 | | 17HS1105
TECHNICAL ENGLISH & COMMUNICATION SKILLS | | | | | | | | | | | | | |--|--|-----------------------------|-----------|--|--|--|--|--|--|--|--|--| | Course Category: | Institutional Core | Credits: | 3 | | | | | | | | | | | Course Type: | Theory | Lecture -Tutorial-Practice: | 2 - 0 - 2 | | | | | | | | | | | Prerequisites: | Basic understanding of | Continuous Evaluation: | 30 | | | | | | | | | | | _ | the language skills ,viz | Semester end Evaluation: | 70 | | | | | | | | | | | | Listening, Speaking,
Reading and Writing,
including Sentence
construction abilities | Total Marks: | 100 | | | | | | | | | | #### Upon successful completion of the course, the student will be able to: | CO1 | Develop administrative and professional compilations including web related(On-line) communication with felicity of expression | |-----|---| | CO2 | Demonstrate Proficiency in Interpersonal Communication, in addition to standard patterns of Pronunciation | | CO3 | Apply the elements of functional English with sustained understanding for authentic use of language in any given academic and/or professional environment | | CO4 | Execute tasks in Technical communication with competence | ### Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2 - Medium, 3 - High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO 6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO 2 | |-----|---------|---------|---------|---------|---------|------|-------------|---------|---------|----------|----------|----------|----------|-------| | CO1 | | | | 3 | | 3 | 3 | 3 | 2 | 3 | 1 | 2 | | | | CO2 | | | | 3 | | 3 | 3 | 3 | 3 | 3 | | 3 | | | | CO3 | 2 | | | 3 | | 3 | 3 | 3 | 3 | 3 | | 2 | | | | CO4 | 2 | 2 | | 3 | | 2 | 3 | 3 | 2 | 3 | 1 | 2 | | | #### **COURSE CONTENT** #### UNIT I #### **Professional Writing Skills:-** #### > Professional Letters: Business, Complaint and Transmittal – Purpose, Style and format with special reference to Block Format and Modified Block Format #### **Essay Writing:** Descriptive and Analytical with illustrations #### > Administrative and On-line drafting skills: Minutes- Purpose, Scope and Illustrations Web notes including Basics of e-mail- Chat-room interaction, Written Response to web-content, Basics of Format and etiquette for e-mail #### UNIT II #### **Phonetics and Interpersonal Communication Skills** - > Transcription
using International Phonetic Alphabet - ➤ Word Stress (Primary) and Rhythm with practice - > Speech/ Conversational acts- Extending Invitation, Reciprocation, Acceptance, Concurrence, Disagreeing without being disagreeable- Written Form: Discourse/dialogue development and identification of inconsistencies in pre- prepared dialogues Spoken Form: Role play #### UNIT III #### Vocabulary and Functional English - **Root words** (A Representative collection of 50) - ➤ Vocabulary for Competitive examinations (A list of 500 High frequency words) Direct meaning, Matching and Cloze test - ➤ Verbal analogies(Single Unit) Synonym Relation, Antonym relation, Object- Operator relation, Object-Obstacle/obstruction relation, Sequence Relation, Place-Monument Relation, Science- area of activity relation, Profession- Tool relation, Gender relation, Diminutive relation, etc - **Confusables** Homonyms, Homophones and nearer words (A Representative collection of 100) - ➤ Idiomatic expressions- Myth-based, Folklore based, life-based- Meanings, along with sentential illustrations - **Phrasal Collocations** Representative collection of 50 -Meanings, along with sentential illustrations - Exposure through Reading Comprehension- Skimming, Scanning and tackling different kinds of questions including interpretation of graphs and statistical data - Functional Grammar with special reference to Tense, Concord, Articles, pronoun-referent, Prepositions, use of Gerund, Parallelism etc (A Representative collection of 100 sentences) #### UNIT IV #### **Technical Communication skills:** - > Technical Proposal writing- Characteristics, Proposal Superstructure, Checklist, Formal Proposal - > Technical Vocabulary- Basic explanations and Description - ➤ Introduction to Executive summary Purpose and illustration - > Technical Report writing- Informational Reports and Feasibility Report- Types, Components, Style and Formats #### TEXT BOOKS - [1] Martin Cutts, "Oxford guide to Plain English", Oxford University Press, 7th Impression 2011. - [2] TM Farhathullah, "Communication skills for Technical Students", Orient Longman, I Edition 2002 - [3] John Langan, "College Writing Skills", McGraw Hill, IX Edition, 2014. "Eclectric Learning materials offered by the Department" #### ______ #### REFERENCE BOOKS - [1] Randolph Quirk, "Use of English", Longman, I Edition (1968) Reprinted 2004. - [2] Thomson A.J & A.V, Martinet, "Practical English Grammar", Oxford University Press, III Edition 2001 - [3] V.Sethi and P.V. Dhamija, "A Course in Phonetics and Spoken English", PHI, II Edition 2006 #### E-RESOURCES AND OTHER DIGITAL MATERIAL | [1] https://www.britishcouncil.org/english Accessed on 15th June 2017 www.natcorp.ox.ac.uk/Wkshops/Materials/specialising.xml?ID=online Accessed on 15th June 2017 [2]https://www.unimarburg.de/sprachenzentrum/selbstlernzentrum//apps_for_esl.pdf Accessed on 15th June 2017 | |--| 17PH1151B
ENGINEERING PHYSICS LABORATORY | | | | | | | | | | |---|-----------------------|-----------------------------|-----------|--|--|--|--|--|--| | Course Category: | Institutional Core | Credits: | 1.5 | | | | | | | | Course Type: | Laboratory | Lecture -Tutorial-Practice: | 0 - 0 - 3 | | | | | | | | Prerequisites: | Basic knowledge about | Continuous Evaluation: | 30 | | | | | | | | | fundamental measuring | Semester end Evaluation: | 70 | | | | | | | | | instruments | Total Marks: | 100 | | | | | | | | | | | | | | | | | | #### Upon successful completion of the course, the student will be able to: | CO1 | Use function generator, spectrometer and travelling microscope in various experiments | |-----|--| | CO2 | Test optical components using principles of interference and diffraction of light | | CO3 | Determine the V-I characteristics of solar cell and photo cell and appreciate the accuracy in measurements | ### Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-------------|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | 3 | | | | | | | | | | 2 | | | | | CO2 | 3 | | | | | | | | | | | | | | | CO1 CO2 CO3 | 3 | | | | | | | | | | | | | | #### **COURSE CONTENT** - 1. Photo cell-Study of V-I Characteristics, determination of work function - 2. Newton's Rings-Radius of curvature of plano convex lens. - 3. Compound pendulum-Measurement of 'g' - 4. LCR circuit- Study Resonance - 5. AC Sonometer Verification of vibrating laws - 6. Solar cell-Determination of Fill Factor - 7. Diffraction grating-Wavelength of laser light - 8. Optical fiber- Study of attenuation and propagation characteristics - 9. Diffraction grating-Measurement of wavelength of mercury source - 10. Hall effect –Hall coefficient measurement - 11. Figure of merit of a galvanometer - 12. Variation of magnetic field along the axis of current-carrying circular coil #### TEXT BOOKS - [1] Madhusudhan Rao, "Engineering Physics Lab Manual", Ist ed., Scitech Publications, 2015 - [2] Ramarao Sri, Choudary Nityanand and Prasad Daruka, "Lab Manual of Engineering Physics"., Vth ed., Excell Books, 2010 #### **E-RESOURCES** | 17CS1152
COMPUTING AND PERIPHERALS LABORATORY | | | | | | | | | | |--|--------------------|-------------------------------|-----------|--|--|--|--|--|--| | Course Category: | Institutional Core | Credits: | 1 | | | | | | | | Course Type: | Laboratory | Lecture -Tutorial-Practice: | 0 - 0 - 2 | | | | | | | | Prerequisites: | - | Continuous Evaluation: | 30 | | | | | | | | • | | Semester end Evaluation: | 70 | | | | | | | | | | Total Marks: | 100 | | | | | | | #### Upon successful completion of the course, the student will be able to: | CO1 | Understand and Apply MS Office tools | |-----|---| | CO2 | Configure the components on the motherboard and install different operating systems | | CO3 | Understand and configure different storage media | | CO4 | Perform Networking, troubleshooting and system administration tasks | ### Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | | | , | | | | | | | | | | | | | |-------------|---------|---------|---------|---------|---------|------|-------------|---------|---------|----------|----------|----------|----------|----------| | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO 6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | | CO1 | 1 | | | | | | | | 3 | | | | | | | CO2 | | 3 | 1 | | | | | | | | | | | | | CO1 CO2 CO3 | 3 | | 1 | | | | | | | | | | | | | CO4 | | | 3 | | | | | | 1 | | | | | | #### COURSE CONTENT #### **CYCLE - I:Word Processing, Presentations and Spread Sheets** #### 1. Word Processing: - a) Create personal letter using MS Word. - b) Create a resume using MS Word. - c) Creating project abstract: Features to be covered:- Table of Content, List of Tables, Formatting Styles, Inserting table, Bullets and Numbering, Changing Text Direction, Cell alignment, Footnote, Hyperlink, Symbols, Spell Check, Track Changes. - d) Creating a Newsletter: Features to be covered:- Table of Content, List of figures, Newspaper columns, Images from files and clipart, Drawing toolbar and Word Art, Formatting Images, Textboxes, Paragraphs and Mail Merge in word. #### 2. Spread Sheets: - a) Create a worksheet containing pay details of the employees. - b) Creating a Scheduler: Features to be covered:- Gridlines, Format Cells, Summation, auto fill,Formatting Text - c) Create a worksheet which contains student results: .Features to be covered:- Cell Referencing, Formulae in excel average, Charts, Renaming and Inserting worksheets, Hyper linking, Count function, LOOKUP/VLOOKUP, Sorting, Conditional formatting d) Create a worksheet importing data from database and calculate sum of all the columns. #### 3. Presentations: - a) Create a presentation using themes. - b) Save, edit, print and import images/videos to a presentation. - c) Create a power Point presentation on business by using master layouts, adding animation to a presentation and see the presentation in different views. #### 4. MS Access: - a) Create simple table in MS Access for results processing. - b) Create a query table for the results processing table. - c) Create a form to update/modify the results processing table. - d) Create a report to print the result sheet and marks card for the result. #### **CYCLE - II: Hardware Experiments** - 1. Identification of System Layout: Front panel indicators & switches and Front side & rear side connectors. Familiarize the computer system Layout: Marking positions of SMPS, Motherboard, FDD, HDD, CD, DVD and add on cards. Install Hard Disk. Configure CMOS-Setup. Partition and Format Hard Disk. - 2. Install and Configure a DVD Writer or a Blu-ray Disc writer. - 3. Install windows operating system and check if all the device (graphics, sound, network etc.) drivers are installed. - 4. Install Linux operating system and check the working of all devices (graphics, sound, network etc.) in the computer. - 5. Assemble a Pentium IV or Pentium Dual Core Pentium Core2 Duo system with necessary peripherals and check the working condition of the PC. - 6. PC system
layout: Draw a Computer system layout and Mark the positions of SMPS, Mother Board, FDD, HDD, and CD-Drive/DVDDrive add on cards in table top / tower model systems. - 7. Mother Board Layout: Draw the layout of Pentium IV or Pentium Dual core or Pentium Core2 DUO mother board and mark Processor, Chip set ICs. RAM, Cache, cooling fan, I/O slots and I/O ports and various jumper settings. - 8. Configure BIOS setup program to change standard and advanced settings to troubleshoot typical problems. - 9. Install and configure Printer/Scanner/Web cam/Cell phone/bio-metric device with system. Troubleshoot the problems #### **CYCLE – III : Networking** - 1. Prepare an Ethernet/UTP cable to connect a computer to network switch. Crimp the 4 pair cable with RJ45 connector and with appropriate color code. - 2. Manually configure TCP/IP parameters (Host IP, Subnet Mask and Default Gateway) for a computer and verify them using IPCONFIG command. Test connectivity to a server system using PING command. - 3. Creating a shared folder in the computer and connecting to that folder using Universal Naming Convention (UNC) format. (Ex: computername sharename) - 4. Connects computers together via Switch/ Hub - 5. Connect different devices via Switch/Hub - 6. Statically configure IP address and subnet mask for each computer - 7. Examine non-existent IP address and subnet conflicts - 8. Configure a computer to connect to internet (using college internetsettings) and troubleshoot the problems using PING, TRACERT and NETSTAT commands. - 9. Using scan disk, disk cleanup, disk Defragmenter, Virus Detectionand Rectifying Software to troubleshoot typical computer problems. - 10. Configure DNS to establish interconnection between systems and describe how a name is mapped to IP Address. - 11. Remote desktop connections and file sharing. - 12. Installation Antivirus and configure the antivirus. | 13. Introducing Ethereal, a packet capture tool. | |---| | E-RESOURCES AND OTHER DIGITAL MATERIAL | | [1] Numerical Methods and Programing by Prof.P.B.Sunil Kumar, Department of Physics, IIT Madras https://www.youtube.com/watch?v=zjyR9e-#1D4&list=PLC5DC6AD60D798FB7 Last accessed on 01-06-2017 [2] Introduction to Coding ConceptsInstructor: Mitchell Peabody View the complete course: http://ocw.mit.edu/6-00SCS11 Last accessed on 01-06-2017 | 17ME1153
BASIC WORKSHOP | | | | | | | | | | |----------------------------|-----------------------------|-----------------------------|-----------|--|--|--|--|--|--| | Course Category: | Engineering Sciences | Credits: | 1.5 | | | | | | | | Course Type: | Laboratory | Lecture -Tutorial-Practice: | 0 - 0 - 3 | | | | | | | | Prerequisites: | - | Continuous Evaluation: | 30 | | | | | | | | _ | | Semester end Evaluation: | 70 | | | | | | | | | | Total Marks: | 100 | | | | | | | | | | | | | | | | | | #### Upon successful completion of the course, the student will be able to: | CO1 | Model and develop various basic prototypes in the Carpentry trade. | |-----|--| | CO2 | Develop various basic prototypes in the trade of Welding. | | CO3 | Model and develop various basic prototypes in the trade of Tin Smithy. | | CO4 | Familiarize with various fundamental aspects of house wiring. | ### Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2 - Medium, 3 - High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO 6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-------------------|---------|---------|---------|---------|---------|------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | 3 | | | 1 | | | | | | | | | | | | CO2 | 2 | | | 1 | | | | | | | | | | | | CO3 | 2 | | | 1 | | | | | | | | | | | | CO1
CO2
CO3 | 1 | | | 1 | | | | | | | | | | | #### **COURSE CONTENT** #### UNIT I #### **Carpentry:** - a. Study of tools & operations and various carpentry joints. - b. Practice of open bridle joint, Cross half lap joint, Half LapT Joint, and Dove tail joint - c. Simple group exercise like preparation of single widow frame. #### UNIT II #### Welding: - a. Study of tools and operations of Gas welding and arc welding. - b. Practice of various joints like weld layer practice, V- Butt Joint, Double parallel fillet joint, T-Joint, and Corner Joint. #### **UNIT III** #### Tin Smithy: - a. Study of tools & operations - b. Practice of various joints like Saw Edge, Wired Edge, Lap Seam, and Grooved Seam. - c. Simple exercise like Fabrication of square tray. #### UNIT IV #### **House Wiring:** a. To connect one lamp with one switch. - b. To connect two lamps with one switch. - c. To connect a fluorescent Tube. - d. Stair case wiring. - e. Godown wiring. - f. Study of single phase wiring for a office room. - g. Nomenclature & measurement of wire gauges and cables. - h. Estimation of cost of indoor wiring for a wiring diagram (plan of a building). - i. Test procedure for continuity of wiring in a electric installation. - j. Measurement of electric energy by using meter. #### **TEXT BOOKS** - [1] Kannaiah P. & Narayana K. C., "Manual on Workshop Practice", Scitech Publications, Chennai, 1999. - [2] Venkatachalapathy, V. S., "First year Engineering Workshop Practice", Ramalinga Publications, Madurai, 1999. #### REFERENCE BOOKS | 17MC1106A
TECHNOLOGY AND SOCIETY | | | | | | | | | | |-------------------------------------|--------------------|-----------------------------|-----------|--|--|--|--|--|--| | Course Category: | Institutional Core | Credits: | - | | | | | | | | Course Type: | Theory | Lecture -Tutorial-Practice: | 1 - 0 - 0 | | | | | | | | Prerequisites: | - | Continuous Evaluation: | 100 | | | | | | | | _ | | Semester end Evaluation: | 0 | | | | | | | | | | Total Marks: | 100 | | | | | | | | | | | | | | | | | | VR17 #### **COURSE OUTCOMES** #### Upon successful completion of the course, the student will be able to: | CO1 | Understand the origins of technology and its role in the history of human progress. | |-----|--| | CO2 | Know the Industrial Revolution and its impact on Society | | CO3 | Interpret the developments in various fields of technology till Twentieth Century. | | CO4 | Distinguish the impacts of Technology on the Environemnt and achievements of great scientists. | ### Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-----|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | 3 | | | | | | | 1 | | | | | | | | CO2 | 3 | | | | 2 | | 1 | | | | | | | | | CO3 | 3 | | | | | | | 1 | | | | | | | | CO4 | 3 | | | | 2 | | 1 | | | | | | | | #### **COURSE CONTENT** #### UNIT – I **Introduction**: Origins of technology, The Agriculture revolution, Technological contributions of ancient civilizations- Mesopotamian, Egyptians, Greeks, Romans, Indians and Chinese. #### UNIT - II **Industrial revolution**: The social and political background, The technical background, Steam: The power behind the Indistrial Revolution, The revolution in Textile Indistry, The Imapact of Indutrial Revolution on Society. #### UNIT - III **The Flowering of modern technology:** Manufacturing Technologies, Prime Movers, Internal Combustion engines, Production of Metals and Allyos, The Birth of Electrical Technology, Twentieth Century: The Flowering of modern technology #### UNIT - IV **Technology, Science and Society**: Impact of technology on society, The Impacts of Technology on the environment, Sustainable development. #### **Achievements of famous scientists:** (World): Einestein, Newton, Faraday, Graham Bell, Edison, S.Hawking. (**India**): CV Raman, S.Chandrasekhar, Aryabhatta, Homi J Bhabha, Vikram Sarabhai, APJ Abdulkalam, S.Ramanujan, M.Visweswarayya. #### **TEXT BOOKS** [1] Dr. R.V.G Menon, "Technology and Society", Pearson Education, 2011 #### **REFERENCE BOOKS** | [1] Quan-Haase, A., " | Technology and Socie | ety: Inequality, Power | , and Social | Networks", O | xford University | |-----------------------|--|------------------------|--------------|--------------|------------------| | Press, 2013. | | | | | | | Full Scheme and Syllabus | VR17 | |--------------------------|------| SEMESTER - II | 17MA1201 | | | | | | | | | | | | |--|----------------|-------------------------------------|-----------|--|--|--|--|--|--|--|--|--| | LAPLACE TRANSFORMS AND INTEGRAL CALCULUS | | | | | | | | | | | | | | Course Category: Institutional Core Credits: 4 | | | | | | | | | | | | | | Course Type: | Theory | Lecture - Tutorial-Practice: | 3 - 1 - 0 | | | | | | | | | | | Prerequisites: | Vectors, | Continuous Evaluation: | 30 | | | | | | | | | | | | Curve Tracing. | Semester end Evaluation: | 70 | | | | | | | | | | | | | Total Marks: | 100 | | | | | | | | | | | | | |
 | | | | | | | | | #### Upon successful completion of the course, the student will be able to: | CO1 | Solve Linear Differential Equations using Laplace Transforms. | |-----|---| | CO2 | Examine the nature of the Infinite series. | | CO3 | Evaluate areas and volumes using Double, Triple Integrals. | | CO4 | Convert Line Integrals to Area Integrals and Surface Integrals to Volume Integrals. | ### Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | CO1 CO2 CO3 | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-------------|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | 3 | 1 | | | | | | | | | | | | | | CO2 | 3 | 1 | | | | | | | | | | | | | | CO3 | 3 | 1 | | | | | | | | | | | | | | CO4 | 3 | 1 | | | | | | | | | | | | | #### COURSE CONTENT #### **UNIT I** **Laplace Transforms:** Introduction, Definition, Conditions for Existence, Transforms of Elementary functions, Properties of Laplace Transforms, Transforms of Periodic functions, Transforms of Derivatives, Transforms of Integrals, Multiplication by tⁿ, Division by 't', Inverse Transforms, Method of partial fractions, Other methods of finding Inverse Transform, Convolution Theorem, Unit Step and Unit Impulse functions. **Applications:** Evaluation of Improper Integrals, Solving Differential equations by Laplace Transform. #### UNIT II **Partial Differential Equations**: Introduction, Formation of Partial Differential Equations, Solutions of a Partial Differential Equations, Equations Solvable by Direct Integration, Linear Equations of First Order. **Sequence and Series**: Convergence of series, Comparison test, Integral test, D'Alembert's Ratio test, Cauchy's Root Test, Alternating series test, Absolute and Conditional convergence. #### UNIT III **Integral Calculus**: Double Integrals, Change of Order of Integration, Double Integrals in Polar Coordinates, Triple Integrals, Change of Variables. **Applications:** Area enclosed by Plane Curves, Volumes of Solids. **Special Functions**: Beta Function, Gamma Function, Relation between Beta and Gamma Function, Error Function. #### **UNIT IV** **Vector Calculus**: Scalar and Vector point functions, Del applied to Scalar point functions, Del applied to Vector point functions, Physical interpretation of Divergence, Del applied twice to point functions, Del applied to products of point functions. Integration of Vectors, Line Integral, Surface Integral, Green's Theorem in a plane, Stokes's Theorem, Volume Integral, Gauss Divergence Theorem, Irrotational Fields. #### TEXT BOOKS [1] B.S.Grewal, "Higher Engineering Mathematics, Khanna Publishers", 43rd Edition, 2014. #### REFERENCE BOOKS - [1] Erwin Kreyszig, "Advanced Engineering Mathematics", John Wiley & Sons, 10th Edition, 2015 - [2] B.V.Ramana, "Higher Engineering Mathematics", Tata MC Graw Hill, 1st Edition, 2007 - [3] N.P.Bali, Dr.Manish Goyal, "A Text Book of Engineering Mathematics", Laxmi Publications, 9th Edition, 2014 #### E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] www.nptel videos.com/mathematics/ (Math Lectures from MIT,Stanford,IIT'S) Last accessed on 01-06-2017 - [2] nptel.ac.in/courses/122104017 Last accessed on 01-06-2017 - [3] nptel.ac.in/courses/111105035 Last accessed on 01-06-2017 - [4] Engineering Mathematics Open Learning Project. www.3.ul.ie/~mlc/support/Loughborough%20website/ Last accessed on 01-06-2017 | 17CH1202A
ENGINEEERING CHEMISTRY | | | | | | | | | | | |--|--------------------|----------------------------|-------|--|--|--|--|--|--|--| | Course Category: Institutional Core Credits: 3 | | | | | | | | | | | | Course Type: | Theory | Lecture-Tutorial-Practice: | 3-0-0 | | | | | | | | | Prerequisites: | Knowledge of | Continuous Evaluation: | 30 | | | | | | | | | | Chemistry at | Semester end Evaluation: | 70 | | | | | | | | | | Intermediate level | Total Marks: | 100 | | | | | | | | | COURSE OUTCOMES | | | | | | | | | | |--|--|--|--|--|--|--|--|--|--| | Upon successful completion of the course, the student will be able to: | | | | | | | | | | | CO1 | Analyze various water treatment methods and boiler troubles. | | | | | | | | | | CO2 | Apply the principles of spectroscopic techniques to analyse different materials and apply the knowledge of conventional fuels for their effective utilisation. | | | | | | | | | | CO3 | Apply the knowledge of working principles of conducting polymers, electrodes and batteries for their application in various technological fields. | | | | | | | | | | CO4 | Evaluate corrosion processes as well as protection methods. | | | | | | | | | | Contribution of Course Outcomes towards achievement of Program Outcomes (1-Low, 2-Medium, 3- | | | | | | | | | | High) | | PO
1 | PO 2 | PO
3 | PO
4 | PO
5 | PO 6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-----|---------|------|---------|---------|---------|------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | | 3 | | | | | | | | | | | | | | CO2 | 2 | | | | | | | | | | | | | | | CO3 | | | | | | | | | | | | | | | | CO4 | | | 2 | | | | | | 3 | | | | | | #### **COURSE CONTENT** #### UNIT I Water technology-I: WHO standards - Water treatment for drinking purpose - sedimentation, coagulation, filtration, disinfection by chlorination, breakpoint chlorination and its significance - Desalination of brackish water - principle and process of electrodialysis and reverse osmosis, advantages and disadvantages. Water technology-II: Boiler troubles - scales-formation, disadvantages and internal conditioning methods phosphate conditioning, calgon conditioning and sodium aluminate, caustic embrittlement- reasons, mechanism and its control, and boiler corrosion – causes and control. #### **UNIT II** Spectroscopic Techniques and Applications: Interaction of electromagnetic radiation with matter -Ultraviolet-visible spectroscopy: Frank-Condon principle, types of electronic transitions, Lambert-Beer's law – definition and numerical problems, problems on interpretation of UV-visible spectra of simple molecules of arenes, aldehydes and ketones. Infrared (IR) spectroscopy: Principle, types of vibrations, problems on interpretation of IR spectra of simple molecules of amines, alcohols, aldehydes and ketones. Fuel Technology: Fuel-definition, calorific value- lower and higher calorific values, analysis of coal – proximate analysis and ultimate analysis, refining of petroleum, flue gas analysis by Orsat's apparatus, numericals based on calculation of air required for combustion #### UNIT III Conducting polymers: Definition, examples, classification-intrinsically conducting polymers and extrinsically conducting polymers- mechanism of conduction of undoped polyacetylene, doping of conducting polymers- mechanism of conduction of p-doped and n-doped polyacetylenes – applications of conducting polymers. **Electrochemistry:** Construction and working of Calomel electrode, silver-silver chloride electrode and principle, construction and working of glass electrode, determination of pH using glass electrode - Chemistry of modern batteries - $Li/SOCl_2$ battery and $Li_xC/LiCoO_2$ battery - construction, working and advantages, Chemistry of H_2-O_2 fuel cell-advantages. ## **UNIT IV** **Corrosion principles:** Introduction, definition, reason for corrosion, examples – electrochemical theory of corrosion, types of electrochemical corrosion - hydrogen evolution and oxygen absorption – corrosion due to dissimilar metals, galvanic series – differential aeration corrosion – pitting corrosion and concept of passivity. **Corrosion control methods:** Cathodic protection- principle and types - impressed current method and sacrificial anode method, anodic protection-principle and method, corrosion inhibitors – types and mechanism of inhibition – principle, process and advantages of electroplating and electroless plating. ## **TEXT BOOKS** [1] Shikha Agarwal, "Engineering Chemistry – Fundamentals and Applications", Cambridge University Press, New Delhi, 1st edition (2015). #### **REFERENCE BOOKS:** - [1] Sunita Rattan, "A Textbook of Engineering Chemistry", S.K. Kataria & Sons, New Delhi, First edition 2012. - [2] P.C. Jain, "Engineering Chemistry", Dhanpat Rai Publishing Company (P) Limited, New Delhi, 15th edition. - [3] B.S. Bahl, G. D. Tuli and Arun Bahl, "Essentials of Physical Chemistry", S. Chand and Company Limited, New Delhi. - [4] O. G. Palanna, "Engineering Chemistry", Tata McGraw Hill Education Pvt. Ltd., New Delhi. - [5] Y.Anjaneyulu, K. Chandrasekhar and Valli Manickam, Text book of Analytical Chemistry, , Pharma Book Syndicate, Hyderabad. - [6] H. Kaur, Spectroscopy, I Edition, 2001, Pragati Prakashan, Meerut. ## E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] http://www.cip.ukcentre.com/steam.htm Last accessed on 01-06-2017 - [2] http://corrosion-doctors.org/Modi;es/mod-basics.htm Last accessed on 01-06-2017 - [3] http://nopr.niscair.res.in/bitstream/123456789/5475/1/JSIR%2063%289%29%20715-728.pdf Last accessed on 01-06-2017 - [4] https://chem.libretexts.org/Core/Analytical
Chemistry/Electrochemistry/Basics of Electrochemistry Last accessed on 01-06-2017 - [5] http://www.filtronics.com/blog/tertiary-treatment/stages-in-typical-municipal-water-treatment/ Last accessed on 01-06-2017 - [6] https://www.khanacademy.org/test-prep/mcat/physical-processes/infrared-and-ultraviolet-visible-spectroscopy-questions Last accessed on 01-06-2017 - [7] NPTEL online course, "Analytical Chemistry", offered by MHRD and instructed by Prof. Debashis Ray of IIT Kharagpur. - [8] NPTEL online course, "Corrosion Part-I" offered by MHRD and instructed by Prof. Kallol Mondal of IIT Kanpur | 17CS1203
PROGRAMMING IN C | | | | | | |------------------------------|---------------|---------|-----------------------------|----------|--| | Course Category: | Institutional | Core | Credits: | 3 | | | Course Type: | Theory | | Lecture -Tutorial-Practice: | 3 -0 - 0 | | | Prerequisites: | Problem | Solving | Continuous Evaluation: | 30 | | | _ | Methods. | | Semester end Evaluation: | 70 | | | | | | Total Marks: | 100 | | | | | | | | | ### Upon successful completion of the course, the student will be able to: | CO1 | Understand the fundamentals and structure of a C programming language | |-----|---| | CO2 | Apply the loops, arrays, functions and string concepts in C to solve the given problem. | | CO3 | Apply the pointers and text input output files concept to find the solution for the given applications. | | CO4 | Use the Enumerated, Datatypes, Structures and Unions. | ## Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO 2 | |-----------------|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|-------| | CO1 CO2 CO3 CO4 | 3 | | | | | | | | | | | | | | | CO2 | | 1 | 3 | | | | | | | | | | | | | CO3 | | 1 | 3 | | | | | | | | | | | | | CO4 | 3 | 1 | | | | | | | | | | | | | ### **COURSE CONTENT** #### UNIT - I **Introduction to the C Language :** Background, C Programs, Identifiers, Types, Variables, Constants, Input/Output, Programming Examples. **Structure of a C Program**: Expressions, Precedence and Associatively, Evaluating Expressions, Type Conversion, Statements, Sample Programs. **Selection:** Storage Class, Logical Data and Operators, Two -Way Selection, Multiway Selection, More Standard Functions #### UNIT - II **Repetition:** Concept of a Loop Loops In C, Loop Examples, Recursion, The Calculator Program. **Arrays:** Concepts, Using Array in C, Inter-Function Communication, Array Applications, Two Dimensional Arrays, Multidimensional Arrays. **Functions:** Functions in C, User Defined Functions, Inter Function Communication, Standard Functions, Scope. **Strings:** String Concepts, C Strings, String Input/Output Functions, Arrays of Strings, String Manipulation Functions, String- Data Conversion. #### UNIT - III **Pointers:** Introduction, Pointers For Inter Function Communications, Pointers to Pointers, Compatibility, Lvalue and Rvlaue. **Pointer Applications**: Arrays and Pointers, Pointer Arithmetic and Arrays, Passing an Array to a Function, Memory Allocations Functions, Array of Pointers. **Text Input/output**: Files, Streams, Standard Library Input/Output Functions, Formatting Input/output Functions and Character Input/Output Functions, Command-Line Arguments. #### UNIT - IV **Enumerations:** The Type Definition(Typedef), Enumerated Types: Declaring an Enumerated Type, Operations on Enumerated Types, Enumeration Type Conversion, Initializing Enumerated Constants, Anonymous Enumeration: Constants, Input/Output Operators. **Structures:** Structure Type Declaration, Initialization, Accessing Structures, Operations on Structures, Complex Structures, Structures and Functions, Sending the Whole Structure, Passing Structures through Pointers. Unions: Referencing Unions, Initializers, Unions and Structures, Internet Address, Programming Applications. #### **TEXT BOOKS** [1] Behrouz A. Forouzan & Richard F. Gilberg, "Computer Science A Structured Programming Approach using C", CENGAGE Learning, Third Edition. #### REFERENCE BOOKS - [1] Kernighan and Ritchie, "The C programming language", The (Ansi C Version), PHI, second edition. - [2] Yashwant Kanetkar, "Let us C", BPB Publications, 2nd Edition 2001. - [3] Paul J. Dietel and Dr. Harvey M. Deitel, "C: How to Program", Prentice Hall, 7th edition (March 4,2012). - [4] Herbert Schildt, "C:The Complete reference", McGraw Hill, 4th Edition, 2002. - [5] K.R. Venugopal, Sundeep R Prasad, "Mastering C", McGraw Hill, 2nd Edition, 2015 | | 17EC12
BASIC ELECTRONI | | | |------------------|---------------------------|-------------------------------|-------| | Course Category: | Institutional Core | Credits: | 3 | | Course Type: | Theory | Lecture -Tutorial-Practice: | 3-0-0 | | Prerequisites: | - | Continuous Evaluation: | 30 | | | | Semester end Evaluation: | 70 | | | | Total Marks: | 100 | | | | | | | Upon successful completion of the course, the student will be able to: | |--| |--| | CO1 | Gain Knowledge about the Fundamentals of electronic components, devices, transducers | |-----|--| | CO2 | Understand and apply Principles of digital electronics | | CO3 | Get familiar to the basic communication systems. | ## Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO 6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-----|---------|---------|---------|---------|---------|------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | 3 | 3 | | | 2 | | | | | | | | | | | CO2 | 3 | 3 | | | | | | | | | | | | | | CO3 | 2 | | | | 2 | | | | | | | | | | #### COURSE CONTENT #### UNIT I **Electronic Components**: Passive components - resistors, capacitors &inductors (properties, common types, I-V relationship and uses). Semiconductor Devices: Semiconductor Devices - Overview of Semiconductors - basic principle, operation and characteristics of PN diode, Zener diode, BJT, JFET, optoelectronic devices (LDR, photodiode, phototransistor, solar cell, photo couplers). ## UNIT II **Transducers**: Transducers - Instrumentation - general aspects, classification of transducers, basic requirements of transducers, passive transducers - strain gauge, thermistor, Hall-Effect transducer, LVDT, and active transducers - piezoelectric and thermocouple. #### UNIT III **Digital Electronics**: Number systems - binary codes - logic gatesBoolean algebra, laws & theorems - simplification of Boolean expression - Implementation of Boolean expressions using logic gates – standard forms of Boolean expression. #### **UNIT IV** **Communication Systems**: Block diagram of a basic communication system - frequency spectrum - need for modulation - methods of modulation - principles of AM, FM, pulse, analog and pulse digital modulation - AM / FM transmitters & receivers (block diagram description only). #### **TEXT BOOKS** [1] Thyagarajan.T, SendurChelvi.K.P, Rangaswamy, "Engineering Basics: Electrical, Electronics and computer Engineering", T.R, New Age International, Third Edition, 2007. VR17 [2] Somanathan Nair.B, Deepa.S.R, "Basic Electronics", I.K. International Pvt. Ltd., 2009. ## REFERENCE BOOKS - [1] Thomas L. Floyd, "Electronic Devices", Pearson Education, 9th Edition, 2011. - [2] Rajput.R.K, "Basic Electrical and Electronics Engineering", Laxmi Publications, First Edition, 2007. ## E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] http://www.nptel.ac.in/courses/Webcourse-contents/IIT-ROORKEE/ BASIC-ELECTRONICS/ home page.html Last accessed on 01-06-2017 - [2] http://nptel.ac.in/video.php?subjectId=117102059 Last accessed on 01-06-2017 | | 17ME12
ENGINEERING | | | |------------------|-----------------------|-----------------------------|-------| | Course Category: | Institutional Core | Credits: | 4 | | Course Type: | Theory & Practice | Lecture -Tutorial-Practice: | 2-0-4 | | Prerequisites: - | | Continuous Evaluation: | 30 | | _ | | Semester end Evaluation: | 70 | | | | Total Marks: | 100 | | | | | | | COUR | COURSE OUTCOMES: | | | | | | | | | | | | | | |-------------------|---|---------|----------|----------|----------|----------|---------|----------|----------|----------|----------|---------|-----------|--------| | Upon | success | ful con | npletio | n of the | e cours | e, the s | tudent | will be | e able t | 0: | | | | | | CO1 | Under | stand t | he Scal | es, con | ics and | Cycloi | dal cur | ves. | | | | | | | | CO2 | Draw | Orthog | raphic | project | ions of | points, | Lines, | Planes | and So | lids | | | | | | CO3 | Under | stand S | Sectiona | al views | s of Sol | ids, De | velopn | nent of | surface | s and th | neir rep | resenta | tion | | | CO4 | Construct isometric scale, isometric projections ,isometric views and convert pictorial views to orthographic projections | | | | | | | | | | | | | | | Contri
3 – Hig | | of Cou
 ırse Oı | ıtcome | s towa | rds ach | ievemo | ent of I | Prograi | n Outc | omes (| 1 – Lov | w, 2 - Mo | edium, | | 3 111, | PO PSO | PSO | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | | CO1 | 3 | | | 3 | | | | | | | 1 | | | | | CO2 | 2 | | | 3 | | | | | | | 2 | | | | | CO3 | 2 | | | 2 | | | | | | | 2 | | | | | CO4 | 1 | | | 3 | | | | | | | 2 | #### **COURSE CONTENT** #### UNIT -I Introduction to Engineering Drawing: Principles of Engineering Graphics and their Significance Scales: Construction of plain and diagonal Scales Conic Sections: Construction of ellipse, parabola and hyperbola (Treatment is limited to Eccentricity or General method only) Engineering Curves: Cycloidal curves - Cycloid, Epicycloid and Hypocycloid #### UNIT-II **Orthographic Projections:** Principles of Orthographic Projections –Projections of Points, Lines (Treatment is limited to First Angle Projection) and Projections of Plane regular geometric figures (Up to Plane Inclined to both of the Reference planes) #### UNIT - III **Projections of Solids**: Projections of simple solids such as Cubes, Prisms, Pyramids, Cylinders and Cones with varying positions (Limited to Solid Inclined to one of the Reference planes) **Sections of Solids**: Sections of solids such as Cubes, Prisms, Pyramids, Cylinders and Cones. True shapes of sections(Limited tothe solids perpendicular to one of the Principal Planes) #### UNIT - IV **Development of Surfaces**: Lateral development of cut sections of Cubes, Prisms, Pyramids, Cylinders and Cones **Isometric Projections**: Isometric Projection and conversion of isometric views into Orthographic Projections (Treatment is limited to simple objects only) Conventions Auto CAD: Basic principles only (Internal assessment only) ## **Text Books** [1] N.D. Bhatt & V.M. Panchal, "Elementary Engineering Drawing", Charotar Publishing House, Anand. 49th Edition – 2006 [2] Basanth Agrawal & C M Agrawal," Engineering Drawing", McGraw Hill Education Private Limited, New Delhi ## **Reference Books** - [1] K. L. Narayana & P. Kannaiah, "Text Book on Engineering Drawing", Scitech publications (India) Pvt. Ltd., Chennai, 2nd Edition fifth reprint 2006 - [2] K. Venugopal, "Engineering Drawing and Graphics + Auto CAD", New Age International, New Delhi - [3] D M Kulkarni, AP Rastogi, AK Sarkar, "Engineering Graphics with Auto CAD", PHI Learning Private Limited, Delhi Edition 2013 ## E-Resources and other digital material - [1] http://www.youtube.com/watch?v=XCWJ XrkWco, Accessed On 01-06-2017. - [2]http://www.me.umn.edu/courses/me2011/handouts/drawing/blanco-tutorial.html is so drawing, Accessed On 01-06-2017. - [3] http://www.slideshare.net, Accessed On 01-06-2017. - [4] http://edpstuff.blogspot.in, Accessed On 01-06-2017. | | 17CH
ENGINEERING CHEMI | | | |------------------|----------------------------------|-----------------------------|-----------| | Course Category: | Institutional Core | Credits: | 1.5 | | Course Type: | Laboratory | Lecture -Tutorial-Practice: | 0 - 0 - 3 | | Prerequisites: | Knowledge of | Continuous Evaluation: | 30 | | _ | chemistry | Semester end Evaluation: | 70 | | | practicals at intermediate level | Total Marks: | 100 | | Upon | successful | completion | of the | course, | the student | t will be able to: | |------|------------|------------|--------|---------|-------------|--------------------| | | | | | | | | | CO ₁ | Analyze quality parameters of water samples from different sources | |-----------------|--| |-----------------|--| - **CO2** Perform quantitative analysis using instrumental methods. - CO3 Apply the knowledge of mechanism of corrosion inhibition, metallic coatings and photochemical reactions. # Contribution of Course Outcomes towards achievement of Program Outcomes (1-Low, 2-Medium, 3-High) | (1 20 | , = 1.11 | | 8) | | | | | | | | | | | | |-------|----------|----|----|----|----|----|----|----|----|----|----|----|-----|---| | | PO | РО | РО | PO | PO | PO | PO | РО | PO | | | | PSO | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | | CO1 | | | 3 | | | | | | | | | | | | | CO2 | | | | | | | | | 2 | | | | | | | CO3 | | 2 | | | | | | | | | | | | | #### **COURSE CONTENT** #### **List of Experiments:** - 1. Determination of total alkalinity of water sample - 2. Determination of chlorides in water sample - 3. Determination of hardness of water sample - 4. Determination of available chlorine in bleaching powder - 5. Determination of copper in a given sample - 6. Determination of Mohr's salt Dichrometry - 7. Determination of Mohr's salt Permanganometry - 8. Determination of purity of boric acid sample - 9. Conductometric determination of a strong acid using a strong base - 10. pH metric titration of a strong acid vs. a strong base - 11. Determination of corrosion inhibition efficiency of an inhibitor for mild steel - 12. Chemistry of Blue Printings - 13. Preparation of Urea-Formaldehyde resin #### REFERENCE BOOKS | | · | K. Kataria & Sons, N | | |--|---|----------------------|--| 17CS1252
COMPUTER PROGRAMMING LABORATORY | | | | | | | | |---|--------------------|-------------------------------|-----------|--|--|--|--| | Course Category: | Institutional Core | Credits: | 1.5 | | | | | | Course Type: | Laboratory | Lecture -Tutorial-Practice: | 0 - 0 - 3 | | | | | | Prerequisites: | - | Continuous Evaluation: | 30 | | | | | | - | | Semester end Evaluation: | 70 | | | | | | | | Total Marks: | 100 | | | | | #### Upon successful completion of the course, the student will be able to: | CO1 | Implement the use of programming constructs in a structured oriented programming language | |-----|---| | CO2 | Analyze and implement user defined functions to solve real time problems | | CO3 | Implement the usage of pointers and file operations on data | | CO4 | Implement the user defined data types via structures and unions to solve real life problems | ## Contribution of Course Outcomes towards achievement of Program Outcomes #### (1 - Low, 2 - Medium, 3 - High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO 2 | |-----|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|-------| | CO1 | 1 | | 3 | | | | | | | | | | | | | CO2 | | 1 | 3 | | | | | | | | | | | | | CO3 | | 1 | 3 | | | | | | | | | | | | | CO4 | | | 3 | | | | | | | | 1 | | | | ### **COURSE CONTENT** ### CYCLE – I : PROGRAMMING CONSTRUCTS AND CONTROL STRUCTURES - 1. Introduction to C Pogramming: - a) Use of Turbo C IDE - b) The Structure of C Program with Sample program - 2. Data Types and Variables: - a) Programs to usage of keywords and identifiers in c - b) Programs on declaration of variables, rules for naming a variable, constants and different type of constants, data types - c) Programs to perform on various operators in C - 3. Branching and Selection: - a) To specify the conditions under which a statement or group of statements should be executed. - b) To choose exactly one out of two statements (possibly compound statements) to be executed; specifies the conditions under which the first statement is to be executed and provides an alternative statement to execute if these conditions are not met. - c) To choose one statement (possibly compound) to be executed from among a group of state- ments (possibly compound); specifies the conditions under which each statement may be executed and may contain a default statement (in an else clause at the end) to be executed if none of these conditions are met. Note that in the absence of a final else clause, it may be the case that none of the statements are executed. - 4. Unconditional control Transfer statements in C: - a) Design and develop programs that use of goto Statement - b) Design and develop programs that the use of Break Statement - c) Design and develop programs that use of Continue Statement - 5. Looping constructs: Design and develop programs based on - a) Iterative loops using While, Do While, For, Nested For - b) Selection Statement using the switch-case Statement - c) Multiple way selections that will branch into different code segments based on the value of a variable or expression #### 6. Arrays a) Design and develop programs which illustrates the implementation of single-dimensional arrays and Multi dimensional arrays ## 7. Strings - a) Create programs to initialize strings and usage of them for various input, output operations. - b) Design and develop programs to handle String functions #### CYCLE - II: ADVANCED PROGRAMMING CONSTRUCTS - 1. Concept of user defined functions - a) Design and develop programs depending on functions both user defined and standard library functions in C with different approaches. - 2. File handling operations - a) FILE structure - b) Opening and closing a file, file open modes - c) Reading and writing operations performed on a file - d) File Pointers: stdin, stdout and stderr - e) FILE handling functions: fgetc(), fputc(), fgets() and fputs() Functions - 3. Pointers: - a) Programs on declaration of pointers and their usage in C - b) Programs to relate between arrays and pointers and use them efficiently in a program - c) To pass pointers as an argument to a function, and use it efficiently in program - 4. Command Line Arguments - a) Design and develop
programs that accept arguments from command line to perform different kinds of operations - 5. Structures and Unions - a) Programs to define, declare and access structure and union variables - b) Design and develop programs to work with pointers to access data within a structure Programs to pass structure as an argument to a function #### **TEXT BOOKS** [1] Ashok N Kamthane, "C And Data Structures", Pearson Education; First edition, 2008 ### REFERENCE BOOKS - [1] Brain W Kernighan and Dennis Ritchie, "The C Programming language", Pearson Education India, 2015 - [2] David Griffiths and Dawn Griffiths, "Head First C": A Brain Friendly Guide, O:Reilly media, 2012 ## E-RESOURCES AND OTHER DIGITAL MATERIAL [1] Introduction to Programming C: http://nptel.ac.in/courses/106104128/ C-Programming - IIT Kharagpur lectures Last accessed on 01-06-2017 | [2]https://www.youtube.com/watch?v=S47aSEqm_0I&list=PLeCxvb23g7hrw27XlekHtfygUTQ0TmFfP
Last accessed on 01-06-2017 | |---| | [3] Numerical Methods and Programing by Prof.P.B.Sunil Kumar, Department of Physics, IIT Madras https://www.youtube.com/watch?v=zjyR9e-N1D4& list=PLC5DC6AD60D798FB7 Last accessed on | | 01-06-2017 | PROFESSIONAL ETHICS & HUMAN VALUES | | | | | | | | | |------------------------------------|--------------------|-----------------------------|-----------|--|--|--|--|--| | Course Category: | Mandatory Learning | Credits: | | | | | | | | Course Type: | Theory | Lecture -Tutorial-Practice: | 2 - 0 - 0 | | | | | | | Prerequisites: | - | Continuous Evaluation: | 100 | | | | | | | • | | Semester end Evaluation: | 0 | | | | | | | | | Total Marks: | 100 | | | | | | ### Upon successful completion of the course, the student will be able to: | CO1 | Know the moral autonomy and uses of ethical theories. | |-----|---| | CO2 | Understand morals, Honesty and character. | | CO3 | Understand about safety, risk and professional rights. | | CO4 | Know the ethics regarding Global issues related to Environment, Computers and weapon's development. | ## Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | | PO
1 | PO 2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-----|---------|------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | 2 | | | | | | | | | | | | | | | CO2 | | | | | | | | 2 | | | | | | | | CO3 | | | | | 3 | | | | | | | | | | | CO4 | | | | | | | | | | | 2 | | | | #### **COURSE CONTENT** #### UNIT I **Engineering Ethics**: Senses of 'Engineering Ethics' - variety of moral issues- types of inquiry - moral dilemmas - moral autonomy - Kohlberg's theory -Gilligan's theory - consensus and controversy - Models of Professional Roles -theories about right action - Self-interest - customs and religion- uses of ethical theories. #### UNIT II **Human Values**:Morals, Values and Ethics - Integrity- Work Ethic - Service Learning - Civic Virtue - Respect for Others - Living Peacefully - caring - Sharing - Honesty - Courage - Valuing Time - Co-operation - Commitment - Empathy - Self-Confidence - Character - Spirituality . #### UNIT III **Engineering as Social Experimentation**: Engineering as experimentation — engineers as responsible experimenters - codes of ethics - a balanced outlook on law - the challenger case study, Safety, Responsibilities and Rights: Safety and risk - assessment of safety and risk - risk benefit analysis and reducing risk – the three mile island and chernobyl case studies. Collegiality and loyalty – respect for authority - collective bargaining - confidentiality - conflicts of interest - occupational crime - professional rights - employee rights - Intellectual Property Rights (IPR) - discrimination. #### UNIT IV **Global Issues**: Multinational corporations- Environmental ethics- computer ethics - weapons development - engineers as managers-consulting engineers-engineers as expert witnesses and advisors -moral leadership-sample code of Ethics (Specific to a particular Engineering Discipline). #### TEXT BOOKS - [1] Mike Martin and Roland Schinzinger, "Ethics in engineering", McGraw Hill, New York (1996). - [2] Govindarajan M, Natarajan S, Senthil Kumar V. S., "Engineering Ethics", Prentice Hall of India, New Delhi(2004). #### REFERENCE BOOKS - [1] Baum, R.J. and Flores, A., "Ethical Problems in Engineering, Center for the studyof the Human Dimensions of Science and Technology", Rensellae Polytechnic Institute, Troy, New York, 335 pp. eds. (1978) - [2] Beabout, G.R., Wennemann, D.J., "Applied Professional Ethics: A Developmental Approach for Use with Case Studies", University Press of America Lanham, MD, 175 pp (1994). | Full Scheme and Syllabus | VR17 | |--------------------------|------| SEMESTER - III | I | 17MA1301B
PROBABILITY AND STATISTICS | | | | | | | | |---|--------------------------|-----------------------------|-----------|--|--|--|--| | Course Category: | Institutional Core | Credits: | 4 | | | | | | Course Type: | Theory | Lecture -Tutorial-Practice: | 3 - 1 - 0 | | | | | | Prerequisites: | Set theory, Basic | Continuous Evaluation: | 30 | | | | | | _ | probability, probability | Semester end Evaluation: | 70 | | | | | | | distributions | Total Marks: | 100 | | | | | | | | | | | | | | #### Upon successful completion of the course, the student will be able to: | CO1 | Understand random variables, Probability distributions. | |-----|--| | CO2 | Apply random phenomena of sample to test the Hypothesis concerning means. | | CO3 | Test the Hypothesis concerning variance and proportions. | | CO4 | Analyze Quality improvement, control charts and reliability to improve Statistical skills. | ## Contribution of Course Outcomes towards achievement of Program Outcomes (1– Low, 2 - Medium, 3 – High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-------------|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | 3 | 3 | | | | | | | 3 | | 1 | | | | | CO1 CO2 CO3 | 3 | 3 | | | | | | | 3 | | 1 | | | | | CO3 | 3 | 3 | | | | | | | 3 | | 1 | | | | | CO4 | 3 | 3 | | | | | | | 3 | | 1 | | | | ### **COURSE CONTENT** #### UNIT 1 **Probability Distributions**: Random Variables (discrete and continuous), Expectation, Variance and Standard deviation of discrete random variable, Binomial distribution, Poisson distribution. **Probability Densities**: Expectations, Variance and standard deviation of continuous random variables, Normal distribution, Normal approximation to the Binomial distribution, Other probability densities - Uniform distribution, Log normal distribution, Gamma distribution, Beta distribution, Weibull distribution. #### UNIT II **Sampling Distributions:** Introduction, Populations and Samples Inferences Concerning Mean: Point Estimation- Interval Estimation Test of Hypothesis – Null Hypothesis and Tests of Hypothesis – Hypothesis concerning one mean – Relation between tests and Confidence intervals –Operating characteristic curves - Inferences concerning two means. #### UNIT II **Inferences Concerning Variances**: Estimation of variances- Hypothesis concerning one variance- Hypothesis concerning two variances. **Inference Concerning Proportions**: Estimation of Proportions- Hypothesis concerning one Proportion-Hypothesis concerning several Proportions – The Analysis of r x c Tables- Goodness of fit. #### **UNIT IV** **The Statistical Content of Quality Improvement Programs**: Quality Control- Control Charts for Measurements - Control Charts for Attributes. **Applications to Reliability and Life Testing:** Reliability - Failure - Time Distributions - The Exponential Model in Reliability. #### **TEXT BOOKS** [1] Richard A. Johnson, Probability and Statistics for Engineers Eighth edition, Prentice Hall of India, 2011 #### REFERENCE BOOKS - [1] R.E. Walpole, R.H.Myers&S.L.Myers. Probability & Statistics for Engineers & Scientist, Sixth Edition, Prentice Hall of India / Pearson Education. - [2] Purna Chandra Biswal, Probability and Statistics, Pearson Education Prentice Hall of India, 2007. - [3] T.K.V.Iyengar, B.Krishna Gandhi, S.Ranganatham, M.V.S. S.N.Prasad S.Chand.Probability and Statistics. #### E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] probweb.berkeley.edu/teaching.html Last accessed on 01-06-2017 - [2] statsci.org/teaching.html Last accessed on 01-06-2017 - [3] video lectures.nptel.iitm.ac.in Last accessed on 01-06-2017 ## 17CS3302 OBJECT ORIENTED PROGRAMMING USING JAVA | Course Category: | Programme Core | Credits: | 3 | |------------------|------------------|-----------------------------|----------| | Course Type: | Theory | Lecture -Tutorial-Practice: | 3 -0 - 0 | | Prerequisites: | Programming in C | Continuous Evaluation: | 30 | | _ | | Semester end Evaluation: | 70 | | | | Total Marks: | 100 | | | | | | #### **COURSE OUTCOMES** ## Upon successful completion of the course, the student will be able to: | CO1 | Understand the concepts of object oriented programming. | |-----
---| | CO2 | Implement multiple inheritance through interfaces. | | CO3 | Apply exception, thread capabilities and Collections framework. | | CO4 | Develop Graphical user interface applications using Applet | ## Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | | , | | | | | | | | | | | | | | |-------------|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | | CO1 | 3 | | | | 1 | | | | | | | | | | | CO1 CO2 CO3 | | 2 | 1 | | 1 | | | | | | | | 1 | 1 | | CO3 | | | 2 | | 2 | | | | 1 | | | | 2 | | | CO4 | | | 2 | | 3 | | | | 2 | | 2 | | 3 | 3 | #### **COURSE CONTENT** ## UNIT I Fundamentals of Object Oriented Programming: Introduction, Object oriented paradigm, Basic concepts of Object Oriented Programming, Benefits of OOP, and Applications of OOP. Introduction to Java: Java history, java features, how java differs from C and C++. Data Types, variables and arrays: Java keywords, Primitive types, Integers, Floating-Point Types, Characters, Booleans, Variables, Type Conversion, casting and Arrays. Classes and objects: Class fundamentals, declaring objects, assigning object reference variables, introducing methods, constructors, this keyword, Garbage collection, overloading methods, using objects as parameters, returning objects, static and final keywords, nested and inner classes. #### **UNIT II** String Handling: The String Constructors, String Buffer Class, String Tokenizer class. Inheritance: Inheritance basics, using super, multilevel hierarchy, method overriding, dynamic method dispatch, using abstract classes, final with inheritance. Packages & Interfaces: Defining a package, finding package and CLASSPATH. Access protection, importing packages, Defining an interface, implementing interfaces, nested interfaces, applying interfaces, variables in interfaces. #### UNIT III Exception handling: Exception handling fundamentals, exception types, uncaught exceptions, using try and catch, multiple catch clauses, throw, throws, finally, creating your own exception subclasses. Stream Classes: Byte Streams- InputStream, OutputStream, FileInputStream, FileOutputStream, Character Streams- Reader, Writer, FileReader, FileWriter. Multithread Programming: The Java Thread Model, Creating a thread: Implementing Runnable, Extending Thread, creating multiple threads, Thread Priorities, Synchronization: Using Synchronized methods, The synchronized Statement. #### UNIT - IV The Applet Class: Applet Basics, Applet Architecture, Applet Skeleton, A Simple Banner Applets, Passing Parameters to Applets. Event Handling: The delegation event model- Events, Event Sources, Event Listeners. Event Classes, Event Listener Interfaces, Using the delegation Event Model, Adapter Classes. Collections Framework: Collections overview, Collection interfaces: Collection, List, and Set. Collection Classes: ArrayList, LinkedList, HashSet.Map Classes: HashMap, TreeMap. #### **TEXT BOOKS** - [1] Herbert Schildt, "Java The Complete Reference", 9th Edition, McGraw-Hill Education, New Delhi, 2011. [UNIT I (Chapter 2,3,4), UNIT II, III, IV] - [2] E Balagurusamy, "Programming with Java: A Primer", 4th Edition, Tata McGraw Hill Education Pvt Ltd., 2011. (UNIT I, Chapter 1) #### REFERENCE BOOKS - [1] Herbert Schildt, Dale Skrien, "Java Fundamentals A Comprehension Introduction", Special Indian Edition, McGraw-Hill Education India Pvt. Ltd, 2013. - [2] Paul J. Dietel and Dr.Harvey M. Deitel, "Java How to Program", 9th Edition, Prentice-Hall, Pearson Education, 2011. - [3] Timothy Budd, "Understanding Object Oriented Programming with Java", Updated edition, Pearson Education, 2013. #### E- RESOURCES AND OTHER DIGITAL MATERIAL - [1] Prof. I. Sengupta. (14th, May, 2015), Department of Computer Science & Engineering, I.I.T., Kharagpur, "Internet Technologies", NPTEL. http://nptel.ac.in/video.php?subjectId=106105084 Last accessed on 01-06-2017 - [2] Prof. Shane P. (14th, May, 2015), Department of Computer Science & Engineering,, NPTEL Videos, http://www.nptelvideos.com/video.php?id=1461&c=15 Last accessed on 01-06-2017 | 17CS3303
DATA STRUCTURES | | | | | | | | |-----------------------------|------------------|-------------------------------|-----------|--|--|--|--| | Course Category: | Programme Core | Credits: | 4 | | | | | | Course Type: | Theory | Lecture -Tutorial-Practice: | 3 - 1 - 0 | | | | | | Prerequisites: | Programming in C | Continuous Evaluation: | 30 | | | | | | • | | Semester end Evaluation: | 70 | | | | | | | | Total Marks: | 100 | | | | | #### Upon successful completion of the course, the student will be able to: | CO ₁ | Apply linear data | structures to | different applications. | |-----------------|-------------------|---------------|-------------------------| |-----------------|-------------------|---------------|-------------------------| - **CO2** Solve problems using linked list. - **CO3** | Implement operations on binary trees and binary search trees. - **CO4** Implement different searching and sorting algorithms. ## Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO 6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-----|---------|---------|---------|---------|---------|------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | 2 | 2 | 3 | 1 | | | | | | | | | 2 | | | CO2 | 2 | 1 | 3 | 1 | | | | | | | | | 3 | 2 | | CO3 | 2 | 1 | 3 | | | | | | | | | | 3 | 2 | | CO4 | 3 | 2 | 3 | | | | | | | | | | 2 | 1 | ## **COURSE CONTENT** #### UNIT I **Introduction:** Basic Concepts, Algorithm Specification, Data Abstraction, Performance Analysis-Time complexity, Space complexity, Asymptotic Notations, **Searching:** Linear Search and Binary Search Techniques and their complexity analysis. **Stacks**: Definition, Representing stacks, ADT Stack and its operations: Algorithms and their complexity analysis, Applications of Stacks: Expression Conversion and evaluation – corresponding algorithms. Recursion, Towers of Hanoi problem. **Queues:** Queue and its Sequential Representation, Queue as an abstract data type, Types of Queue: Simple Queue, Circular Queue, Operations on each types of Queues: Algorithms. #### UNIT II **Linked lists:** Singly linked lists: Representation in memory, Algorithms of several operations: Traversing, Searching, Insertion into, Deletion from linked list; Linked representation of Stack and Queue, Doubly linked list: operations and algorithms; Circular Linked Lists: all operations their algorithms. Polynomials: Addition, Multiplication. ## UNIT III **Trees: Introduction:** Terminology, Representation of Trees **Binary Trees**: Properties of binary trees, binary tree representation, Complete Binary Tree, Applications of Binary Trees, Expression trees construction and evaluation. **Binary Tree Traversals:** Inorder, Preorder and Postorder – recursive and non-recursive. **Threaded Binary Tree**: Threads, Inorder Traversal of Threaded Binary Tree, Inserting a Node into a Threaded Binary Tree **Binary Search Trees:** Definition, searching a Binary Search Tree (BST), Insertion into a binary search tree, Deletion from a binary search tree. **UNIT IV** **Sorting:** Insertion Sort, Selection Sort, Bubble Sort, Quick Sort, Merge Sort, Radix Sort. Hashing Static Hashing: Hash Tables, Hash Functions, Overflow Handing **Dynamic Hashing:** Motivation for Dynamic Hashing, Dynamic Hashing using Directories, Directory less Dynamic Hashing #### TEXT BOOKS - [1] Horowitz Sahni and Anderson-Freed "Fundamentals of Data Structures in C". 2nd Edition, Universities Press, 2008. (Unit 1, 2, 3) - [2] Richard F. Gilberg & B. A. Forouzan "Data Structures A Pseudocode Approcah with C", Second Edition, CENGAGE Learning.(Unit 4) #### REFERENCE BOOKS - [1] Mark Allen Weiss,"Data structure and Algorithm Analysis in C". Addison Wesley Publication. 2006. - [2] Jean Paul Trembley and Paul G. Sorenson, "An Introduction to Data Structures with Applications", McGraw Hill, 1984. - [3] Thomas Cormen, C.Leiserson, R. L.Rivest & C.Stein, "Introduction to Algorithms". 2nd Edition, PHI, 2010. #### E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] Dr.P.P. Chakraborty, IIT Kharagpur, May 19, 2010, Data Structures, NPTEL, Available: www.youtube.com/watch? v=S47aSEqm_0I Last accessed on 01-06-2017 - [2] Dr. Naveen Garg, IIT Delhi, Sep 24, 2008, Data Strucutres, NPTEL, Available:http://nptel.iitm.ac.in, http://freevideolectures.com/ Course /2279/Data-Structures-And-Algorithms Last accessed on 01-06-2017 - [3] Shai Simonson, Jun 16, 2014, Data Structures, NPTEL, Available: http://nptel.ac.in/video.php? subjectId=106102064 Last accessed on 01-06-2017 | Programme Core | Credits: | 3 | |-------------------|---|--| | Theory | Lecture -Tutorial-Practice: | 3-0-0 | | Basics Electronic | Continuous Evaluation: | 30 | | Engineering | Semester end Evaluation: | 70 | | | Total Marks: | 100 | | | Programme Core Theory Basics Electronic | Theory Basics Electronic Engineering Continuous Evaluation: Semester end Evaluation: | ## Upon successful completion of the course, the student will be able to: | CO1 | Apply Boolean laws & theorems to digital Logic functions. | |-----|---| | | | - **CO2** Simplify the Boolean functions to the minimum number of literals. - **CO3** Design different types of
combinational logic circuits. - CO4 Design clocked sequential logic circuits using flip flops. - CO5 Design different types of Counters, Registers and Programmable Logic Devices. ## Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2 - Medium, 3 - High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO 6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |---------------------|---------|---------|---------|---------|---------|------|------|---------|---------|----------|----------|----------|----------|----------| | CO1 | 2 | | | | | | | | | | | | | | | CO1 CO2 CO3 CO4 CO5 | 2 | | | | | | | | | | | | | | | CO3 | 1 | 2 | 2 | | | | | | | | | | | | | CO4 | 1 | 2 | 2 | | | | | | | | | | | | | CO5 | 1 | 2 | 2 | | | | | | | | | | | | ## **COURSE CONTENT** #### UNIT I #### **Boolean algebra And Logic Gates:** Digital computers and digital systems, Complements: r's complement, (r-1)'s complement. Basic theorems and Properties of Boolean Algebra, Boolean functions, Canonical and Standard Forms, Digital Logic Gates, Universal gates, IC digital logic families. ## **Simplification Of Boolean Functions:** The Map Method, Two and three variable Maps, Four-variable Map, Five variable Map, Product of Sums Simplification, Don't care conditions, The Tabulation Method, Determination of Prime Implicants, Selection of Prime-Implicants. #### UNIT II **Combinational Logic:** Introduction, Design Procedure, Adders, Subtractors, Code Conversion, Analysis Procedure. Exclusive-or Gates, Parity Generators and Checkers. **Combinational Logic with MSI and LSI:** Binary Parallel Adder, Decimal Adder, Magnitude Comparator, Decoders, demultiplexers, encoders, Multiplexers. #### UNIT III **Sequential Logic:** Sequential circuits, Classification, Latches, Flip Flops, Triggering of Flip-Flops, Master slave flip-flop, Flip-Flop Excitation tables, flip-flop direct inputs. **Analysis of Clocked Sequential Circuits:** State table, State diagram, state equations, State Reduction and Assignment, Design Procedure, design with unused states, Design of Counters. #### **UNIT IV** **Registers, Counters:** Registers, Shift Registers, Asynchronous Counters, Synchronous Counters, Ring Counter, Johnson Counter, Timing Sequences. **Programmable Logic:** Read only memory (ROM), Programmable read only memory (PROM), Programmable Logic Array (PLA), Programmable Array Logic (PAL), Introduction to FPGA. #### TEXT BOOKS [1] M.Morris Mano, Digital Logic & Computer Design 1 e/d reprint, Pearson education, 2013. #### REFERENCE BOOKS - [1] A. Anand Kumar, Switching Theory and Logic Design, 2nd Edition, PHI,2013 - [2] Charles H.Roth ,Fundamentals of Logic Design, 6/e, Cengage learning,2010 - [3] A. P. Malvino, D. P. Leach and G.Saha, Digital Principles and Applications 7/e, McGraw Hill, 2010. #### E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] Prof. S. Srinivasan, IIT Madras, 9th May 2015, Digital Circuits and Systems, NPTEL VIDEO, Available: - http://nptel.iitm.ac.in/video.php? subjectId=117106086 Last accessed on 01-06-2018 - [2] Prof. N.J. Rao, IISc Bangalore, 9th May 2015, Digital systems, NPTEL WEB Notes, Available at: http://nptel.ac.in/courses/Webcourse-contents/IIScBANG/ Digital%20Systems/Digital%20Systems.pdf Last accessed on 01-06-2018 | 17HS2305A
YOGA & MEDITATION | | | | | | | | |--------------------------------|---------------------|-----------------------------|-------|--|--|--|--| | Course Category: | Humanities Elective | Credits: | 1 | | | | | | Course Type: | Practical | Lecture -Tutorial-Practice: | 1-0-0 | | | | | | Prerequisites: | - | Continuous Evaluation: | 100 | | | | | | | | Semester end Evaluation: | - | | | | | | | | Total Marks: | 100 | | | | | | <u> </u> | | | | | | | | ## Upon successful completion of the course, the student will be able to: | CO1 | Equip better attitude and behaviour. | |-----|--| | CO2 | Imbibe set of values enabling a balanced life focused on an ethical material life. | | CO3 | Develop levels of concentration through meditation | | CO4 | Apply conscience for the missions of life | ## Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2 - Medium, 3 - High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-----------------|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | | | | | | | 2 | 3 | 3 | | | | | | | CO1 CO2 CO3 CO4 | | | | | | | | 3 | 2 | | | | | | | CO3 | | | | | | | | | 3 | | | | | | | CO4 | | | | | | | 3 | | 1 | | | | | | ## **COURSE CONTENT** ## UNIT I **Understanding Yoga**: Orientation, Introduction to Values, The positive impact of yoga, Application of Values in real life, Universal values (Lec-demo pattern with illustrations representing Yogic Postures and value system related pictorial is followed) ## UNIT II **Yogic Practices:** Yoga, Self and Ultimate goal of yoga, Introduction to various types of yoga, Integration of values in Yoga. (Activity based processes with Assasanas and Pranayama are implemented) #### **UNIT III** **Practice of Meditation:** Art of Meditation, Observation, Introspection, Contemplation, Meditation and Concentration (Activity based processes involving Mediation sessions followed by demonstrations are implemented) #### **UNIT IV** Towards professional excellence through Yoga and meditation: Stress Management, Choices we make, Excellence and Integration VR17 (Lec-demo pattern is followed) #### TEXT BOOKS - [1] Common Yoga protocol, Ministry of Ayush, Govt of India - [2] Journey of the Soul- Michael Newton, 2003, Llewellyn ## REFERENCE BOOKS - [1] Lectures from Colombo to Almora, Swami Vivekakanada, 2010 Ramakrishna Mission - [2] Essays of Ralph Waldo Emerson, 1982, Eastern press - [3] Eclectic materials Offered by English Dept. ## E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] www.heartfulness.org accessed on 27th April 2018 - [2] www. ayush.gov.in accessed on 27th April 2018 - [3] www. belurmath.org accessed on 27th April 2018 | 17HS2305D | |------------| | PHILOSOPHY | | Course Category: | Humanities Elective | Credits: | 1 | |-------------------------|---------------------|-------------------------------|-------| | Course Type: | Theory | Lecture -Tutorial-Practice: | 1-0-0 | | Prerequisites: | - | Continuous Evaluation: | 100 | | _ | | Semester end Evaluation: | - | | | | Total Marks: | 100 | | | | | | Upon successful completion of the course, the student will be able to: | CO1 | Understand major philosophical issues. | |-----|---| | CO2 | Appreciate the philosophical doctrines of western thinkers. | | CO3 | Understand the eminence of Indian classical thought. | | CO4 | Aappreciate relation between science and values. | Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2 - Medium, 3 - High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-----------------|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 CO2 CO3 CO4 | | | | | | 3 | | 2 | 1 | | | | | | | CO2 | | | | | | | | 3 | | | | | | | | CO3 | | | | | | 2 | 2 | | | | | | | | | CO4 | | | | | | | 3 | | | | | | | | ## **COURSE CONTENT** UNIT I What's Philosophy: Definition, Nature, Scope and Branches UNIT II Introduction to Western Philosophy: Ancient Greek and Modern philosophy UNIT III **Introduction to Indian Thought:** Six systems – Modern philosophers UNIT – IV Philosophy of Science & Technology: Human values and professional Ethics | TEXT BOOKS | |---| | [1] "The story of philosophy ",Will Durant, Simon & Schuster 1926 [2] "An Introduction to philosophy ",O.O.Fletcher, Word Public Library,2010 | | REFERENCE BOOKS | | [1] "Six systems of Indian Philosophy", DH Dutta, [2] "The pleasures of philosophy, Will Duran, Simon & Schuster,1929 | 17HS2305 I2 | | |---------------------------|--| | FOREIGN LANGUAGE - GERMAN | | | Course Category: | Humanities Elective | Credits: | 1 | |------------------|---------------------|-----------------------------|-------| | Course Type: | Theory | Lecture -Tutorial-Practice: | 1-0-0 | | Prerequisites: | - | Continuous Evaluation: | 100 | | _ | | Semester end Evaluation: | - | | | | Total Marks: | 100 | | | | | | Upon successful completion of the course, the student will be able to: | CO1 | Learn basics of German Language. | |-----|---| | CO2 | Write German Writing | | CO3 | Understand German Hearing | | CO4 | Form sentence in Present, Past and Future tense | Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2 - Medium, 3 - High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-------------|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO2 CO3 CO4 | | | | | | | | | 3 | | | | | | | CO2 | | | | | | | | | 3 | | | | | | | CO3 | | | | | | | | | 3 | | | | | | | CO4 | | | | | | | | | 3 | | | | | | ## **COURSE CONTENT** #### **UNIT I** Alphabets, Numbers, Exact articles and not exact Articles UNIT II Prepositions, Present Tense **Unit -III** Past Tense and about family UNIT - IV Future Tenses ## **TEXT BOOKS** [1] Studio d A1Cornelsen
Goyalaas Publications New Delhi | 17HS2305J
PSYCHOLOGY | | | | | | | | | | | |-------------------------|---------------------|-----------------------------|-------|--|--|--|--|--|--|--| | Course Category: | Humanities Elective | Credits: | 1 | | | | | | | | | Course Type: | Theory | Lecture -Tutorial-Practice: | 1-0-0 | | | | | | | | | Prerequisites: | - | Continuous Evaluation: | 100 | | | | | | | | | | | Semester end Evaluation: | - | | | | | | | | | | | Total Marks: | 100 | VR17 ## **COURSE OUTCOMES** | Upon | successful | completion | of the | course, 1 | the student | will be able to: | |------|------------|------------|--------|-----------|-------------|------------------| | | | | | | | | | CO1 | Relate biological and socio-cultural factors in understanding human Behaviour. | | | | | | | | | | |-----|--|--|--|--|--|--|--|--|--|--| | CO2 | Understand the nature of sensory processes, types of attentions. | | | | | | | | | | | CO3 | Explain different types of learning and procedures, distinguishes between different types of memory | | | | | | | | | | | CO4 | Demonstrate an understanding of some cognitive processes involved in decision-making. Problem solving and | | | | | | | | | | # Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2 - Medium, 3 - High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-----------------|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | | | | | | 3 | | 2 | | | | | | | | CO2 | | | | | | 2 | | 3 | | | | | | | | CO1 CO2 CO3 CO4 | | | | | | 1 | 1 | 3 | | | | | | | | CO4 | | | | | | | | | | | 3 | | | | ## **COURSE CONTENT** #### UNIT I **Introduction:** Psychology as a scientific study of behaviour. Biological and sociocultural bases of behaviour, fields of psychology ## UNIT II Sensory and perceptual processes: Sensation, attention and perception ## UNIT III Cognition and Affect: Learning and memory. Emotion and motivation ## UNIT – IV Thinking, problem solving and decision making, Personality and intelligence | ruii Scheme and Synabus | | | | | | | | | | | | |---|--|--|--|--|--|--|--|--|--|--|--| | TEXT BOOKS | | | | | | | | | | | | | [1] Zimbardo, P. G. Psychology and Life (20th Ed.). New York: Pearson Education (2013). | | | | | | | | | | | | | REFERENCE BOOKS | | | | | | | | | | | | | [1] Baron, R. A Psychology (5th Ed.). New Delhi: Pearson Education (2006). [2] Coon, D., & Mitterer, J. O. Introduction to Psychology: Gateway to mind and behaviour. New Delh Cengage (2007). [3] Feldman, R. S. Psychology and your life (2nd Ed.). New York: McGraw Hill (2013). | 17TP1306
LOGIC AND REASONING | | | | | | | | | | | | |---------------------------------|--------------------------------------|---|--|--|--|--|--|--|--|--|--| | Institutional Core | Credits: | 1 | | | | | | | | | | | Learning by Doing | Lecture -Tutorial-Practice: | 0-0-2 | | | | | | | | | | | - | Continuous Evaluation: | 100 | | | | | | | | | | | | Semester end Evaluation: | 0 | | | | | | | | | | | | Total Marks: | 100 | | | | | | | | | | |] | Institutional Core Learning by Doing | Institutional Core Learning by Doing Credits: Learning by Doing Continuous Evaluation: Semester end Evaluation: | | | | | | | | | | VR17 ## **COURSE OUTCOMES** | Į | Jpon | successful | completion | of th | e course, | the | student | will | be able | to: | |---|------|------------|------------|-------|-----------|-----|---------|------|---------|-----| | | | | | | | | | | | | | CO1 | Think reason logically in any critical situation | |-----|---| | CO2 | Analyze given information to find correct solution | | CO3 | To reduce the mistakes in day to day activities in practical life | | CO4 | Develop time-management skills by approaching different shortcut methods | | CO5 | Use mathematical based reasoning to make decisions | | CO6 | Apply logical thinking to solve problems and puzzles in qualifying exams in any competitive exam. | # Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2 - Medium, 3 - High) | 0 111 | - 111gil) | | | | | | | | | | | | | | |-------|-----------|---------|---------|---------|---------|------|-------------|---------|---------|----------|----------|----------|----------|----------| | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO 6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | | CO1 | 3 | 3 | | | | | | | | | | | | | | CO2 | 3 | 3 | | | | | | | | | | | | | | CO3 | 3 | 3 | | | 1 | | | | | | | | | | | CO4 | 3 | 3 | | 2 | | | | | | | | | | | | CO5 | 3 | 2 | | | | | | | | | | | | | | CO6 | 3 | 3 | | | | | | | | | | | | | ## **COURSE CONTENT** ## UNIT I: - 1. Series Completion, - 2. Coding-Decoding, - 3. Blood Relations, - 4. Puzzles test ## UNIT II: - 1. Direction sense test, - Logical Venn diagrams, Number test, ranking test, Mathematical operations ## UNIT III: | Arithmetical Reasoning, Inserting missing character, | | | |---|--------------------|-------------------------| | 3. Syllogism. | | | | UNIT IV: Non – Verbal: 1. Water images, 2. Mirror images, 3. Paper folding, 4. Paper cutting, 5. Embedded Figures, 6. Dot situation, 7. Cubes & Dice | | | | TEXT BOOKS | | | | [1] R. S. Aggarwal, "Verbal and non-verbal reasoning", ISBN:81-219-0551-6 | Revised Edition, S | Chand publication, 2017 | | | | | 100 **Total Marks:** #### #### **COURSE OUTCOMES** **Course Category:** **Course Type:** **Prerequisites:** ## Upon successful completion of the course, the student will be able to: | CO1 | Understand the concepts of object oriented programming. | |-----|---| | CO2 | Implement multiple inheritance through interfaces. | | CO3 | Apply exception, thread capabilities and Collections framework. | | CO4 | Develop Graphical user interface applications using Applet | ## Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | | 6 / | | | | | | | | | | | | | | |-----------------|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | | CO1 | 3 | | | | | | | | | | | | 2 | 2 | | CO2 | | 2 | 1 | | | | | | | | | | 2 | | | CO1 CO2 CO3 CO4 | | | 3 | | | | | | 3 | | 2 | 2 | 2 | | | CO4 | | | 3 | | | | | | 2 | | 3 | 3 | 2 | 2 | #### COURSE CONTENT/TASK - **Task 1:** Implement the concept of classes and objects. - Task 2: Implement Arrays to a given application. - **Task 3:** Develop Java Application using inheritance. - **Task 4:** Use String and String Tokenizer classes and develop a java application. - **Task 5:** Use interfaces and develop a java application. - **Task 6:** Create a package and access members from a package. - **Task 7:** Develop Java Application using Method overloading and method overriding. - **Task 8:** Create a java application to copy content from one file to another using IO streams. - **Task 9:** Implement Exception handling to a given application. - **Task 10:** Develop java application using Multithreading. - **Task 11:** Develop java application using collections. - **Task 12:** GUI Application using applets. #### **PROJECTS** - 1. Design and develop an automated ballot vote system. - 2. Design and develop a banking application. ## **TEXT BOOKS** - [1] E Balagurusamy, "Programming with Java: A Primer", 4th Edition, Tata McGraw Hill Education Pvt Ltd., 2011. - [2] Herbert Schildt, "Java The Complete Reference", 8th Edition, McGraw-Hill Education, New Delhi, 2011. #### **REFERENCE BOOKS** - [1] Herbert Schildt, Dale Skrien, "Java Fundamentals A Comprehension Introduction", Special Indian Edition, McGraw-Hill Education India Pvt. Ltd, 2013. - [2] Paul J. Dietel and Dr.Harvey M. Deitel, "Java How to Program", 9th Edition, Prentice-Hall, Pearson Education, 2011. - [3] Timothy Budd, "Understanding Object Oriented Programming with Java ", Updated edition, Pearson Education, 2013. ## E- RESOURCES AND OTHER DIGITAL MATERIAL - [1] LearnJava online virtual training center, Last accessed on 14th May 2015. Available: http://www.learnjavaonline.org/ - [2] Internshala
Virtual lab, 14th May 2015. http://vtc.internshala.com/signup/course_details2.php?course=java101 | 17CS3352
DATA STRUCTURES LABORATORY | | | | | | | | | | | | |--|------------------|-----------------------------|---------|--|--|--|--|--|--|--|--| | Course Category: | Programme Core | Credits: | 1 | | | | | | | | | | Course Type: | Laboratory | Lecture -Tutorial-Practice: | 0 -0- 2 | | | | | | | | | | Prerequisites: | Programming in C | Continuous Evaluation: | 30 | | | | | | | | | | - | | Semester end Evaluation: | 70 | | | | | | | | | | | | Total Marks: | 100 | | | | | | | | | ## Upon successful completion of the course, the student will be able to: **CO1** Apply linear data structures to different applications. **CO2** Solve problems using linked list. **CO3** Implement operations on binary trees and binary search trees. **CO4** Implement different searching and sorting algorithms. ## Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO 6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-----|---------|---------|---------|---------|---------|------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | 2 | 2 | 3 | 1 | | | | | | | | | 2 | | | CO2 | 2 | 1 | 3 | 1 | | | | | | | | | 3 | 2 | | CO3 | 2 | 1 | 3 | | | | | | | | | | 3 | 2 | | CO4 | 3 | 2 | 3 | | | | | | | | | | 2 | 1 | #### **COURSE CONTENT/TASKS** Task 1 Operations on stacks. Task 2 Stack applications Task 3 Operations on queues and circular queues. Task 4 Operations on singly linked list and doubly linked list. Task 5 Circular linked list operations. Task 6 Linked List Applications: Polynomial addition, Polynomial Differentiation Task 7 Binary Search Tree Operations and tree traversal techniques using recursion. Binary Search Tree Operations and tree traversal techniques using non recursion. #### Task 8 Searching techniques: Liner Search, Binary Search Sorting Techniques: Bubble Sort, Selection Sort, Shell Sort Sorting Techniques: Insertion Sort, Quick Sort and Merge Sort Task 9 Hashing Techniques Task 10 Lab Projects Simulation of linear data structures Simulation of sorting and searching ## **TEXT BOOKS** - [1] Horowitz Sahni and Anderson-Freed "Fundamentals of Data Structures in C". 2nd Edition, Universities Press, 2008. - [2] Richard F. Gilberg & B. A. Forouzan "Data Structures A Pseudocode Approcah with C", Second Edition, CENGAGE Learning. #### REFERENCE BOOKS - [1] Mark Allen Weiss, "Data structure and Algorithm Analysis in C". Addison Wesley Publication. 2006. - [2] Jean Paul Trembley and Paul G. Sorenson, "An Introduction to Data Structures with Applications", McGraw Hill, 1984 - [3] Thomas Cormen, C. Leiserson, R. L. Rivest and C. Stein, "Introduction to Algorithms", 2nd Edition, PHI, 2010 #### E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] MHRD VIRTUAL LABS, IIT KHARAGPUR, 14.05.2015, Available: http://cse.iitkgp.ac.in/~rkumar/pds-vlab/ - [2] MHRD VIRTUAL LABS, IIIT HYDERABAD, 14.05.2015, Available: http://cse01-iiith.vlabs.ac.in/ | 17HS1353
COMMUNICATION SKILLS LABORATORY | | | | | | | | | | | |---|----------------------|-----------------------------|--------|--|--|--|--|--|--|--| | Course Category: | Institutional Core | Credits: | 1 | | | | | | | | | Course Type: | Laboratory | Lecture -Tutorial-Practice: | 0- 0-2 | | | | | | | | | Prerequisites: | Technical English & | Continuous Evaluation: | 30 | | | | | | | | | | Communication Skills | Semester end Evaluation: | 70 | | | | | | | | | | | Total Marks: | 100 | | | | | | | | CO₄ # Upon successful completion of the course, the student will be able to: | CO1 | Execute rational pronunciation of speech sounds including accentuation. | |-----|---| | CO2 | Apply elements of listening comprehension in professional environments. | | CO3 | Develop the abilities of rational argumentation and skills of public speaking. | | COA | Demonstrate proficiency in the elements of professional communication including the competitive | # examination Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2 - Medium, # 3 - High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO 6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-------------|---------|---------|---------|---------|---------|------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | | | | | | 3 | | | | 3 | | | | | | CO2 | | | 2 | 2 | 2 | 3 | 3 | 1 | | 3 | 2 | | | | | CO1 CO2 CO3 | 3 | | 2 | 3 | 2 | 3 | 3 | 2 | | 3 | 2 | | | | | CO4 | 2 | 1 | 2 | 2 | 1 | 3 | 2 | 3 | 2 | 3 | 3 | 2 | | | ## COURSE CONTENT/TASK # UNIT:1: Elements of Spoken Expression and processes of Listening Comprehension: - Speech Mechanism - Articulation of vowels and consonants - Patterns of Accentuation Types and processes of Listening comprehension # **UNIT II: : Patterns of Substantiation and Refutation in Public Speaking:** - Group Discussion(Open and Monitored) - Pyramid Discussion - PNI Seminar Talk and Power Point Presentation # **UNIT III: Professional Communication:** - **Self Affirmation** - Advanced Composition including Memo and e-mail - Résumé Preparation Corporate ethic of Non-Verbal Communication # UNIT IV: Life Skills and Vocabulary for Competitive Examinations: - Select Life Skills(50) - Select Logies, Isms, Phobias and Manias (25 each) - Sentence Completion and Double Unit Verbal Analogies (50 items) Fundamentals of Syllogisms(Descriptive and Pictorial) # **TEXT BOOKS** - [1] Martin Cutts, Oxford Guide to Plain English, 7th Impression, OUP, 2011 - [2] Exercises in Spoken English, Prepared by Department of Phonetics and Spoken English, CIEFL, OUP, 21st Impression, 2003 # REFERENCE BOOKS - [1] Stephen R Covey, The 7 Habits of Highly Effective people, II edition, (Pocket Books) Simon & Schuster UK Ltd, 2004 - [2] Eclectic Learning Materials offered by the Department # E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] ODll Language Learner's Software, 27-6-2012 Orell Techno Systems - [2] Visionet Spears Digital Language Lab software Advance Pro, 28-01-2015 - [3] www.natcorp.ox.ac.uk, British National Corpus accessed on 28-11-2017 | 17CS3354
DIGITAL LOGIC DESIGN LABORATORY | | | | | | | | | | | |---|------------------------|-------------------------------|--------|--|--|--|--|--|--|--| | Course Category: | Programme Core | Credits: | 1 | | | | | | | | | Course Type: | Laboratory | Lecture -Tutorial-Practice: | 0- 0-2 | | | | | | | | | Prerequisites: | Basics of | Continuous Evaluation: | 30 | | | | | | | | | _ | Electronic Engineering | Semester end Evaluation: | 70 | | | | | | | | | | | Total Marks: | 100 | # Upon successful completion of the course, the student will be able to: | CO ₁ | Apply Boolean laws & theorems to digital Logic fu | unctions. | |-----------------|---|-----------| |-----------------|---|-----------| - **CO2** Simplify the Boolean functions to the minimum number of literals. - **CO3** Design different types of combinational logic circuits. - **CO4** Design clocked sequential logic circuits using flip flops. - **CO5** Design different types of Counters, Registers and Programmable Logic Devices. # Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO 2 | |---------------------|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|-------| | CO1 | 2 | | | | | | | | | | | | | | | CO2 | 2 | | | | | | | | | | | | | | | CO3 | 1 | 2 | 3 | | | | | | | | | | | | | CO4 | 1 | 2 | 3 | | | | | | | | | | | | | CO1 CO2 CO3 CO4 CO5 | 1 | 2 | 3 | | | | | | | | | | | | # **COURSE CONTENT/TASK** ## Task 1 Verify the Behavior of Logic Gates using Truth Table and Realization of All logic gates using universal gates. # Task 2 Design and test various adders and subtractor circuits(Arithmetic circuits). # Task 3 Design and build different types of code converters. # Task 4 Design and implementation of magnitude comparators. ## Task 5 Implementation of Decoders and encoders. Implementation of Multiplexer and De Multiplexer. Design a combinational circuit and implement it with multiplexers. Use a demultiplexer to implement a multiple output combinational circuit from the same input variables. #### Task 6 Construct an SR latch using NAND and NOR gates. Verify its operation and demonstrate the circuit. Implement all types of FLIP-FLOPS using gates. Construct and study the operation of Master-Slave JK Flip flop. # Task 7 Design a clocked sequential circuit for the given state diagram for a four state counter with one input where the counter counts up in binary when the input is low and counts in reverse when the input is high. # Task 8 Verification of Shift-Registers using flip flops. ## Task 9 Design of Synchronous counters. Design of Asynchronous counter. Design of Ring-counter and Johnson counter. ## Task 10 Design and Implementation of BCD to Seven Segment Display. Design and Implementation of Digital clock. ## **TEXT BOOKS** [1] M.Morris Mano, Digital Logic & Computer Design 1 e/d reprint 2013, Pearson education. ## REFERENCE BOOKS - [1] A. Anand Kumar, Switching Theory and Logic Design, 2nd Edition. PHI - [2] Charles H.Roth ,Fundamentals of Logic Design, 6/e, , Cengage learning - [3] A. P. Malvino, D. P. Leach and
G.Saha, Digital Principles and Applications 7/e, McGraw Hill | | 17MC1
ENVIRONMEN' | | | |------------------|----------------------|-----------------------------|-----------| | Course Category: | Institutional Core | Credits: | - | | Course Type: | Theory | Lecture -Tutorial-Practice: | 2 - 0 - 0 | | Prerequisites: | - | Continuous Evaluation: | 100 | | _ | | Semester end Evaluation: | 0 | | | | Total Marks: | 100 | | | | | | # Upon successful completion of the course, the student will be able to: | CO1 | Understand the various natural resources, analyze and explore degradation management | |-----|---| | CO2 | Understand the Ecosystems and need of Biodiversity | | CO3 | Realize and Explore the Problems related to Environmental pollution and its management | | CO4 | Apply the Role of Information Technology and analyze social issues, Acts associated with Environment. | # Contribution of Course Outcomes towards achievement of Program Outcomes (1– Low, 2 - Medium, 3 – High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO 6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-------------|---------|---------|---------|---------|---------|------|------|---------|---------|----------|----------|----------|----------|----------| | CO1 | 1 | | | | | | | | | | 1 | | | | | CO2 | | | | | 3 | | 3 | | | | | | | | | CO2 CO3 CO4 | | | | | 3 | | 3 | | | | | | | | | CO4 | | | | | | | 3 | 3 | 1 | 1 | | | | | #### COURSE CONTENT #### UNIT -I **The Multidisciplinary Nature of Environmental Studies:** Definition, scope and importance, Need for public awareness. ## **Natural Resources** # Renewable and Non-renewable Resources: Natural resources and associated problems. - (a) Forest resources: Use and over-exploitation, deforestation. Timber extraction, mining, dams and their effects on forests and tribal people. - (b) Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems. - (c) Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources. - (d) Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity. - (e) Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources. - (f) Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification. Role of an individual in conservation of natural resources. Equitable use of resources for sustainable lifestyles. #### UNIT II **Ecosystems:** Concept of an ecosystem, Structure and function of an ecosystem, Producers, consumers and decomposers, Energy flow in the ecosystem, Ecological succession, Food chains, food webs and ecological pyramids. Introduction, types, characteristic features, structure and function of the following ecosystem: - (a) Forest ecosystem - (b) Grassland ecosystem - (c) Desert ecosystem - (d) Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries) ## **Biodiversity and Its Conservation** Introduction, definition: genetic, species and ecosystem diversity; Biogeographically classification of India, Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values, Biodiversity at global, National and local levels, India as a mega-diversity nation, Hot-spots of biodiversity, Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts, Endangered and endemic species of India, Conservation of biodiversity: in-situ and ex-situ conservation of biodiversity. #### UNIT III Environmental Pollution: Definition, Causes, effects and control measures of (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards Solid waste management: Causes, effects and control measures of urban and industrial wastes, Role of an individual in prevention of pollution; Disasters management: Floods, earthquake, cyclone and landslides # UNIT IV **Social Issues and the Environment:** From unsustainable to sustainable development, Urban problems related to energy, Water conservation, rain water harvesting, watershed management, Resettlement and rehabilitation of people; its problems and concerns, Environmental ethics: Issues and possible solutions; Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust, Wasteland reclamation, Consumerism and waste products. **Environment Protection Act**: Air (Prevention and Control of Pollution) Act, Water (Prevention and Control of Pollution) Act, Wildlife Protection Act, Forest Conservation Act, Issues involved in enforcement of environmental legislation, Public awareness. **Human Population and the Environment:** Population growth, variation among nations, Population explosion—Family Welfare Programme, Environment and human health, Human rights, Value education, HIV/AIDS, Women and Child Welfare, Role of Information Technology in environment and human health. **Field Work/ Case Studies** {NOT TO BE INCLUDED IN SEMESTER END EXAMS}: Visit to a local area to document environmental assets—river/forest/grassland/hill/ mountain; Visit to a local polluted site—Urban/Rural/Industrial/Agricultural; Study of common plants, insects, birds; Study of simple ecosystems—pond, river, hill slopes, etc. # **TEXT BOOKS** [1] Erach Bharucha, ENVIRONMENTAL STUDIES for under graduate courses of all branches of higher education, University Grants Commission, University press, First edition 2004, Available at: http://collegesat.du.ac.in/ UG/Envinromental%20Studies_ebook.pdf ## REFERENCE BOOKS [1] Anjaneyulu Y, Introduction to Environmental Sciences, B S Publications PVT Ltd, Hyderabad, 2004 | Full Scheme and Syllabus | | VR17 | |--------------------------|---------------|------| | | | | | | | | | | SEMESTER - IV | | | | | | | | | | | | | | | | | | | 17CS3401 | | |----------------------------------|--| | DISCRETE MATHEMATICAL STRUCTURES | | | Course Category: | Programme Core | Credits: | 3 | |------------------|------------------------|-----------------------------|-----------| | Course Type: | Theory | Lecture -Tutorial-Practice: | 3 - 0 - 0 | | Prerequisites: | Truth tables, Sets and | Continuous Evaluation: | 30 | | _ | Relations, | Semester end Evaluation: | 70 | | | Permutations& | Total Marks: | 100 | | | combinations | | | # Upon successful completion of the course, the student will be able to: | CO1 | Analyzation of propositional calculus and first order logic. | |-----|--| | CO2 | Examining the basic and advanced counting techniques. | | CO3 | Classification of relations and digraphs and their applications. | | CO4 | Classification of graphs and their applications. | # Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2 - Medium, 3 - High) | | 6 / | | | | | | | | | | | | | | |-----|---------|---------|---------|---------|---------|------|-------------|---------|---------|----------|----------|----------|----------|----------| | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO 6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | | CO1 | 3 | 3 | | | | | | | 3 | | 1 | | 2 | 2 | | CO2 | 3 | 3 | | | | | | | 3 | | 1 | | 2 | 2 | | CO3 | 3 | 3 | | | | | | | 3 | | 1 | | 2 | 2 | | CO4 | 3 | 3 | | | | | | | 3 | | 1 | | 2 | 2 | # **COURSE CONTENT** # **UNIT I: PROPOSITIONAL CALCULUS** **Fundamentals Of Logic**: Propositions, Connectives, Propositional functions, Truth Tables, Tautology, Contradiction, Logical equivalences, Normal forms, Logical inferences, Methods of proof of an implication. **First Order Logic:** Predicate, Quantifiers, and Rules of inference for Quantified propositions. # **UNIT II: COUNTING TECHNIQUES** **Basics of Counting:** Sum and product rules, Indirect counting, One to One Correspondence, Combinations and permutations, Enumerating Combinations and Permutations with and without repetitions. **Advanced Counting Techniques**: Generating function of sequences, Recurences relations, Solving recurrences relations – substitution- Generating functions-The method of characteristic roots, Solution of Inhomogeneous recurrences relations. ## UNIT III: RELATIONS AND DIGRAPHS Relations and basic graphs, Special properties of binary relations, Equivalence relation, Partially ordered sets, Hasse diagrams, Lattices, Operations on relations, Paths and closures, Directed graphs and Adjacency matrices, Transitive closure, Warshall's algorithm. # **UNIT IV: GRAPH THEORY** Introduction(graphs,subgraphs,circuits, trees) Sum of degrees theorem, Isomorphism and sub graphs, planar graphs, Euler's formula, Multi graphs and Euler's circuits, Hamiltonian graphs, Grin-berg's theorem, Graph coloring, Chromatic numbers. # TEXT BOOKS [1] J.L.Mott, Kandel, Baker, Discrete Mathematics for Computer Scientists & Mathematicians # REFERENCE BOOKS - [1] Trembly& Manohar, Discrete Mathematical structures with applications to Computer Science - [2] Rosen, TMH, Discrete Mathematics and its Applications - [3] Malik & Sen Thomson, Discrete Mathematical Structures: Theory and applicatons ## E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] discretemathsweb.berkeley.edu/teaching.html Last accessed on 01-06-2018 - [2] Discrete Mathematical Structures Dr. Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology, Madras https://nptel.ac.in/courses/106106094 Last accessed on 01-06-2018 | | 17CS3402
WEB TECHNOI | | | |-------------------------|-------------------------|-----------------------------|-------| | Course
Category: | Programme Core | Credits: | 3 | | Course Type: | Theory | Lecture -Tutorial-Practice: | 3-0-0 | | Prerequisites: | Programming in C and | Continuous Evaluation: | 30 | | • | OOP's using JAVA | Semester end Evaluation: | 70 | | | | Total Marks: | 100 | # Upon successful completion of the course, the student will be able to: | CO1 | Design and Create static web pages using HTML5 and CSS. | |-----|---| |-----|---| - **CO2** Create interactive web interfaces with client side technologies. - **CO3** Create and validate XML documents. - CO4 Understand Server Side Scripting. - CO5 Design and Create Interactive Server side Scripting for an application # Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2 - Medium, 3 - High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO 6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-----|---------|---------|---------|---------|---------|------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | | 2 | 3 | | | | | | 2 | | | | 2 | | | CO2 | | 2 | 3 | | | | | | 2 | | | | 2 | | | CO3 | | 2 | 3 | | | | | | 2 | | | | | | | CO4 | | 2 | 3 | | | | | | 2 | | | | 3 | | | CO5 | | 2 | 3 | | | | | | 2 | | | | 3 | | ## **COURSE CONTENT** ## **UNIT I** **Introduction to Web:** DNS, Role of DNS, DNS root servers, Internet and Intranet, Evolution: web 1.0, 2.0, 3.0, HTTP Request and HTTP Response, Website design principles, Planning. **HTML 5:** New Features of HTML5, Structures of HTML Document, Creating and Saving HTML Document, Hosting Web Pages. Fundamentals of HTML, Working with text, links, Images, Colors, Canvas and multimedia, URLs, Creating tables, Organizing text in HTML, Working with forms and frames. # **UNIT II** **Cascading Style Sheets:** Inline Style Sheet, Internal Style Sheet and External Style Sheet and CSS Selectors, Creating Boxes and Columns using CSS. **DHTML:** Overview of Java Script, Java Script Functions, Java Script Objects, working with window and Document Object properties and Methods, DOM Tree Traversing. **XML**: Compare XML and HTML, Advantages and Disadvantages of XML, Describing the structure of an XML Document, XML Entity References, Describing DTD, Need of Namespaces, Namespace Syntax and scope of Namespace declaration, Describing an XML Schema. ## UNIT III **Overview of AJAX:** AJAX Web Application Model, How AJAX works? Creating a Simple AJAX Application, creating the XMLHttpRequest Object-Properties and Methods. **PHP**: Installing a WAMP on Windows, The Structure of PHP, Using Comments, Basic Syntax, Understanding Variables, Variable Scope, Operators, Constants, Expressions and Control Flow in PHP, PHP Functions-Defining a function, returning a value, returning an array, pass by reference, Returning Global variables, PHP Arrays, Date and Time functions. # UNIT IV **File Operations:** including and requiring Files, File Handling – Reading from file, Copying Files, Deleting a File, Updating a File and Uploading Files. My SQL: Creating Database, Data Types, Basic Operations on tables (Create, Select, Delete and Update) **Working with Database & Forms:** Querying a My SQL Database with PHP, Get and Post Methods, Query strings, HTML form handling. Maintaining User State: Cookies and Sessions # **TEXT BOOKS** - [1] "HTML 5 Black Book" Covers CSS3, Javasvript, XML, XHTML, AJAX, PHP and jQuery, Dreamtech Press (2011). - [2] Robin Nixon, "Learning PHP, My SQL, Java Script & CSS", 2nd Edition, O'REILLY (2012). ## REFERENCE BOOKS 1] H. M. Deitel and P. J. Deitel, Internet & World Wide Web How to Program, 5th Edition, Prentice Hall, 2008 # E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] http://dns-record-viewer.online-domain-tools.com/ Last accessed on 01-06-2018 - [2] http://php.net/manual/en/book.mysql.php Last accessed on 01-06-2018 | 17CS3403
ADVANCED DATA STRUCTURES | | | | | | | | | | | |--------------------------------------|-----------------|-----------------------------|-----------|--|--|--|--|--|--|--| | Course Category: | Programme Core | Credits: | 3 | | | | | | | | | Course Type: | Theory | Lecture -Tutorial-Practice: | 3 - 0 - 0 | | | | | | | | | Prerequisites: | Data Structures | Continuous Evaluation: | 30 | | | | | | | | | - | | Semester end Evaluation: | 70 | | | | | | | | | | | Total Marks: | 100 | # Upon successful completion of the course, the student will be able to: | CO1 Implement various balanced tree operation | ıs. | |---|-----| |---|-----| # CO2 | Implement Multiway search trees # **CO3** Implement graph traversal techniques and shortest path algorithms CO4 Understand different file processing operations. # Contribution of Course Outcomes towards achievement of Program Outcomes (1– Low, 2 - Medium, 3 – High) | | 0 / | | | | | | | | | | | | | | |-------------|---------|---------|---------|---------|---------|------|-------------|---------|---------|----------|----------|----------|----------|----------| | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO 6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | | CO1 | 1 | | 3 | | | | | | | | | | 2 | | | CO2 | | 2 | 3 | | | | | | | | | | 3 | 2 | | CO3 | | 2 | 3 | | | | | | | | | | 3 | 2 | | CO2 CO3 CO4 | | | 3 | | | | | | | | | | 1 | 1 | # **COURSE CONTENT** # UNIT I ## EFFICIENT BINARY SEARCH TREES **AVL Trees:** AVL Tree Basic Concepts, AVL Tree Balance Factor, Balancing Trees: Left of Left, Right of Right, right of Left, Left of right. Right, fight of Left, Left of fight. Splay Trees: Introduction, Bottom Up Splay Trees ## **UNIT II** # MULTIWAY SEARCH TREES m-Way Search Trees: Definition and Properties, Searching an m-Way Search Tree. **B Trees:** Definition and Properties, Number of elements in a B-Tree, Insertion into a B-Tree and Deletion from a B-Tree **Heaps:** Priority Queues, Definition of Min Heap & Max Heap, Insertion into a Min Heap & Max Heap, Deletion from a Min Heap & Max Heap, Applications of Heap. # UNIT III **Graphs:** Basic Concepts, Graph Storage Structures, Graph Abstract Data Type, Elementary Graph Operations: Depth First Search, Breadth First Search, Spanning Trees, Minimum Spanning Trees: Prim's Algorithm and Kruskal's Algorithms Shortest Paths and Transitive Closure: Dijkstra's Algorithm, Warshall's algorithm, Floyd's Algorithm. **Activity Networks :** Activity on Vertex Networks, Definition, Topological Order ## UNIT IV **Fundamental File Processing Operations:** Physical Files and Logical Files, Opening Files, Closing Files, Reading and Writing, Seeking, Special Characters in Files, The Unix Directory Structure, Physical Devices and Logical Files, File-Related Header Files, Unix File System Commands. **Fundamental File Structure Concepts:** Field and Record Organization, Managing Files of Records: Record Access, File Access and File Organization # **TEXT BOOKS** - [1] Horowitz Sahni and Anderson-Freed, "Fundamentals of Data Structures in C",2nd Edition, Universities Press, 2008 - [2] Michael J.Folk, Bill Zoellick, Greg Riccardi, "File Structures: An Object-Oriented approach with C++", Pearson Education, 2006. (Unit 4) - [3] Richard F.Gilberg & B.A.Forouzan "Data Structures A Pseudo code Approach with C", 2nd Edition, CENGAGE Learning, 2013 ## **REFERENCE BOOKS** - [1] Debasis Samanta, "Classic Data structures", 2nd Edition, PHI, 2009. - [2] Jean Paul Trembley and Paul G. Sorenson, "An Introduction to Data Structures with Applications", McGraw Hill, 1984 - [3] Mark Allen Weiss, "Data Structures and Algorithm Analysis in C", 2nd Edition, Pearson Education, 2006. # E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] Prof. Naveen Garg, IIT Delhi, August 27, 2011, "AVL Trees" http://nptel.iitm.ac.in [NPTEL] - [2] Prof. Pradip K. Das, Jun 9, 2014, www.it4next gen.com/ free-computer-science-lectures-by-nptel.html - [3] IIT Delhi, http://nptel.ac.in/courses/106102064/25 Last accessed on 01-06-2018 - [4] IIT Guwahati B-Tree Construction, nptel.ac.in/courses/ 106103069/21 Last accessed on 01-06-2018 | | 17CS34
COMPUTER ORG | · | | |-------------------------|------------------------|-------------------------------|-----------| | Course Category: | Programme Core | Credits: | 3 | | Course Type: | Theory | Lecture -Tutorial-Practice: | 3 - 0 - 0 | | Prerequisites: | Digital Logic Design | Continuous Evaluation: | 30 | | • | | Semester end Evaluation: | 70 | | | | Total Marks: | 100 | VR17 # **COURSE OUTCOMES** # Upon successful completion of the course, the student will be able to: Understand Memory Hierarchy and I/O Organization. | CO1 | Describe Register transfer and micro operations. | |-----|---| | CO2 | Understand the basic computer designing and micro programming. | | CO3 | Know the Organization of CPU. | | CO4 | Apply algorithms to perform arithmetic operations on fixed point and floating point data. | CO4 Apply algorithms to perform artuinletic operations on fixed point and floating point dat Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO 2 | |-----|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|-------| | CO1 | 2 | | | | | | | | | | | | | | | CO2 | | 2 | 1 | | | | | | | | | | | | | CO3 | | | | | | | | | | | | | | 2 | | CO4 | 1 | 2 | | | | | | | | | | | | | | CO5 | 1 | 2 | | | | | | | | | | | | | # **COURSE CONTENT** #### IINIT - I CO₅ 3 - High) **Register Transfer and
Micro-Operations:** Register Transfer Language, Register Transfer, Bus and memory Transfers, Arithmetic Micro-operations, Logic Micro-operations, Shift Micro-operations, Arithmetic Logic Shift Unit. **Basic Computer Organization and Design:** Instruction codes, Computer Registers, Computer Instructions, Timing and Control, Instruction cycle, Memory Reference Instructions, Input-Output and Interrupt, Design of Basic Computer, Design of Accumulator Logic. #### UNIT - II Micro Programmed Control: Control Memory, Address Sequencing, Micro-Program example, Design of # Control Unit. **Central Processing Unit:** General register Organization, Stack Organization, Instruction Formats, Addressing Modes, Data Transfer and Manipulation, Program Control, Reduced Instruction Set Computer (RISC) # UNIT - III **Computer Arithmetic:** Addition and Subtraction, Multiplication Algorithms – Signed Magnitude Multiplication, Booth Multiplication(Signed 2's Complement Multiplication), Array Multipliers, Division Algorithm, Floating-point Arithmetic operations. **Memory Organization:** Memory Hierarchy, Main Memory, Auxiliary memory, Associative Memory, Cache Memory, Virtual Memory, Memory Management Hardware. ## UNIT - IV **Input Output Organization:** Peripheral Devices, Input-output Interface, Asynchronous Data Transfer, Modes of Transfer, Priority Interrupt, Direct Memory Access (DMA), Input-Output Processor., Serial Communication. **Standard I/O Interfaces**: PCI Bus, USB ## **TEXT BOOKS** - [1] Morris M. Mano, Computer Systems Architecture.3 Ed, Pearson/PHI, 2013 - [2] Carl Hamacher, Zvonko Vranesic, Safwat Zaky: Computer Organization, 5th Edition, Tata McGraw Hill, 2002. # REFERENCE BOOKS [1] John P.Hayes, 'Computer architecture and Organisation', Tata McGraw-Hill, Third edition, 1998 ## E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] Prof. S.Raman Department of Computer Science & Engineering , IIT Madras , "Introduction to computing", (14,May,2015). NPTEL http://www.nptel.iitm.ac.in/video.php?subjectId=106106092 - [2] Prof. S.Raman Department of Computer Science & Engineering, IIT Madras, "Introduction to Digital Computer Organization" (14,May,2015), NPTEL http://www.nptel.iitm.ac.in/video.php?subjectId=117105078 | 17TP1405
ENGLISH FOR PROFESSIONALS | | | | | | | | | | | |---------------------------------------|--------------------|-----------------------------|-----------|--|--|--|--|--|--|--| | Course Category: | Institutional Core | Credits: | 1 | | | | | | | | | Course Type: | Learning by Doing | Lecture -Tutorial-Practice: | 0 - 0 - 2 | | | | | | | | | Prerequisites: | - | Continuous Evaluation: | 100 | | | | | | | | | | | Semester end Evaluation: | 0 | | | | | | | | | | | Total Marks: | 100 | | | | | | | | # Upon successful completion of the course, the student will be able to: | CO1 | Present themselves effectively in the professional world | |-----|--| | CO2 | Introduce themselves as well as others appropriately. | | CO3 | Use vocabulary to form sentences and narrate stories by using creative thinking skills | | CO4 | Involve in practical activity oriented sessions. | | CO5 | Learn about various expressions to be used in different situations. | | CO6 | Respond positively by developing their analytical thinking skills. | # Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | | 0, | | | | | | | | | | | | | | |-----|---------|---------|---------|---------|---------|------|-------------|---------|---------|----------|----------|----------|----------|-------| | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO 6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO 2 | | CO1 | | | | | | | | | | 3 | 3 | | | | | CO2 | | | | | | | | | 3 | 3 | 3 | | | | | CO3 | | | | | | | | | | 3 | 3 | | | | | CO4 | | | | | | | | 2 | | 3 | 3 | | | | | CO5 | | | | | | | | | | 3 | 3 | | | | | CO6 | | | | | | | | | | 3 | | | | | # **COURSE CONTENT** # **UNIT-I** - Beginners, Functional, Situational Conversations - Practicing on Functional Conversations. # UNIT-II - Errors in usage of Parts of Speech with a thrust on Verbs, Adjectives and Conjunctions, Idioms/Phrases. - Introducing Basic Grammar - Practicing on Functional Conversations. # **UNIT-III** - Introducing Self & Others - Structures and Forming Sentences - Telephonic Etiquette, Social Etiquette and Table Manners - Practicing on Functional Conversations. # **UNIT-IV** - Direct, Indirect/Reporting Speech - Public Speaking Basics - Versant Test Preparation - Practicing on Situational Conversations. # **METHODOLOGY** Audio—Visuals / Hand Outs (Compiled/Created by Training Division, T&P Cell, VR Siddhartha Engineering College), Board & Chalk and Interactive Sessions. | | 17CS3406
OPERATING SYSTEMS | | | | | | | | | | |------------------|-------------------------------|-----------------------------|-----------|--|--|--|--|--|--|--| | Course Category: | Programme Core | Credits: | 3 | | | | | | | | | Course Type: | Theory | Lecture -Tutorial-Practice: | 3 - 0 - 0 | | | | | | | | | Co - requisites: | Data Structures | Continuous Evaluation: | 30 | | | | | | | | | | | Semester end Evaluation: | 70 | | | | | | | | | | | Total Marks: | 100 | # Upon successful completion of the course, the student will be able to: | CO1 | Understand the basic principles of operating systems. | |-----|---| | CO2 | Analyze CPU Scheduling and disk scheduling algorithms | | CO3 | Analyse the mechanisms used for process synchronization, deadlock prevention and deadlock detection | |-----|---| |-----|---| | CO4 | Apply | different | page | repla | cement | algorithm | S | |-----|-------|-----------|------|-------|--------|-----------|---| |-----|-------|-----------|------|-------|--------|-----------|---| **CO5** Understand the file structure, directory structure and disk structures. # Contribution of Course Outcomes towards achievement of Program Outcomes (1– Low, 2 - Medium, 3 – High) | | PO 1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-----|-------------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | 3 | | | | | | | | | | | | 2 | | | CO2 | 2 | 3 | | | | | | | | | | 2 | 2 | | | CO3 | | 2 | | | | | | | | | | 2 | 2 | | | CO4 | 2 | | | | | | | | | | | | 2 | | | CO5 | | 2 | | | | | | | | | | | | | # **COURSE CONTENT** #### UNIT I **Operating-System Structures:** Operating-System Services, User and Operating-System Interface, System Calls, Types of System Calls. Processes: Process Concept, Process Scheduling, Operations on Processes, Interprocess Communication. # **UNIT II** **Process Synchronization:** Background, The Critical-Section Problem, Peterson's Solution, Synchronization Hardware, Mutex Locks, Semaphores, Classic Problems of Synchronization, Monitors **CPU Scheduling:** Basic Concepts, Scheduling Criteria, Scheduling Algorithms, Thread Scheduling, Multiple-Processor Scheduling, Real-Time CPU Scheduling. # UNIT III **Deadlocks**: System Model, Deadlock Characterization, Methods for Handling Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, Recovery from Deadlock. **Main Memory:** Background, Swapping, Contiguous Memory Allocation, Segmentation, Paging, Structure of the Page Table ## UNIT - IV **Virtual Memory:** Background, Demand Paging, Copy-on-Write, Page Replacement, Allocation of Frames, Thrashing. **Mass Storage Structure**: Overview of Mass-Storage Structure, Disk Structure, Disk Attachment, Disk Scheduling, Disk Management File System Implementation: File-System Structure, File-System Implementation, Directory Implementation, Allocation Methods, Free-Space Management, Efficiency and Performance, Recovery. # **TEXT BOOKS** [1] Abraham Silberschatz, Peter B. Galvin and Greg Gagne, Operating System Concepts.9thed, John Wiley & Sons (Asia) Pvt.Ltd, 2018. #### REFERENCE BOOKS - [1] William Stallings, Operating System: Internals and Design Principles. 6th ed 2009 - [2] Andrew S. Tanenbaum, Modern Operating Systems. 3 ed, PHI, 2008. ## E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] Prof. P.K. Biswas sir, Ph.D.(IIT Kharagpur), Dated: 21-02-2013 Video Lectures on "Operating Systems" - [2] http://nptel.ac.in/courses/Webcourse-contents/IISc- BANG/ Operating % 20 Systems/New_index1.html , Dated: June 2004 - [3] http://www.ics.uci.edu/~ics143/lectures.html,2013 Last accessed on 01-06-2018 - [4] http://web.stanford.edu/~ouster/cgi-bin/cs140-winter16/index.php Last accessed on 01-06-2018 | | 17CS3408 PYTHON PROGRAMMING | | | | | | | | | | | |------------------|---|-----------------------------|-----------|--|--|--|--|--|--|--|--| | Course Category: | Course Category: Programme Core Credits: 3 | | | | | | | | | | | | Course Type: | Theory | Lecture -Tutorial-Practice: | 3 - 0 - 0 | | | | | | | | | | Co - requisites: | Problem Solving | Continuous Evaluation: | 30 | | | | | | | | | | | Methods | Semester end Evaluation: | 70 | | | | | | | | | | | Programming in C Object Oriented Programming using Java | Total Marks: | 100 | | | | | | | | | # Upon successful completion of the course, the student will be able to: | CO1 | Understand the basic concepts of Python | |-----|---| | CO2 | Implement basic data structures in python | | CO3 | Implement handling exceptions and files. | | CO4 | Develop GUI using python. | # Contribution of Course Outcomes towards
achievement of Program Outcomes (1– Low, 2 - Medium, 3 – High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-------------|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | 3 | | | | 1 | | | | | | | | | | | CO2 | | 2 | 1 | | 1 | | | | | | | | 1 | 1 | | CO3 | | | 2 | | 2 | | | | 1 | | | | 2 | | | CO2 CO3 CO4 | | | 2 | | 3 | | | | 2 | | 2 | | 3 | 3 | # **COURSE CONTENT** # **UNIT I** **Getting started:** Introducing python, Need of Python Programming, python features, basic applications of python. **Variables, expressions and statements:** Values and types, variables, operators, expressions, statements, simple I/O, interactive mode and script mode. **Conditionals and Loops:** Conditional statements: using the- if, else, elif statements, creating while loops, avoiding infinite loops, using compound conditions. using for loops. **Strings:** Declaring a String, using quotes with strings, using escape sequences with strings, concatenating and repeating a strings, slicing strings, string methods. # UNIT II **Arrays:** Creating an array, importing the array module, indexing and slicing on arrays, processing an array, types of arrays, working with arrays. Functions: Creating functions, Parameters and return values, Keyword arguments, global and local variables. Lists: Introducing Lists, Naming and defining a list, Traversing a list, List operations, List slices, list methods. **Tuples**: Introducing Tuples, creating tuples, using tuples operations. # **UNIT III** **Dictionaries:** Introduction to dictionaries, creating and accessing dictionaries. **Modules:** Importing a module, packages and creating a module. **Exceptions and Assertions:** Difference between an error and Exception, Handling Exceptions, Built-in exceptions, and Assertions. Files: reading and writing to text files, storing complex data in files. **Regular Expressions:** Regular expressions in python. # UNIT – IV **Object oriented programming:** object oriented basics, creating classes, methods and objects, constructors, attributes, class attributes and static methods, object encapsulation, private attributes and methods, attribute access, sending and receiving messages, combining objects, inheritance, extending a class through inheritance, altering behavior of inherited methods, understanding polymorphism. **GUI Development:** examining GUI, understanding event driven programming, root window, labels, buttons, creating a GUI using a class, binding widgets and event handlers, text and entry widgets and Grid layout manager, check buttons, radio buttons. **Graphics and Plotting with Pylab** – creating a graphics window, setting background image, understanding the graphics coordinate system, displaying a sprite, text, message, moving sprites, dealing with screen boundaries, handling a mouse input, a basic plot, Plotting several plots on the same graph, and Animations # TEXT BOOKS - [1] Michael Dawson, "Python Programming for absolute beginners", 3rd Edition, CENGAGE Learning Publications, 2018. (Unit I Chapters: 1,3, Unit II Chapters: 2, Unit III Chapters: 1,3 and Unit IV Chapters: 1,2,3) - [2] Martin C. Brown, "The Complete Reference Python", 4th Edition, McGraw Hill,2018. (Unit III Chapters: 2 and 3) - [3] Allen B. Downey, "Think Python", Second Edition, O'Reilly Media, 2017. (Unit I Chapters: 2, Unit II Chapters: 3,4) - [4] Web Link: https://www.tutorialspoint.com/python/python arrays.htm (Unit II Chapters: 1) - [5] Web Link for: https://www.python-course.eu/re.php. (Unit III Chapters: 4) ## REFERENCE BOOKS - [1] Charles Dierbach, "Introduction to Comupter Science using Python, A Computational Problem- Solving Focus", Wiley India , 2017. - [2] John V. Guttag, "Introduction to Computation and Programming using Python", 2nd Edition, PHI Publications, MIT Press, 2015. - [3] Michael T. Goodrich, Roberto Tamassia, Michael H. Goldwasser, "Data Structures and Algorithms in Python", Wiley publications, 2017. - [4] Vamsi Kurama "Python Programming: A Modern Approach", 2017, Pearson Publications. - [5] TanejaSheetal, Kumar Naveen "Python Programming: A modular approach", Pearson Publications, 2017. - [6] Mark Lutz, "Learning Python", 5th Edition, O'Rielly Media, 2017. ## E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] Prof. Madhavan Mukund, IIT Madras, "Programming, Data Structures And Algorithms Using Python", Available: https://onlinecourses.nptel.ac.in/noc18_cs21/preview. Last accessed on August 2018. - [2] Prof. JoydipGhosh, "Python A to Z Full course for | [3] | beginners"Available:https://www.udemy.com/python-django-programming-beginner-to-advance-tutorial-step-by-step/ Last accessed on August 2018. Programming for Everybody(Python) By Prof. Charles Severance, University of Michigan in www.coursera.com URL: https://www.coursera.org/course/pythonlearn Last accessed on Aug 2018. | |-----|--| 17CS34
WEB TECHNOLOGIE | | | |------------------|---------------------------|-----------------------------|-------| | Course Category: | Programme Core | Credits: | 1 | | Course Type: | Practical | Lecture -Tutorial-Practice: | 0-0-2 | | Prerequisites: | - | Continuous Evaluation: | 30 | | _ | | Semester end Evaluation: | 70 | | | | Total Marks: | 100 | | | | | | # Upon successful completion of the course, the student will be able to: | CO1 | Design and Create static web pages using HTML5 and CSS. | |-----|---| |-----|---| **CO2** Create interactive web interfaces with client side technologies. **CO3** Create and validate XML documents. **CO4** Understand Server Side Scripting. CO5 Design and Create Interactive Server side Scripting for an application # Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-----|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | | 2 | 3 | | | | | | 2 | | | 1 | 2 | | | CO2 | | 2 | 3 | | | | | | 2 | | | | 2 | | | CO3 | | 2 | 3 | | | | | | 2 | | | | | | | CO4 | | 2 | 3 | | | | | | 2 | | | | 2 | | | CO5 | | 2 | 3 | | | | | | 2 | | | 2 | 2 | | #### COURSE CONTENT **TASK-1:** Study of Network commands. (like ipconfig, tracert, ping, netstat, nslookup, getmac) **TASK-2:** Practice on Basic HTML5 elements - 1. List and tables - 2. Images and links - 3. Form Element (<input />) - 4. Bar Chart using Canvas **TASK-3:** Design static web site with header, footer, menus, images, tables, links and lists by taking an example organization. (Pesonal informationwebsite, Company website, Ecommerce website, Govt. department, etc.,). Place suitable information. # TASK-4: 1. Design your web pages using different type of CSS.(Inline/Internal/External) - 2. Change the appearance of the Buttons, Vertical Menu and Horizontal Menu - 3. Create CSS box model. # **TASK-5:** - 1. Client side login form validation using Java Script. - 2. Create a dice game in java script and html using two dice. - 3. Write a JavaScript to find the latitude and longitude of the user's position using HTML5 Geo Location. ## TASK-6: Create an XML file for student/employee/book data and validate against DTD and XML Schema. # **TASK-7:** - 1. Create an array and perform different operations on arrays using pre defined functions in PHP. - 2. Create user defined functions and access in your program. ## **TASK-8:** - 1. Different File Operations using PHP. - 2. Establish the connection between My SQL and PHP. ## TASK-9: - 1. Design a registration form for a website and save the information in the data base. - 2. Design a Login form for a website and validate the user. ## **TASK-10:** Design an application using sessions and Cookies in PHP. ## **TEXT BOOKS** - [1] **HTML 5 Black Book**: Covers CSS3, Javasvript, XML, XHTML, AJAX, PHP and jQuery, Dreamtech Press (2011) - [2] Robin Nixon, Learning PHP, My SQL, Java Script & CSS, 2nd Edition, O'REILLY (2012). ## REFERENCE BOOKS [1] H. M. Deitel and P. J. Deitel, Internet & World Wide Web How to Program, 5th Edition, Prentice Hall 2008. | 17CS3452
PYTHON PROGRAMMING LABORATORY | | | | | | | | | | | | |---|------------------|-----------------------------|-------|--|--|--|--|--|--|--|--| | Course Category: | Programme Core | Credits: | 1 | | | | | | | | | | Course Type: | Practical | Lecture -Tutorial-Practice: | 0-0-2 | | | | | | | | | | Prerequisites: | C Programming | Continuous Evaluation: | 30 | | | | | | | | | | _ | Laboratory and | Semester end Evaluation: | 70 | | | | | | | | | | | Java Programming | Total Marks: | 100 | | | | | | | | | | | Laboratory | | | | | | | | | | | # Upon successful completion of the course, the student will be able to: | CO1 | Implement the basic concepts of Python | |-----|---| | CO2 | Implement basic data structures in python | | CO3 | Implement handling exceptions and files. | | CO4 | Develop GUI using python. | # Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 |
PO
11 | PO
12 | PSO
1 | PSO
2 | |-----|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | 3 | | | | 1 | | | | | | | | | | | CO2 | | 2 | 1 | | 1 | | | | | | | | 1 | 1 | | CO3 | | | 2 | | 2 | | | | 1 | | | | 2 | | | CO4 | | | 2 | | 3 | | | | 2 | | 2 | | 3 | 3 | # COURSE CONTENT **TASK-1:** Implement basic concepts of loops, value types, statements and variables. **TASK-2:** Use Strings and develop a python application and analyse various string patterns. **TASK-3:** Implement Arrays to a given application **TASK-4:** Create a List and apply list operations in python. **TASK-5:** Develop a dictionary and Implement dictionary operations in python. **TASK-6:** Create a module and access members from a module. **TASK-7:** Create an application to copy content from one file to another file **TASK-8:** Implement the concept of classes and objects. - **TASK-9:** Develop a python application using inheritance - **TASK-10:** Develop a python application using polymorphism. - **TASK-11:** Implement Exception handling to a given application. - **TASK-12:** Develop a GUI Application using python graphics system. - **TASK-13:** Create a GUI application plot a graph with given coordinates. # **Projects:** - 1. Design and develop an automated ballot vote system. - 2. Design and develop a banking application. ## TEXT BOOKS & REFERENCE BOOKS - [1] Michael Dawson, "Python Programming for absolute beginners", 3rd Edition, CENGAGE Learning Publications, 2018. [Unit I Chapters: 1,3, - [2] Martin C. Brown, "The Complete Reference Python", 4th Edition, McGraw Hill, 2018. - [3] Allen B. Downey, "Think Python", Second Edition, O'Reilly Media, 2017. - [4] Web Link: https://www.tutorialspoint.com/python/python_arrays.htm Last accessed on 01-06-2018 - [5] Web Link for: https://www.python-course.eu/re.php. [Unit III Chapters: 4.3] Last accessed on 01-06-2018 - [6] Web Link for : http://jakevdp.github.io/mpl_tutorial/tutorial_pages/tut1.html Last accessed on 01-06-2018 #### E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] Prof. Madhavan Mukund, IIT Madras, "Programming, Data Structures And Algorithms Using Python", Available: https://onlinecourses.nptel.ac.in/noc18_cs21/preview. Last accessed on August 2018. - [2] Prof. JoydipGhosh, "Python A to Z Full course for beginners" Available:https://www.udemy.com/python-django-programming-beginner-to-advance-tutorial-step-by-step/ Last accessed on August 2018. - [3] Programming for Everybody(Python) By Prof. Charles Severance, Michigan in www.coursera.com University of URL: https://www.coursera.org/course/pythonlearn Last accessed on Aug 2018. | 17CS3453
COMPETITIVE CODING – I | | | | | | | | | | | | |------------------------------------|----------------|-------------------------------|-------|--|--|--|--|--|--|--|--| | Course Category: | Programme Core | Credits: | 1 | | | | | | | | | | Course Type: | Laboratory | Lecture -Tutorial-Practice: | 0-0-2 | | | | | | | | | | Prerequisites: | - | Continuous Evaluation: | 30 | | | | | | | | | | | | Semester end Evaluation: | 70 | | | | | | | | | | | | Total Marks: | 100 | | | | | | | | | | COURSE OUTCOMI | ES | | | | | | | | | | | | ι | Jpon | successful | completion | of the | course, | the stud | ient will | be able | to: | |---|------|------------|------------|--------|---------|----------|-----------|---------|-----| | | | | | | | | | | | CO₁ CO₂ **CO3** **CO4** # Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2 - Medium, 3 - High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-----------------|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | | | | | | | | | | | | | | | | CO2 | | | | | | | | | | | | | | | | CO3 | | | | | | | | | | | | | | | | CO1 CO2 CO3 CO4 | | | | | | | | | | | | | | | ## COURSE CONTENT Solving the programs under "Easy / Medium" category in CodeChef & HackerRank, etc. Students must solve at least 100 problems in CodeChef / HackerRank, etc. The category may be under Easy / Medium. Students shall participate at least two contests per month, hosted in online judges. Problems to be solved in C. A minimum of 15 problems shall be solved per week in either CodeChef / HarckerRank, etc. Monthly contests hosted in CodeChef / HackerRank, etc,. may be taken as day to day assessment of laboratory. Monthly one such evaluation The work will be carried out in the laboratory slot allotted as well as at the home. #### TEXT BOOKS - [1] Halim, Steven and Halim, Felix, Competitive Programming 3, 2013. - [2] Ahmed Shamsul Arefin, Art of Programming Contest, ACMSolver, Second Edition, 2012 # REFERENCE BOOKS [1] Programming Challenges: The Programming Contest Training Manual By Steven S Skiena, Miguel A. | Revilla [2] Guide to Competitive Programming: Learning and Improving Algorithms Through Contests By Antti Laaksonen | |---| | E- RESOURCES AND OTHER DIGITAL MATERIAL | | [1] Topcoder tutorials - https://www.topcoder.com/community/data-science/data-science-tutorials/ [2] Nite Nimajneb's site - http://comscigate.com/Books/contests/icpc.pdf [3] Slides from a Stanford Course - http://web.stanford.edu/class/cs97si/ [4] Halim, Steven and Halim, Felix, Competitive Programming 3, 2013. Ebook available at lulu.com. Site associate with with the book is http://cpbook.net | 17MC1407B
INDIAN CONSTITUTION | | | | | | | | | | | |----------------------------------|--------------------|--|-----------------|--|--|--|--|--|--|--| | Course Category: | Institutional Core | Credits: | - | | | | | | | | | Course Type: | Theory | Lecture -Tutorial-Practice: | 2-0-
0 | | | | | | | | | Prerequisites: | - | Continuous Evaluation:
Semester end Evaluation:
Total Marks: | 100
0
100 | | | | | | | | # Upon successful completion of the course, the student will be able to: | CO1 | Know the fundamental law of the land | |-----|---| | CO2 | Understand how fundamental rights are protected | | CO3 | Perceive the structure and formation of the Indian Government System | | CO4 | Explain when and how an emergency can be imposed and what are the consequences. | # Contribution of Course Outcomes towards achievement of Program Outcomes (1– Low, 2 - Medium, 3 – High) | 0 7 | | | | | | | | | | | | | | | |-------------|---------|------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | | PO
1 | PO 2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | | CO1 | | | | | | 3 | 2 | | | | | | | | | CO2 | | | | | | 2 | 3 | | | | | | | | | CO3 | | | | | | 1 | | | | | | | | | | CO2 CO3 CO4 | | | | | | 2 | 1 | | | | | | | | # **COURSE CONTENT** # UNIT I **Introduction to Constitution of India:** Meaning of the Constitution Law and Constitutionalism, Historical perspective of constitution of India, Salient features of Constitution of India. ## UNIT II **Fundamental Rights:** Scheme of the fundamental rights, scheme of the fundamental right to equality, scheme of the fundamental right to certain freedoms under Article 19, scope of the right of life and personal liberty under Article 21, writs jurisdiction ## UNIT III **Nature of the Indian Constitution:** Federal structure and distribution of legislative and financial powers between the Union and states **Parliamentary form of Government in India:** The Constitution powers and status of the President of India, Amendment of the Constitutional powers and Procedure, Historical Perspectives of the constitutional amendments in India Local Self Government: Constitutional Scheme in India UNIT – IV **Emergency Provisions:** National Emergency, President rule, Financial Emergency ## TEXT BOOKS [1] Dr. J.N. Pandey, Constitutional Law of India published by Central law Agency, Allahabad, Edition 2018 # REFERENCE BOOKS - [1] V.N Shukla's, Constitution of India Eastern Book Company, Lucknow. - [2] M.P. jain, Indian Constitution Law, Wadhwa and Company, Nagpur. - [3] D.D. basu, Constitution of India, Wadhwa and Company, Nagpur | Full Scheme and Syllabus | VR17 | |--------------------------|--------------| SEMESTER - | \mathbf{V} | 17CS3501
DATABASE MANAGEMENT SYSTEMS | | | | | | | | | | | | | |--|-----------------------|-----------------------------|-----------|--|--|--|--|--|--|--|--|--| | Course Category: Programme Core Credits: 3 | | | | | | | | | | | | | | Course Type: | Theory | Lecture -Tutorial-Practice: | 3 - 0 - 0 | | | | | | | | | | | Prerequisites: | Data Structures | Continuous Evaluation: | 30 | | | | | | | | | | | • | Discrete Mathematical | Semester end Evaluation: | 70 | | | | | | | | | | | | Structures | Total Marks: | 100 | | | | | | | | | | | |
| | | | | | | | | | | | # Upon successful completion of the course, the student will be able to: | CO1 | Understand different types of Database, data models, different database schemas in various database systems. | |-----|--| | CO2 | Analyse the Entity-Relationship models, inturn develop the Relational models that leads to database design | | CO3 | Apply various normalization techniques to relational models in order to improve database design quality | | CO4 | Understand database transactions processing, protocols for Concurrency control and Recovery techniques in database | | CO5 | Implement database management techniques to real world applications | # Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | / | | | | | | | | | | | | | | | |-----|---------|------|---------|---------|---------|------|-------------|---------|---------|----------|----------|----------|----------|----------| | | PO
1 | PO 2 | PO
3 | PO
4 | PO
5 | PO 6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | | CO1 | 1 | 1 | 1 | | | | | | | | | | 1 | 1 | | CO2 | | 2 | 3 | | | | | | | | | | 1 | 1 | | CO3 | | 2 | 3 | | | | | | | | | | 2 | 2 | | CO4 | | 1 | 1 | | | | | | | | | | 1 | 1 | | CO5 | | 2 | 3 | | | | | | | | | | 2 | 2 | # **COURSE CONTENT** # UNIT I **Databases and Database Users**: Characteristics of the Database Approach, Advantages of Using the DBMS Approach, A Brief History of Database Applications. **Database System Concepts and Architecture:** Data Models, Schemas, and Instances, Three-Schema Architecture and Data Independence, Distributed database concepts, Overview of Object Database concepts. **Overview of Data Warehousing and OLAP:** Introduction, Definitions and Terminology, Characteristics of Data Warehouses, Data Modeling for Data Warehouses, Typical functionality of a Data Warehouse. ## UNIT II **Data Modeling Using the Entity-Relationship (ER) Model:** Using High-Level Conceptual Data Models for Database Design, Entity Types, Entity Sets, Attributes, and Keys, Relationship Types, Relationship Sets, Roles, and Structural Constraints, Weak Entity Types, ER Diagrams, Naming Conventions, and Design Issues, Relationship Types of Degree Higher than Two. **Relational Database Design by ER and EER-to-Relational Mapping:** Relational Database Design Using ER-to-Relational Mapping. **The Relational Data Model and Relational Database Constraints:** Relational Model Concepts, Relational Model Constraints and Relational Database Schemas. **The Relational Algebra and Relational Calculus:** Unary Relational Operations: SELECT and PROJECT, Relational Algebra Operations from Set Theory, Binary Relational Operations: JOIN and DIVISION, Additional Relational Operations, Examples of Queries in Relational Algebra # UNIT III **Basics of Functional Dependencies and Normalization for Relational Databases:** Functional Dependencies, Normal Forms Based on Primary Keys, General Definitions of Second and Third Normal Forms, Boyce-Codd Normal Form, Multi valued Dependencies and Fourth Normal Form, Join Dependencies and Fifth Normal Form. **Introduction to Transactions Processing:** Introduction to Transaction Processing, Transaction and System Concepts, Desirable Properties of Transactions. **Concurrency Control Techniques and Database Recovery Techniques:** Two Phase Locking techniques for Concurrency Control, The ARIES Recovery Algorithm. ## UNIT IV **Emerging Database Technology:** SQLite overview- Salient characteristics, applications, Architecture. Limitations **NOSQL: What It Is And Why You Need It:** Definition and Introduction, Sorted Ordered Column-Oriented Stores, Key/Value Stores, Document Databases, Graph Databases. **Interfacing And Interacting With NOSQL:** Storing and Accessing Data, Storing Data In and Accessing Data from MongoDB, Querying MongoDB, Storing Data In and Accessing Data from Redis, Querying Redis, Storing Data In and Accessing Data from HBase, Querying HBase. **Understanding the Storage Architecture:** Working with Column - Oriented Databases, HBase Distributed Storage Architecture Managing Transactions And Data Integrity: RDBMS and ACID, Distributed ACID Systems, Upholding CAP ## TEXT BOOKS - [1] Ramez Elmasri, Shamkant B. Navathe, "Fundamentals of Database Systems",7th edition, Pearson Education Ltd, 2016. [Unit I,II,III] - [2] Shashank Tiwari, "Professional NoSql", John Wiely & Sons, 2011 [Unit IV]. - [3] Sibsankar Haldar, SQLite Database System Design and Implementation, 2nd Edition, 2015, O'Reilly publisher [Unit IV]. # REFERENCE BOOKS - [1] Raghu Rama Krishnan, Johannes Gehrke, "Database Management Systems", 3rd Edition, McGraw Hill Education - [2] Abraham Silberschatz, Henry F.Korth, S.Sudarshan, "Database System Concepts", 6th edition, McGraw-Hill Education. - [3] Luc Perkins, Eric Redmond, Seven Databases in Seven Weeks: A Guide to Modern Databases and the NoSQL movement, Andy Hunt publishing, 2nd Edition, 2018 ## E-RESOURCES AND OTHER DIGITAL MATERIAL | Full Scheme and Syllabus | VR1 | 7 | |--|-----------------|-------------------------------------| | [1] Dr S.Srinath IIT-Madras "Conceptual design process http://nptel.iitm.ac.in/video.php?subjectId=106106093 Last accessed on 01- [2] Prof P.Srinivasa Kumar IIT-Madras "Normalizationprocess"http://nptel.iitm.ac.in/courses/IIT MADRAS/Intro_to_ Last accessed on 01-06-2018 [3]Prof D.Janakiram IIT-Madras "Concurrency http://nptel.iitm.ac.in/video.php?subjectId=106106093 Last accessed on 0 [4] Dr Bill Howe University of Washington https://class.coursera.org/datasci001/lecture/21,99,101,103,107,111, 113 Last accessed on 01-06-2018 | o_Database_Syst | tems_Design/ techniques" Institute | | Last accessed on 01-06-2018 | 17CS3502
DESIGN AND ANALYSIS OF ALGORITHMS | | | | | | | | | | | |---|----------------------|-------------------------------|-----------|--|--|--|--|--|--|--| | Course Category: | Programme Core | Credits: | 3 | | | | | | | | | Course Type: | Theory | Lecture -Tutorial-Practice: | 3 - 0 - 0 | | | | | | | | | Prerequisites: | Fundamentals of Data | Continuous Evaluation: | 30 | | | | | | | | | • | Structures, Basic | Semester end Evaluation: | 70 | | | | | | | | | | Mathematics | Total Marks: | 100 | # Upon successful completion of the course, the student will be able to: | CO1 | Understand fundamental concepts of Asymptotic notation of an algorithm and Divide and Conquer techniques | |-----|--| | CO2 | Analyze various design techniques of greedy algorithm and dynamic programming | | CO3 | Apply basic traversal and search techniques, backtracking for real time problems | | CO4 | Understand the concepts of Branch and Bound techniques, NP-Hard, NP-Complete. | # Contribution of Course Outcomes towards achievement of Program Outcomes (1– Low, 2 - Medium, 3 – High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO 6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-----------------|---------|---------|---------|---------|---------|------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 CO2 CO3 CO4 | 2 | | | | | | | | | | | | | | | CO2 | | 3 | 2 | | | | | | 1 | | 1 | | | | | CO3 | | 3 | 2 | | | | | | 1 | | 1 | | | | | CO4 | | 2 | | | | | | | 1 | | | | | | #### **COURSE CONTENT** ## UNIT-I **Introduction:** Algorithm, Algorithm Specification, Performance Analysis-Space complexity, Time complexity, Asymptotic Notation- Big oh notation, Omega notation, Theta notation and Little oh notation, Randomized Algorithms **Divide and conquer:** General method, Finding the maximum and minimum, Applications-Binary search, Merge sort, Quick sort, Strassen's Matrix Multiplication. ## UNIT-II **Greedy method:** General method, Applications-Job sequencing with deadlines, knapsack problem, Minimum cost spanning trees, optimal storage on tapes, Optimal merge patterns, Single source shortest path problem. **Dynamic Programming:** General method, applications- Matrix chain multiplication, Multi stage graph problem, Optimal binary search trees, 0/1 knapsack problem, All pairs shortest path problem, Traveling sales person problem. ## UNIT-III **Basic Traversal and Search Techniques:** Techniques for Binary trees, graphs, connected components, biconnected components. **Backtracking:** General method, applications- N-queen problem, sum of subsets problem, graph coloring, Hamiltonian cycles, 0/1 knapsack problem. ## **UNIT-IV** **Branch and Bound:** General method, applications - Traveling sales person problem, 0/1 knapsack problem-LC Branch and Bound solution, FIFO Branch and Bound solution. **NP-Hard and NP-Complete problems:** Basic concepts, non deterministic algorithms, classes NP Hard and NP Complete, Cook's theorem #### TEXT BOOKS [1] Ellis Horowitz, SatrajSahni and Rajasekharan, "Fundamentals of Computer Algorithms", Galgotia Publications Pvt. Ltd, 2008. ## REFERENCE BOOKS - [1] M.T.Goodrich and R.Tomassia, "Algorithm Design: Foundations, Analysis and Internet examples", John Wiley and sons, 2006. - [2] T.H.Cormen,
C.E.Leiserson, R.L.Rivest and C.Stein, "Introduction to Algorithms", 2/e, PHI Pvt. Ltd. / Pearson Education, 2009. - [3] Allen Weiss, "Data structures and Algorithm Analysis in C++", Third Edition, Pearson Education, 2007. ## E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] https://nptel.ac.in/courses/106101060/ Last accessed on 01-06-2018 - [2] https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j-design-and-analysis-of-algorithms-spring-2015/ Last accessed on 01-06-2018 - [3] https://theory.stanford.edu/~tim/videos.html Last accessed on 01-06-2018 | 17CS3503
COMPUTER NETWORKS | | | | | | | | | | | | |-------------------------------|-------------------|-----------------------------|---------|--|--|--|--|--|--|--|--| | Course Category: | Programme Core | Credits: | 3 | | | | | | | | | | Course Type: | Theory | Lecture -Tutorial-Practice: | 3 -0- 0 | | | | | | | | | | Prerequisites: | Operating Systems | Continuous Evaluation: | 30 | | | | | | | | | | | | Semester end Evaluation: | 70 | | | | | | | | | | | | Total Marks: | 100 | | | | | | | | | ## Upon successful completion of the course, the student will be able to: | CO1 | Understand fundamentals of networks and network reference models | |-----|--| | CO2 | Analyze error control, flow control and multiple access mechanisms used at Data Link Layer | | CO3 | Analyze various routing protocols in network design | | CO4 | Analyze the underlying protocols in transport layer and Application layer. | ## Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-----|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | | 1 | | | | | | | | | | | | | | CO2 | | | | | 2 | | | | | | | | | | | CO3 | | | | | | | | | 3 | | | | | 3 | | CO4 | | | | | | | | | 3 | | | | | 3 | #### COURSE CONTENT #### UNIT - I **Introduction:** Uses of Computer Networks, Network Hardware, LANs, MANs, WANs, Network Software. **Reference Models:** The OSI Reference Model, TCP/IP Reference Model, the comparison of the OSI and TCP/IP reference models. Physical Layer: Guided transmission media: Magnetic Media, Twisted Pair, Coaxial Cable, and Fiber Optics ### **UNIT - II** **Data Link Layer:** Data link layer design issues, Error detection and correction, Elementary data link protocols, and Sliding window protocols. **Medium Access Control Sub layer:** The channel allocation problem, multiple access protocols:- ALOHA, CSMA protocol, collision-free protocols, limited-contention protocol, ETHERNET. #### UNIT - III **Network Layer:** Network Layer Design Issues, Routing Algorithms: Shortest Path, Flooding, DVR, and Link State routing algorithm, Congestion Control Algorithms. **Quality of Service**: Requirements, Traffic Shaping, Packet Scheduling, Admission Control, Integrated Services, Differentiated Services, IP Protocol, IP addresses, Internet Control Protocols #### UNIT - IV **Transport Layer:** The Transport Service, Elements of Transport Protocols, and the Internet Transport Protocols TCP and UDP. **Application Layer:** The Domain Name System (DNS), and E-Mail. #### **TEXT BOOKS** [1] Andrew S Tanenbaum, David J Wetherall "Computer Networks", 5th edition, Pearson Education #### REFERENCE BOOKS - [1] Kurose and Ross, "Computer Networks A Top-down Approach Featuring the Internet", Pearson Education. - [2] Behrouz A.Fourozan, "Data Communications and Networking". 4 ed, TATA McGraw Hill. - [3] Nader F.Mir, Computer and Communication Networks. PHI #### E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] Prof Sujoy Ghosh, IIT Kharagpur, NPTEL Lectures, 14th May 2015, Video Lectures, Available: http://nptel.iitm.ac.in/video.php?subjectId = 106105081 Last accessed on 01-06-2019 - [2] MIT Open Courseware, MIT, , 14th May 2015, Video Lectures, Available:http://ocw.mit.edu/courses/electricalengineering-and-computer-science/6-033-computer-systemengineering-spring-2009/video-lectures/ Last accessed on 01-06-2018 - [3] Dheeraj, IIT Kharagpur, 14th May 2015, Lecture Notes, Available: http://www.cse.iitk.ac.in/users/dheeraj/cs425 Last accessed on 01-06-2018 | 17CS2504A
ADVANCED PROGRAMMING IN JAVA | | | | | | | | | | | | |---|--|-----------------------------|-----------|--|--|--|--|--|--|--|--| | Course Category: | Open Elective | Credits: | 3 | | | | | | | | | | Course Type: | Theory | Lecture -Tutorial-Practice: | 3 - 0 - 0 | | | | | | | | | | Prerequisites: | Problem Solving | Continuous Evaluation: | 30 | | | | | | | | | | _ | Methods, | Semester end Evaluation: | 70 | | | | | | | | | | | Programming in C,
Java Programming. | Total Marks: | 100 | | | | | | | | | ## Upon successful completion of the course, the student will be able to: | CO1 | Create GUI application | |-----|--------------------------------| | CO2 | Create distributed application | | CO3 | Develop web application | | CO4 | Develop enterprise application | ## Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2 - Medium, 3 - High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO 2 | |-----|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|-------| | CO1 | 3 | | | | 1 | | | | | | | | | | | CO2 | | 2 | 1 | | 1 | | | | | | | | 1 | 1 | | CO3 | | | 2 | | 2 | | | | 1 | | | | 2 | | | CO4 | | | 2 | | 3 | | | | 2 | | 2 | | 3 | 3 | ## **COURSE CONTENT** #### **UNIT I** **GUI Programming:** Introduction to Swings, JLable and ImageIcon, JTextField, The Swing Buttons: JButton, Checkboxes, RadioButtons, JTabbedPane, JList, JComboBox, JTable, Menu Bars and Menus. **Java Database Connectivity:** JDBC Connectivity, Types of JDBC drivers, Connecting to the database, JDBC Statements, JDBC Exceptions, Manipulations on the database. **Pragmatic Functional Programming using Lambdas:** Introduction to Functional programming, Functional Programming concepts and terminology, Functional Interfaces, Working with Lambda Expressions and Method References. ### UNIT II Network Programming: Introduction, InetAddress, Client/Server Interaction with Stream Socket Connections, Client/Server Interaction with Datagrams socket connections, Manipulating URLs. **Remote Method Invocation:** Introduction to RMI, RMI Architecture, Defining the Remote Interface, Implementing the Remote Interface, Compiling and Executing the Server and the Client. #### UNIT III **Servlets:** Web servers, Tomcat web server installation steps, introduction to servlets, Lifecycle of a Servlet, Simple servlet, the Servlet API, Reading Servlet parameters, the javax.servlet.http package, Handling Http Request & Responses, Using Cookies-Session Tracking. **Java Server Pages:** Introduction to JSP, The Problem with Servlet, the Anatomy of a JSP Page, JSP Processing, JSP Application Design with MVC architecture. #### **UNIT IV** **JSP Application Development:** Generating Dynamic Content, Using Scripting Elements, Implicit JSP Objects, Conditional Processing, Displaying Values Using an Expression to Set an Attribute, Declaring Variables and Methods, Error Handling and Debugging, Sharing data between JSP pages, Requests and Users, Passing Control and Date between Pages, Sharing Session and Application Data. **Introduction to Spring Framework:** Introduction to Spring framework, Dependency Injection and Inversion of Control, Spring modules, Spring with MVC. #### TEXT BOOKS - [1] Schildt, "Java, The Complete Reference", Ninth Edition, Oracle Press, 2018. [Unit- I Chapter 1, Unit- II Chapter 1, Unit- III Chapter 1]. - [2] H. M. Deitel, P.J. Deitel, S.E. Santry, "Advanced Java 2 Platform How to Program", 3rd Edition, 2016, Prentice Hall Publications. [Unit Chapter 2, Unit-II Chapter 2, Unit-IV Chapter 2] - [3] Hans Bergsten, "JavaServer Pages", 3rd Edition 2017, O'Reilly Media. [Unit III Chapter 2 , Unit- IV Chapter 1]. - [4] [Web Reference: https://www.javatpoint.com/spring-and-struts2-integration Unit IV Chapter 3] #### REFERENCE BOOKS - [1] Paul J. Dietel and Dr.Harvey M. Deitel, "Java How to Program", 9th Edition, Prentice-Hall, Pearson Education, 2016. Last accessed on 01-06-2018 - [2] David Geary, Cay S. Horstmann "Core JavaServer Faces" Third edition, 2016, Prentice Hall. - [3] Jim Keogh, "The Complete reference to J2EE", reprint 2017, Tata McGraw-Hill. #### E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] AbhayRedkar, JSF Developer, "Struts 2 Framework for beginners", Udemy.https://www.udemy.com/struts-2-framework-for-beginners/ Available: Last accessed on August 2018. - [2] Prof. I. Sengupta. (14th, May, 2017), Department of Computer Science & Engineering, I.I.T., Kharagpur, "Internet Technologies", NPTEL videos. | 17CS2504B
COMPUTER GRAPHICS | | | | | | | | | | | | |--------------------------------|-----------------------|-----------------------------|-----------|--|--|--|--|--|--|--|--| | Course Category: | Open Elective | Credits: | 3 | | | | | | | | | | Course Type: | Theory | Lecture -Tutorial-Practice: | 3 - 0 - 0 | | | | | | | | | | Prerequisites: | Basics of Mathematics | Continuous Evaluation: | 30 | | | | | | | | | | _ | (Algebra and Matrix | Semester end Evaluation: | 70 | | | | | | | | | | | Operations) | Total Marks: | 100 | ## Upon successful completion of the course, the student will be able to: | CO1 | Understand
working of different display device. | |-----|--| | CO2 | Apply Different Point Plotting techniques. | | CO3 | Demonstrate different 2D and 3D Object Transformation and Viewing. | | CO4 | Illustrate various 3D Projection and 2D Clipping | | CO5 | Understand computer animation sequence. | ## Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | - 8 | | | | | | | | | | | | | | | |-----------------|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|-------| | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO 2 | | CO1 | 3 | 3 | | | | | | | | | | | | | | CO2 CO3 CO4 CO5 | 3 | 3 | | | | | | | | | | | | | | CO3 | 3 | 3 | | | | | | | | | | | | | | CO4 | 3 | 3 | | | | | | | | | | | | | | CO5 | | 2 | | | | | | | | | | | 2 | | #### **COURSE CONTENT** #### **UNIT I** ## **Introduction and overview of Graphics Systems** Applications of Computer graphics, Video Display Devices: Refresh Cathode-Ray Tubes, Raster and Random Scan Displays, Colour CRT Monitors, LCD Liquid Crystal Display, Normalized device coordinates. ## **Output Primitives** Line-Drawing Algorithms: Simple DDA, Symmetrical DDA and, Bresenham's Line generation Algorithm, Circle generating Algorithms: Properties of circle, Parametric, Midpoint Circle algorithms, Ellipse Generation Algorithms: Properties of ellipse, Midpoint Ellipse algorithm. #### **UNIT II** #### **Two-Dimensional Geometric Transformations** Basic Transformations: Translation, Rotation and, Scaling; Matrix representation and Homogeneous coordinates, Composite Transformations: Translations, Rotations, Scaling, General Pivot-Point Rotation, General Fixed-Point Scaling, Concatenation Properties; Other Transformations: Reflections and shear. #### **Two Dimensional Viewing** The viewing Pipeline-Viewing Coordinate Reference Frame- Window to View port transformation. #### **Polygons** Introduction-Polygons-An Inside-Outside Tests-Scan-Line Polygon Fill Algorithm- Boundary Fill Algorithm- Flood Fill algorithm- Fill Area Functions-Character Generation- Antialiasing #### **UNIT III** ## **Line Clipping** The Cohen-Sutherland Outcode algorithm and Nicholl-lee-Nicholl Line clipping; Polygon Clipping: The Sutherland Hodgman Algorithm –Weiler Atherton Polygon Clipping - Character and Text Clipping. ## Three Dimensional Geometric And Modelling Transformations Translation-Rotation- General Three Dimensional Rotations – scaling - Other Transformations- Reflections and Shears-Composite Transformations #### **UNIT IV** #### Three Dimensional Viewing Viewing Pipeline- Viewing Coordinates- Projections: Parallel Projection and Perspective projection #### **Computer Animation** Design of Animation Sequence, General computer Animation functions, Raster animation, Computer animation languages, key frame systems, motion specifications. #### **TEXT BOOKS** [1] Donald D. Hearn & M. Pauline Baker "Computer Graphics, C version" 2nd Edition, Pearson Education, New Delhi, 2005. #### REFERENCE BOOKS - [1] S. Harrington "Computer Graphics- A Programming Approach", McGraw Hill Publication, New Delhi, 1994. - [2] W.M.Newman and RF Sproull "Principle of Interactive Computer Graphics", McGraw Hill Publication, New Delhi. 1995 #### E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] Dr. Sukhendu das, "Computer Graphics", IIT Madras http://nptel.iitm.ac.in/video.php?subjectId=106106090 Last accessed on 01-06-2018 - [2] Prof.Dr.Prem Kalra, "Computer Graphics", IIT Delhi http://www.learnerstv.com/Free-Computer-Science-Video-lectures-ltv046-Page1.htm Last accessed on 01-06-2018 | INTER DISCIPLINARY ELECTIVE 17CS2505A DATA STRUCTURES THROUGH C | | | | | | | | | | | | |---|--------------------------------|--|-----------------|--|--|--|--|--|--|--|--| | Course Category: | Inter Disciplinary
Elective | Credits: | 3 | | | | | | | | | | Course Type: | Theory | Lecture -Tutorial-Practice: | 3 - 0 - 0 | | | | | | | | | | Prerequisites: | Programming in C | Continuous Evaluation:
Semester end Evaluation:
Total Marks: | 30
70
100 | | | | | | | | | ## Upon successful completion of the course, the student will be able to: | CO1 | Apply linear data structures to different applications. | |-----|---| | CO2 | Solve problems using linked list. | | CO3 | Implement operations on binary trees and binary search trees. | | CO4 | Implement different searching and sorting algorithms. | ## Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO 2 | |-------------|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|-------| | CO1 | 2 | 2 | 3 | 1 | | | | | | | | | 2 | | | CO2 | 2 | 1 | 3 | 1 | | | | | | | | | 3 | 1 | | CO2 CO3 CO4 | 3 | 2 | 3 | | | | | | | | | | 3 | 2 | | CO4 | | 3 | 2 | | | | | | 1 | | 1 | | | | ## **COURSE CONTENT** ### UNIT I **Introduction:** Basic Concepts, Algorithm Specification, Data Abstraction, Performance Analysis-Time complexity, Space complexity, Asymptotic Notations Searching: Linear Search and Binary Search Techniques and their complexity analysis. **Stacks**: Definition, Representing stacks, ADT Stack and its operations: Algorithms and their complexity analysis, Applications of Stacks: Expression Conversion and evaluation – corresponding algorithms. Recursion, Towers of Hanoi problem. **Queues:** Queue and its Sequential Representation, Queue as an abstract data type, Types of Queue: Simple Queue, Circular Queue, Operations on each types of Queues: Algorithms. #### UNIT II **Linked list:** Singly linked lists: Representation in memory, Algorithms of several operations: Traversing, Searching, Insertion into, Deletion from linked list **Doubly linked list:** Operations and algorithms #### UNIT III **Trees** – Binary trees – Basic concepts – Implementation – Traversal –Applications – Binary search tree: Insertion a node. Deleting a node, searching Sorting: Insertion sort and Selection sort, Quick sort, Merge sort ## **UNIT IV: Algorithm Design Techniques** **Divide and Conquer:** Finding Minimum and Maximum - Greedy Algorithm: Knapsack Problem – Dynamic Programming: Multistage Graph – Backtracking: Sum of Subset Problem #### **TEXT BOOKS** - [1] Reema Thareja "Data structures using C" 2nd edition Oxford University press,2007 - [2] Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekharan" Computer Algoithms", Computer Science Press #### REFERENCE BOOKS - 1. Thomas H Corman, E Leiserson, Ron Rivest, "Introduction to Algorithms", MIT Press, 2nd Edition, Jan 2001. - 2. Alfred V Aho, J D Ullman, J E Hopcroft, "Data Structures and Algorithms", Addison Wesley Longman, 1983. - 3. Mark Allen Weiss, "Data Structures in C++", Addison Wesley Longman, 2nd Edition, 1998. - 4. Horowitz E and Sahni S, "Fundamentals of Computer Algorithms", Computer Science Press, 1984. #### E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] Dr.P.P. Chakraborty, IIT Kharagpur, May 19, 2010, Data Structures, NPTEL, Available: www.youtube.com/watch? v=S47aSEqm_0I - [2] Dr. Naveen Garg, IIT Delhi, Sep 24, 2008, Data Strucutres, NPTEL, Available:http://nptel.iitm.ac.in, http://freevideolectures.com/ Course /2279/Data-Structures-And-Algorithms - [3] Shai Simonson, Jun 16, 2014, Data Structures, NPTEL, Available: http://nptel.ac.in/video.php? subjectId=106102064 ## INTER DISCIPLINARY ELECTIVE 17CS2505B WEB DESIGNING | WED DESIGNING | | | | | | | | | | | |------------------|--------------------------------|-------------------------------|-------|--|--|--|--|--|--|--| | Course Category: | Inter Disciplinary
Elective | Credits: | 3 | | | | | | | | | Course Type: | Theory | Lecture -Tutorial-Practice: | 3-0-0 | | | | | | | | | Prerequisites: | - | Continuous Evaluation: | 30 | | | | | | | | | | | Semester end Evaluation: | 70 | | | | | | | | | | | Total Marks: | 100 | | | | | | | | #### **COURSE OUTCOMES** ## Upon successful completion of the course, the student will be able to: | CO1 | Design and Create static web pages using HTML5 and CSS. | |-----|---| |-----|---| - **CO2** Create interactive web interfaces with client side technologies. - **CO3** Create and validate XML documents. - CO4 Understand Server Side Scripting. - CO5 Design and Create Interactive Server side Scripting for an application ## Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2 - Medium, 3 - High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-------------|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | | 2 | 3 | | | | | | 2 | | | | 2 | | | CO2 | | 2 | 3 | | | | | | 2 | | | | 2 | | | CO3 | | 2 | 3 | | | | | | 2 | | | | | | | CO4 | | 2 | 3 | | | | | | 2 | | | | 3 | | | CO2 CO3 CO4 | | 2 | 3 | | | | | | 2 | | | | 3 | | ## **COURSE CONTENT** #### UNIT **Introduction to Web:** DNS, Role of DNS, DNS root servers, Internet and Intranet, Evolution: web 1.0, 2.0, 3.0, HTTP Request and HTTP Response, Website design principles, Planning. **HTML:** Structures of HTML Document, Creating and Saving HTML Document, Hosting Web Pages. Fundamentals of HTML, Working with text, links, Images, Colors,
, URLs, Creating tables, Organizing text in HTML, Working with forms and frames. **HTML 5:** New Features of HTML5 #### UNIT II **Cascading Style Sheets:** Inline Style Sheet, Internal Style Sheet and External Style Sheet and CSS Selectors, Creating Boxes and Columns using CSS. **DHTML:** Overview of Java Script, Java Script Functions, Java Script Objects, working with window and Document Object properties and Methods, DOM Tree Traversing. **XML**: Compare XML and HTML, Advantages and Disadvantages of XML, Describing the structure of an XML Document, XML Entity References, Describing DTD, Need of Namespaces, Namespace Syntax and scope of Namespace declaration, Describing an XML Schema. #### UNIT III **Overview of AJAX:** AJAX Web Application Model, How AJAX works? Creating a Simple AJAX Application, creating the XMLHttpRequest Object-Properties and Methods. **PHP**: Installing a WAMP on Windows, The Structure of PHP, Using Comments, Basic Syntax, Understanding Variables, Variable Scope, Operators, Constants, Expressions and Control Flow in PHP, PHP Functions-Defining a function, returning a value, returning an array, pass by reference, Returning Global variables, PHP Arrays, Date and Time functions. #### **UNIT IV** **File Operations:** including and requiring Files, File Handling – Reading from file, Copying Files, Deleting a File, Updating a File and Uploading Files. My SQL: Creating Database, Data Types, Basic Operations on tables (Create, Select, Delete and Update) Working with Database & Forms: Querying a My SQL Database with PHP, Get and Post Methods, Query strings, HTML form handling ## **TEXT BOOKS** - [1] **HTML 5 Black Book**: Covers CSS3, Javasvript, XML, XHTML, AJAX, PHP and jQuery , Dreamtech Press (2011) - [2] Robin Nixon, Learning PHP, My SQL, Java Script & CSS, 2nd Edition, O'REILLY (2012). #### REFERENCE BOOKS 1] H. M. Deitel and P. J. Deitel, 2008, **Internet & World Wide Web How to Program**, 5th Edition, Prentice Hall. ## INTER DISCIPLINARY ELECTIVE 17CS2505C VR17 ## FUNDAMENTALS OF OPERATING SYSTEMS | TOTAL AND STATE OF ST | | | | | | | | | | | |--|--------------------|-------------------------------|-------|--|--|--|--|--|--|--| | Course Category: | Inter Disciplinary | Inter Disciplinary Credits: 3 | | | | | | | | | | | Elective | | | | | | | | | | | Course Type: | Theory | Lecture -Tutorial-Practice: | 3-0-0 | | | | | | | | | Corequisites | Data Structures | Continuous Evaluation: | 30 | | | | | | | | | _ | | Semester end Evaluation: | 70 | | | | | | | | | | | Total Marks: | 100 | #### **COURSE OUTCOMES** #### Upon successful completion of the course, the student will be able to: | CO1 | Understand the basic principles of operating systems. | |-----|---| | CO2 | Analyze CPU Scheduling and disk scheduling algorithms | | CO3 | Analyse the mechanisms used for process synchronization, deadlock prevention and deadlock detection | | CO4 | Apply different page replacement algorithms | ## Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | 87 | | | | | | | | | | | | | | | |-----------------|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | | CO1 | 3 | | | | | | | | | | | | 2 | | | CO2 | 2 | 3 | | | | | | | | | | 2 | 2 | | | CO3 | | 2 | | | | | | | | | | 2 | 2 | | | CO1 CO2 CO3 CO4 | 2 | | | | | | | | | | | | 2 | | #### **COURSE CONTENT** #### UNIT I Introduction: What Operating Systems do, Memory Management, Storage Management **Operating-System Structures:** Operating-System Services, User and Operating-System Interface, System Calls, Types of System Calls. **Processes:** Process Concept, Process Scheduling, Operations on Processes, Interprocess Communication. ## UNIT II **CPU Scheduling:** Basic Concepts, Scheduling Criteria, Scheduling Algorithms, Thread Scheduling, Multiple-Processor Scheduling **Process Synchronization:** Background, The Critical-Section Problem, Peterson's Solution, Synchronization Hardware, Mutex Locks, Semaphores, Classic Problems of Synchronization, Monitors #### UNIT III **Deadlocks**: System Model, Deadlock Characterization, Methods for Handling Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, Recovery from Deadlock. Main Memory: Background, Swapping, Contiguous Memory Allocation, Segmentation, Paging #### UNIT - IV **Virtual Memory:** Background, Demand Paging, Copy-on-Write, Page Replacement, Allocation of Frames, Thrashing. Mass Storage Structure: Overview of Mass-Storage Structure, Disk Structure, Disk Attachment, Disk Scheduling, Disk Management #### **TEXT BOOKS** [1] Abraham Silberschatz, Peter B. Galvin and Greg Gagne, Operating System Concepts.9thed, John Wiley & Sons (Asia) Pvt.Ltd, 2018. #### REFERENCE BOOKS - [1] William Stallings, Operating System: Internals and Design Principles. 6th ed 2009 - [2] Andrew S. Tanenbaum, Modern Operating Systems. 3 ed, PHI, 2008. #### E- RESOURCES AND OTHER DIGITAL MATERIAL - [1] Prof. P.K. Biswas sir, Ph.D.(IIT Kharagpur), Dated: 21-02-2013 Video Lectures on "Operating Systems" - [2] http://nptel.ac.in/courses/Webcourse-contents/IISc-BANG/ Operating % 20 Systems/New_index1.html , Dated: June 2004 - [3] http://www.ics.uci.edu/~ics143/lectures.html,2013 - [4] http://web.stanford.edu/~ouster/cgi-bin/cs140-winter16/index.php | SELF LEARNING ELECTIVE (MOOCS) | |--------------------------------| | 17CS2506A | | INTRODUCTION TO R PROGRAMMING | | Course Category: | Self Learning Elective | Credits: | 2 | |------------------|------------------------|-----------------------------|-------| | Course Type: | Theory | Lecture -Tutorial-Practice: | 0-0-0 | | Prerequisites: | - | Continuous Evaluation: | 30 | | _ | | Semester end Evaluation: | 70 | | | | Total Marks: | 100 | ## Upon successful completion of the course, the student will be able to: | CO1 | Learn R language fundamentals and basic syntax | |-----|--| | CO2 | Perform data analysis using R | | CO3 | Apply major R data structures | | CO4 | Create visualizations using R | ## Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-----------------|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | 2 | | | | | | | | | | | | | | | CO2 | 1 | 3 | | | | | | | | | | | | | | CO3 | | 2 | | | | | | | | | | | | | | CO1 CO2 CO3 CO4 | | 2 | | | 3 | | | | | | | | | | ## **COURSE CONTENT** #### The Minimum content to be covered Basic fundamentals, installation and use of software, data editing, use of R as a calculator, functions and assignments. Use of R as a calculator, functions and matrix operations, missing data and logical operators. Conditional executions and loops, data management with sequences. Data management with repeats, sorting, ordering, and lists Vector indexing, factors, Data management with strings, display and formatting. Data management with display paste, split, find and replacement, manipulations with alphabets, evaluation of strings, data frames. Data frames, import of external data in various file formats, statistical functions, compilation of data. Graphics and plots, statistical functions for central tendency, variation, skewness and kurtosis, handling of bivarite data through graphics, correlations, programming and illustration with examples. ## **TEXT
BOOKS** [1] Introduction to Statistics and Data Analysis - With Exercises, Solutions and Applications in R By Christian Heumann, Michael Schomaker and Shalabh, Springer, 2016 #### REFERENCE BOOKS - [1] The R Software-Fundamentals of Programming and Statistical Analysis -Pierre Lafaye de Micheaux, Rémy Drouilhet, Benoit Liquet, Springer 2013 - [2] A Beginner's Guide to R (Use R) By Alain F. Zuur, Elena N. Ieno, Erik H.W.G. Meesters, Springer 2009 ## E-RESOURCES AND OTHER DIGITAL MATERIAL [1] https://onlinecourses.nptel.ac.in/noc17 ma17, Accessed on 24Th July, 2017 | SELF LEARNING ELECTIVE(MOOCS)
17CS2506B | | |--|--| | 17CS2506B | | | PRODUCT DESIGN AND INNOVATION | | | Course Category: | Self Learning Elective | Credits: | 2 | | | | | |------------------|------------------------|----------------------------------|-------|--|--|--|--| | Course Type: | Theory | Lecture -Tutorial-Practice: | 0-0-0 | | | | | | Prerequisites: | - | Continuous Evaluation: 30 | | | | | | | _ | | Semester end Evaluation: | 70 | | | | | | | | Total Marks: | 100 | | | | | ### Upon successful completion of the course, the student will be able to: | CO1 | Identify and analyse the product design and development processes in manufacturing industry. | |-----|--| | CO2 | Define the components and their functions of product design and development processes and their relationships from concept to customer over whole product lifecycle. | | CO3 | Analyse, evaluate and apply the methodologies for product design, development and management. | | CO4 | Undertake a methodical approach to the management of product development to satisfy customer needs | ## Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-----------------|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 CO2 CO3 CO4 | | 3 | 2 | | | | | | | | | | | | | CO2 | | | | | 2 | | | | | | | | | | | CO3 | | 3 | | | | | | | | | | | | | | CO4 | | 1 | | 2 | | | | | | | | | | | ## **COURSE CONTENT** #### The minimum content to be covered Need for Innovation and design, User Innovation, Introduction to product and Product Design, Difference between Product development and product design Need/Problem Identification, User study by contextual enquiry, Questionnaire study, Interview techniques, Persona and scenario mapping, Product Study And Market study, design brief. Importance of Human factors in product design, Physical Ergonomics principles and issues, Ergonomic assessment tool, Cognitive issues in product design Creative techniques and tools for Concept generation, concept evaluation Product prototyping/ model making work flow, tools and techniques for model making and prototyping, introduction to prototype driven innovation, Overview of materials and processes Evaluation tools and techniques for User-Product interaction #### TEXT BOOKS - [1] Eppinger, S., & Ulrich, K.(2015). Product design and development. McGraw-Hill Higher Education. - [2] Green, W., & Jordan, P. W. (Eds.).(1999). Human factors in product design: current practice and future trends. CRC Press. - [3] Sanders, M. S., & McCormick, E. J. (1993). Human factors in engineering and design. McGRAW-HILL book company. ## REFERENCE BOOKS - [1] Roozenburg, N. F., & Eekels, J. (1995). Product design: fundamentals and methods (Vol. 2). John Wiley & Sons Inc. - [2] Lidwell, W., Holden, K., & Butler, J.(2010). Universal principles of design, revised and updated: 125 ways to enhance usability, influence perception, increase appeal, make better design decisions, and teach through design. Rockport Pub #### E-RESOURCES AND OTHER DIGITAL MATERIAL [1] https://onlinecourses.nptel.ac.in/noc18_de02/preview, Accessed on 25th July, 2018 ## SELF LEARNING ELECTIVE(MOOCS) 17CS2506C SOCIAL NETWORKS | Course Category: | Self Learning Elective | Credits: | 2 | |------------------|------------------------|-----------------------------|-------| | Course Type: | Theory | Lecture -Tutorial-Practice: | 0-0-0 | | Prerequisites: | - | Continuous Evaluation: | 30 | | _ | | Semester end Evaluation: | 70 | | | | Total Marks: | 100 | ## **COURSE OUTCOMES** ## Upon successful completion of the course, the student will be able to: | CO1 | Study of theories related to social, information networks and their applications on real-world datasets. | |-----|--| | CO2 | Crunch the online available graph datasets and process them with the help of python networkx package | | CO3 | Visualize the graph datasets | | CO3 | Visualize the graph datasets | ## CO4 Understand real world scenarios ## Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2 - Medium, 3 - High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO 6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-----------------|---------|---------|---------|---------|---------|------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | | | 3 | 2 | 1 | | | | | | | | | | | CO2 | | | | | 3 | | | | | | | | | | | CO3 | | | | 3 | 1 | | | | | | | | | | | CO1 CO2 CO3 CO4 | | | | | 2 | 3 | | | | | | | | | ## **COURSE CONTENT** ## The minimum content to be covered Introduction to Graph Theory and Python Analyzing Online Social Network Datasets Power Law and Emergent Properties Strength of Weak Ties Homophily and Social Influence Structural Balance | , | |--| | The Structure of the Web | | Link Analysis and Web Search | | Link Prediction | | Information Cascades | | Diffusion Behavior in Networks | | The Small World Phenomenon | | | | TEXT BOOKS | | [1] Networks, Crowds and Markets by David Easley and Jon Kleinberg, Cambridge University Press, 2010 | | REFERENCE BOOKS | | [1] Social and Economic Networks by Matthew O. Jackson, Princeton University Press, 2010 | | E-RESOURCES AND OTHER DIGITAL MATERIAL | | [1] https://nptel.ac.in/courses/106106169/, Accessed on June 24 th , 2018 | Full Scheme and Syllabus VR17 ## SELF LEARNING ELECTIVE(MOOCS) 17CS2506D PROGRAMMING IN C++ | Course Category: | Self Learning Elective | Credits: | 2 | |------------------|------------------------|-----------------------------|-------| | Course Type: | Theory | Lecture -Tutorial-Practice: | 0-0-0 | | Prerequisites: | Programming in C | Continuous Evaluation: | 30 | | _ | | Semester end Evaluation: | 70 | | | | Total Marks: | 100 | #### **COURSE OUTCOMES** ### Upon successful completion of the course, the student will be able to: | CO1 | Understand how C++ improves C with object-oriented features | |-----|--| | CO2 | Write the programs using C++ features such as composition of objects, Operator overloading, inheritance, Polymorphism etc. | | CO3 | Apply the concepts of object-oriented programming like structures, unions etc. | | CO4 | Implement how inheritance and virtual functions implement dynamic binding with polymorphism. | ## Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | , | | | | | | | | | | | | | | | |-----|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|-------| | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO 2 | | CO1 | 3 | 1 | 2 | | | | | | | | | | | | | CO2 | | | 3 | | | | | | | | | | | | | CO3 | | | 3 | | 1 | | | | | | | | 3 | 3 | | CO4 | | | | | 3 | | | | | | | | | | ### **COURSE CONTENT** #### The minimum content to be covered Programming in C++ is Fun: Build and execute a C program in C++, Write equivalent programs in C++ C++ as Better C : Procedural Extensions of C Overview of OOP in C++ : Classes and basic Object-Oriented features (encapsulation) Overview of OOP in C++: More OO features, overloading, namespace and using struct and union Inheritance: Generalization / Specialization of Object Modeling in C++ Polymorphism: Static and Dynamic Binding Type Casting & Exceptions: C++ cast operators; C++ Exceptions & standard exception classes ## SELF LEARNING ELECTIVE(MOOCS) 17CS2506E ADVANCED COMPUTER ARCHITECTURE | Course Category: | Self Learning Elective | Credits: | 2 | |------------------|------------------------|-----------------------------|-------| | Course Type: | Theory | Lecture -Tutorial-Practice: | 0-0-0 | | Prerequisites: | Computer organization | Continuous Evaluation: | 30 | | _ | | Semester end Evaluation: | 70 | | | | Total Marks: | 100 | #### **COURSE OUTCOMES** ### Upon successful completion of the course, the student will be able to: | CO1 | Understand the Concept of Pipelining and its applications | |-----|---| | CO2 | Explore Instruction Level Parallelism & data Level Parallelism | | CO3 | Understand the design & optimization techniques of cache memory | | CO4 | Understand the design Concepts of DRAM. | ## Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 |
PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-------------|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | 2 | | | | | | | | | | | | | 1 | | CO1 CO2 CO3 | 1 | 2 | 2 | | | | | | | | | | | 1 | | CO3 | 1 | 2 | | | | | | | | | | | | | | CO4 | 1 | 2 | | | | | | | | | | | | | ## **COURSE CONTENT** #### The minimum content to be covered Review of Basic Computer Organization, Performance Evaluation Methods, Introduction to RISC Instruction Pipeline, Instruction Pipeline and Performance. Pipeline Hazards and Analysis, Branch Prediction, MIPS Pipeline for Multi-Cycle Operations. Compiler Techniques to Explore Instruction Level Parallelism, Dynamic Scheduling with Tomasulo's Algorithm and Speculative Execution. Advanced Pipelining and Superscalar Processors, Exploiting Data Level Parallelism: Vector and GPU Architectures. Introduction to Cache Memory, Block Replacement Techniques and Write Strategy, Design Concepts in Cache Memory. Basic and Advanced Optimization Techniques in Cache Memory, Cache Optimization using gem5. Introduction to DRAM System, DRAM Controllers and Address Mapping, Secondary Storage Systems, | Design Concepts in DRAM and Hard Disk. | |---| | TEXT BOOKS | | [1] Computer Architecture - A Quantitative Approach,5th edition, John L. Hennessy, David A. Patterson. [2] Computer Systems Design and Architecture, 2nd Edition, Vincent P. Heuring | | REFERENCE BOOKS | | [1] Computer Organization and Architecture, 6th Edition, William Stallings [2] Advanced Computer Architectures-A Design Space Approach, Dezsosima, Terence Fountain, Peter Kacsuk. | | E-RESOURCES AND OTHER DIGITAL MATERIAL | | [1] Advanced computer architecture by Prof. John Jose, IIT Guwahati https://swayam.gov.in/nd1_noc19_cs62/preview (Accessed on 10-8-18) | 17TP1507 PERSONALITY DEVELOPMENT | | | | | | | | | | | |----------------------------------|--------------------|-------------------------------|-----------|--|--|--|--|--|--|--| | Course Category: | Institutional Core | Credits: | 1 | | | | | | | | | Course Type: | Learning by Doing | Lecture -Tutorial-Practice: | 0 - 0 - 2 | | | | | | | | | Prerequisites: | - | Continuous Evaluation: | 100 | | | | | | | | | - | | Semester end Evaluation: | 0 | | | | | | | | | | | Total Marks: | 100 | VR17 #### **COURSE OUTCOMES** ## Upon successful completion of the course, the student will be able to: | CO1 | Perform as good team player. | |-----|---| | CO2 | Proficient in academic presentations. | | CO3 | Know the corporate etiquette. | | CO4 | Develop analytical skill set through case studies. | | CO5 | Develop competency in personal interviews, group discussions and succeed in professional and personal life. | | CO6 | Present them-selves with "corporate readiness". | ## Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | CO1
CO2
CO3
CO4
CO5
CO6 | PO 1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |--|-------------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | | | | | | | | | | 3 | 3 | | | | | CO2 | | | | | | | | | 3 | 3 | 3 | | | | | CO3 | | | | | | | | | | 3 | 3 | | | | | CO4 | | | | | | | | 2 | | 3 | 3 | | | | | CO5 | | | | | | | | | | 2 | 3 | | | | | CO6 | | | | | | | | | | 3 | | | | | ## **COURSE CONTENT** ### UNIT – I - Self-Introduction - Shaping Young Minds A Talk by Azim Premji (Listening Activity) - Self Analysis, Developing Positive Attitude - Perception Importance of analytical thinking #### UNIT - II - Communication Skills Need and Methods - Body-Language-I; How to interpret and understand other's body language - Body Language II; How to improve one's own Body Language • Anger Management #### UNIT - III - Stress Management - Time Management Methods of using time effectively - Social, Business & Dining Etiquette - Telephone and Email Etiquette #### **UNIT-IV** - Standard Operation Methods Note Making & Note Taking - Minutes Preparation - Email Writing - Email Practice Session - Letter Writing Formal & Informal ## UNIT - V - Team Building - Leadership Qualities - Six Thinking Hats #### UNIT - VI - Vocabulary - Correction of Sentences - Sentence Completion Course of Action - Sentences Assumptions ## UNIT - VII - Sentence Arguments - Reading Comprehension-Practice work - Group Discussion - Group Discussion Practice Session #### **UNIT-VIII** - Resume Preparation - Interview Skills - Mock Interviews. #### **METHODOLOGY** Audio—Visuals / Hand Outs (Compiled/Created by Training Division, T&P Cell, VR Siddhartha Engineering College), Board & Chalk and Interactive Sessions. | 17CS3509 MICROPROCESSORS AND MICROCONTROLLERS | | | | | | | | | | | |---|-----------------------|-----------------------------|-----------|--|--|--|--|--|--|--| | Course Category: | Programme Core | Credits: | 3 | | | | | | | | | Course Type: | Theory | Lecture -Tutorial-Practice: | 3 - 0 - 0 | | | | | | | | | Prerequisites: | Digital logic design, | Continuous Evaluation: | 30 | | | | | | | | | - | Computer organization | Semester end Evaluation: | 70 | | | | | | | | | | | Total Marks: | 100 | ## Upon successful completion of the course, the student will be able to: | CO1 | Understand the fundamental concepts of 8086 µP and its internal Architecture. | |-----|--| | CO2 | Apply 8086 μP Programming Knowledge to solve the problems. | | CO3 | Understand the concepts of 8086 microprocessor interrupts | | CO4 | Implement programs to interface the 8086 Microprocessor with Analog and Digital devices. | | CO5 | Understand the internal architecture& programming of 8051 microcontroller. | ## Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | CO1
CO2
CO3
CO4
CO5 | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |---------------------------------|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | 2 | | | | | | | | | | | | | | | CO2 | 1 | 2 | 3 | | | | | | | | | | | | | CO3 | 2 | | | | | | | | | | | | | | | CO4 | | 3 | 3 | | | | | | | | | | | | | CO5 | 2 | 2 | 2 | | | | | | | | | | | | #### **COURSE CONTENT** #### **UNIT I** ## The 8086 Microprocessor: Overview of microcomputer structure & operation, overview of 8086 microprocessor family, features of advanced Pentium processors, 8086 internal architecture, Machine language Vs assembly language, 8086 addressing modes. 8086 pin diagram, 8086 minimum mode and maximum mode #### UNIT II ## 8086 Instruction Set & Programming: Data transfer instructions, arithmetic instructions, bit manipulation instructions, string instructions, program execution transfer instructions, and processor control instructions, Assembler directives. Standard 8086 assembly language program structure, Assembly language program development tools, writing simple programs in 8086 assembly language, Writing and using procedures and assembler macros #### UNIT III Interrupts: 8086 interrupts and interrupt responses, 8259A priority interrupt controller ## **Interfacing With 8086 Microprocessor** Programmable parallel ports and hand shake input/output, the programmable peripheral interface 8255A: modes of operation and initialization, Basics of D/A and A/D converters. Interfacing of DAC and ADC to 8086 microprocessor. #### **UNIT IV** **The 8051 Microcontroller:** 8051 micro controller hardware, inputs/ outputs pins, ports and circuits, counters and timers, serial data input/output, interrupts. ## **Programming The 8051:** Addressing Modes, External data moves, code memory read only data moves, PUSH and POP op codes, data exchanges, byte level and bit level logical operations rotate and swap operations, arithmetic operations jumps, calls & subroutines Interrupts & returns. #### TEXT BOOKS - [1] Douglas V Hall, "Microprocessor and Interfacing", 3rd edition, McGraw Hill, 2016. - [2] Kenneth J. Ayala, "8051 MICRO CONTROLLER ARCHITECTURE" 3rd edition, Thomson Delmar Learning, 2007 #### REFERENCE BOOKS - [1] K M Bhurchandi, A.K.Ray, "Advanced Microprocessors and Peripherals", 3rd edition, McGraw Hill, 2014 - [2] A.Nagoor Kani, "Microprocessors and Microcontrollers", 2nd edition, McGraw Hill, 2015 - [3] Microprocessors and Microcomputer-Based System Design , Mohamed Rafiquzzaman , 2nd Edition , CRS press,1995 #### E-RESOURCES AND OTHER DIGITAL MATERIAL [1] Prof. Krishna Kumar, IISc Bangalore "Microprocessors and Microcontrollers" [Web Content]. Available: http://nptel.ac.in/courses/106108100/ (Accessed on 10-8-18) | 17CS3551 | |--| | DATABASE MANAGEMENT SYSTEMS LABORATORY | | Course Category: | Programme Core | Credits: | 1 | |------------------|-------------------|-----------------------------|-----------| | Course Type: | Laboratory | Lecture -Tutorial-Practice: | 0 - 0 - 2 | | Prerequisites: | Object Oriented | Continuous Evaluation: | 30 | | _ | Programming using | Semester end Evaluation: | 70 | | | Java, |
Total Marks: | 100 | | | Web Technologies | | | ## Upon successful completion of the course, the student will be able to: | CO1 | Design and implement a database schema for a given problem-domain | |-----|---| | CO2 | Model an application's data requirements using conceptual modeling tools like ER diagrams and design database schemas based on the conceptual model. | | CO3 | Apply normalization process for database design | | CO4 | Implement various OLAP operations | | CO5 | Demonstrate an understanding of the detailed architecture, define objects, load data, query data and performance tune Key-Value Pair NoSQL databases. | ## Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |---------------------|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | 1 | 1 | 1 | | | | | | | | | | 1 | 1 | | CO2 | | 2 | 3 | | | | | | | | | | 1 | 1 | | CO3 | | 2 | 3 | | | | | | | | | | 2 | 2 | | CO4 | | 1 | 1 | | | | | | | | | | 1 | 1 | | CO1 CO2 CO3 CO4 CO5 | | 2 | 3 | | | | | | | | | | 2 | 2 | #### **COURSE CONTENT** ## PART-A (SQL, PL/SQL) #### Task 1: Defining schemas for applications (Creating tables, Renaming tables, Data constraints (Primary key, Foreign key, Not Null), Data insertion into a table) #### Task2: Execute the aggregate functions like count, sum, avg etc. on the suitable database. Make use of built in functions according to the need of the database chosen. Retrieve the data from the database based on date function. Use group by and having clauses. ### Task3: Implementation of different types of Joins, views, Sub-queries #### Task4: Draw ER diagram for an application with at least 3 entities and relationships between them using a tool. Perform ER to Relational Mapping to derive Relational database #### Task5: Write a PL/SQL block to implement various control structures #### Task6: Write a PL/SQL block to implement all types of cursors. #### Task7: Create simple procedure, procedures with parameters like IN,OUT & INOUT on the given schemas Differentiate Function & Procedure. Create simple function on the given schema #### Task8: Execute statement level and row level trigger on the given schema ## PART-B (No SQL) #### Task 9: Create a NoSQL database for a sample application and perform CURD operations ## Task 10: Create a data warehouse and Implement OLAP operations #### **Task 11:** Design and Implement Database operations (add, delete, edit etc.) using SQLite. #### PART-C (DBMS LAB PROJECT) Design and Implement the given Database Application using following requirements - Database Analysis and Design - ✓ Build Conceptual schema using tools - ✓ Apply Normalization process for relational database design - ✓ Relational Model Database - Implementation: - ✓ Front End: Java/Perl/PHP/Python/Ruby/.net - ✓ Backend: SQL/MySQL/SQLite - ✓ Database Connectivity: ODBC/JDBC/Servlets - Testing: Data Validation #### **TEXT BOOKS** [1] Ramez Elmasri, Shamkant B. Navathe, "Fundamentals of Database Systems",7thedition, Pearson Education Ltd, 2016. #### REFERENCE BOOKS - [1] Gordon S Linoff Data Analysis Using SQL and Excel, 2nd Edition Wiley 2016 - [2] Joan Casteel, Oracle 12c:SQL, Cengage Learning, 2017 - [3] J D Ullman, "Principles of database systems", Computer Science Press, 2001. #### E-RESOURCES AND OTHER DIGITAL MATERIAL | [1] Prof Arnab Bhattacharya IIT Kanpur, SQL Introduction https://nptel.ac.in/courses/106104135/10 Last accessed on 01-06-2019 [2] Prof Arnab Bhattacharya IIT Kanpur SQL: Updates, Joins, Views and Triggers https://nptel.ac.in/courses/106104135/11 Last accessed on 01-06-2019 [3] Geoff Allix and Graeme Malcolm: Microsoft, Querying with Transact-SQL (edX) https://www.mooclist.com/course/querying-transact-sql-edx Last accessed on 01-06-2019 | |--| | | | | | | | | | | | | | | | | | 17CS3552
MICROPROCESSOR LABORATORY | | | | | | | | | | | |---------------------------------------|-----------------------|-----------------------------|-----------|--|--|--|--|--|--|--| | Course Category: | Programme Core | Credits: | 1 | | | | | | | | | Course Type: | Laboratory | Lecture -Tutorial-Practice: | 0 - 0 - 2 | | | | | | | | | Prerequisites: | Digital logic design, | Continuous Evaluation: | 30 | | | | | | | | | _ | Computer organization | Semester end Evaluation: | 70 | | | | | | | | | | | Total Marks: | 100 | ## Upon successful completion of the course, the student will be able to: | CO1 | Understand the fundamental concepts of 8086 µP and its internal Architecture. | |-----|--| | CO2 | Apply 8086 μP Programming Knowledge to solve the problems. | | CO3 | Understand the concepts of 8086 microprocessor interrupts | | CO4 | Implement programs to interface the 8086 Microprocessor with Analog and Digital devices. | | CO5 | Understand the features of peripheral devices and internal architecture of 8051 microcontroller. | ## Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2 - Medium, 3 - High) | CO1
CO2
CO3
CO4
CO5 | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |---------------------------------|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | 2 | | | | | | | | | | | | | | | CO2 | 1 | 2 | 3 | | | | | | | | | | | | | CO3 | 2 | | | | | | | | | | | | | | | CO4 | | 3 | 3 | | | | | | | | | | | | | CO5 | 2 | | 2 | | | | | | | | | | | | #### **COURSE CONTENT** - Task 1: Data transfer instructions (With different Address Modes). - Task 2: Demonstration on 8086 μP Flag Register with operations. - Task 3: Arithmetic instructions (8-bit /16-bit Data Size With different Address Modes) - Task 4: Loop instructions - Task5: Jump instructions - Task 6: Logical/ rotate/ shift instructions - Task 7: String instructions. - Task 8: Demonstration of subroutines Execution Task 9: ADC interfacing Task 10: DAC interfaces Task 11: Stepper motor interfacing Task12:Complete study of ARM Cortex processor ## **TEXT BOOKS** - [1] Douglas V Hall, "Microprocessor and Interfacing", 3rd edition, McGraw Hill, 2016. - [2] Kenneth J. Ayala, "8051 MICRO CONTROLLER ARCHITECTURE" 3rd edition, Thomson Delmar Learning, 2007 #### REFERENCE BOOKS - [1] K M Bhurchandi, A.K.Ray, "Advanced Microprocessors and Peripherals", 3rd edition, McGraw Hill, 2014 - [2] Microprocessors and Microcomputer-Based System Design , Mohamed Rafiquzzaman , 2nd Edition , CRS press,1995. ### E-RESOURCES AND OTHER DIGITAL MATERIAL [1] Prof. Krishna Kumar, IISc Bangalore "Microprocessors and Microcontrollers" [Web Content]. Available: http://nptel.ac.in/courses/106108100/ (Accessed on 10-8-18) | 17CS2553A
ADVANCED PROGRAMMING in JAVA LABORATORY | | | | | | | | | | | |--|------------------|-----------------------------|-----------|--|--|--|--|--|--|--| | Course Category: | Open Elective | Credits: | 1 | | | | | | | | | Course Type: | Laboratory | Lecture -Tutorial-Practice: | 0 - 0 - 2 | | | | | | | | | Prerequisites: | C Programming | Continuous Evaluation: | 30 | | | | | | | | | | Laboratory, | Semester end Evaluation: | 70 | | | | | | | | | | Java Programming | Total Marks: | 100 | | | | | | | | | | Laboratory | | | | | | | | | | ## Upon successful completion of the course, the student will be able to: | CO1 | Create GUI application | |-----|--------------------------------| | CO2 | Create distributed application | | CO3 | Develop web application | | CO4 | Develop enterprise application | ## Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | | PO
1 | PO 2 | PO
3 | PO
4 | PO
5 | PO 6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |------------|---------|------|---------|---------|---------|------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | 3 | | | | 1 | | | | | | | | | | | CO2
CO3 | | 2 | 1 | | 1 | | | | | | | | 1 | 1 | | CO3 | | | 2 | | 2 | | | | 1 | | | | 2 | | | CO4 | | | 2 | | 3 | | | | 2 | | 2 | | 3 | 3 | #### **COURSE CONTENT** Task 1: Course Outcome: CO1: Create GUI application Topic: Java Swings. Create a GUI application in java using Swing components, which enter the details of an Employee and on the submit display the details of the Employee (Employee details is like contains name, code, address, phone, joining details, blood group etc.) Task 2: Course Outcome: CO1: Create GUI application Topic: Java Swings and JDBC Connectivity. Design Employee Database for company or Organization (Employee Personal Details, Full Scheme and Syllabus VR17 Department, Salary (basic,
DA, HRA.,) Details) and develop JDBC based java application for following tasks: - 1. Insert Records into respective table - 2. Select records of particular table of database - 3. Delete Records from table. Connect GUI application to database and perform SQL commands via JDBC API #### Task 3: Course Outcome: CO1: Create distributed application Topic: Lambda Expressions. Create a simple java application for guessing game and keep track about top five scores for each game played by the user with implementation of lambda expressions. #### Task 4: Course Outcome: CO2: Create distributed application **Topic:** Network Programming Create Application for Datagram server and Client interaction as per given below. - i] Datagram server to send a message to client. - ii]Datagram client to receive the message sent by the server. Create a simple UDP chat application where client and server can chat with each other. Write a client server program using TCP where client sends 10 numbers to server program and server program responds with the numbers in ascending order to respective client. ## Task 5: Course Outcome: CO2: Create distributed application **Topic:** RMI Programming Write an RMI client server String operations application. RMI server provides two remotely accessible methods: long findStringLength(String s); //returns length of a String parameter boolean checkPalindrome(String s); //determines whether a String //parameter is palindrome or not #### Task 6: Course Outcome: CO3: Create web application **Topic:** Servlets Verify installation and setting of Web container/Web Server/Tomcat and prepare an installation report, which contains setting of class path, server port, starting and shutting down of server. Develop web Application to display a greeting message in the browser by using Servlet interface. ## Task 7: Course Outcome: CO3: Create web application **Topic:** Servlets Create a simple Sign in and Signup web application using HTTPServlet class. #### Task 8: Course Outcome: CO3: Create web application **Topic:** Servlets Create Servlet for registering a new user and displaying the number of visits made by the existing user using cookies. #### Task 9: Course Outcome: CO3: Create web application **Topic:** Java Server Pages Create JSP to output, "Welcome to JSP world. The time now is: system current time. Use a scriptlet for the complete string, including the HTML tags. #### **Task 10:** Course Outcome: CO3: Create web application **Topic:** Java Server Pages Create a simple JSP application for online poll application that prompts the user to answer a question and display the results in bar graph representation. #### Task 11: Course Outcome: CO3: Create enterprise application **Topic:** Spring framework Create a simple web application for online poll application that prompts the user to answer a question and display the results in bar graph representation and use spring framework in development. #### Lab Projects: - 1. Apply the concepts of Java Swings, JDBC Connectivity and Networking programming to develop any real-time GUI based application. - Ex. e-Shopping cart application. - 2. Apply the key concepts of Servlets, JSP and EJB to develop web based application. - Ex. interactive online-based quiz application. ### **TEXT BOOKS** - [1] Herbert Schildt, "Java, The Complete Reference", Ninth Edition, Oracle Press, 2018. [Unit- I Chapter 1, Unit- II Chapter 1]. - [2] H. M. Deitel, P.J. Deitel, S.E. Santry, "Advanced Java 2 Platform How to Program", 3rd Edition, 2016, Prentice Hall Publications. [Unit Chapter 2, Unit-II Chapter 2, Unit-IV Chapter 2] - [3] Hans Bergsten, "JavaServer Pages", 3rd Edition 2017, O'Reilly Media. [Unit III Chapter 2, Unit- IV Chapter 1]. - [4] Web Reference: https://www.javatpoint.com/spring-and-struts2-integration [Unit IV Chapter 3] ## REFERENCE BOOKS - [1] Paul J. Dietel and Dr.Harvey M. Deitel, "Java How to Program", 9th Edition, Prentice-Hall, Pearson Education, 2016. - [2] David Geary, Cay S. Horstmann "Core JavaServer Faces" Third edition, 2016, Prentice Hall. - [3] Jim Keogh, "The Complete reference to J2EE", reprint 2017, Tata McGraw-Hill . ## E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] Abhay Redkar, JSF Developer, "Struts 2 Framework for beginners", Udemy.https://www.udemy.com/struts-2-framework-for-beginners/ Available: Last accessed on August 2018. - [2] Prof. I. Sengupta. (14th, May, 2017), Department of Computer Science & Engineering, I.I.T., Kharagpur, "Internet Technologies", NPTEL videos | 17CS2553B
COMPUTER GRAPHICS LABORATORY | | | | | | | | | | | |---|-----------------------|-----------------------------|-----------|--|--|--|--|--|--|--| | Course Category: Open Elective Credits: 1 | | | | | | | | | | | | Course Type: | Laboratory | Lecture -Tutorial-Practice: | 0 - 0 - 2 | | | | | | | | | Prerequisites: | Basics of Mathematics | Continuous Evaluation: | 30 | | | | | | | | | _ | (Algebra and Matrix | Semester end Evaluation: | 70 | | | | | | | | | | Operations) | Total Marks: | 100 | ## Upon successful completion of the course, the student will be able to: | CO1 | Understand working of different display device. | |-----|--| | CO2 | Apply Different Point Plotting techniques. | | CO3 | Demonstrate different 2D and 3D Object Transformation and Viewing. | | CO4 | Illustrate various 3D Projection and 2D Clipping | ## CO5 Understand computer animation sequence. # Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2 - Medium, 3 - High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-----|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | 3 | 3 | | | | | | | | | | | | | | CO2 | 3 | 3 | | | | | | | | | | | | | | CO3 | 3 | 3 | | | | | | | | | | | | | | CO4 | 3 | 3 | | | | | | | | | | | | | | CO5 | | 2 | | | | | | | | | | | 2 | | ## **COURSE CONTENT** - Task 1: Digital Differential Analyzer Algorithm - Task 2: Bresenham's Line Drawing Algorithm - Task 3: Midpoint Circle Generation Algorithm - Task 4: Ellipse Generation Algorithm - Task 5: Creating various types of texts and fonts - Task 6: Creating two dimensional objects - Task 7: Two Dimensional Transformations - **Task 8:** Colouring the Pictures - **Task 9:** Three Dimensional Transformations - Task 10: Curve Generation - **Task 11:** Simple Animations using transformations - **Task 12:** Key Frame Animation #### TEXT BOOKS [1] Donald D. Hearn & M. Pauline Baker "Computer Graphics, C version" 2nd Edition, Pearson Education, New Delhi, 2005 ## REFERENCE BOOKS - [1] S. Harrington "Computer Graphics- A Programming Approach", McGraw Hill Publication, New Delhi, 1994. - [2] W.M.Newman and RF Sproull "Principle of Interactive Computer Graphics", McGraw Hill Publication, New Delhi, 1995 #### E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] Dr. Sukhendu das, "Computer Graphics", IIT Madras - http://nptel.iitm.ac.in/video.php?subjectId=106106090 Last accessed on 01-06-2019 - [2] Prof.Dr.Prem Kalra, "Computer Graphics", IIT Delhi http://www.learnerstv.com/Free-Computer-Science-Video-lectures-ltv046-Page1.htm Last accessed on 01-06-2019 | 17CS3554
COMPETITIVE CODING – II | | | | | | | | | | |-------------------------------------|----------------|-----------------------------|-------|--|--|--|--|--|--| | Course Category: | Programme Core | Credits: | 1 | | | | | | | | Course Type: | Laboratory | Lecture -Tutorial-Practice: | 0-0-2 | | | | | | | | Prerequisites: | - | Continuous Evaluation: | 30 | | | | | | | | | | Semester end Evaluation: | 70 | | | | | | | | | | Total Marks: | 100 | | | | | | | | | | | | | | | | | | # Upon successful completion of the course, the student will be able to: | CO1 | Understand the basic concepts such as Stacks, Queues, Linked Lists and Hashing Techniques in the programming language | |-----|---| | CO2 | Analyse the programs on pointers, dynamic programming concepts | | CO3 | Solve the problems with given test cases | | CO4 | Apply programing skills for optimized code and derive the solutions according to the provided constraints | # Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-----|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | 3 | 2 | 1 | | | | | | | | | | | | | CO2 | | 3 | | | | | | | | | | | 2 | 2 | | CO3 | | 1 | | | | | | | 2 | | 3 | | 3 | 3 | | CO4 | 2 | 3 | | | | | | | | | 2 | | 2 | 2 | ### **COURSE CONTENT** Solving the programs under "Easy / Medium" category in CodeChef & HackerRank, etc. Students must solve 20 problems related to Data Structures in CodeChef / HackerRank, etc. The category may be under Easy / Medium. Students shall participate at least two contests per month, hosted in online judges. Problems to be solved in C. A minimum of 15 problems shall be solved per week in either CodeChef / HarckerRank, etc. Monthly contests hosted in CodeChef / HackerRank, etc,. may be taken as day to day assessment of laboratory. Monthly one such evaluation The work will be carried out in the laboratory slot allotted as well as at the home. ## **TEXT BOOKS** - [1] Halim, Steven and Halim, Felix, Competitive Programming 3, 2013. - [2] Ahmed Shamsul Arefin, Art of Programming Contest, ACMSolver, Second Edition, 2012 ## REFERENCE BOOKS | Turi Scheme and Syriaous |
---| | [1] Programming Challenges: The Programming Contest Training Manual By Steven S Skiena, Miguel A. Revilla [2] Guide to Competitive Programming: Learning and Improving Algorithms Through Contests By Antti Laaksonen | | E- RESOURCES AND OTHER DIGITAL MATERIAL | | [1] Topcoder tutorials - https://www.topcoder.com/community/data-science/data-science-tutorials/ Last accessed on 1-06-2019 [2] Nite Nimajneb's site - http://comscigate.com/Books/contests/icpc.pdf Last accessed on 1-06-2019 [3] Slides from a Stanford Course - http://web.stanford.edu/class/cs97si/ Last accessed on 1-06-2019 [4] Halim, Steven and Halim, Felix, Competitive Programming 3, 2013. Ebook available at lulu.com. Site associate with with the book is http://cpbook.net Last accessed on 1-06-2019 | | | | 17MC1508
BIOLOGY FOR ENGINEERS | | | | | | | | | | |-----------------------------------|--------------------|-----------------------------|-----------|--|--|--|--|--|--| | Course Category: | Mandatory Learning | Credits: | - | | | | | | | | Course Type: | Theory | Lecture -Tutorial-Practice: | 2 - 0 - 0 | | | | | | | | Prerequisites: | - | Continuous Evaluation: | 100 | | | | | | | | _ | | Semester end Evaluation: | 0 | | | | | | | | | | Total Marks: | 100 | | | | | | | | | | | | | | | | | | VR17 #### **COURSE OUTCOMES** # Upon successful completion of the course, the student will be able to: | CO1 | Describe the fundamental Principles and methods of engineering | |-----|---| | CO2 | Identify the functions of different types in bio-molecules | | CO3 | Describe mechanisms underlying the working of molecular biological processes including enzyme catalysis, metabolic pathways, gene expression. | | CO4 | Use Excel, MATLAB and other computational tools to quantitatively analyze biological processes. | # Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-----------------|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | 2 | 3 | | | | | | | | | | | | | | CO2 | | 3 | | | | | | | | | | | | | | CO3 | | 2 | | 3 | | | | | | | | | | | | CO1 CO2 CO3 CO4 | | 1 | | 2 | 3 | | | | | | | | | | ### COURSE CONTENT # Unit-I Introduction and Classification of Living organisms # **Introduction:** Fundamental differences between science and engineering by drawing a comparison between eye and camera, Bird flying and aircraft. Biology as an independent scientific discipline. Discuss how biological observations of 18th Century that lead to major discoveries. Examples from Brownian motion and the origin of thermodynamics by referring to the original observation of Robert Brown and Julius Mayor. # Classification: Classification of living organisms based on (a) Cellularity- Unicellular or multicellular (b) Ultrastructure-prokaryotes or eukaryotes. (c) Energy and Carbon utilization -Autotrophs, heterotrophs, lithotrophs (d) Ammonia excretion – aminotelic, uricotelic, ureotelic (e) Habitat- acquatic, terrestrial (e) Molecular taxonomy- three major kingdoms of life. # **Unit-II Biomolecules and Enzymes** #### **Biomolecules:** Biomolecules: Structures of sugars(Glucose and Fructose), starch and cellulose. Nucleotides and DNA/RNA. Amino acids and lipids. Proteins- structure and functions- as enzymes, transporters, receptors and structural elements. # **Enzymes:** Enzyme classification. Mechanism of enzyme action. Enzyme kinetics and kinetic parameters. #### **Unit-III Genetics and Gene information Transfer** #### **Genetics:** "Genetics is to biology what Newton's laws are to Physical Sciences" Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Concepts of recessiveness and dominance. Gene interaction, Epistasis. Meiosis and Mitosis be taught as a part of genetics. Emphasis to be give not to the mechanics of cell division nor the phases but how genetic material passes from parent to offspring. ## **Information Transfer:** DNA as a genetic material. Hierarchy of DNA structure- from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Define gene in terms of complementation and recombination. # **Unit-IV Metabolism and Microbiology** #### Metabolism: Exothermic and endothermic versus endergonic and exergoinc reactions. Concept of Keq and its relation to standard free energy. ATP as an energy currency. Breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) and synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. ### Microbiology: Concept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Growth kinetics. Ecological aspects of single celled organisms. Microscopy. #### TEXT BOOKS - [1] Biology: A global approach: Campbell, N. A.; Reece, J. B.; Urry, Lisa; Cain, M, L.; Wasserman, S. A.; Minorsky, P. V.; Jackson, R. B. Pearson Education Ltd - [2] Outlines of Biochemistry, Conn, E.E; Stumpf, P.K; Bruening, G; Doi, R.H., John Wiley and Sons - [3] Principles of Biochemistry (V Edition), By Nelson, D. L.; and Cox, M. M.W.H. Freeman and Company - [4] Molecular Genetics (Second edition), Stent, G. S.; and Calender, R.W.H. Freeman and company, Distributed by Satish Kumar Jain for CBS Publisher, Microbiology, Prescott, L.M J.P. Harley and C.A. Klein 1995. 2nd edition Wm, C. Brown Publishers ### E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] https://bee.cals.cornell.edu/sites/bee.cals.cornell.edu/files/shared/documents/Career_Bee_Final-for-Web.pdf Last accessed on 1-06-2019 - [2] https://www.teachengineering.org/subjectareas Last accessed on 1-06-2019 | Full Scheme and Syllabus | VR17 | |--------------------------|------| CEMECTED | VI | | SEMESTER | - V1 | 17CS3601
THEORY OF COMPUTATION | | | | | | | | | | |-----------------------------------|-----------------------|-----------------------------|-----------|--|--|--|--|--|--| | ourse Category: | Program Core | Credits: | 3 | | | | | | | | Course Type: | Theory | Lecture -Tutorial-Practice: | 3 - 0 - 0 | | | | | | | | Prerequisites: | Discrete Mathematics, | Continuous Evaluation: | 30 | | | | | | | | | Digital Logic Design | Semester end Evaluation: | 70 | | | | | | | | | | Total Marks: | 100 | | | | | | | | | | | | | | | | | | ## Upon successful completion of the course, the student will be able to: | CO1 | Understand the basic concepts of formal languages of finite automata techniques. | | | | | | | | | |-----|---|--|--|--|--|--|--|--|--| | CO2 | Solve regular expressions and various problems to minimize FA. | | | | | | | | | | CO3 | Apply various languages to construct context free grammar. | | | | | | | | | | CO4 | Apply normal form techniques, Push down automata and Turing Machines to solve various problems. | | | | | | | | | # Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-----------------|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | 2 | 3 | | | | | | | | | | | | | | CO1 CO2 CO3 CO4 | 2 | 3 | | | | | | | | | | | | | | CO3 | | 3 | 3 | | | | | | | | 1 | | | | | CO4 | | 3 | 3 | | | | | | 1 | | | | | | ## **COURSE CONTENT** #### UNIT I **Finite Automata & Regular Expressions:** Finite State Systems- Basic Definitions-Deterministic Finite Automata- Non-Deterministic Finite Automata and their equivalence-Finite Automata with å Moves-Regular Expressions-Finite Automata with output. # UNIT II **Properties of Regular Sets:** The Pumping Lemma for regular sets - Closure Properties of Regular Sets-Decision Algorithms for regular sets. The Myhill – Nerode Theorem and minimization of Finite Automata. **Context Free Grammars:** Context Free Grammars- Derivation Trees-Simplification of context free grammars. #### UNIT III Chomsky Normal Form-Greibach Normal Form-Pushdown Automata-Informal Description: Definitions-Pushdown Automata Context Free Languages- Properties of Context Free Languages- The Pumping Lemma for CFL's. Closure Properties of CFL's- Decision Algorithms for CFL's. ## **UNIT IV** **Turing Machines:** Introduction- Turing Machine Model-Computable Languages and functions-Techniques of Turing Machine Construction. **Undecidability:** Properties of Recursive and Recursively Enumerable languages- Universal Turing Machines (without any reference to undecidable problems). #### TEXT BOOKS [1] John E Hopcroft, Jeffery D Ullman, Introduction to
Automata Theory & Languages and Computation Narosa Publishing House, 2002 ## REFERENCE BOOKS - [1] K.L.P Mishra, N. Chandrasekaran, Theory of Computer Science (Automata, Languages and Computation), Prentice Hall India, 3rd Edition, 2007. - [2] John C. Martin, Introduction to Language and Theory of Computation, TMH, 3rd Edition, 2007. - [3] Daniel Cohen, Introduction to Computer Theory, Wiley India, 2ed, 2007. ## E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] https://nptel.ac.in/courses/106104028/ Last accessed on 1-06-2019 - [2] https://freevideolectures.com/course/3045/theory-of-computation-i Last accessed on 1-06-2019 3 1 | 17CS3602
SOFTWARE ENGINEERING | | | | | | | | | | |----------------------------------|----------------|----------------------------|-------|--|--|--|--|--|--| | Course Category: | Programme Core | Credits: | 3 | | | | | | | | Course Type: | Theory | Lecture-Tutorial-Practice: | 3-0-0 | | | | | | | | Prerequisites: | - | Continuous Evaluation: | 30 | | | | | | | | | | Semester end Evaluation: | 70 | | | | | | | | | | Total Marks: | 100 | | | | | | | | COURSI | COURSE OUTCOMES | | | | | | | | |--|--|--|--|--|--|--|--|--| | | Upon successful completion of the course, the student will be able to: | | | | | | | | | CO1 | Understand basic concepts of software engineering. | | | | | | | | | CO2 | Compare different software engineering process models. | | | | | | | | | CO3 | Analyze the principles of requirement Engineering. | | | | | | | | | CO4 | Create architectural design for a given project. | | | | | | | | | CO5 | Apply different testing techniques | | | | | | | | | Contribution of Course Outcomes towards achievement of Program Outcomes (1-Low, 2-Medium, 3- | | | | | | | | | | High) | High) | | | | | | | | | | | | | | |-------|---------|------|---------|---------|---------|------|-------------|---------|---------|----------|----------|----------|----------|-------| | | PO
1 | PO 2 | PO
3 | PO
4 | PO
5 | PO 6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO 2 | | CO1 | 1 | | | | | | | | | | | | | | | CO2 | | | 1 | | | | | | | 2 | | 1 | | | | CO3 | | 1 | 1 | | | | | | 2 | | 3 | 1 | | | ## **COURSE CONTENT** 1 1 ### UNIT I **CO4** **CO5** **Software and Software Engineering**: The Nature of Software, Defining Software, Software Application Domains, Legacy Software, The Unique Nature of Web Apps, Software Engineering, The Software Process, Software Engineering Practice, The Essence of Practice, General Principles, Software Myths. **The Software Process**: Process Models, A Generic Process Model, Process Assessment and Improvement, Prescriptive Process Models, Specialized Process Models, The Unified Process, Personal and Team Process Models, Process Technology, Product and Process. **Agile Development:** What Is Agility? Agility and the Cost of Change, What Is an Agile Process? Extreme Programming (XP) Other Agile Process Models, A Tool Set for the Agile Process. # **UNIT II** **Understanding Requirements:** Requirements Engineering, Establishing the Groundwork, Eliciting Requirements, Developing Use Cases, Building the Requirements Model, Negotiating Requirements, Validating Requirements. Requirements Modelling: Scenarios, Information and Analysis classes: Requirements Analysis, Scenario-Based Modeling, UML Models That Supplement the Use Case, Data Modeling Concepts, Class-Based Modeling. **Requirements Modelling:** Flow, Behavior, Patterns, And Web apps: Requirements Modeling Strategies, Flow-Oriented Modeling, Creating a Behavioral Model, Patterns for Requirements Modeling, Requirements Modeling for Web Apps. ## **UNIT III** **Design Concepts:** Design within the Context of Software Engineering, the Design Process, Design Concepts, the Design Model. Architectural Design: Software Architecture, Architectural Genres, Architectural Styles, Architectural Design, Assessing Alternative Architectural Designs, Architectural mapping using data flow. **Modeling Component-Level Design:** What Is a Component? Designing Class-Based Components, Conducting Component Level Design, and Component level design for Web Apps. Performing User Interface Design: The Golden Rules, User Interface Analysis and Design, Interface Analysis, Interface Design Steps, WebApp Interface Design. #### **UNIT IV** **Software Testing Strategies:** A Strategic Approach to Software Testing, Strategic Issues, Test Strategies for Conventional Software, Test Strategies for Object-Oriented Software, Validation testing, System testing, the art of debugging. **Testing Conventional Applications:** Software Testing Fundamentals, Internal and External Views of Testing, White Box Testing, Basis Path Testing, Control Structure Testing, Black-Box Testing, Model-Based Testing, Testing for Specialized Environments, Architectures, and Applications, Patterns for Software Testing. # **TEXT BOOKS** [1] Roger S.Pressman, "Software Engineering- A Practitioner's Approach". Tata McGraw-Hill International 7th ed. 2010. ## **REFERENCE BOOKS:** - [1] Ian Somerville, "Software Engineering". 9th ed, Pearson Education. 2011. - [2] Carlo Ghezzi, Mehdi Jazayeri and Dino Mandrioli, "Fundamentals of Software Engineering".2 ed, PHI. 2009 - [3] RajibMall, Fundamentals of Software Engineering. 3 ed, PHI. 2009. ## E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] https://nptel.ac.in/courses/106101061/2 Last accessed on 1-06-2019 - [2] https://nptel.ac.in/courses/106101061/5 Last accessed on 1-06-2019 | 17CS4603A
CLOUD COMPUTING | | | | | | | | | | | |------------------------------|--------------------|-----------------------------|----------|--|--|--|--|--|--|--| | Course Category: | Programme Elective | Credits: | 3 | | | | | | | | | Course Type: | Theory | Lecture -Tutorial-Practice: | 3 -0 - 0 | | | | | | | | | Prerequisites: | Computer Networks | Continuous Evaluation: | 30 | | | | | | | | | _ | | Semester end Evaluation: | 70 | | | | | | | | | | | Total Marks: | 100 | # Upon successful completion of the course, the student will be able to: | CO1 | Understand various basic concepts related to cloud computing technologies | |-----|---| | CO2 | Understand different cloud programming platforms and tools | | CO3 | Explain and characterize different cloud deployment models and service models | | CO4 | Identify the security issues in cloud computing | # Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2 - Medium, 3 - High) | 8 / | | | | | | | | | | | | | | | |-----|---------|---------|---------|---------|---------|------|-------------|---------|---------|----------|----------|----------|----------|----------| | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO 6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | | CO1 | 3 | 3 | | | | | 1 | | 1 | | 3 | 1 | 2 | 2 | | CO2 | 3 | 3 | | | | | 1 | | 1 | | 3 | 1 | 2 | 2 | | CO3 | 3 | 3 | | | | | | | 1 | 1 | 3 | 1 | 2 | 2 | | CO4 | 3 | 3 | | | | | 1 | | 1 | 1 | 3 | 1 | 2 | 2 | # **COURSE CONTENT** # **UNIT I: Introduction & Cloud Computing Architecture** **Cloud computing at a glance:** The vision of cloud computing, Defining a cloud, A closer look, The cloud computing reference model, Characteristics and benefits **Historical developments:** Distributed systems, Virtualization, Web 2.0, Service-oriented computing, Utility-oriented computing **Building cloud computing environments:** Application development, Infrastructure and system development, Computing platforms and technologies **The cloud reference model:** Architecture, Infrastructure-and hardware-as-a-service, Platform as a service, Software as a service **Types of clouds:** Architecture, Infrastructure-and hardware-as-a-service, Platform as a service, Software as a service. **Open Challenges:** Cloud definition, Cloud interoperability and standards, Scalability and fault tolerance, Security, trust, and privacy, Organizational aspects. #### **UNIT II: Virtualization & SOA** Introduction, Characteristics of Virtualized Environments, Taxonomy of Virtualization Techniques - Execution Virtualization, Other types of Virtualization, Virtualization and Cloud Computing, Pros and Cons of Virtualization, Technology Examples – Xen, VMware, Microsoft Hyper-V **Introducing Service Oriented Architecture** - Event-driven SOA or SOA 2.0, The Enterprise Service Bus, Service catalogs **Defining SOA Communications** - Business Process Execution Language, Business process modeling **Managing and Monitoring SOA** - SOA management tools, SOA security, The Open Cloud Consortium, Relating SOA and Cloud Computing # UNIT III: Cloud Platforms, Applications and Cloud Programming and Software Environments **Amazon web services** - Compute services, Storage services, Communication services and Additional Services. **Google AppEngine** - Architecture and core concepts, Application life cycle, Cost model, Observations. **Microsoft Azure** - Azure Core Concepts, SQL Azure, Windows Azure Platform Appliance **Scientific Applications** – Healthcare, Biology, Geoscience, **Business and Consumer Applications** – CRM and ERP, Productivity, Social Networking, Media Applications, Multiplayer Online Gaming **Features of Cloud and Grid Platforms -** Cloud Capabilities and Platform Features, Traditional Features Common to Grids and Clouds, Data Features and Databases, Programming and Runtime Support **Programming Support of Google App Engine** - Programming the Google App Engine, Google File System (GFS), BigTable, Google's NOSQL System, Chubby, Google's Distributed Lock Service. **Programming on Amazon AWS and Microsoft Azure** - Programming on Amazon EC2, Amazon Simple Storage Service (S3), Amazon Elastic Block Store
(EBS) and SimpleDB, Microsoft Azure Programming Support. # **UNIT IV: Cloud Security and Mobile Cloud** Securing the Cloud - The security boundary, Security service boundary, Security mapping. **Securing Data -** Brokered cloud storage access, Storage location and tenancy, Encryption, Auditing and compliance. **Establishing Identity and Presence** - Identity protocol standards, Windows Azure identity standards, Presence. **Working with Mobile Devices -** Defining the Mobile Market, Connecting to the cloud, Adopting mobile cloud applications. ## **TEXT BOOKS** - [1] Rajkumar Buyya, Christian Vecchiola, S Tamarai Selvi "Mastering Cloud Computing Foundations And Applications Programming", McGraw Hill Education, 2016. - [2] Kai Hwang, Geoffrey C Fox, Jack J Dongarra, "Distributed and Cloud Computing From Parallel Processing to the Internet of Things", Morgan Kaufman Publishing, 2012 - [3] Barrie Sosinsky, "Cloud Computing Bible", Wiley Publishers, 2012 #### REFERENCE BOOKS - [1] Nikos Antonopoulos, Lee Gillam, Cloud Computing: Principles, Systems and Applications, Springer, 2012 - [2] Thomas Erl, "Cloud Computing: Concepts, Technology & Architecture", 1st Edition, Pearson, 2014 #### E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] https://cs.uwaterloo.ca/~a78khan/courses-offered/cs446/2010_05/lecture-slides/16 CloudComputing.pdf Last accessed on 1-06-2019 - [2] http://www.cs.iit.edu/~iraicu/teaching/CS553-S12/index.html Last accessed on 1-06-2019 - [3] https://www.youtube.com/user/arch4cloud/playlists Last accessed on 1-06-2019 | 17CS4603B
LINUX ESSENTIALS | | | | | | | | | | | | |-------------------------------|--------------------|-----------------------------|-----------|--|--|--|--|--|--|--|--| | Course Category: | Programme Elective | Credits: | 3 | | | | | | | | | | Course Type: | Theory | Lecture -Tutorial-Practice: | 3 - 0 - 0 | | | | | | | | | | Prerequisites: | Operating systems | Continuous Evaluation: | 30 | | | | | | | | | | | | Semester end Evaluation: | 70 | | | | | | | | | | | | Total Marks: | 100 | # Upon successful completion of the course, the student will be able to: | CO1 | Understand and work confidently in Linux Environment | |-----|---| | CO2 | Apply the security and administration mechanisms for user or group management and permissions | | CO3 | Write shell scripts for solving problems | | CO4 | Develop the client/server communication using IPC mechanisms | # Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2 - Medium, 3 - High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |--------------------------|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1
CO2
CO3
CO4 | 3 | | 2 | | | | | | | | | 2 | 2 | | | CO2 | 3 | | 3 | | | | | | | | | 2 | 2 | | | CO3 | 3 | | 3 | | | | | | | | | 2 | 2 | | | CO4 | 3 | | 2 | | | | | | | | | 2 | 2 | | #### COURSE CONTENT ## **UNIT I** **Selecting an Operating System:** What Is an OS, Investigating User interfaces. **Using Common Linux Programs:** Using a Linux Desktop Environment, Working with Productivity Software, Using Server Programs, Managing Programming Languages, Handling Software Packages. ## **UNIT II** **Managing Hardware:** Learning about Your CPU, Understanding Disk Issues, Managing Displays, Handling USB Devices, Managing Drivers. **Getting to Know the Command Line:** Starting a Command Line ,Running Programs ,Using Shell Features ,Getting Help Using man Pages ,Getting Help Using info Pages. #### **UNIT III** Managing Files: Navigating Files and Directories, Manipulating Files, Manipulating Directories. **Searching, Extracting, and Archiving Data:** Using Regular Expressions Searching for and Extracting Data, Redirecting Input and Output, Archiving Data. Exploring Processes and Process Data: Understanding Package Management, Understanding the Process Hierarchy, Identifying Running Processes, Using Log Files. # **UNIT IV** **Creating Scripts:** Beginning a Shell Script, Using Commands, Using Arguments Using Variables, Using Conditional Expressions, Using Loops, Using Functions. **Understanding Basic Security:** Understanding Accounts, Using Account Tools, Working as root. **Managing Network Connections:** Understanding Network Features, Configuring a Network Connection, Testing Your Network Connection, Protection. #### TEXT BOOKS [1] Christine Bresnahan, Richard Blum," Linux Essentials", 2nd Edition, September 2015 #### REFERENCE BOOKS - [1] Richard Petersen, "Linux: The Complete Reference", 6th edition, Tata McGraw-Hill, 2007. - [2] Mc Kinnon, Mc Kinnon, "Installing and Administrating Linux", 2nd edition, Wiley, 2004. ## E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] www.linuxhomenetworking.com Last accessed on 1-06-2019 - [2] http://www.oreillynet.com/linux/cmd/ Last accessed on 1-06-2019 - [3] www.iu.hio.no/~mark/unix/unix.html Last accessed on 1-06-2019 | 17CS4603C
STATISTICS WITH R | | | | | | | | | | | |--------------------------------|-----------------------|-------------------------------|-----------|--|--|--|--|--|--|--| | Course Category: | Programme Elective | Credits: | 3 | | | | | | | | | Course Type: | Theory | Lecture -Tutorial-Practice: | 3 - 0 - 0 | | | | | | | | | Prerequisites: | Discrete Mathematical | Continuous Evaluation: | 30 | | | | | | | | | - | Structures | Semester end Evaluation: | 70 | | | | | | | | | | | Total Marks: | 100 | ## Upon successful completion of the course, the student will be able to: | CO1 | Apply statistical methods to data for inferences and introduce the concepts of R | |-----|--| | CO2 | Analyze the libraries for data manipulation and data visualization in R | | CO3 | Analyze data-sets to create testable hypotheses and identify appropriate statistical tests | | CO4 | Analyze and summarize data-sets to fit linear and nonlinear models. | # Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO 2 | |-----|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|-------| | CO1 | 2 | 2 | | | 2 | | | | | | | | 1 | 1 | | CO2 | 2 | | | | 2 | | | | | | | | 1 | 1 | | CO3 | 3 | 2 | | 3 | | | | | | | | | 1 | 1 | | CO4 | 3 | 2 | 3 | 2 | 2 | | | | | | | | 1 | 1 | ## **COURSE CONTENT** # UNIT I **Introduction:** How to run R, R Sessions ,Introduction to Functions, Vectors, Character Strings, Matrices, Lists, Data Frames, Classes. **R Programming Structures:** Control Statements, Loops, - Looping Over Non vector Sets,- If-Else, Arithmetic and Boolean Operators and values, Default Values for Argument, Return Values, Deciding Whether to explicitly call return- Returning Complex Objects, Functions are Objective, No Pointers in R, Recursion, A Quick sort Implementation-Extended Extended Example: A Binary Search Tree. ### **UNIT-II** **Doing Math and Simulation in R**: Math Function, Extended Example Calculating Probability Cumulative Sums and Products-Minima and Maxima- Calculus, Functions Fir Statistical Distribution, Sorting, Linear Algebra Operation on Vectors and Matrices. Extended Example: Vector cross Product- Extended Example: Finding Stationary Distribution of Markov Chains, Set Operation, Input /output, Accessing the Keyboard and Monitor, Reading and writer Files, Simulation Processing in R. # **UNIT-III** **Graphics:** Creating Graphs, The Workhorse of R Base Graphics, the plot () Function – Customizing Graphs, Saving Graphs to Files. **Probability Distributions**: Normal Distribution- Binomial Distribution- Poisson Distributions Other Distribution, Basic Statistics, Correlation and Covariance, T-Tests,-ANOVA. ## **UNIT-IV** **Linear Models**: Simple Linear Regression, -Multiple Regression Generalized Linear Models, Logistic Regression, - Poisson Regression- other Generalized Linear Models-Survival Analysis, Nonlinear Models, Splines, Decision Trees, Random Forests. ## **TEXT BOOKS** - [1] Norman Matloff, The Art of R Programming, No Starch Press, San Francisco 2011 [Unit I,II,III] - [2] Jared P. Lander, R for Everyone, Addison Wesley Data & Analytics Series, Pearson, 2014. [Unit III, IV] ## REFERENCE BOOKS - [1] Rob Kabacoff and Dale Ogden, R in Action, Manning, Second Edition, 2018 - [2] G. Jay Kerns, Introduction to Probability and Statistics using R, First Edition, 2010 #### E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] Mine Çetinkaya-Rundel, David Banks, Colin Rundel, Merlise A Clyde, Duke University, (8,08,2019). Statistics with R Specialization. - Available: https://www.coursera.org/specializations/statistics - [2] Rafael Irizarry, Michael Love, Statistics with R, Harvard University (08, 08, 2019) Available: https://www.edx.org/course/statistics-r-harvardx-ph5251x-1 | 17CS4 | 604 | A | | |-----------------|------|-----|-----| | INTERNET | OF T | ГНТ | NGS | | Course Category: | Programme Elective | Credits: | 3 | |------------------|--------------------|-------------------------------|-------| | Course Type: | Theory | Lecture -Tutorial-Practice: | 3-0-0 | | Prerequisites: | Microprocessor & | Continuous Evaluation: | 30 | | | Microcontrollers | Semester end Evaluation: | 70 | | | | Total Marks: | 100 | | | | | | # Upon successful completion of the course, the student will be able to: | CO1 | Understand the basic principles and architecture of IoT. | |-----
---| | CO2 | Determine the components used as smart objects and access technologies. | | CO3 | Understand network and application layer protocols for IOT | | CO4 | Relate data analytics and IOT and understand IOT security protocols. | | CO5 | Apply IOT related technologies for smart cities and transportation. | # Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | | PO 1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-----|-------------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | 3 | 2 | 1 | | | | | | | | | | | | | CO2 | | | 2 | | 2 | | | | | | | | 2 | | | CO3 | 2 | | | | 2 | | | | | | | | | | | CO4 | 3 | | | | 2 | | | | | | | | | | | CO5 | | 3 | 3 | | 3 | | | | | | | | 2 | 3 | # **COURSE CONTENT** ## UNIT I **Introduction to IoT:** Genesis of IOT, IOT and digitization, IOT impact, Convergence of IT and OT, IOT challenges. **IoT Network Architecture and Design:** Drivers behind network architecture. Comparing IOT architectures, a simplified IOT architecture, the core IOT functional stack, IOT data management and compute stack. # UNIT II Smart Objects: The "Things" in IoT: Sensors, Actuators and Smart Objects, sensor networks Connecting Smart objects: Communication criteria, IOT access technologies: IEEE 802.15.4, Lora WAN ## **UNIT III** **Protocols For IoT:** Optimizing IP for IOT, the transport layer, IOT application transport methods: introduction to SCADA, IOT application layer Protocols: COAP, MQTT. **Data and Analyttics for IoT:** Introduction to data analytics for IOT, Edge streaming Analytics, Network Analytics. # UNIT IV **Securing IOT:** History of OT security, Common challenges in OT security, IT and OT Security Practices and systems vary. **IOT Applications: SMART and Connected CITIES:** IOT Strategy for smarter cities, smart city IOT architecture, Smart city security architecture, smart city –use case examples **TRANSPORTATION:** Transportation challenges, IOT architecture for Transportation, IOT use cases for transportation. #### TEXT BOOKS [1] David Hanes, "IOT FUNDAMENTALS" 1ST edition, CISCO PRESS, 2018 #### REFERENCE BOOKS - [1] ArshdeepBahga, Vijay Madisetti "Internet of Things(A hands on approach)" 1ST edition, VPI publications, 2014 - [2] Raj Kamal "INTERNET OF THINGS", McGraw-Hill, 1ST Edition, 2017 #### E-RESOURCES AND OTHER DIGITAL MATERIAL [1] Prof. Sudip misra, IIT Kharagpur "Introduction to Internet of things". Available: http://nptel.ac.in/courses/106105166/ (Accessed on 10-8-18) | 17CS4604B
MOBILE APPLICATION DEVELOPMENT | | | | | | | | | | |---|--------------------|-----------------------------|-------|--|--|--|--|--|--| | Course Category: | Programme Elective | Credits: | 3 | | | | | | | | Course Type: | Theory | Lecture -Tutorial-Practice: | 3-0-0 | | | | | | | | Prerequisites: | Problem Solving | Continuous Evaluation: | 30 | | | | | | | | | Methods, | Semester end Evaluation: | 70 | | | | | | | | | Programming in C, | Total Marks: | 100 | | | | | | | | | Java Programming. | | | | | | | | | # Upon successful completion of the course, the student will be able to: | CO1 | Understand J2ME technology | |-----|---| | CO2 | Create user interfaces for mobile application | | CO3 | Develop databases connection to given mobile application | | CO4 | Develop and deploy mobile application into an android device. | # Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2 - Medium, 3 - High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO 2 | |-----|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|-------| | CO1 | 3 | | | | 1 | | | | | | | | | | | CO2 | | 2 | 1 | | 1 | | | | | | | | 1 | 1 | | CO3 | | | 2 | | 2 | | | | 1 | | | | 2 | | | CO4 | | | 2 | | 3 | | | | 2 | | 2 | | 3 | 3 | # **COURSE CONTENT** #### UNIT I **Developing for Mobile and Embedded Devices, J2ME Overview:** Java 2 Micro Edition and the World of Java, Inside J2ME, J2ME and Wireless Devices **J2ME** Architecture and Development Environment: J2ME Architecture, Small Computing Device Requirements, Run-Time Environment, MIDlet Programming, J2ME Software Development Kits, Multiple MlDlet in a MIDlet Suite. # **UNIT II** **Commands, Items, and Event Processing:** J2ME User Interfaces, Display Class, Command Class, Item Class, Exception Handling. **Record Management System:** Record Storage, Writing and Reading Records, Record Enumeration, Sorting Records, Searching Records, Record Listener. ## **UNIT III** **Generic Connection Framework:** The Connection, Hypertext Transfer Protocol, Communication Management Using HTTP Commands, Session Management, Transmit as a Background Process **Android:** An Open Platform for Mobile Development, A Little Background, Native Android Applications, Android SDK Features, Developing for Android, Android Development Tools #### **UNIT IV** **Creating Applications and Activities:** Introducing the Application Manifest File, Externalizing Resources, The Android Application Lifecycle, A Closer Look at Android Activities. **Building User Interfaces:** Fundamental Android UI Design, Android User Interface Fundamentals, Introducing Layouts. Databases and Content Providers: Introducing Android Databases, Working with SQLite Databases #### **TEXT BOOKS** - [1] James Keogh, "J2ME: The Complete Reference", Tata McGrawHill, 2017. [Unit I, II, IV] - [2] Reto Meier, "Professional Android Application Development", Wiley India, 2012. [Unit III] ## REFERENCE BOOKS - [1] Brian Fling, "Mobile Design and Development", O'Reilly, SPD, 2011. - [2] Wei-Meng Lee, "Beginning Android Application Development", Wiley Publishing, Inc, 2012 - [3] Jonathan Knudsen, "Wireless Java: Developing with J2ME", A Press, Second Edition, 2003 #### E-RESOURCES AND OTHER DIGITAL MATERIAL [1] Prof. Gaurav Raina, Mr Tanmai Gopal (14th, May, 2018), Department of Computer Science & Engineering, I.I.T., Madras, "Introduction to Mobile applications", NPTEL videos | 17CS4604C | | |------------------|---| | DATA COMPRESSION | V | | Course Category: | Programme Elective | Credits: | 3 | |------------------|------------------------|-------------------------------|-------| | Course Type: | Theory | Lecture -Tutorial-Practice: | 3-0-0 | | Prerequisites: | Digital Communication, | Continuous Evaluation: | 30 | | _ | Image Processing | Semester end Evaluation: | 70 | | | | Total Marks: | 100 | | | | | | # Upon successful completion of the course, the student will be able to: | CO1 | Understand the data compression representations and its applications | |-----|---| | CO2 | Implement the compression techniques to compress the different raw data | | CO3 | Analyze the concepts associated speech, image and video compression | | CO4 | Analyze the usage of compression algorithms and compare its performance | # Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-------------|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | 3 | 2 | | | | | | | | | | | 2 | | | CO2 | 2 | 3 | | | | | | | | | 2 | | 2 | | | CO1 CO2 CO3 | 3 | 3 | 3 | | | | | | 3 | | 2 | | 2 | | | CO4 | 2 | 2 | 3 | | | | | | 3 | | 3 | | 2 | | #### **COURSE CONTENT** ### **UNIT I** **Introduction**: Compression Techniques, Lossless Compression, Lossy Compression, Measures of Performance, Modeling and Coding **Mathematical Preliminaries for Lossless Compression**: Overview - A Brief Introduction to Information Theory, Derivation of Average Information, Models-Physical Models, Probability Models, Markov Models, Composite Source Model, Coding- Uniquely Decodable Codes, Prefix Codes, The Kraft-McMillan Inequality **Huffman Coding**: Overview, The Huffman Coding Algorithm-Minimum Variance Huffman Codes, Optimality of Huffman Codes, Length of Huffman Codes, Extended Huffman Codes, Nonbinary Huffman Codes, Adaptive Huffman Coding- Update Procedure, Encoding Procedure, Decoding Procedure, Applications of Huffman Coding- Lossless Image Compression, Text Compression, Audio Compression ## **UNIT II** Arithmetic Coding: Overview ,Introduction ,Coding a Sequence- Generating a Tag, Deciphering the Tag, Generating a Binary Code- Uniqueness and Efficiency of the Arithmetic Code ,Algorithm Implementation ,Integer Implementation, Comparison of Huffman and Arithmetic Coding, Adaptive Arithmetic Coding, Applications. **Dictionary Techniques :**Overview ,Introduction, Static Dictionary- Digram Coding, Adaptive Dictionary - The LZ77 Approach, The LZ78 Approach, Applications-File Compression—UNIX compress ,Image Compression—The Graphics Interchange Format (GIF) ,Image Compression—Portable Network Graphics (PNG) **Lossless Image Compression:** Overview, Introduction- The Old JPEG Standard, CALIC, JPEG-LS Multi resolution Approaches-Progressive Image Transmission, Facsimile Encoding-Run-Length Coding ## **UNIT III** **Transform Coding:** Overview, Introduction ,The Transform, Transforms of Interest- Karhunen-Loeve Transform ,Discrete Cosine Transform, Discrete Sine Transform, Discrete Walsh-Hadamard Transform, Quantization and Coding of Transform Coefficients, Application to Image Compression—JPEG- The
Transform, Quantization, Coding ,Application to Audio Compression—the MDCT **Wavelet-Based Compression:** Overview, Introduction, Wavelets, Multiresolution Analysis and the Scaling Function ,Implementation Using Filters -Scaling and Wavelet Coefficients ,Families of Wavelets ,Image Compression, Embedded Zerotree Coder ,Set Partitioning in Hierarchical Trees, JPEG 2000 **Audio Coding :** Overview, Introduction- Spectral Masking, Temporal Masking, Psychoacoustic Model, MPEG Audio Coding, Layer I Coding, Layer II Coding, Layer III Coding—*mp3*, MPEG Advanced Audio Coding - MPEG-2 AAC, MPEG-4 AAC, Dolby AC3 (Dolby Digital), Bit Allocation, Other Standards #### **UNIT IV** **Video Compression:** Overview ,Introduction, Motion Compensation, Video Signal Representation, ITU-T Recommendation H.261 - Motion Compensation, The Loop Filter, the Transform, Quantization and Coding, Rate Control, Model-Based Coding, Asymmetric Applications , The MPEG-1 Video Standard, The MPEG-2 Video Standard—H.262 ,The Grand Alliance HDTV Proposal ,ITU-T Recommendation H.263-Unrestricted Motion Vector Mode, Syntax-Based Arithmetic Coding Mode, Advanced Prediction Mode, PB-frames and Improved PB-frames Mode, Advanced Intra Coding Mode, Deblocking Filter Mode, Reference Picture Selection Mode ,Temporal, SNR, and Spatial Scalability Mode, Reference Picture Resampling , Reduced-Resolution Update Mode ,Alternative Inter VLC Mode, Modified Quantization Mode, Enhanced Reference Picture Selection Mode. ### **TEXT BOOKS** - [1] Sayood, Khalid, "Introduction to Data Compression", 5th Edition, Morgan Kaufmann, 2017. - [2] Salomon, David," Data Compression The Complete Reference",3rd Edition,Springer,2007. #### REFERENCE BOOKS - [1] Saloman, "Handbook of Data Compression", springer, 2010. - [2] Parekh Ranjan, "Principles of Multimedia", TMH, 2006 | 17CS2605A | |--| | ARTIFICIAL INTELLIGENCE TECHNIQUES, TOOLS AND APPLICATIONS | | Course Category: | Open Elective | Credits: | 3 | |------------------|-----------------------|-------------------------------|-----------| | Course Type: | Theory | Lecture -Tutorial-Practice: | 3 - 0 - 0 | | Prerequisites: | Discrete Mathematics, | Continuous Evaluation: | 30 | | _ | Probability and | Semester end Evaluation: | 70 | | | statistics | Total Marks: | 100 | # Upon successful completion of the course, the student will be able to: | CO1 | Understand the basic principles and applications of Artificial Intelligence. | |-----|---| | CO2 | Represent Knowledge by using various rules. | | CO3 | Apply filler structures for different sentences and know the concepts of Natural Language | **CO4** List the key aspects of Expert Systems and realize the concepts of Connectionist Models. # Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-----------------|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 CO2 CO3 CO4 | 1 | 2 | | | | | | | | | | | | | | CO2 | 1 | 2 | 3 | | | | | | | | | | | | | CO3 | | 2 | 3 | | | | | | 2 | | | | | | | CO4 | | 2 | 3 | | | | | | | | | | | | ### **COURSE CONTENT** # UNIT I **Problems, Problem Spaces And Search:** Defining the Problem as a State space Search, Production Systems, Problem Characteristics, Production system characteristics, Issues in the Design of Search Programs. **Heuristic Search Techniques:** Generate-and-test, Hill Climbing, Best-First Search, Problem Reduction, Constraint Satisfaction, Means-Ends Analysis ### UNIT II **Knowledge Representation Issues:** Representations and Mappings, Approaches to Knowledge Representation, Issues in Knowledge Representation. **Using Predicate Logic:** Representing Simple Facts in logic, Representing Instance and Isa Relationships, Computable Functions and Predicates, Resolution, Natural Deduction. **Representing Knowledge Using Rules** - Procedural versus Declarative Knowledge, Logic Programming, Forward versus Backward Reasoning, Matching, Control Knowledge ## UNIT III Weak Slot-and-Fillers Structures: Semantic Nets, Frames Strong Slot-and- Fillers Structures: Conceptual Dependency, Scripts. **Natural Language Processing:** Introduction, syntactic processing, Semantic analysis, Discourse and pragmatic processing, Statistical Language processing, Spell checking UNIT IV **Connectionist Models**: Introduction: Hopfield Networks, Learning in Neural Networks, Applications of Neural Networks. **Expert Systems**: Representing and Using Domain Knowledge, Expert System Shells, Explanation, Knowledge Acquisition #### **TEXT BOOKS** [1] Elaine Rich, Kevin Knight, Shivashankar B Nair, "Artificial Intelligence", 3rd Edition, Tata McGraw Hill Edition, 2008 ## REFERENCE BOOKS - [1] Patrick Henry Winston 'Artificial Intelligence', 3rd Edition, Prentice Hall, 1992. - [2] Stuart Russell and Peter Norvig, 'Artificial Intelligence', 3rd Edition, Prentice Hall of India, 2009. # E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] https://nptel.ac.in/courses/106105077/ Last accessed on 1-06-2019 - [2] https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6- 034-artificial-intelligence-fall-2010/lecture-videos/ Last accessed on 1-06-2019 - [3] https://web.stanford.edu/class/cs221/ Last accessed on 1-06-2019 | | 17CS2603
BIOINFORM | | | |------------------|-----------------------|-------------------------------|-----------| | Course Category: | Open Elective | Credits: | 3 | | Course Type: | Theory | Lecture -Tutorial-Practice: | 3 - 0 - 0 | | Prerequisites: | Biology for Engineers | Continuous Evaluation: | 30 | | | | Semester end Evaluation: | 70 | | | | Total Marks: | 100 | | <u> </u> | | | | ## Upon successful completion of the course, the student will be able to: | CO1 | Know the biological sequence and structural databases. | |-----|---| | CO2 | Understand the genome information and DNA sequence analysis | | CO3 | Describe pair-wise and multiple sequence alignment methods | | CO4 | Analyze secondary structure DNA data. | # Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO 6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-----|---------|---------|---------|---------|---------|------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | 1 | | | | | 3 | | | | | | | 2 | | | CO2 | | 2 | | | | 3 | | | | | | | 3 | 2 | | CO3 | | 2 | | | | 3 | | | | | | | 3 | 2 | | CO4 | | | | | | 3 | | | | | | | 1 | 1 | ## **COURSE CONTENT** # UNIT I **Introduction:** Definitions, Sequencing, Biological sequence/structure, Genome Projects, Pattern recognition an prediction, Folding problem, Sequence Analysis, Homology and Analogy. **Protein Information Resources:** Biological databases, Primary sequence databases, Protein Sequence databases, Secondary databases, Protein pattern databases, and Structure classification databases. # UNIT II Genome Information Resources: DNA sequence databases, specialized genomic resources. **DNA Sequence Analysis:** Importance of DNA analysis, Gene structure and DNA sequences, Features of DNA sequence analysis, EST (Expressed Sequence Tag) searches, Gene hunting, Profile of a cell, EST analysis, Effects of EST data on DNA databases. #### UNIT III # Pair wise Alignment Techniques: Database searching, Alphabets and complexity, Algorithm and programs, Comparing two sequences, subsequences, Identity and similarity, The Dot plot, Local and global similarity, different alignment techniques, Dynamic Programming, Pair wise database searching. VR17 ## **Multiple Sequence Alignment:** Definition and Goal, The consensus, computational complexity, Manual methods, Simultaneous methods, Progressive methods, Databases of Multiple alignments and searching. ## **UNIT IV** **Secondary Database Searching**: Importance and need of secondary database searches, secondary database structure and building a sequence search protocol **Analysis Packages:** Analysis package structure, commercial databases, commercial software, comprehensive packages, packages specializing in DNA analysis, Intranet Packages, Internet Packages. #### TEXT BOOKS - [1] T. K. Attwood and D. J. Parry-Smith, Addison Wesley Longman, Harlow, "An Introduction to Bioinformatics", 2007. - [2] Zhumur Ghosh and Bibekanand Mallick, "Bioinformatics: Principles and Applications", Oxford University Press, 2008. - [3] Arthur M. Lesk, "Introduction to Bioinformatics", Oxford University Press, Fourth Edition 2014. ## REFERENCE BOOKS [1] Jean-Michel Claverie and Cedric Notredame "Bioinformatics – A Beginners Guide", Wiley, Dreamtech India Pvt. Ltd. 2003 # E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] Prof. Todd Mezzulo, June 29, 2003, "Sequence analysis" https://www.bioinformatics.org/ - [2] Protein Secondary Structure Databases: http://cybionix.com/bioinformatics/databases/ Last accessed on 01-06-2019 - [3] Dong Xu, , Protein Databases on the Internet https://www.ncbi.nlm.nih.gov/ Last accessed on 01-06-2019 | | 17CS2605
IMAGE PROCI | | | |------------------|-------------------------|-------------------------------|-----------| | Course Category: | Open Elective | Credits: | 3 | | Course Type: | Theory | Lecture -Tutorial-Practice: | 3 - 0 - 0 | | Prerequisites: | Computer Organization | Continuous Evaluation: | 30 | | | | Semester end Evaluation: | 70 | | | | Total Marks: | 100 | | | | | | ## Upon successful completion of the course, the student will be able to: | CO1 | Explain
the fundamental concepts and basic relationship among the pixels. | |-----|---| | CO2 | Differentiate the Spatial and Frequency domain concepts in image enhancement. | | CO3 | Identify the image restoration filter for degraded image. | | CO4 | Compare the lossy and lossless image compression techniques | | CO5 | Explain the image segmentation techniques | # Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | - 8 | , | | | | | | | | | | | | | | |-----|---------|---------|---------|---------|---------|------|-------------|---------|---------|----------|----------|----------|----------|-------| | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO 6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO 2 | | CO1 | 3 | | | | | | | | | | | | | 1 | | CO2 | 2 | | 3 | | | | | | | | 3 | | | 1 | | CO3 | 3 | | | | | | | | | | | | | 1 | | CO4 | 2 | 2 | 3 | | | | | | | | 3 | | | 1 | | CO5 | 3 | | 3 | | | | | | 3 | | 3 | | | 1 | #### COURSE CONTENT ## **UNIT I** **Introduction**: Digital Image Processing, Fundamental Steps in Digital Image Processing, Components of an Image Processing System **Digital Image Fundamentals**: Elements of Visual Perception, Image Sensing and Acquisition, Image Sampling and Quantization, Some basic Relationships between Pixels #### UNIT II **Intensity transformations and Spatial filtering**: Some Basic intensity transformation functions, Histogram Processing, fundamentals of Spatial Filtering, Smoothing spatial Filters, Sharpening spatial Filters **Filtering in Frequency Domain**: The basics of filtering in the frequency domain, Image Smoothing frequency-domain Filters, Image Sharpening Frequency-domain Filters #### **UNIT III** **Image restoration**: A model of the image degradation/restoration process, noise models, restoration in the presence of noise—only spatial filtering, Weiner filtering, constrained least squares filtering **Color image processing:** Fundamentals, color models #### UNIT IV **Image Compression**: Fundamentals, image compression models, some basic compression methods **Image Segmentation**: Fundamentals, Point, Line and Edge Detection, Thresholding, Region-Based Segmentation ## **TEXT BOOKS** [1] C. Gonzalez, Richard E. Woods, Digital Image Processing, 4th Edition Rafael C. 2018, Pearson ## REFERENCE BOOKS - [1] A.K.Jain, "Fundamentals of Digital Image Processing", Prentice Hall India, 4th edition, 1989. - [2] Madhuri. A. Joshi, "Digital Image Processing", PHI, 3rd edition, 2006 #### E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] Prof. P.K. Biswas, Digital Image Processing Available: http://www.nptel.ac.in/courses/117105079/ Last accessed on 01-06-2019 - [2] Aggelos K. Katsaggelos, Northwestern University. "Fundamentals of Digital Image and Video Processing" Available at: https://www.coursera.org/course/digital Last accessed on 01-06-2019 | Elective | Credits: | 3 | |------------------|-------------------------------|--| | Lec | cture -Tutorial-Practice: | 3 - 0 - 0 | | | Continuous Evaluation: | 30 | | \mathbf{S}_{t} | emester end Evaluation: | 70 | | | Total Marks: | 100 | | | Lec | Lecture -Tutorial-Practice: Continuous Evaluation: Semester end Evaluation: | # Upon successful completion of the course, the student will be able to: | CO1 | Understand the concepts of object oriented programming. | |-----|--| | CO2 | Implement multiple inheritance through interfaces. | | CO3 | Apply exception, thread capabilities to a given application. | | CO4 | Apply Collections framework to a given application. | # Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2 - Medium, 3 - High) | | PO 1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO 2 | |-----|-------------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|-------| | CO1 | 3 | | | | 1 | | | | | | | | | | | CO2 | | 2 | 1 | | 1 | | | | | | | | 1 | 1 | | CO3 | | | 2 | | 2 | | | | 1 | | | | 2 | | | CO4 | | | 2 | | 3 | | | | 2 | | 2 | | 3 | 3 | ## **COURSE CONTENT** ## **UNIT I** **Fundamentals of Object Oriented Programming:** Introduction, Object oriented paradigm, Basic concepts of Object Oriented Programming, Benefits of OOP, and Applications of OOP. **Introduction to Java:** Java history, java features, how java differs from C and C++. Data Types, variables and arrays: Java keywords, Primitive types, Integers, Floating-Point Types, Characters, Booleans, Variables, Type Conversion, casting and Arrays. Classes and objects: Class fundamentals, declaring objects, assigning object reference variables, introducing methods, constructors, this keyword, Garbage collection, overloading methods, using objects as parameters, returning objects, static and final keywords, nested and inner classes. # UNIT II String Handling: The String Constructors, String Buffer Class, String Tokenizer class. **Inheritance:** Inheritance basics, using super, multilevel hierarchy, method overriding, dynamic method dispatch, using abstract classes, final with inheritance. Packages: Defining a package, finding package and CLASSPATH. Access protection, importing packages. ### UNIT III **Interfaces:** Defining an interface, implementing interfaces, nested interfaces, applying interfaces, variables in interfaces. **Exception handling:** Exception handling fundamentals, exception types, uncaught exceptions, using try and catch, multiple catch clauses, throw, throws, finally, creating your own exception subclasses. **Stream Classes:** Byte Streams- InputStream, OutputStream, FileInputStream, FileOutputStream, Character Streams- Reader, Writer, FileReader, FileWriter. #### UNIT - IV **Multithread Programming:** The Java Thread Model, Creating a thread: Implementing Runnable, Extending Thread, creating multiple threads, Thread Priorities, Synchronization: Using Synchronized methods, The synchronized Statement. **Collections Framework:** Collections overview, Collection interfaces: Collection, List, and Set. Collection Classes: ArrayList, LinkedList, HashSet.Map Classes: HashMap, TreeMap. #### TEXT BOOKS - [1] Herbert Schildt, "Java The Complete Reference", 9th Edition, McGraw-Hill Education, New Delhi, 2011. [UNIT I (Chapter 2,3,4), UNIT II, III) - [2] E Balagurusamy, "Programming with Java: A Primer", 4th Edition, Tata McGraw Hill Education Pvt Ltd., 2011. (UNIT I, Chapter 1) #### REFERENCE BOOKS - [1] Herbert Schildt, Dale Skrien, "Java Fundamentals A Comprehension Introduction", Special Indian Edition, McGraw-Hill Education India Pvt. Ltd, 2013. - [2] Paul J. Dietel and Dr.Harvey M. Deitel, "Java How to Program", 9th Edition, Prentice-Hall, Pearson Education, 2011. - [3] Timothy Budd, "Understanding Object Oriented Programming with Java ", Updated edition, Pearson Education, 2013. #### E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] Prof. I. Sengupta. (14th, May, 2015), Department of Computer Science & Engineering, I.I.T., Kharagpur, "Internet Technologies", NPTEL. http://nptel.ac.in/video.php?subjectId=106105084 - [2] Prof. Shane P. (14th, May, 2015), Department of Computer Science & Engineering,, NPTEL Videos, http://www.nptelvideos.com/video.php?id=1461&c=15 | 17TP1606 | |------------------------------| | QUANTITATIVE APTITUDE | | C • • • • • • • • • • • • • • • • • • • | | | | | | | | | | | | | |--|--------------------|-------------------------------|-----------|--|--|--|--|--|--|--|--|--| | Course Category: | Institutional Core | Credits: | 1 | | | | | | | | | | | Course Type: | Learning by doing | Lecture -Tutorial-Practice: | 0 - 0 - 2 | | | | | | | | | | | Prerequisites: | - | Continuous Evaluation: | 100 | | | | | | | | | | | _ | | Semester end Evaluation: | 0 | | | | | | | | | | | | | Total Marks: | 100 | # Upon successful completion of the course, the student will be able to: | CO1 | Effectively organize, summarize and present information in quantitative forms including tables, | |-----|---| | CO2 | Use mathematical based reasoning and to evaluate alternatives and make decisions | | CO3 | Think and reason logically and critically in any given situation. | | CO4 | Apply logical thinking to solve problems and puzzles in qualifying exams for companies and in other competitive exams | # Contribution of Course Outcomes towards achievement of Program Outcomes (1– Low, 2 - Medium, 3 – High) | _ | | | | | | | | | | | | | | | |-----------------|---------|---------|---------|---------|---------|---------|------|---------|---------|----------|----------|----------|----------|----------| | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | | CO1 | | | | | | | | | | 3 | 3 | | | | | CO2 | | | | | | | | | 3 | 3 | 3 | | | | | CO3 | | | | | | | | | | 3 | 3 | | | | | CO1 CO2 CO3 CO4 | | | | | | | | 2 | | 3 | 3 | | | | # **COURSE CONTENT** # **UNIT I** - Number system - HCF & LCM, - Average, - Percentages, - Profit & Loss ## **UNIT II** - Ratio & Proportion, - Partnership, - Chain Rule, - Time & Distance, - Time & Work # **UNIT III** - Pipes & Cistern, - Problems on Trains, - Problems on boats &Steams, - Allegation, - Simple interest and compound interest. # **UNIT IV** - Area, Volume and Surface areas, - Races & Games of skills, - Calendar & Clock, - Stocks & Shares, - Permutations & Combination,
Probability. | N | 1 | ГЦ | | \mathbf{n} | AT A | \cap | $\mathbf{G}\mathbf{Y}$ | |----|---|----|----|--------------------|------|--------|------------------------| | 17 | | ΙП | V. | $\boldsymbol{\nu}$ | יעני | יע | UΙ | Learning Resources: Quantitative Aptitude by R.S..Aggarwal | 17CS4651A
CLOUD COMPUTING LABORATORY | | | | | | | | | | | | |---|--------------------|-----------------------------|----------|--|--|--|--|--|--|--|--| | Course Category: | Programme Elective | Credits: | 1 | | | | | | | | | | Course Type: | Laboratory | Lecture -Tutorial-Practice: | 0 -0 - 2 | | | | | | | | | | Prerequisites: | - | Continuous Evaluation: | 30 | | | | | | | | | | | | Semester end Evaluation: | 70 | | | | | | | | | | | | Total Marks: | 100 | ## Upon successful completion of the course, the student will be able to: | CO1 | Understand various basic concepts related to cloud computing technologies | |-----|---| | CO2 | Understand different cloud programming platforms and tools | | CO3 | Explain and characterize different cloud deployment models and service models | | CO4 | Identify the security issues in cloud computing | # Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | 8 / | | | | | | | | | | | | | | | |-----|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|-------| | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO 2 | | CO1 | 3 | 3 | | | | | 1 | | 1 | | 3 | 1 | 2 | 2 | | CO2 | 3 | 3 | | | | | 1 | | 1 | | 3 | 1 | 2 | 2 | | CO3 | 3 | 3 | | | | | | | 1 | 1 | 3 | 1 | 2 | 2 | | CO4 | 3 | 3 | | | | | 1 | | 1 | 1 | 3 | 1 | 2 | 2 | # **COURSE CONTENT** ## **Task 1: Case Studies** Study about Amazon AWS, Google Apps and Microsoft Azure. # Task 2: Working with Google App Engine Building and hosting a simple cloud application using Google App Engine. # Task 3: Working with Microsoft Azure Building and hosting a simple cloud application using Microsoft Azure. # Task 4: Working with Oracle VM Virtual Box Manager Implement Virtual OS using Oracle VM Virtual Box Manager. # Task 5: Working with Cloud Simulator Implement Cloud Simulator using Eclipse and create a datacenter with one host and run one cloudlet on it. # Task 6: Working with AWS To launch a virtual machine using Amazon ec2 Instance in AWS. ### Task 7: Working with AWS Host a Static Personal Website or Marketing Website on AWS. # Task 8: Working with AWS Deploy and host a production ready WordPress website on AWS. # Task 9: Working with Salesforce Trailhead. To Build a Battle Station App using Salesforce Trailhead. ## Task 10: Working with Salesforce Trailhead. To work with Apex and Apex Triggers using the Salesforce Trailhead Platform. ### Task 11: Working with Yellow Circle To Create and launch Windows Server virtual machine using Yellow Circle platform. ## Task 12: Case Studies Study about Amazon AWS, Hadoop, Aneka #### TEXT BOOKS - [1] Rajkumar Buyya, James Broberg, Andrzej Goscinski, "Cloud Computing: Principles and Paradigms", Wiley Publishers, 2013. - [2] K. Chandrasekaran, "Essentials of Cloud Computing", CRC Press, 2015 ## REFERENCE BOOKS - [1] Barrie Sosinsky, Cloud Computing Bible, Wiley-India, 2010 - [2] Nikos Antonopoulos, Lee Gillam, Cloud Computing: Principles, Systems and Applications, Springer, 2012 - [3] Thomas Erl, "Cloud Computing: Concepts, Technology & Architecture", 1st Edition, Pearson, 2014 ## E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] https://cs.uwaterloo.ca/~a78khan/courses-offered/cs446/2010_05/lecture-slides/16_CloudComputing.pdf Last accessed on 01-06-2019 - [2] http://www.cs.iit.edu/~iraicu/teaching/CS553-S12/index.html Last accessed on 01-06-2019 - [3] https://www.youtube.com/user/arch4cloud/playlists Last accessed on 01-06-2019 | 17CS4651B
LINUX ESSENTIALS LABORATORY | | | | | | | | | | | | |--|---------------|-----------------------------|-----------|--|--|--|--|--|--|--|--| | Course Category: | Open Elective | Credits: | 1 | | | | | | | | | | Course Type: | Laboratory | Lecture -Tutorial-Practice: | 0 - 0 - 2 | | | | | | | | | | Prerequisites: | - | Continuous Evaluation: | 30 | | | | | | | | | | _ | | Semester end Evaluation: | 70 | | | | | | | | | | | | Total Marks: | 100 | # Upon successful completion of the course, the student will be able to: | CO1 | Understand and work confidently in Linux Environment | |-----|---| | CO2 | Apply the security and administration mechanisms for user or group management and permissions | | CO3 | Write shell scripts for solving problems | | CO4 | Develop the client/server communication using IPC mechanisms | # Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |--------------------------|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1
CO2
CO3
CO4 | 3 | | 2 | | | | | | | | | 2 | 2 | | | CO2 | 3 | | 3 | | | | | | | | | 2 | 2 | | | CO3 | 3 | | 3 | | | | | | | | | 2 | 2 | | | CO4 | 3 | | 2 | | | | | | | | | 2 | 2 | | # **COURSE CONTENT** # PART – I:Introduction to Linux/Unix commands (utilities) ## Task -1: - **a.** Implement basic commands such as date, who, who am I, uname, cal, tty, stty, echo, printf, bc, script, passwd, finger - b. Implement directory related commands: pwd, mkdir, cd, rmdir, ls and File related commands: cat, cp, mv, rm, chmod, chown, chgrp, file, find, ln, ulink, ulimit, umask, touch - C. Implement Process Related Commands: ps, kill, nohup, at, batch, crontab, fg, bg, jobs - d. Implement Network Related commands: telnet, ftp, rlogin, arp #### Task -2: - a. Implement Process Related Commands: ps, kill, nohup, at, batch, crontab, fg, bg, jobs - b. Implement Network Related commands: telnet, ftp, rlogin, arp ## Task -3: Working with grep command - a. Write a grep command that selects the lines from the file1 that have exactly three characters - b. Write a grep command that count the number blank lines in the file1 - c. Write a grep command that selects the lines from the file1 that have the string UNIX. - d. Write a grep command that copy the file to the monitor, but delete the blank lines. VR17 e. Write a grep command that selects the lines from the file1 that do not start with A to G #### Task -4: Working with sed command - a. Write a sed command that print lines numbers of lines beginning with "O" - b. Write a sed command that delete digits in the given input file. - c. Write a sed command that delete lines that contain both BEGIN and END - d. Write a sed command that deletes the first character in each line in a file - e. Write a sed command to delete character before last character in each line in a file - f. Write a sed command that swaps the first and second character in each line in the file # Task -5: Working with awk command - a. Write an awk command to print the lines and line number in the given input file - b. Write an awk command to print first field and second field only if third field value is >=50 in the given input file. - c. Write an awk program to print the fields 1 and 4 of a file that is passed as command line argument. The file contains lines of information that is separated by "," as delimeter. The awk program must print at the end the average of all 4th field data. - d. Write an awk program to demonstrate user defined functions and system command. - e. Write an awk script to count the number of lines in a file that do not contain vowels. - f. Write an awk script to find the number of characters, words and lines in a file # PART – II: Shell Programming (utilities) ## Task – 6: Shell Scripts - a. Write shell script to perform integer arithmetic operations - b. Write a shell script to perform floating point arithmetic operations - c. Write a shell script to check the given file is writable or not # Task – 7: Shell Scripts - a. Write a shell program to find out reverse string of the given string and check the given string is palindrome or not - b. Write a shell program to find out factorial of the given number - c. Write a shell script to find out whether the given number is prime number or not #### Task – 8: Shell Scripts - a. Write a shell script that computes the gross salary of a employee according to the following - 1) if basic salary is <1500 then HRA 10% of the basic and DA =90% of the basic - 2) if basic salary is >=1500 then HRA 500 and DA =98% of the basic - b. Write a shell script that accepts a file name, starting and ending line numbers as arguments and displays all the lines between the given line numbers. - c. Write a shell script that deletes all lines containing a specified word in one or more files supplied as arguments to it. # Task – 9: C Programs - a. Write C program to implement ls –l command. - b. Write C program to list every file in a directory, inode number and file name #### Task – 10: Programs on IPC Write a C program that illustrates 2 processes communicating using shared memory. ## TEXT BOOKS [1] Christine Bresnahan, Richard Blum," Linux Essentials", 2nd Edition, September 2015 #### REFERENCE BOOKS - [1] Richard Petersen, "Linux: The Complete Reference", 6th edition, Tata McGraw-Hill, 2007. - [2] Mc Kinnon, Mc Kinnon, "Installing and Administrating Linux", 2nd edition, Wiley, 2004. | E-RESOURCES AND OTHER DIGITAL MATERIAL |
--| | [1] www.linuxhomenetworking.com Last accessed on 01-06-2019 [2] http://www.oreillynet.com/linux/cmd/ Last accessed on 01-06-2019 [3] www.iu.hio.no/~mark/unix/unix.html Last accessed on 01-06-2019 | 4651C
H R LABORATORY | | |------------------|-----------------------|-----------------------------|-----------| | Course Category: | Open Elective | Credits: | 1 | | Course Type: | Laboratory | Lecture -Tutorial-Practice: | 0 - 0 - 2 | | Prerequisites: | Discrete Mathematical | Continuous Evaluation: | 30 | | _ | Structures | Semester end Evaluation: | 70 | | | | Total Marks: | 100 | | | | | | ## Upon successful completion of the course, the student will be able to: | CO1 | Apply statistical methods to data for inferences and introduce the concepts of R | |-----|--| | CO2 | Analyze the libraries for data manipulation and data visualization in R | | CO3 | Analyze data-sets to create testable hypotheses and identify appropriate statistical tests | | CO4 | Analyze and summarize data-sets to fit linear and nonlinear models. | # Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO 2 | |-----|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|-------| | CO1 | 2 | 2 | | | 2 | | | | | | | | 1 | 1 | | CO2 | 2 | | | | 2 | | | | | | | | 1 | 1 | | CO3 | 3 | 2 | | 3 | | | | | | | | | 1 | 1 | | CO4 | 3 | 2 | 3 | 2 | 2 | | | | | | | | 1 | 1 | ## **COURSE CONTENT** ## Task 1 Program to handle vectors and perform simple statistics on the vectors using R. ## Task 2 Program to create a data frame in R and perform operations on it. ## Task 3 - (a) Program to read data from files(.csv) and handle the data using functions like plot, hist, summary and mean, mode, median and standard deviation . - (b) Merge the datasets ,transformation of variables and creating subsets of the dataset. #### Task 4 - a) Program to find the factorial of a number using recursion in R - b) Program to print numbers from 1 to 100 using while loop and for loop in R #### Task 5 Program to plot graphs -scatter plot, box plot and bar plot. ## Task 6 Program to create a list in R and perform operations on it like list Slicing, sum and mean functions, head and tail functions and finally delete the list using rm() function. ## Task 7 - a) Program to implement simple and multiple linear regression. - b) Program to implement non-linear regression. #### Task 8 Program to implement logistic regression. #### Task 9 Program to perform ANOVA test (one-way, two way). ## Task 10 Program to perform Principal component analysis (PCA) on the dataset. #### Task 11 Program to perform matrix operations (transpose, inverse, least square estimates, eigen values). #### Task 12 Program to handle mathematical functions with single argument. #### TEXT BOOKS - [1] Norman Matloff, The Art of R Programming, No Starch Press, San Francisco 2011 [Unit I,II,III] - [2] Jared P. Lander, R for Everyone, Addison Wesley Data & Analytics Series, Pearson, 2014. [Unit III,IV] ### REFERENCE BOOKS - [1] Rob Kabacoff and Dale Ogden, R in Action, Manning, Second Edition, 2018 - [2] G. Jay Kerns, Introduction to Probability and Statistics using R, First Edition, 2010 ## E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] Mine Çetinkaya-Rundel, David Banks, Colin Rundel, Merlise A Clyde, Duke University, (08,08,2019). Statistics with R Specialization. - Available: https://www.coursera.org/specializations/statistics - [2] Rafael Irizarry, Michael Love, Statistics with R, Harvard University (08, 08, 2019) Available: https://www.edx.org/course/statistics-r-harvardx-ph5251x-1 | | 17CS4
INTERNET OF THIN | | | |------------------|---------------------------|-----------------------------|----------| | Course Category: | Programme Elective | Credits: | 1 | | Course Type: | Laboratory | Lecture -Tutorial-Practice: | 0 -0 - 2 | | Prerequisites: | Microprocessor & | Continuous Evaluation: | 30 | | | Microcontrollers | Semester end Evaluation: | 70 | | | | Total Marks: | 100 | | | | | | ## Upon successful completion of the course, the student will be able to: | CO1 | Understand the basics of Embedded systems & 8051 Programming. | |-----|---| | CO2 | Understand the basic principles of IoT. | | CO3 | Differentiate the features of various IoT platforms. | | CO4 | Design simple IoT applications. | # Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2 - Medium, 3 - High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-------------|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | 2 | 2 | 2 | | | | | | | | | | | | | CO2 | 2 | | | | | | | | | | | | | | | CO3 | | | 2 | | 2 | | | | | | | | 2 | | | CO2 CO3 CO4 | | 3 | 3 | | 3 | | | | | | | | 2 | 3 | ## **COURSE CONTENT** ## PART I ## **Experiments on 8051 Microcontroller** Task 1: programmes on arithmetic instructions Task 2: programmes on data transfer instructions Task 3: programmes on logical instructions Task 4: programmes on jump instructions Task 5: Programs on interfacing ## **PART II** ## **Experiments based on Arduino Uno** Task 6: Blinking of LED Task 7: Temperature & Humidity Measurement Task 8: Intruder Detection Task 9: Distance Measurement #### VR17 ## PART III ## Experiments based on Raspberry pi Task 10: Configuring Raspberry pi Task 11: LED Control Task 12: temperature measurement Task 13: uploading data on open source cloud ## TEXT BOOKS - [1] Raj kamal, Embedded Systems Architecture, Programming and Design. 3rd edition, McGraw-Hill, 2012 - [2] Kenneth J. Ayala, "8051 MICRO CONTROLLER ARCHITECTURE" 3rd edition, Thomson Delmar Learning, 2005 - [3] Raj Kamal "INTERNET OF THINGS", McGraw-Hill, 1ST Edition, 2016 ## REFERENCE BOOKS [1] ArshdeepBahga, Vijay Madisetti "Internet of Things(A hands on approach)" 1ST edition, VPI publications, 2014 #### E-RESOURCES AND OTHER DIGITAL MATERIAL [1] Prof. Sudip misra, IIT Kharagpur "Introduction to Internet of things" [Web Content]. Available: http://nptel.ac.in/courses/106105166/ (Accessed on 10-8-18) | М | 17CS40
IOBILE APPLICATION DEVI | 652B
ELOPMENT LABORATORY | | |------------------|-----------------------------------|-----------------------------|----------| | Course Category: | Programme Elective | Credits: | 1 | | Course Type: | Laboratory | Lecture -Tutorial-Practice: | 0 -0 - 2 | | Prerequisites: | C Programming Lab, | Continuous Evaluation: | 30 | | | Java Programming Lab | Semester end Evaluation: | 70 | | | | Total Marks: | 100 | | | | | | VR17 #### **COURSE OUTCOMES** ## Upon successful completion of the course, the student will be able to: | CO1 | Implement J2ME technology | |-----|---| | CO2 | Create user interfaces for mobile application | | CO3 | Develop databases connection to given mobile application | | CO4 | Develop and deploy mobile application into an android device. | # Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | | , | | | | | | | | | | | | | | |-----|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | | CO1 | 3 | | | | 1 | | | | | | | | | | | CO2 | | 2 | 1 | | 1 | | | | | | | | 1 | 1 | | CO2 | | | 2 | | 2 | | | | 1 | | | | 2 | | | CO4 | | | 2 | | 3 | | | | 2 | | 2 | | 3 | 3 | ## **COURSE CONTENT** ### Task 1: Course Outcome: CO1: Implement J2ME technology **Topic:** First application: Creating Android Project, Android Virtual Device Creation, Set up debugging environment, Workspace set up for development, Launching emulator, debugging on mobile devices. Create a simple mobile application for login and logout activities that illustrates the GUI components, Colors and Fonts. ## Task 2: Course Outcome: CO2: Create user interfaces for mobile application **Topic:** Basic UI design: Basics about Views, Layouts, Draw able Resources, Input controls, Input Events, Toasts, More UI Components: Layouts - GridView and ListView, Action bar, Adapters, Menus: Option menu, context menu, sub menu, Pickers - Date and Time. Develop a mobile application which displays different images dynamically by clicking on button that works with Layout managers and Event handlers. Develop an application that shows names as a list and on selecting a name it should show the details of the candidate on the next screen with a "Back" button. If the screen is rotated to landscape mode (width greater than height), then the screen should show list on left fragment and details on right fragment instead of second screen with back button. Use Fragment transactions and Rotation event listener. #### Task 3: Course
Outcome: CO2: Create user interfaces for mobile application **Topic:** Basic UI design: Basics about Views, Layouts, Draw able Resources, Input controls, Input Events, Toasts, More UI Components: Layouts - GridView and ListView, Action bar, Adapters, Menus: Option menu, context menu, sub menu, Pickers - Date and Time. Create a screen that has input boxes for User Name, Password, and Address, Gender (radio buttons for male and female), Age (numeric), Date of Birth (Date Picket), State (Spinner) and a Submit button. On clicking the submit button, print all the data below the Submit Button. Use - (a) Linear Layout, (b) Relative Layout and - (c) Grid Layout or Table Layout. #### Task 4: Course Outcome: CO2: Create user interfaces for mobile application **Topic:** UI Components and Layout Managers. Design and develop simple calculator application. ## Task 5: Course Outcome: CO2: Create user interfaces for mobile application **Topic:** Graphics primitives Create an application that draws basic graphical primitives on the screen. An Application which draws a Pie Graph to the display. Data Values can be given at int[] array. You can enter four data(integer)values to the input text field. ## Task 6: Course Outcome: CO2: Create user interfaces for mobile application **Topic:** UI Components Implement an application that implements Multithreading. To design an application that implements Multithreading for multimedia content such as playing audio? Playing video? Capturing a snap shot simultaneously. ## Task 7: Course Outcome: CO3: Create user interfaces for mobile application Topic: UI Design To implement an application that read & writes data from and to the Internal memory device such as SD card using android Studio. ## Task 8: Course Outcome: CO4: Develop and deploy mobile application into an android device. **Topic:** Topic: Navigation Drawer: Panel that displays the app's main navigation screens on the left edge of the screen Develop a native application that uses GPS location information. #### Task 9: Course Outcome: CO3: Create user interfaces for mobile application **Topic:** UI Components Create an application that uses a text file to store user names and passwords (tab separated fields and one record per line). When the user submits a login name and password through a screen, the details should be verified with the text file data and if they match, show a dialog saying that login is successful. Otherwise, show the dialog with Login Failed message. ## **Task 10:** Course Outcome: CO4: Develop and deploy mobile application into an android device. **Topic:** Android Notifications – Toast, Dialogs (TimePicker, DatePicker, Progress, Alert), Notification Manager and Push Notification. Implement an application that creates an alert upon receiving a message. Develop an application that inserts some notifications into Notification area and whenever a notification is inserted, it should show a toast with details of the notification. #### **Task 11:** Course Outcome: CO3: Develop databases connection to given mobile application **Topic:** Working with SQLite Databases Develop database management system to retrieve data for mobile application. ## **Task 12:** Course Outcome: CO4: Develop and deploy mobile application into an android device. **Topic:** Basic UI design: Basics about Views, Layouts, Draw able Resources, Input controls, Input Events, Toasts, More UI Components: Layouts - GridView and ListView, Action bar, Adapters, Menus: Option menu, context menu, sub menu, Pickers - Date and Time. Create an alarm clock application ## Lab Projects: For any given mobile application follow the steps Ex: Your college mobile application, - 1. Understanding the requirement of a given application. - 2. Designing the interface and architecture. - 3. Best practices regarding application design and development. - 4. Writing code and testing it. - 5. Preparing application for Publishing. Publishing to Android Market and Physical device ## **TEXT BOOKS** - [1] James Keogh, "J2ME: The Complete Reference", Tata McGrawHill, 2017. [Unit I, II, IV] - [2] Reto Meier, "Professional Android Application Development", Wiley India, 2012. [Unit III] ## REFERENCE BOOKS - [1] Brian Fling, "Mobile Design and Development", O'Reilly, SPD, 2011. - [2] Wei-Meng Lee, "Beginning Android Application Development", Wiley Publishing, Inc, 2012 - [3] Jonathan Knudsen, "Wireless Java: Developing with J2ME", A Press, Second Edition, 2003 ## E-RESOURCES AND OTHER DIGITAL MATERIAL | | | | | D .4. | T | | 7CS46 | | OD 47 | | | | | | | |--------------------|---|---------|---------|-------------------|--------------|------------------|---------|---|-----------------|----------|----------|-----------|----------|-----------|--| | | ~ . | | | | | | ESSIO | N LAB | ORAT | ORY | | | | | | | Course | | ory: | | | mme E | lective | | Credits: 1 | | | | | | | | | Course | | | | Labora | - | | | Lecture - Tutorial - Practice: 0 - 0 - 2 | | | | | | | | | Prerequ | uisites: | | | _ | l Comn | | ion, | | | | | valuati | | | | | | | | | Image | Proces | sing | | | Se | mester | | valuati | | | | | | | | | | | | | | | | Tot | tal Mar | ks: 10 | 0 | COURS | COURSE OUTCOMES | | | | | | | | | | | | | | | | Upon sı | successful completion of the course, the student will be able to: | | | | | | | | | | | | | | | | CO1 | | | | | | | | | | | | plication | ons | | | | CO2 | • | | | pression | | | | | | | | | | | | | CO3 | Analy | ze the | conce | ots asso | ciated | speech, | , image | and vio | deo cor | npressi | ion | | | | | | CO4 | Analy | ze the | usage (| of comp | ression | algori | thms a | nd com | pare its | perfor | mance | | | | | | Contrib
3 – Hig | | of Cou | rse Ou | tcomes | towar | ds ach | ieveme | ent of P | rograi | m Outo | comes | (1 – Lo | w, 2 - M | edium, | | | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO 2 | | | CO1 | 3 | 2 | | | | | | | | | | | 2 | 3 | | | CO2 | 2 | 3 | | | | | | | | | 2 | | 2 | 2 | | | CO3 | 3 | 3 | 3 | | | | | | 3 | | 2 | | 2 | 3 | | | CO4 | 2 | 2 | 3 | | | | | | 3 | | 3 | | 2 | 2 | COURS | E CON | ITENT | | | | | | | | | | | | | | | Task1: | Wi | | | rogram
sing th | | hich
length (| input | | stri
echniqu | _ | of | 1s a | and (| s and | | | Task2:
Task3: | | | | | | | | | | | | | | | | | Task4: | 4: Write a program to compress and uncompress file using adaptive Huffman coding. | | | | | | | adaptive | | | | | | | | | Task5: | Wri
and ev | | • | ogram
nance o | to
of DPC | comp
M Algo | | image | e us | sing | Lossy | DP | CM A | Algorithm | | | Task6: | and evaluate performance of DPCM Algorithm. Write a program to implement Huffman data compression algorithm to generate Prefix codes and encoded text. a. Count of character frequencies. | | | | | | | | | | | | | | | - b. Construction of prefix code. - c. Encoding the text. Task7: Write a program to implement Wave let transform technique. **Task8**: Write a program to implement transform coding. Task9: Write a program to implement DTWT compression techniques. Task10: Write a program for compress the video file using the video compression technique. ## **TEXT BOOKS** - [1] Sayood, Khalid, "Introduction to Data Compression", 5th Edition, Morgan Kaufmann, 2017. - [2] Salomon, David," Data Compression The Complete Reference",3rd Edition,Springer,2007 ## REFERENCE BOOKS - [1] Saloman, "Handbook of Data Compression", springer, 2010. - [2] Parekh Ranjan, "Principles of Multimedia", TMH, 2006 | 17CS5653 | |--| | ENGINEERING PROJECT FOR COMMUNITY SERVICES | | | | TEAL Y | OHIERHIO I KOJECI F | OK COMMUNIT I SERVICES | | |------------------|---------------------|-----------------------------|----------| | Course Category: | Project Work | Credits: | 2 | | Course Type: | | Lecture -Tutorial-Practice: | 0 -1 - 2 | | Prerequisites: | - | Continuous Evaluation: | 100 | | | | Semester end Evaluation: | 0 | | | | Total Marks: | 100 | | | | | | ## Upon successful completion of the course, the student will be able to: | CO1 Identify the Societal probl | ems. | |--|------| |--|------| CO2 Solve the problems. CO3 Design of the problem/work plan. CO4 Design of the prototype/model. # Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO 2 | |-----|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|-------| | CO1 | | | | | | 2 | 3 | | | | | | 2 | 2 | | CO2 | | | | | | 3 | 1 | | | 2 | | | 2 | 2 | | CO3 | | | | | | 3 | | | 2 | | | | 2 | 2 | | CO4 | | | | | | | | | 1 | 3 | | | 2 | 2 | ## **COURSE CONTENT** Students will go to the society (Villages/ Hospitals / Towns etc,.) to identify the problem and survey the literature for a feasible solution. The work will be carried out during summer vacation after IV Semester. The student is encouraged to take up real life problems leading to innovative model building. | 17CS3654
COMPETITIVE CODING – III | | | | | | | | |--------------------------------------|------------------------------|---|--|--|--|--|--| | Programme Core | Credits: | 1 | | | | | | | Laboratory | Lecture -Tutorial-Practice: | 0-0-2 | | | | | | | - | Continuous
Evaluation: | 30 | | | | | | | | Semester end Evaluation: | 70 | | | | | | | | Total Marks: | 100 | | | | | | | | COMPETITIVE (Programme Core | COMPETITIVE CODING – III Programme Core Laboratory Lecture - Tutorial-Practice: Continuous Evaluation: | | | | | | ## Upon successful completion of the course, the student will be able to: | CO1 | Understand the basic concepts such as Divide and Conquer, Greedy and Dynamic programing principles | |-----|--| | CO2 | Analyse the programs on algorithm analysis concepts. | | CO3 | Solve the problems with given test cases. | CO4 Apply programing skills for optimized code and derive the solutions according to the provided constraints ## Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | | , | | | | | | | | | | | | | | |-----|---------|------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | | PO
1 | PO 2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | | CO1 | 3 | 2 | 1 | | | | | | | | | | | | | CO2 | | 3 | | | | | | | | | | | 2 | 2 | | CO3 | | 1 | | | | | | | 2 | | 3 | | 3 | 3 | | CO4 | 2 | 3 | | | | | | | | | 2 | | 3 | 3 | ## **COURSE CONTENT** Solving the programs under "Easy / Medium" category in CodeChef & HackerRank, etc. Students must solve 20 problems related to Design and Analysis of Algorithms in CodeChef / HackerRank, etc. The category may be under Easy / Medium. Students shall participate at least two contests per month, hosted in online judges. Problems to be solved in C, Java, Python. A minimum of 15 problems shall be solved per week in either CodeChef / HarckerRank, etc. Monthly contests hosted in CodeChef / HackerRank, etc,. may be taken as day to day assessment of laboratory. Monthly one such evaluation The work will be carried out in the laboratory slot allotted as well as at the home. ## **TEXT BOOKS** - [1] Halim, Steven and Halim, Felix, Competitive Programming 3, 2013. - [2] Ahmed Shamsul Arefin, Art of Programming Contest, ACMSolver, Second Edition, 2012 #### REFERENCE BOOKS | ruii Scheme and Synabus VK17 | |--| | [1] Programming Challenges: The Programming Contest Training Manual By Steven S Skiena, Miguel A Revilla [2] Guide to Competitive Programming: Learning and Improving Algorithms Through Contests By Ant Laaksonen | | E- RESOURCES AND OTHER DIGITAL MATERIAL | | [1] Topcoder tutorials - https://www.topcoder.com/community/data-science/data-science-tutorials/ Last accessed 01-06-2019 [2] Nite Nimajneb's site - http://comscigate.com/Books/contests/icpc.pdf Last accessed 01-06-2019 [3] Slides from a Stanford Course - http://web.stanford.edu/class/cs97si/ Last accessed 01-06-2019 [4] Halim, Steven and Halim, Felix, Competitive Programming 3, 2013. Ebook available at lulu.com. Site associate with with the book is http://cpbook.net | Full Scheme and Syllabus | VR17 | |--------------------------|------| SEMESTER - | VII | 17CS3701
COMPILER D | | | |-------------------------|------------------------|-----------------------------|-----------| | Course Category: | Programme Core | Credits: | 4 | | Course Type: | Theory | Lecture -Tutorial-Practice: | 3 - 1 - 0 | | Prerequisites: | Programming in C, | Continuous Evaluation: | 30 | | - | Theory of Computation | Semester end Evaluation: | 70 | | | | Total Marks: | 100 | CO₁ | | C pon s | accessiai | completion | or the | course, c | ne student | will be ubic | | |---|---------|-----------|------------|--------|-----------|------------|--------------|--| | _ | | | | | | | | | Upon successful completion of the course, the student will be able to: | CO2 | Implement the parsing techniques for the given programming construct described in Context Free Grammar. | |-----|---| | CO3 | Identify the suitable intermediate representation based on the storage administration. | |-----|--| |-----|--| Understand the functionality of each phase involved in Compilation process. | | Generate the machine code by considering all the functionalities involved in different phases of the | |-----|--| | CO4 | compilation process | ## Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |---------|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | 2 | 2 | | | | | | | | | | | | | | CO2 CO3 | 2 | 2 | | | | | | | 2 | | | | | | | CO3 | 2 | | | | | | | | 1 | | | | | | | CO4 | | 2 | | | | | | | | | 2 | | | | ## **COURSE CONTENT** ## UNIT-I **Introduction to Compilers**: Compilers and translators, why do we need translators?, the structure of a compiler, Lexical Analysis, Syntax analysis, Intermediate Code generation, Code Optimization, Code generation, Bookkeeping, Error handling, Compiler-writing tools. **Lexical Analysis**: - The role of lexical analyzer, Input Buffering, specification of tokens, The Lexical Analyzer Generator, Design of a Lexical Analyzer Generator ## UNIT-II **Syntax Analysis**: The Role of Parser, Context free Grammars, Top Down parsing, Predictive parsing, error recovery in Predictive Parsing **Bottom** – **Up Parsing**: Shift Reduce Parsing, LR parsers, The canonical collection of LR(0) items, Constructing SLR parsing tables, Constructing canonical LR parsing tables, Constructing LALR parsing tables, compaction of LR Parsing tables, Using ambiguous grammar, Error recovery in LR Parsing. ## **UNIT-III** **Syntax** – **Directed Translation**: Syntax – directed definitions, Applications of Syntax Directed Translations, translation schemes, Implementation of Syntax-directed translators, Intermediate code, Postfix notation, Parse trees and syntax trees, Three-address code, quadruples, and triples, Translation of assignment statements, Type checking, Boolean expressions, Statements that alter the flow of control, Postfix translations, Procedure calls & Record Structures **Symbol Tables:** The contents of a symbol table, Data structures for symbol tables, Representing scope information. #### **UNIT-IV** **Run – time Storage Administration**: – Implementation of simple stack allocation scheme, Implementation of block – structured languages; **Code Generation**: Issues in the design of a Code generator, The Target language, Basic Blocks and Flow Graphs, Optimization of Basic Blocks, A simple code generator, Code generation from DAG's. ### TEXT BOOKS - [1] Alfred V.Aho, Jeffrey D. Ullman, 'Principles of Compiler Design', Narosa Publishing, 2002 - [2] Alfred V.Aho, Monica S Lam, Ravi Sethi, Jeffrey D Ullman, 'Compilers Principles, Techniques and Tools', Second Edition, Pearson Education India, 2014. ## REFERENCE BOOKS - [1] Louden, 'Compiler Construction: Principle and Practice 'Cengage Publications, 1997. - [2] Jean-Paul Trembly, Paul G. Sorenson, 'The Theory and Practical of Compiler Writing', BS Publications, 2009 ## E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] Compiler Design by Prof.Y.N.Srikant,Department of Computer Science and Automation, IISC Bangalore. http://nptel.iitm.ac.in/courses/106108052 Last accessed 01-06-2020 - [2] NPTEL lectures by Professor Sanjeev K Agarwal, Dept. of CSE IIT Kanpur http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-KANPUR/compiler-desing/ui/TOC.htm Last accessed 01-06-2020 | | 17CS4702A
DATA ANALYTICS | | | | | | | | | | | | | | |-------------------------|-----------------------------|-----------------------------|-----------|--|--|--|--|--|--|--|--|--|--|--| | Course Category: | Programme Elective | Credits: | 3 | | | | | | | | | | | | | Course Type: | Theory | Lecture -Tutorial-Practice: | 3 - 0 - 0 | | | | | | | | | | | | | Prerequisites: | Programming in C | Continuous Evaluation: | 30 | | | | | | | | | | | | | • | | Semester end Evaluation: | 70 | | | | | | | | | | | | | | | Total Marks: | 100 | ## Upon successful completion of the course, the student will be able to: | CO1 | Understand the concepts of Data mining and Big Data Analytics | |-----|---| | CO2 | Apply machine learning algorithms for data analytics | | CO3 | Analyze various text categorization algorithms
| | CO4 | Use Technology and tools to solve the Big Data Analytics problems | ## Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-----|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | 2 | 2 | | | 2 | | | | | | | | 1 | 1 | | CO2 | | 2 | | | 2 | | | | | | | | 1 | 1 | | CO3 | | 2 | 1 | | 2 | | | | | | | | 1 | 1 | | CO4 | | | 1 | | 2 | | | | | | | | 1 | 1 | #### **COURSE CONTENT** ## UNIT I **Data Mining:** Data Mining, Kinds of Patterns Can Be Mined, Applications of data mining. **Data pre-processing:** Data Cleaning:Missing Values,Noisy Data,Data Cleaning as a Process; Data Integration: Entity Identification Problem,Redundancy and Correlation Analysis, Tuple Duplication, Data Value Conflict Detection and Resolution; Data Transformation and Data Discretization: Data Transformation Strategies Overview, Data Transformation by Normalization,Discretization by Binning,Discretization by Histogram Analysis. **Introduction to Big Data Analytics:** Big Data Overview, State of the Practice in Analytics, Key Roles for the New Big Data Ecosystem, Examples of Big Data Analytics Data Analytics Lifecycle: Data Analytics Lifecycle Overview, Discovery, Data Preparation, Model Planning, Model Building, Communicate Results, Operationalize ## UNIT II Association Rules: Apriori Algorithm, Evaluation of Candidate Rules, Applications of Association Rules, Transactions in a Grocery Store, Validation and Testing; Regression: Linear Regression, Logistic Regression Advanced Analytical Theory and Methods-Classification: Decision Trees, Naïve Bayes; Classification by Back propagation Advanced Analytical Theory and Methods-Clustering: major categories of clustering methods, k-means, k-nearest neighbor; DBSCAN #### UNIT III Advanced Analytical Theory and Methods-Time Series Analysis: Overview of Time Series Analysis, ARIMA Model. Advanced Analytical Theory and Methods-Text Analysis: Text Analysis Steps, Text Analysis Example, Collecting Raw Text, Representing Text, Term Frequency—Inverse Document Frequency (TFIDF), Categorizing Documents by Topics, Determining Sentiments #### **UNIT IV** Advanced Analytics- Technology and Tools: MapReduce and Hadoop: Analytics for Unstructured Data, The Hadoop Ecosystem, In-Database Analytics: SQL Essentials, In-Database Text Analysis. Putting It All Together: Communicating and operationalizing an Analytics Project, Creating the final deliverables, and Data Visualization basics. #### **TEXT BOOKS** - [1] Data Science and Big Data Analytics, EMC2 Education Services, John Wiley, 2015 [Unit II,III,IV] - [2] Jiawei Han and Micheline Kamber, Data Mining Concepts and Techniques, 3 ed, Elsevier Publishers [Unit I] #### REFERENCE BOOKS - [1] Simon Walkowiak Big Data Analytics with R: Leverage R Programming to uncover hidden patterns in your Big Data ,Packt publishing, 2016 - [2] Nathan Marz, James Warren, "Big Data-Principles and best practices of scalable real-time data systems", DreamTech Press, 2015 - [3] Benjamin Bengfort, Jenny Kim, Data Analytics with Hadoop: An Introduction for Data Scientists, OReilly ,1st Edition, 2016 #### E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] Prof.D. Janaki Ram and S. Srinath, III Madras, Data Mining and Knowledge Discovery https://freevideolectures.com/course/2280/database-design/35, Last accessed on 11th August 2018 - [2] Prof. Nandansudharsanam and Prof. B.Ravindran, IIT Madras, Introduction to Data Analytics http://nptel.ac.in/courses/110106064/23, Last accessed on 11th August 2018 | 17CS4702B
HIGH PERFORMANCE COMPUTING | | | | | | | | | | | | | |---|--|--|--|--|--|--|--|--|--|--|--|--| | Programme Elective | Credits: | 3 | | | | | | | | | | | | Theory | Lecture -Tutorial-Practice: | 3 - 0 - 0 | | | | | | | | | | | | Data Structures, | Continuous Evaluation: | 30 | | | | | | | | | | | | Computer Organization | Semester end Evaluation: | 70 | | | | | | | | | | | | & Architecture | Total Marks: | 100 | | | | | | | | | | | | | Programme Elective Theory Data Structures, Computer Organization | HIGH PERFORMANCE COMPUTING Programme Elective Credits: Theory Lecture - Tutorial - Practice: Data Structures, Continuous Evaluation: Computer Organization Semester end Evaluation: | | | | | | | | | | | | Upon successful completion of the course, the student will be able to: | |--| |--| | CO1 | Understand the parallel programming platforms for parallel computer systems. | |-----|---| | CO2 | Optimize the performance of parallel programs. | | CO3 | Understand the working group communication operations of MPI. | | CO4 | Understand algorithm for multicore processors systems using MPI and thread Techniques | # Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2 - Medium, 3 - High) | | PO 1 | PO
2 | PO
3 | PO
4 | PO
5 | PO 6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-------------|-------------|---------|---------|---------|---------|------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | 2 | 3 | | | 2 | | | | | | | | | | | CO2 | | 3 | 1 | | | | | | | | | | | | | CO2 CO3 CO4 | 2 | 3 | | | 2 | | | | | | | | | | | CO4 | 2 | 3 | 1 | | 2 | | | | | | | | | | ## **COURSE CONTENT** ## UNIT I **Parallel Programming Platforms:** Implicit parallelism: Trends in Microprocessor Architectures, Limitations of memory system performance, Dichotomy of parallel computing platforms, physical organization of parallel platforms, Routing mechanisms for interconnection networks. **Principles of Parallel Algorithm Design:** Preliminaries, decomposition Techniques, Characteristics of tasks and interactions, mapping techniques for load balancing, parallel algorithm models. ## UNIT II **Basic communication operations:** One-to-All Broadcast and All-to-One Reduction, All-to-All Broadcast and Reduction, All-Reduce and Prefix-Sum Operations, Scatter and Gather. **Analytical modeling of parallel programs:** sources of overhead in parallel programs, performance metrics for parallel systems. **Introduction to Heterogeneous Computing:** Introduction to OPenCL, Platform and Devices, The Execution Environment, Memory Model, Writing Kernels #### UNIT III **Programming using the message passing paradigm:** Principles of Message passing programming, The building blocks: Send and Receive Operations, MPI: the message passing interface, collective communication and computation Operations. **Programming shared address space platforms:** Thread Basics, why Threads, The POSIX Thread API, Thread Basics: Creation and Termination, OpenMP: a standard for Directive based Parallel Programming. #### UNIT IV **Dense Matrix Algorithms:** Matrix-Vector Multiplication, Matrix – Matrix Multiplication. **Sorting:** Issues in Sorting on Parallel Computers, Sorting Networks, Bubble sort and its variants. **Graph Algorithms:** Minimum Spanning Tree: Prim's Algorithm, Single-Source shortest paths: Dijkstra's Algorithm. **Introduction to General-Purpose GPU programming (CUDA):** The age of parallel processing, The Rise of GPU computing, CUDA, Applications of CUDA, Development Environment, Introduction to CUDA C, Parallel Programming in CUDA C. ### **TEXT BOOKS** - [1] Ananth Grama, Anshul Gupta, George Karypis, Vipin Kumar: Introduction to Parallel Computing, Second Edition Pearson Education, 2016.(Chapters:1-10) - [2] Jason Sanders, Edward Kandrot, CUDA By Example An Introduction to General-Purpose GPU Programming, Addison Wesley, 2011. (Chapters:1-4) - [3] Benedict R Gaster, Lee Howes, David R Kaeli Perhaad Mistry Dana Schaa, *Heterogeneous Computing* with OpenCL McGraw-Hill, Inc. Newyork , 2012(Chapters-2) #### REFERENCE BOOKS - [1] Michael J. Quinn, Parallel Programming in C with MPI and OpenMP McGraw-Hill International Editions, Computer Science Series, 2004. - [2] David B. Kirk, Wen-mei W. Hwu, Programming Massively Parallel Processors A Hands-on Approach, Third Edition, Morgan Kaufmann, 2016. ### E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] nptel.ac.in/courses/106108055/ Last accessed 01-06-2020 - [2] http://www.nvidia.com/object/cuda home new.html Last accessed 01-06-2020 - [3] http://www.icrar.org/research/postgraduuate/high-performance-computing-honours-course Last accessed 01-06-2020 - [4] http://www.openCL.org Last accessed 01-06-2020 | 17CS4703A
CRYPTOGRAPHY AND NETWORK SECURITY | | | | | | | | | | | | | |--|--------------------|-----------------------------|-----------|--|--|--|--|--|--|--|--|--| | Course Category: | Programme Elective | Credits: | 3 | | | | | | | | | | | Course Type: | Theory | Lecture -Tutorial-Practice: | 3 - 0 - 0 | | | | | | | | | | | Prerequisites: | Computer Networks | Continuous Evaluation: | 30 | | | | | | | | | | | _ | _ | Semester end Evaluation: | 70 | | | | | | | | | | | | | Total Marks: | 100 | ## Upon successful completion of the course, the student will be able to: | CO1 | Understand various security issues related to cryptography and Network Security. |
-----|--| | CO2 | Analyze the process of cryptographic ciphers. | | CO3 | Summarizes the Network Security Scenarios. | | CO4 | Inspect the protection methods against Network security threats. | # Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2 - Medium, 3 - High) | | PO
1 | PO 2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |---------|---------|------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | 3 | | | | 3 | | | | | | | | | | | CO2 CO3 | 2 | 3 | | | | | | | | | 2 | | | | | CO3 | 3 | | | | | | | | | | | | | | | CO4 | | 3 | | | 3 | | | | | | | | | | ## **COURSE CONTENT** ## UNIT I **Overview:** Security attacks, Services, Mechanisms, A model for network security; Basics of Cryptography, Cryptanalysis. Symmetric cipher model. **Classical encryption techniques**: Substitution Techniques: Caeser Cipher, Mono alphabet Cipher, Playfair Cipher Transposition Techniques: Rail Fence. Block Cipher: Principles, DES, Strength of DES, AES Block cipher Operations: Triple DES, ECB, CBC, CFM, OFM ## UNIT II **Number Theory:** Prime Numbers, Fermat's theorem, Euler's Theorem, Chinese remainder Theorem. **Public Key Cryptography**: Principles of Public Key Crypto System, RSA algorithm, Diffie-Hellman Key Exchange. Cryptographic Hash Functions: Applications -Message Authentication, Digital signatures, SHA- Logic, **Round Functions** **Digital Signatures:** Properties, Attacks and Forgeries, Requirements #### **UNIT III** X. 509 Certificates, Kerberos: Motivation Kerberos Version 4 Kerberos Version 5 **Transport Level Security:** Web Security Threats, Web Traffic Security Approaches. **Secure Socket Layer and Transport Layer Security : SSL -** SSL Architecture, SSL Record Protocol, Change Cipher Spec Protocol, Alert Protocol, Handshake Protocol, Cryptographic Computations **TLS**-Version, MAC, Pseudorandom Function, Alert Codes, Cipher suites, Client Certificate Types, Certificate Verify and Finished Messages Cryptographic Computations Padding HTTPS: Connection Initiation Connection Closure ## **UNIT IV** **IP Security: Overview:** Applications, Benefits, IPsec Documents, IPsec Services, Transport and Tunnel Modes, Encapsulating Security Payload - ESP Format Encryption and Authentication Algorithms Padding Anti-Replay Service Transport and Tunnel Modes, **Email Security**: Pretty Good Privacy- Notation, Operational Description **Malicious Softwares:** Types –Backdoor, Logic Bomb, Trojan Horses. **Firewalls :** The Need for Firewalls, Characteristics, Types of Firewalls - Packet Filtering Firewall, Stateful Inspection Firewalls, Application-Level, Gateway Circuit-Level Gateway #### TEXT BOOKS [1] William Stallings, Cryptography and Network Security: Principles and Practice. 7th ed, Pearson Education, 2017 #### REFERENCE BOOKS - [1] Cryptography and Network Security: Forouzan, Mukhopadhyay, McGraw Hill, 2nd Edition - [2] Network Security and Cryptography, Bernard Menezes, CENGAGE Learning ## E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] nptelonlinecourse.com,"Cryptography and network Security", 2018. [Online]. Available: https://onlinecourses.nptel.ac.in/noc19 cs28/preview. Last accessed 01-06-2020 - [2] cybrary.com, "Cryptography", 2018, [Online]. Last accessed 01-06-2019 Available: https://www.cybrary.it/course/ cryptography/ | | 17CS470
MOBILE COM | | | |-------------------------|-----------------------|-------------------------------|-----------| | Course Category: | Programme Elective | Credits: | 3 | | Course Type: | Theory | Lecture -Tutorial-Practice: | 3 - 0 - 0 | | Prerequisites: | Computer Networks | Continuous Evaluation: | 30 | | • | | Semester end Evaluation: | 70 | | | | Total Marks: | 100 | ## Upon successful completion of the course, the student will be able to: | CO1 | Understand the concepts and techniques related to Mobile Communications | |-----|--| | CO2 | Analyze the architectures, protocols and features of GSM, GPRS, UMTS, Mobile IP, DHCP and issues related to Mobile Databases and Mobile OS | | CO3 | Analyze the architectures, protocols and features of MANETs and WSN | | CO4 | Examine the implementation aspects of HSPA, LTE, 4G, WiMAX and Mobile Application Development | ## Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-----|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | 2 | 3 | | | | | | | | | | | | | | CO2 | | 3 | | | | | | | | 1 | | | | | | CO3 | 2 | 3 | | | | | | | | 1 | | | | | | CO4 | 2 | 3 | | | | | | | | | | | | | ## **COURSE CONTENT** ## **UNIT I** **Introduction to Mobile Computing and Wireless Networking:** What is Mobile Computing, MC Vs Wireless Networking, MC applications, Characteristics of MC, Structure of MC Application, Cellular Mobile Communication, GSM, GPRS, UMTS **MAC Protocols:** Properties required of MAC protocols, Wireless MAC protocols, Taxonomy, Fixed Assignment Schemes (FDMA, TDMA, CDMA), Random Assignment Schemes, Reservation-based Schemes, The 802.11 Standard, MAC for Ad Hoc Networks ## UNIT II **Mobile Internet Protocol:** Mobile IP, Packet delivery, Overview, Desirable Features, Key Mechanism, Route ## Optimization, DHCP Mobile Transport Layer: Overview and Terminologies of TCP/IP, Improvement in TCP performance **Mobile Databases:** Issues in Transaction processing, Transaction processing environment, Data Dissemination, Transaction Processing in Mobile Environment, Data Replication, Mobile Transaction Models, Rollback Process, Two-phase Commit protocol, Query Processing, Recovery ## UNIT III **Mobile Adhoc Networks:** Characteristics, Applications, MANET design issues, Routing, Essentials of Traditional Routing Protocols, Routing in MANET's, Popular protocols, VANETs, MANET Vs VANET, Security Issues, Attacks and Countermeasures **Wireless Sensor Networks:** WSN Vs MANET, Applications, Architecture of a Sensor node, Design Challenges, Characteristics, WSN Routing Protocols, Target Coverage ## UNIT – IV **OS for Mobile Computing:** OS responsibilities, Mobile O/S, Special Constraints and Requirements of Mobile O/S, Compartive study of Mobile OSs HSPA 3G network, LTE, WiMax, Broadband Wireless Acess, 4G Networks – Requiements & Design, Moduation & Multiplexing techniques for 4G, HSOPA, LTE Advanced, WiMax advanced. **Mobile Application Development and Protocols**: Mobile Devices as Web Clients, WAP, J2ME, Android Software Development Kit (SDK) – Android SDK, Features, Android Application Components, Android Software Stack Structure, Advantages #### TEXT BOOKS - [1] Prasant Kumar Pattnaik, "Fundamentals of Mobile Computing", PHI, 2015 - [2] Raj Kamal, "Mobile Computing", Second Edition, Oxford University Press-New Delhi, 2012 #### REFERENCE BOOKS - [1] Dr. Sunil kumar S. Manavi, Mahabaleshwar S. Kakkasageri, "Wireless and Mobile Networks, concepts and protocols", Wiley India, 2014, - [2] William Stallings "Wireless Communications and Networks", Second Edition, Pearson Education - [3] Jochen Schiller, "Mobile Communications", Addison-Wesley, Second Edition, 2009 #### E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] https://www.cse.iitb.ac.in/~mythili/teaching/cs653 spring2014/index.html Last accessed 01-06-2020 - [2 http://www.iitg.ernet.in/scifac/qip/public html/cd cell/EC632.pdf Last accessed 01-06-2020 - [3] http://people.ee.duke.edu/~romit/courses/s11/ece256-sp11.html Last accessed 01-06-2020 | 17CS4703C
AGILE SOFTWARE DEVELOPMENT | | | | | | | | | | | | |---|---------------------|-----------------------------|-----------|--|--|--|--|--|--|--|--| | Course Category: | Programme Elective | Credits: | 3 | | | | | | | | | | Course Type: | Theory | Lecture -Tutorial-Practice: | 3 - 0 - 0 | | | | | | | | | | Prerequisites: | Sotware Engineering | Continuous Evaluation: | 30 | | | | | | | | | | | | Semester end Evaluation: | 70 | | | | | | | | | | | | Total Marks: | 100 | ## Upon successful completion of the course, the student will be able to: | CO1 | Compare different traditional software development models. | |-----|--| | CO2 | Understand Agile concepts and principles | | CO3 | Analyze the scrum and XP process model | | CO4 | Apply Agile methodology for any given application | # Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2 - Medium, 3 - High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-----|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | | 1 | | | | | | | | | | | | | | CO2 | 1 | | | | | | | | | | | 2 | | 1 | | CO3 | 1 | 2 | | | | | | | | | | | | | | CO4 | | | 3 | 1 | | | | | | | | | 1 | 2 | ## **COURSE CONTENT** ## UNIT I: TRADITIONAL SOFTWARE DEVELOPMENT **The Waterfall approach:** Requirements, Design phase Implementation, testing, support, Advantages and disadvantages. **Modified Waterfall Models**: Milestone and Regular Integration, Incremental Development, Rational unified process, Agile Unified process, and Agile model driven development. ## UNIT II: UNDERSTANDING AGILE
& AGILE PRINCIPLES Understanding agile values: What is Agile, A team lead & architect, No silver bullets, Agile manifesto. **The Agile Principles**: The 12 principles of Agile software, Delivering the project, communicating and working together, project execution, constantly improving the project and the team. VRSEC 206 • ## **UNIT III: SCRUM** **Scrum and self organizing teams:** The rules of a scrum, Act-I: can haz scrum, Act-II: Whole team uses scrum daily, Act-III: sprinting into a wall, Act-IV: Dog catches car Scrum planning and collective commitment: Act-V: Expecting the unexpected, Act-VI: victory Lap. ## **UNIT IV: EXTEME PROGRAMMING(XP)** **XP and Embracing change:** Primary practices of XP, XP values help the team change their mind set, understanding XP principles. **XP, Simplicity and Incremental Design:** Going into overtime, make code and design decisions at the last responsible moment, Incremental design and holistic practices. ## TEXT BOOKS - [1] Thomas Stober, Uwe Hansmann: Agile Software Development —Springer- verlag Berlin Heidelberg, 2010. Unit-I - [2] Andrew Stellman & Jennifer Greenie: Learning Agile understanding scrum, XP, Lean and Kanban –First Edition, O.Reiley Media, USA, 2014. Unit-II, Unit -III, Unit-IV #### REFERENCE BOOKS - [1] Robert C.Martin: Agile principles, patterns &practices- Pearson Edition-2006. - [2] Alistair Cockburn: Agile Software Development: The cooperative Game, Pearson Education, 2006. ## E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] https://www.versionone.com/agile-101/ Last accessed 01-06-2020 - [2] https://www.codeproject.com/Articles/604417/Agile-software-development-methodologies Last accessed 01-06-2020 | 17CS4704A
MACHINE LEARNING | | | | | | | | | | | | |-------------------------------|-------------------------|-----------------------------|-----------|--|--|--|--|--|--|--|--| | Course Category: | Programme Elective | Credits: | 3 | | | | | | | | | | Course Type: | Theory | Lecture -Tutorial-Practice: | 3 - 0 - 0 | | | | | | | | | | Prerequisites: | Probability and | Continuous Evaluation: | 30 | | | | | | | | | | _ | Statistics, | Semester end Evaluation: | 70 | | | | | | | | | | | Artificial Intelligence | Total Marks: | 100 | | | | | | | | | | | Tools Techniques and | | | | | | | | | | | | | Applications | | | | | | | | | | | ## Upon successful completion of the course, the student will be able to: | CO1 | Identify instance based learning algorithms | |-----|---| | CO2 | Design neural network to solve classification and function approximation problems | | CO3 | Build optimal classifiers using genetic algorithms | | CO4 | Analyze probabilistic methods for learning | ## Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-----|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | 2 | 2 | | | 2 | | | | | | | | 1 | 1 | | CO2 | | 2 | | | 2 | | | | | | | | 1 | 1 | | CO3 | | 2 | 1 | | 2 | | | | | | | | 1 | 1 | | CO4 | | | 1 | | 2 | | | | | | | | 1 | 1 | ## **COURSE CONTENT** ## **UNIT I** INTRODUCTION - Well-posed learning problems, Designing a learning system, Perspectives and issues in machine learning Concept learning and the general to specific ordering – Concept learning as search, General-to-specific ordering of hypotheses , Find-S: finding a maximally specific hypothesis, List then eliminate algorithm, Candidate elimination learning algorithm ## UNIT II Decision Tree learning – Introduction, Decision tree representation, Appropriate problems for decision tree learning, The basic decision tree learning algorithm, Hypothesis space search in decision tree learning, Inductive bias in decision tree learning, Issues in decision tree learning Artificial Neural Networks – Neural network representation, Appropriate problems for neural network learning, Perceptrons- Gradient descent and the Delta rule, Multilayer networks and the back propagation algorithm Evaluation Hypotheses – Estimation hypothesis accuracy, Basics of sampling theory, A general approach for deriving confidence intervals ## **UNIT III** **Bayesian learning** – Bayes theorem, Bayes theorem and concept learning, Bayes optimal classifier, Naïve Bayes classifier, Bayesian belief networks- Conditional independence, Learning Bayesian belief networks, The EM algorithm- general statement of EM algorithm, **Computational learning theory** – Sample complexity for Finite Hypothesis Space, Sample Complexity for infinite Hypothesis Spaces- Shattering a Set of Instances **Instance-Based Learning-** k -Nearest Neighbour Learning- Locally Weighted Regression, Case-Based Reasoning ## **UNIT IV** Genetic Algorithms – An illustrative Example, Genetic Programming-Representing Programs, Illustrative Example, Models of Evolution and Learning Learning Sets of Rules – Sequential Covering Algorithms- **General to Specific Beam Search**, Learning First Order Rules, Learning Sets of First Order Rules: FOIL #### TEXT BOOKS [1] Tom M. Mitchell, "Machine Learning", McGraw Hill, Indian Edition, 2017 ## REFERENCE BOOKS - [1] Stephen Marsland, Taylor & Francis, "Machine Learning: An Algorithmic Perspective", 2nd Edition, 2014. - [2] William W Hsieh, "Machine Learning Methods in the Environmental Sciences, Neural Networks and kernels" Cambridge Univ Press, 1st Edition, 2009 #### E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] Evaluating a hypothesis, Stanford University, https://www.coursera.org/learn/machine-learning/lecture/yfbJY/evaluating-a-hypothesis, Last accessed on 26-8-2019 - [2] Balaraman Ravindran, NPTEL Lecture 1 Introduction to Machine Learning, https://www.youtube.com/watch?v=fC7V8QsPBec, Last accessed on 26-8-2019 - [3] Benchmarking Neural Networks on Oracle Cloud Infrastructure with Mapr, https://mapr.com/whitepapers/benchmarking-neural-networks-on-oracle-cloud-infrastructure-with-mapr/ Last accessed on 26-8-2019 - [4] George Crump, Dealing with The AI and Analytics Data Explosion https://mapr.com/whitepapers/dealing-with-the-ai-and-analytics-data-explosion/ Last accessed on 26-8-2019 - [5] Sargur Srihari Department of Computer Science and Engineering, University at Buffalo https://cedar.buffalo.edu/~srihari/CSE574/ | 17CS4704B
SOFTWARE TESTING METHODOLOGY | | | | | | | | | | | | |---|----------------------|-----------------------------|-----------|--|--|--|--|--|--|--|--| | Course Category: | Programme Elective | Credits: | 3 | | | | | | | | | | Course Type: | Theory | Lecture -Tutorial-Practice: | 3 - 0 - 0 | | | | | | | | | | Prerequisites: | Software Engineering | Continuous Evaluation: | 30 | | | | | | | | | | _ | | Semester end Evaluation: | 70 | | | | | | | | | | | | Total Marks: | 100 | ## Upon successful completion of the course, the student will be able to: | CO1 | Understand the different concepts of testing and apply path testing. | |-----|--| | CO2 | Apply data flow and transaction flow testing. | | CO3 | Apply reduction procedure for any application. | | CO4 | Perform logic and state testing for any given application | ## Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2 - Medium, 3 - High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO 6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-----|---------|---------|---------|---------|---------|------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | 3 | 1 | 1 | | | | | | | | | | | 1 | | CO2 | 3 | 1 | 1 | | | | | | | | | | | 1 | | | | | 1 | | | | | | | | | | | 1 | | CO4 | | 1 | 1 | | | | | | | | | | | 1 | ## **COURSE CONTENT** #### UNIT **Introduction:** Purpose of testing, Dichotomies, model for testing, consequences of bugs, taxonomy of bugs. **Flow graphs and Path testing**: Basics concepts of path testing, predicates, path predicates and achievable paths, path sensitizing, path instrumentation, application of path testing. #### UNIT II **Dataflow testing**: Basics of dataflow testing, strategies in dataflow testing, application of dataflow testing. **Paths, Path products and Regular expressions**: path products and path expression, reduction procedure, applications, regular expressions and flow anomaly detection. #### **UNIT III** Logic Based Testing: overview, decision tables, path expressions, kv charts, specifications. State, State Graphs and Transition testing: state graphs, good and bad state graphs, state testing, Transition testing. #### UNIT - IV **Software Quality**: What Is Quality, Software Quality- ISO 9126 Quality Factors, McCall's Quality Factors, **Software Quality Assurance**: Background Issues, Elements of Software Quality Assurance SQA Tasks, Goals, and Metrics, SQA Tasks, Goals, Attributes, and Metrics, Formal Approaches to SQA, Statistical Software Quality Assurance, A Generic Example, Six Sigma for Software Engineering, Software Reliability, Measures of Reliability and Availability, Software Safety, The ISO 9000 Quality Standards, The SQA Plan. VR17 #### TEXT BOOKS - [1] Boris Beizer, Software Testing Techniques, 2 ed, Dreamtech - [2] Roger S.Pressman, Software Engineering- A Practitioner's Approach. 7thed, Tata McGraw-Hill International #### REFERENCE BOOKS - [1] Perry, Effective Methods of Software Testing, John Wiley - [2] Edward Kit, Software Testing in the Real World. Pearson. - [3] RajibMall, Fundamentals of Software Engineering. 2 ed, PHI. #### E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] http://nptel.ac.in/video.php?subjectId=106101061 Last accessed
01-06-2019 - [2] http://nptel.ac.in/video.php?subjectId=106101061 Last accessed 01-06-2019 - [3] http://nptel.ac.in/video.php?subjectId=106101061 Last accessed 01-06-2019 | 17CS | 4704C | | | | | | | | | | |----------------------------------|-----------------------------|--|--|--|--|--|--|--|--|--| | ROUTING AND SWITCHING ESSENTIALS | | | | | | | | | | | | Programme Elective | Credits: | | | | | | | | | | | Theory | Lecture -Tutorial-Practice: | | | | | | | | | | | Course Type: | Theory | Lecture -Tutorial-Practice: | 3 - 0 - 0 | |----------------|-------------------|-------------------------------|-----------| | Prerequisites: | Computer Networks | Continuous Evaluation: | 30 | | | | Semester end Evaluation: | 70 | | | | Total Marks: | 100 | | | | | | **Course Category:** ## Upon successful completion of the course, the student will be able to: | CO1 | Determine the subnets with the required number of hosts per subnet or the required number of | |-----|--| | COI | subnets. | - **CO2** Apply the configuration steps and correctly configure static or dynamic routing on all the routers in the topology. - CO3 Identify the correct category of routing protocols and also be able to compare and contrast the relative merits and demerits. - CO4 Design the Local Area Network (LAN) by selecting the appropriate router and switch and correctly configuring them. ## Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO 6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-----|---------|---------|---------|---------|---------|------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | | 3 | | | | | | | | | | | 1 | | | CO2 | | | 3 | | | | | | | | | | 1 | | | CO3 | | | | | 2 | | | | | | | | | | | CO4 | | | | 1 | | | | | | | | | 1 | | ## **COURSE CONTENT** ## UNIT I Inside the router, CLI configuration and addressing, Building the routing table, Path determination and switching, static route with next hop, static route with exit interface, summary and default static route, managing and troubleshooting static route. Introduction to dynamic routing protocols, classifying dynamic routing protocols, metrics, administrative distance. ## UNIT II Introduction to distance vector routing protocols, network discovery, route table maintenance, routing loops, RIPv1, Basic RIPv1 configuration, verification and trouble shooting, automatic summarization, default route and RIPv1, Classful and Classless addressing, VLSM, CIDR, RIPv1 Limitations, Configuring RIPv2, The Routing table structure. ## **UNIT III** Introduction to EIGRP, Basic EIGRP configuration, EIGRP Metric calculation, DUAL, More EIGRP configurations. Link state protocols, Link state routing, implementing link state routing, Introduction to OSPF, Basic OSPF configuration, The OSPF metric, OSPF and multiclass networks, More OSPF configuration. ## **UNIT IV** Forwarding Frames Using a Switch, Switch Management Configuration, Configuring Switch Security, Introducing VLANs, VLAN trunking, Configuring VLANs and Trunks, VTP Concepts, VTP Operation, Configuring VTP, Inter VLAN Routing, Configuring Inter VLAN Routing. #### TEXT BOOKS - [1] Rick Graziani, "Routing Protocols and Concepts"; CCNA Exploration Companion Guide, Pearson Education, 2011 - [2] Wayne Lewis, "LAN Switching and Wireless: CCNA Exploration Companion Guide", Pearson Education, 2014 #### REFERENCE BOOKS [1] Diane Barrett & Todd King, "Computer Networks Illuminated", Jones and Bartlett Publishers (2005). ### E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] https://www.youtube.com/watch?v=zvfjHIBV814 Last accessed 01-06-2019 - [2] https://study-ccna.com/ Last accessed 01-06-2019 - [3] https://www.udemy.com/course/cisco-ccna-video-training/ Last accessed 01-06-2019 | 17HS1705 | |--| | ENGINEERING ECONOMICS AND FINANCE | | Course Category: | Institutional Core | Credits: | 2 | |------------------|--------------------|-------------------------------|-----------| | Course Type: | Theory | Lecture -Tutorial-Practice: | 2 - 0 - 0 | | Prerequisites: | - | Continuous Evaluation: | 30 | | | | Semester end Evaluation: | 70 | | | | Total Marks: | 100 | | | | | | ## Upon successful completion of the course, the student will be able to: | CO1 | Understand various forms of organizations and principles of management | | | | | | | | | |-----|--|--|--|--|--|--|--|--|--| | CO2 | Understand the various aspects of economics related to the firm | | | | | | | | | | CO3 | Acquire knowledge on Human resources and Marketing functions | | | | | | | | | | CO4 | Understand best alternatives for various investment decisions and different depreciation methods | | | | | | | | | ## Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-------------|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | 2 | | | | | | | | | | 2 | | | | | CO1 CO2 CO3 | 2 | | | | 3 | | | | | | 2 | | | | | CO3 | 2 | | | | | | | | | | 2 | | | | | CO4 | 2 | | | | 3 | | | | | | 2 | | | | ## **COURSE CONTENT** ## UNIT I **Forms of Business Organization:** Salient Features of Sole Proprietorship, Partnership, Joint Stock Company: Private Limited and Public Limited Companies, Co-operative Society and Public Sector. **Management**: Introduction to Management, Management an Art or Science, Functions of Management, Principles of Scientific Management, Henri Fayol's Principles of Management. ## UNIT II **Introduction to Economics:** Introduction to basic economic concepts, utility analysis, marginal utility and total utility, law of diminishing marginal utility, law of equi-marginal utility, demand analysis: theory of demand, demand function, factors influencing demand, demand schedule and demand curve, shift in demand, elasticity of demand, elastic and inelastic demand, types of elasticity, factors of production, production function, production with one variable input, isoquants, returns to scale, cost function: cost-output relationship in short run and long run, relationship between AC and MC. Supply analysis, supply schedule and supply curve, factors influencing supply, supply function, theory of firm: price determination under equilibrium of firm, perfect competition. **National Income, Money and Banking, Economic Environment:** National income concepts , GNP , NNP , methods of measuring national income , inflation , deflation, kinds of money , value of money , functions of bank , types of bank , economic liberalization, privatization , globalization. ## UNIT III **Human Resource Management:** Meaning and difference between Personnel Management and Human Resource Management, Functions of Human Resource Management, Recruitment and Selection Process. **Marketing Management:** Concept of Selling And Marketing –Differences, Functions ofMarketing, Product Life Cycle, Concept of Advertising, Sales Promotion, Types of Distribution Channels, Marketing Research, Break-Even Analysis -Problems. ## UNIT IV **Financial management:** Functions of financial management, time value of money with cash flow diagrams, calculation of simple and compound interest, present worth, future worth, annual equivalent, methods of evaluating alternatives under present worth method, future worth method, annual equivalent method for choice of decision making among alternative projects. Depreciation, causes of depreciation, factors influencing depreciation, common methods of depreciation: straight line method, declining balance method, sum of year's digits method, problems. ## **TEXT BOOKS** - [1] P.Premchand Babu and M.Madan Mohan" Managerial Economics and Financial Analysis" Himalaya publishing house 2011 edition - [2] M. Mahajan"Industrial Engineering and Production Management"2ndEdition Dhanpat Rai Publications, 2nd Edition. ### REFERENCE BOOKS - [1] NaGerald J. Thuesen, W.J. Fabrycky, Engineering Economy9th Edition - [2] Philip Kotler& GaryArmstrong "Principles of Marketing", pearson prentice Hall, New Delhi, 2012 Edition. - [3] B.B Mahapatro, "Human Resource Management", New Age International, 2011 - [4] IM Pandey, "Financial Management" Vikas Publications 11thEdition - [5] R.Panneer selvam, "Production and operations management", PHI Learning pvt Ltd, New Delhi, 2012 ## E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] www.tectime.com Last accessed 01-06-2019 - [2] www.exinf.com Last accessed 01-06-2019 - [3] www.slideshare.net Last accessed 01-06-2019 - [4] www.economywatch.com Last accessed 01-06-2019 | 17CS4751A | | |---------------------------|--| | DATA ANALYTICS LABORATORY | | | Course Category: | Programme Elective | Credits: | 1.5 | |------------------|---------------------|-----------------------------|-----------| | Course Type: | Laboratory | Lecture -Tutorial-Practice: | 0 - 0 - 3 | | Prerequisites: | Database Management | Continuous Evaluation: | 30 | | | Systems | Semester end Evaluation: | 70 | | | | Total Marks: | 100 | | | | | | ## Upon successful completion of the course, the student will be able to: | CO1 | Understand the concepts of Data mining and Big Data Analytics | |-----|---| | CO2 | Apply machine learning algorithms for data analytics | | CO3 | Analyze various text categorization algorithms | | CO4 | Use Technology and tools to solve the Big Data Analytics problems | ## Contribution of Course
Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO 2 | |-----|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|-------| | CO1 | 3 | | | | | | | | | | | | | 1 | | CO2 | | 3 | 1 | | | | | | 1 | | 1 | | | 1 | | CO3 | | 2 | 1 | | | | | | 1 | | 1 | | | 1 | | CO4 | | 2 | 2 | | | | | | 3 | | 1 | | | 1 | ## **COURSE CONTENT** ## PART-A (Data Mining) ## *Task 1:* **Preprocessing**: Removal specified attribute, discrimination of a continuous valued attribute, standardization and normalization of data. ## *Task 2:* Association Mining: Finding Association Rules using Apriori principle e ## *Task 3:* **Classification**: Use the Classification technique to classify y the given dataset ## Task 4: **Clustering:** Apply the clustering technique to classify the given dataset #### **Task 5:** **Time Series:** Apply Time series techniques for prediction. #### Task 6: Text Analysis: Use text analysis methods for sentiment analysis ## PART-B (Big Data Analytics) ## **Task** :7 Hadoop file management: Adding files and directories, Retrieving files, Deleting files #### **Task 8:** Word Count application: MapReduce program to understand MapReduce Paradigm #### **Task 9:** **Pig Latin scripts**: To sort, group, join for a given dataset #### Task 10: **NO-SQL database** – **Apcache Hbase**: To set Hbase shell environment and to create tables, insert rows, display contents #### Task 11: **Database manipulation using Hive**: To create, alter, drop databases and views #### **Task 12:** Functions and indexes in Hive ## **PART-C (Data Analytics Lab Project)** ### **TEXT BOOKS** - [1] Data Science and Big Data Analytics, EMC2 Education Services - [2] Jiawei Han and Micheline Kamber, Data Mining Concepts and Techniques, 3 ed, Elseiver Publishers ## REFERENCE BOOKS - [1] Simon Walkowiak Big Data Analytics with R: Leverage R Programming to uncover hidden patterns in your Big Data ,Packt publishing, 2016 - [2] Nathan Marz, James Warren, "Big Data-Principles and best practices of scalable real-time data systems", DreamTech Press, 2015 - [3] Benjamin Bengfort, Jenny Kim, Data Analytics with Hadoop: An Introduction for Data Scientists, OReilly ,1st Edition, 2016 ### E-RESOURCES AND OTHER DIGITAL MATERIAL [1] Prof.D. Janaki Ram and S. Srinath, III Madras, Data Mining and Knowledge Discovery https://freevideolectures.com/course/2280/database-design/35, Last accessed on 11th August 2018 [2] Prof. Nandansudharsanam and Prof. B.Ravindran, IIT Madras, Introduction to Data Analytics http://nptel.ac.in/courses/110106064/23, Last accessed on 11th August 2018 | 17CS4751B | |---------------------------------------| | HIGH PERFORMANCE COMPUTING LABORATORY | | Course Category: | Programme Elective | Credits: | 1.5 | |------------------|-----------------------|-----------------------------|-----------| | Course Type: | Laboratory | Lecture -Tutorial-Practice: | 0 - 0 - 3 | | Prerequisites: | Data Structures, | Continuous Evaluation: | 30 | | _ | Computer Organization | Semester end Evaluation: | 70 | | | & Architecture | Total Marks: | 100 | | | | | | ## Upon successful completion of the course, the student will be able to: | CO1 | Understand the parallel programming platforms for parallel computer systems. | |-----|--| | | | - **CO2** Optimize the performance of parallel programs. - **CO3** Understand the working group communication operations of MPI. - **CO4** Understand algorithm for multicore processors systems using MPI and thread Techniques # Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO 6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |---------|---------|---------|---------|---------|---------|------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | 2 | 3 | | | 2 | | | | | | | | | | | CO2 CO3 | | 3 | 1 | | | | | | | | | | | | | CO3 | 2 | 3 | | | 2 | | | | | | | | | | | CO4 | 2 | 3 | 1 | | 2 | | | | | | | | | | ## **COURSE CONTENT** - Task 1: Implement Basic of MPI Programs. - Task 2: Implement a Program for Communication between MPI processes. - Task 3: Implement advance communication between MPI processes - Task 4: Implement MPI collective operations using 'Synchronization' - Task 5: Implement MPI collective operations using 'Data Movement' - Task 6: Implement MPI collective operations using 'Collective Computation' - Task 7: Write a program for MPI Non-Blocking operation - Task 8: Implement Matrix-Matrix multiplication Cannon's. - Task9: Implement Sorting using MPI- Shell sort, Quick sort, Bucket. - Task10: Implement Problems using OpenMP. - Task11: Implement Problems using Pthreads. - Task12: Implement Problems using CUDA. - Task13: Implement problems using OpenCL. ## **TEXT BOOKS** - [1] Ananth Grama, Anshul Gupta, George Karypis, Vipin Kumar: Introduction to Parallel Computing, Second Edition Pearson Education, 2016.(Chapters:1-10) - [2] Jason Sanders, Edward Kandrot, CUDA By Example An Introduction to General-Purpose GPU Programming, Addison Wesley, 2011. (Chapters:1-4) - [3] Benedict R Gaster, Lee Howes, David R Kaeli Perhaad Mistry Dana Schaa, Heterogeneous Computing with OpenCL McGraw-Hill, Inc. Newyork , 2012(Chapters-2) #### REFERENCE BOOKS - [1] Michael J. Quinn, Parallel Programming in C with MPI and OpenMP McGraw-Hill International Editions, Computer Science Series, 2004. - [2] David B. Kirk, Wen-mei W. Hwu, Programming Massively Parallel Processors A Hands-on Approach, Third Edition, Morgan Kaufmann, 2016. #### E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] nptel.ac.in/courses/106108055/ Last accessed 01-06-2019 - [2] http://www.nvidia.com/object/cuda home new.html Last accessed 01-06-2019 - [3] http://www.icrar.org/research/postgraduuate/igh-performance-computing-honours-course Last accessed 01-06-2019 [4] http://www.openCL.org | 17CS4752A
MACHINE LEARNING LABORATORY | | | | | | | | | | | | | |--|-------------------------|-----------------------------|-----------|--|--|--|--|--|--|--|--|--| | Course Category: | Programme Elective | Credits: | 1.5 | | | | | | | | | | | Course Type: | Laboratory | Lecture -Tutorial-Practice: | 0 - 0 - 3 | | | | | | | | | | | Prerequisites: | Probability and | Continuous Evaluation: | 30 | | | | | | | | | | | _ | Statistics, | Semester end Evaluation: | 70 | | | | | | | | | | | | Artificial Intelligence | Total Marks: | 100 | | | | | | | | | | | | Tools Techniques and | | | | | | | | | | | | | | Applications | | | | | | | | | | | | ## Upon successful completion of the course, the student will be able to: | CO1 | Identify instance based learning algorithms | |-----|---| | CO2 | Design neural network to solve classification and function approximation problems | | CO3 | Build optimal classifiers using genetic algorithms | | CO4 | Analyze probabilistic methods for learning | # Contribution of Course Outcomes towards achievement of Program Outcomes (1-Low, 2-Medium, 3-High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO 2 | |-----|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|-------| | CO1 | 2 | 2 | | | | | | | 1 | | | | 1 | 1 | | CO2 | | 2 | | | | | | | 1 | | | | 1 | 1 | | CO3 | | 2 | 1 | | | | | | | | | | 1 | 1 | | CO4 | | | 1 | | | | | | 1 | | | | 1 | 1 | ## **COURSE CONTENT** - **Task 1:** Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on a given set of training data samples. Read the training data from a .CSV file. - **Task 2:** For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples - **Task 3:** Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample. **Task 4:** Build an Artificial Neural Network by implementing the Back propagation algorithm and test the same using appropriate data sets. - **Task 5:** Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets. - **Task 6:** Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the accuracy, precision, and recall for your data set. - **Task 7:** Write a program to construct a Bayesian network for a sample dataset. You can use Java/Python ML library classes/API. - **Task 8:** Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set for clustering using k-Means algorithm. Compare the results of these two algorithms and comment on the quality of clustering. You can add Java/Python ML library classes/API in the program. - **Task 9:** Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem. - **Task 10:** Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw
graphs. #### TEXT BOOKS [1] John Anderson, Hands On Machine Learning with Python 1st Edition, AI Sciences Publisher, 2018 ## REFERENCE BOOKS [1] Michael Bowles, Machine Learning in Python: Essential Techniques for Predictive Analysis 1st Edition, John Wiley, 2015 #### E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] Evaluating a hypothesis, Stanford University, https://www.coursera.org/learn/machine-learning/lecture/yfbJY/evaluating-a-hypothesis, Last accessed on 26-8-2019 - [2] Balaraman Ravindran, NPTEL Lecture 1 Introduction to Machine Learning, https://www.youtube.com/watch?v=fC7V8QsPBec, Last accessed on 26-8-2019 - [3] Benchmarking Neural Networks on Oracle Cloud Infrastructure with Mapr, https://mapr.com/whitepapers/benchmarking-neural-networks-on-oracle-cloud-infrastructure-with-mapr/ Last accessed on 26-8-2019 - [4] George Crump, Dealing with The AI and Analytics Data Explosionhttps://mapr.com/whitepapers/dealing-with-the-ai-and-analytics-data-explosion/ Last accessed on 26-8-2019 | 17CS4752B
SOFTWARE TESTING METHODOLOGY LABORATORY | | | | | | | | | | | | | |--|-------------------------|-------------------------------|-----------|--|--|--|--|--|--|--|--|--| | Course Category: | Programme Elective | Credits: | 1.5 | | | | | | | | | | | Course Type: | Laboratory | Lecture -Tutorial-Practice: | 0 - 0 - 3 | | | | | | | | | | | Prerequisites: | Probability and | Continuous Evaluation: | 30 | | | | | | | | | | | _ | Statistics, | Semester end Evaluation: | 70 | | | | | | | | | | | | Artificial Intelligence | Total Marks: | 100 | | | | | | | | | | | | Tools Techniques and | | | | | | | | | | | | | | Applications | | | | | | | | | | | | Upon successful completion of the course, the student will be able to: - **CO1** Understand the different concepts of testing and apply path testing. - **CO2** Apply data flow and transaction flow testing. - **CO3** Apply reduction procedure for any application. - **CO4** Perform logic and state testing for any given application Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO 2 | |-----|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|-------| | CO1 | 3 | 1 | | | | | | | | | | | | 1 | | CO2 | 3 | 1 | 1 | | | | | | | | | | | 1 | | CO3 | | | 1 | | | | | | 1 | | | | | 1 | | CO4 | | 1 | | | | | | | | | 2 | | | 1 | ## **COURSE CONTENT** - Task 1: Design test cases for a given application - Task 2: Implementation of Path Testing - **Task 3:** Testing programs using JUNIT Tool - Task 4: Testing programs using JUNIT Tool - **Task 5:** Testing programs using JUNIT Tool - Task 6: Testing User Interface for VB application - Task 7: Testing a VB/. Net application - Task 8: Testing programs using NUNIT Tool - Task 9: Debugging and error handling - **Task 10:** Test a program using SELENIUM Tool. - Task 11: Test a program using SELENIUM Web Driver. - **Task 12:** Test a program using SELENIUM Web Driver. #### TEXT BOOKS [1] B. Beizer," Software Testing Techniques", second edition ed.: International Thomson Computer Press #### REFERENCE BOOKS - [1] Perry, Effective Methods of Software Testing, John Wiley - [2] Dr.K.V.K.K.Prasad, Software Testing Tools: Dreamtech. - [3] E. Kit, Software Testing in the Real World: Pearson. - [4] Software Testing Techniques: SPD(Oreille). ## E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] http://nunit.org/ Last Accessed on 01-06-2020 - [2] http://www.codeproject.com/Articles/178635/Unit-Testing-Using-NUnit Last Accessed on 01-06-2020 - [3] http://docs.seleniumhq.org/ Last Accessed on 01-06-2020 | 17CS5753 | |--------------| | MINI PROJECT | | MINI PROJECT | | | | | | | | | | | |------------------|----------------|-----------------------------|-----------|--|--|--|--|--|--|--| | Course Category: | Programme Core | Credits: | 2 | | | | | | | | | Course Type: | Project | Lecture -Tutorial-Practice: | 0 - 0 - 4 | | | | | | | | | Prerequisites: | - | Continuous Evaluation: | 30 | | | | | | | | | | | Semester end Evaluation: | 70 | | | | | | | | | | | Total Marks: | 100 | - 1. Formulate Domain Analysis, Elaboration through Modeling and Implementation through state of the art technology available. - 2. Develop generic and modular programs that includes Handling exceptionalcases in providing reliable solutions - 3. Testing and verification of programs for different scenarios - 4. Conclude findings through oral presentations - 5. Prepare proper documentation consisting of Software Requirements Specification (SRS), Modeling Techniques, Development Strategies, Implementation and Testing Strategies. Student may use any Design Methodologies such as SSAD, OOAD and UML - 6. Builds the spirit of team work in design process. 7. Become proficient in the programming languages | | PO PSO | PSO | |-----|----|----|----|----|----|----|----|----|----|----|----|----|-----|-----| | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | | CO1 | 1 | 2 | 2 | | | | 1 | | | | | 3 | 2 | 2 | | CO2 | 1 | 2 | 2 | | 1 | | 1 | | | | | 3 | 2 | 2 | | CO3 | | | | 2 | | | | | | | | | 2 | 2 | | CO4 | | | | | | 1 | | | 2 | 2 | | 3 | 2 | 2 | | CO5 | | | | | | | | 2 | | | | | 2 | 2 | | CO6 | | | | | | | | 2 | 2 | 2 | 2 | | 2 | 2 | ## 17CS6754 INTERNSHIP/INDUSTRY OFFERED COURSE/GLOBAL PROFESSIONAL CERTIFICATION | INTERNSHII/INDUSTRI OFFERED COURSE/GEODAL I ROFESSIONAL CERTIFICATION | | | | | | | | | | | |---|--|--|------------------|--|--|--|--|--|--|--| | Course Category: | Programme Core | Credits: | 2 | | | | | | | | | Course Type: | Internships/Industry
offered course/Global
Professional
Certification | Lecture -Tutorial-Practice: | | | | | | | | | | Prerequisites: | - | Continuous Evaluation:
Semester end Evaluation:
Total Marks: | 00
100
100 | | | | | | | | - 1. Formulate Domain Analysis, Elaboration through Modeling and Implementation through state of the art technology available. - 2. Develop generic and modular programs that includes Handling exceptionalcases in providing reliable solutions - 3. Testing and verification of programs for different scenarios - 4. Conclude findings through oral presentations - 5. Prepare proper documentation consisting of Software Requirements Specification (SRS), Modeling Techniques, Development Strategies, Implementation and Testing Strategies. Student may use any Design Methodologies such as SSAD, OOAD and UML - 6. Builds the spirit of team work in design process. 7. Become proficient in the programming languages | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO 6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO 2 | |-------------------------|---------|---------|---------|---------|---------|------|-------------|---------|---------|----------|----------|----------|----------|-------| | CO1 | 1 | 2 | 2 | | | | 1 | | | | | 3 | 2 | 2 | | CO2 | 1 | 2 | 2 | | 1 | | 1 | | | | | 3 | 2 | 2 | | CO3 | | | | 2 | | | | | | | | | 2 | 2 | | CO4 | | | | | | 1 | | | 2 | 2 | | 3 | 2 | 2 | | CO5 | | | | | | | | 2 | | | | | 2 | 2 | | CO1 CO2 CO3 CO4 CO5 CO6 | | | | | | | | 2 | 2 | 2 | 2 | | 2 | 2 | ## The students may register for one of the following: (a) Internships: The students are expected to do internship of minimum 3 weeks duration in the industry approved by respective Head of the Department. It carries two credits. The candidate shall submit the comprehensive report to the department. The report will be evaluated for 100 marks the project review committee. **(b) Industry offered courses:** The courses under this category shall be offered by the Industry experts. The courses under this category carry two credits. The semester end examination for courses under this category is evaluated for 100 marks and it shall be conducted and evaluated by the industry expert who has delivered the lecture or by faculty nominated by the head of the department in consultation with the industry expert. There will not be continuous evaluation for the courses under this categoryIt is mandatory to acquire minimum two credits for the award of degree. (c) Global Professional Certification: The students are expected to do Global Professional Certification approved by respective Head of the Department. It carries two credits. The candidate shall submit the certificate to the department. | Full Scheme and Syllabus | VR17 | |--------------------------|------| SEMESTER - VII | I | | , <u> </u> | 17CS4801A
BUSINESS INTELLIGENCE | | | | | | | | | | |------------------------------------|--------------------|-----------------------------|-----------|--|--|--|--|--|--| | Course Category: | Programme Elective | Credits: | 3 | | | | | | | | Course Type: | Theory | Lecture -Tutorial-Practice: | 3 - 0 - 0 | | | | | | | | Prerequisites: | - | Continuous Evaluation: | 30 | | | | | | | | | | Semester end Evaluation: | 70 | | | | | | | | | | Total Marks: | 100 | | | | | | | | | | | | | | | | | | ## Upon successful completion of the course, the student will be able to: | CO1 | Understand the concepts Business Intelligence | |-----|--| | CO2 | Apply the Knowledge Delivery methods to visualize the customized quires | | CO3 | Apply the Business Intelligence methods
to solve the applications and measure the efficiency | | CO4 | Understand the Future of Business Intelligence | # Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2 - Medium, 3 - High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-------------|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | 3 | | | | | | | | | | | | | | | CO2 | | 1 | | | | | | | 2 | | 3 | | | | | CO1 CO2 CO3 | | 1 | | | | | | | 2 | | 3 | | | | | CO4 | 3 | | | | | | | | | | | | | | ## **COURSE CONTENT** ## UNIT I **Business Intelligence**: Effective And Timely Decisions – Data, Information And Knowledge – Role Of Mathematical Models – Business Intelligence Architectures: Cycle Of A Business Intelligence Analysis – Enabling Factors In Business Intelligence Projects – Development Of A Business Intelligence System – Ethics And Business Intelligence. ## UNIT II **Knowledge Delivery**: The Business Intelligence User Types, Standard Reports, Interactive Analysis And Ad Hoc Querying, Parameterized Reports And Self-Service Reporting, Dimensional Analysis, Alerts/Notifications, Visualization: Charts, Graphs, Widgets, Scorecards And Dashboards, Geographic Visualization, Integrated Analytics, Considerations: Optimizing The Presentation For The Right Message. ## UNIT III **Efficiency**: Efficiency Measures – The CCR Model: Definition Of Target Objectives- Peer Groups – Identification Of Good Operating Practices; Cross Efficiency Analysis – Virtual Inputs And Outputs – Other Models. Pattern Matching – Cluster Analysis, Outlier Analysis. **Business Intelligence Applications:** Marketing Models – Logistic And Production Models #### **UNIT IV** **Future Of Business Intelligence:** Future Of Business Intelligence – Emerging Technologies, Machine Learning, Predicting The Future, BI Search & Text Analytics – Advanced Visualization – Rich Report, Future Beyond Technology #### **TEXT BOOKS** [1] Efraim Turban, Ramesh Sharda, Dursun Delen, "Decision Support And Business Intelligence Systems", 10th Edition, Pearson 2014. #### REFERENCE BOOKS - [1] Larissa T. Moss, S. Atre, "Business Intelligence Roadmap: The Complete Project Lifecycle Of Decision Making", Addison Wesley, 2003. - [2] Carlo Vercellis, "Business Intelligence: Data Mining And Optimization For Decision Making", Wiley Publications, 2009. - [3] David Loshin Morgan, Kaufman, "Business Intelligence: The Savvy Manager"S Guide", Second Edition, 2012. - [4] Cindi Howson, "Successful Business Intelligence: Secrets To Making BI A Killer App", McGraw-Hill, 2007. - [5] Ralph Kimball, Margy Ross, Warren Thornthwaite, Joy Mundy, Bob Becker, "The Data Warehouse Lifecycle Toolkit", Wiley Publication Inc.,2007. ## E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] Prof. Deepu Philip,IIT Kanpur, Business Intelligence & Analytics, accessed on 05-12-2019 https://www.youtube.com/watch?v=BgA8SbVJlqU - [2] Prof. Gaurav Dixit, IIT Rookee, Business Intelligence and Data Mining Modeling Using R accessed on 05-12-2019 - https://nptel.ac.in/courses/110107092/ - [3] Hasan Mir, What is Business Intelligence? accessed on 05-12-2019 https://www.youtube.com/watch?v=N8F7eOqgH8Q | | 17CS4801B | |---|-----------| | M | COMMERCE | VR17 | Course Category: | Programme Elective | Credits: | 3 | |-------------------------|--------------------|-------------------------------|-----------| | Course Type: | Theory | Lecture -Tutorial-Practice: | 3 - 0 - 0 | | Prerequisites: | - | Continuous Evaluation: | 30 | | | | Semester end Evaluation: | 70 | | | | Total Marks: | 100 | | | | | | ## **COURSE OUTCOMES** ## Upon successful completion of the course, the student will be able to: | CO1 | Identify the infrastructure required for building a M-commerce application | |-----|--| | CO2 | Understand the M-Commerce Technologies. | | CO3 | Identify the applications of M-Commerce | | CO4 | Understand the Challenges in implementing M Commerce applications | # Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | | PO 1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-----|-------------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | | | | | 2 | 1 | 1 | | | | | | | 1 | | CO2 | | | | | 2 | 1 | 1 | | | | | | | 1 | | CO3 | | | | | 1 | 2 | 2 | | | 2 | | | | | | CO4 | | | | | 1 | 2 | 2 | | | 2 | | | | 2 | ## **COURSE CONTENT** ## UNIT I #### **ELECTRONIC COMMERCE** Traditional commerce and E-commerce – The Dimensions of E-Commerce – E-Commerce Business Models – E-Commerce information System Function Model ## **MOBILE COMMERCE** Introduction – The Impact of mobility on e-commerce - Infrastructure of M–Commerce – Types Of Mobile Commerce Services – M-Commerce Business Models – the M-Commerce Value Chain – M-Commerce information system function Model ## **UNIT II** M COMMERCE: TECHNOLOGY Mobile Clients: Types – Device limitations – Device location technology Mobile Client Software: Mobile Device Operating System – Micro Browsers – Mobile Device Communication protocols: WAP, i-Mode – Page Description languages – application Software **WIRELESS COMMUNICATION TECHNOLOGY:** Wireless wide area network Technology: Cellular Systems – 2G(CDMA, TDMA, GSM) – 2.5G(GPRS, EDGE) – 3G(UMTS, CDMA-2000) – 4G – Wireless LAN (Wi-fi) – WMAN (wi-max) – WPAN(Bluetooth). ## **UNIT III** ## MOBILE COMMERCE: APPLICATIONS Mobile Financial Services – Mobile Advertising – Mobile Inventory Management – Mobile Product location and Shopping – Mobile Proactive Service Management – Mobile Business Services – Mobile Auction – Mobile Entertainment – Mobile Office – Mobile Distance Education – Mobile Information access – Vehicular Mobile Commerce – Location Based Applications. WIRELESS APPLICATION DEVELOPMENT: Client Side – Server side – WAP #### **UNIT IV** ## M-COMMERCE TRUST, SECURITY, AND PAYMENT Trust in M-Commerce, Encryption, Authentication, Confidentiality, Integrity and Non repudiation – Mobile Payment. #### M-COMMERCE ISSUES Technology Issues – Mobile Client Issues – Communication infrastructure Issues – other technology Issues – Application issues – Global m-Commerce issues #### **BEYOND M-COMMERCE** #### TEXT BOOKS - [1] Norman Sadeh, "M-Commerce Technologies, Services and Business Models" Wiley publications, 2002. - [2] http://online.sfsu.edu/~rnick/dauphine ### REFERENCE BOOKS - [1] Hendry Chan, Raymond Lee, Tharam Dillon, Ellizabeth Chang, "E-Commerce fundamentals and applications", John Wiley. - [2] Paul May, "Mobile Commerce: Opportunities, Applications, and Technologies of Wireless Business" Cambridge University Press March 2001. ## E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] Lecture Series on Internet Technologies by Prof.I.Sengupta, Department of Computer Science & Engineering ,IIT Kharagpur - http://www.youtube.com/watch?v=xKJjyn8DaAw Last accessed on 01-06-2019 - [2] http://nptel.iitm.ac.in/courses/Webcourse-contents/IISc- - BANG/System%20Analysis%20and%20Design/pdf/Lecture_Notes/LNm13.pdf Last accesed on 01-06-2019 | 17CS4801C | |-------------------------------| | INFORMATION RETRIEVAL SYSTEMS | | Course Category: | Programme Elective | Credits: | 3 | |------------------|---------------------|-----------------------------|-----------| | Course Type: | Theory | Lecture -Tutorial-Practice: | 3 - 0 - 0 | | Prerequisites: | Database Management | Continuous Evaluation: | 30 | | _ | Systems, Data | Semester end Evaluation: | 70 | | | Structures | Total Marks: | 100 | | | | | | ## Upon successful completion of the course, the student will be able to: | CO1 | Understand the overview of Information Retrieval Systems | |-----|--| | CO2 | Compute the process of indexing and Information Extraction | | CO3 | Learn the stemming algorithms and implement with various data structures | | CO4 | Understand the concepts of term clustering and Information Visualization | | CO5 | Learn various text search algorithms. | # Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2 - Medium, 3 - High) | - 8 | | | | | | | | | | | | | | | |-----------------|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | | CO1 CO2 CO3 CO4 | 2 | | | | | | | | | | | | | | | CO2 | | 2 | 1 | | | | | | | | | | | | | CO3 | | | | | | | | | | | | | | 2 | | CO4 | 1 | 2 | | | | | | | | | | | | | | CO5 | 1 | 2 | | | | | | | | | | | | | #### COURSE CONTENT ## UNIT I **Introduction:** Definition, Objectives, Functional Overview, Relationship to DBMS, Digital libraries and Data Warehouses. Information Retrieval System Capabilities: Search, Browse ## UNIT II Cataloging and Indexing: Objectives, Indexing Process, Automatic Indexing, Information Extraction. Data Structures: Introduction, Stemming Algorithms, Inverted file structures, N-gram data structure, PAT data structure, Signature file structure, Hypertext data structure, Hidden Markov Model. #### UNIT III **Automatic Indexing:** Statistical indexing: Probabilistic Weighting, Vector Weighting, Natural language, Concept indexing ## **Document and Term Clustering:** Introduction, Thesaurus generation, Item clustering, Hierarchy of clusters. ## UNIT IV **User Search Techniques:** Search statements and binding, Similarity measures and ranking, Relevance feedback,
Selective dissemination of information search, weighted searches of Boolean systems, Searching the Internet and hypertext. **Text Search Algorithms:** Introduction, Software text search algorithms, Hardware text search systems. **Information System Evaluation:** Introduction, Measures used in system evaluation, Measurement example – TREC results. ## **TEXT BOOKS** [1] M. T. M. Gerald J Kowalski, Information Storage and Retrieval Systems: Springer International Edition, 2018 ## REFERENCE BOOKS - [1] W. B. Frakes, Ricardo Baeza-Yates, Information Retrieval Data Structures and Algorithms: Prentice Hall PTR, 2015. - [2] R. Baeza-Yates, Modern Information Retrival: Pearson Education, 2012. ## E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] https://nlp.stanford.edu/IR-book/pdf/01bool.pdf Last accessed on 01-06-2019 - [2]http://shodhganga.inflibnet.ac.in/jspui/bitstream/10603/141878/10/10_chapter02.pdf Last accessed on 01-06-2019 | 17CS4801D
DATA VISUALISATION | | | | | | | | | | | |---------------------------------|--------------------|-----------------------------|-----------|--|--|--|--|--|--|--| | Course Category: | Programme Elective | Credits: | 3 | | | | | | | | | Course Type: | Theory | Lecture -Tutorial-Practice: | 3 - 0 - 0 | | | | | | | | | Prerequisites: | Programming in | Continuous Evaluation: | 30 | | | | | | | | | | Python, | Semester end Evaluation: | 70 | | | | | | | | | | Probability and | Total Marks: | 100 | | | | | | | | | | Statistics | | | | | | | | | | ## Upon successful completion of the course, the student will be able to: | CO1 | Understand basic and advanced techniques of information visualization and scientific visualization | |-----|--| | CO2 | Apply key techniques of the visualization process for good visualization | | CO3 | Develop visualization methods and visualization systems, and methods for their evaluation | | CO4 | Use interaction and distorting techniques for visual mapping and visualization | # Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO 2 | |-----|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|-------| | CO1 | 1 | | | | | | | | | | | | 1 | 1 | | CO2 | | 2 | | | | | | | | | 2 | | 1 | 1 | | CO3 | | 2 | | | | | | | | | 2 | | 1 | 1 | | CO4 | | | | | | | | | 2 | | | | 1 | 1 | ## **COURSE CONTENT** ## UNIT I **Introduction**: What is Visualization, relationship between visualization and other fields, visualization process, the role of cognition, pseudocode conventions, scatter plot, role of the user Data Foundations: Types of data, structure within and between records, data pre-processing Human perception and information processing: what is perception, physiology, perception in visualization, metrics, cognition ## UNIT II Visual foundations: Visualization process, semiology of graphical symbols, eight visual principles, taxonomies Visualization techniques for spatial data: visualizing spatial data, Visualization of Point Data, Visualization of Line Data, Visualization of Area Data Visualization Techniques for Multivariate Data: Point-Based Techniques, Line-Based Techniques, Region-Based Techniques, Combinations of Techniques. #### UNIT III Visualization Techniques for Trees, Graphs, and Networks: Displaying Hierarchical Structures, Displaying Arbitrary Graphs/Networks Text and Document Visualization: Introduction, Levels of Text Representations, The Vector Space Model, Single Document Visualizations, Document Collection Visualizations, Extended Text Visualizations. Interaction Techniques: Visualization Structure Space (Components of the Data Visualization) ## **UNIT IV** Designing Effective Visualizations: Steps in Designing Visualizations, Problems in Designing Effective Visualizations Comparing and Evaluating Visualization Techniques: User Tasks, User Characteristics, Data Characteristics, Visualization Characteristics, Structures for Evaluating Visualizations Visualization Systems: Systems Based on Data Type, Systems Based on Analysis Type, Text Analysis and Visualization, Modern Integrated Visualization Systems #### TEXT BOOKS [1] Matthew O. Ward, Georges Grinstein, Daniel Keim Interactive Data Visualization: Foundations, Techniques, and Applications 2nd Edition, CRC press, 2015 #### REFERENCE BOOKS - [1] Andy Kirk , Data Visualization: A Handbook for Data Driven Design, 1st edition, SAGE publication, 2016 - [2] Nathan Yau, "Data Points: Visualization that means something", Wiley, 2013. #### E-RESOURCES AND OTHER DIGITAL MATERIAL [1] Prof. Han-Wei Shen Introduction to Data Visualization, http://web.cse.ohio-state.edu/~shen.94/5544/ Last accessed on 01-06-2019 | 17CS4801E
CYBER SECURITY | | | | | | | | | | | |-----------------------------|--------------------|-----------------------------|-----------|--|--|--|--|--|--|--| | Course Category: | Programme Elective | Credits: | 3 | | | | | | | | | Course Type: | Theory | Lecture -Tutorial-Practice: | 3 - 0 - 0 | | | | | | | | | Prerequisites: | Cryptography and | Continuous Evaluation: | 30 | | | | | | | | | _ | Network Security | Semester end Evaluation: | 70 | | | | | | | | | | | Total Marks: | 100 | | | | | | | | ## Upon successful completion of the course, the student will be able to: | CO1 | Understand the classification of cyber crimes. | |-----|--| | CO2 | Assess various security attacks. | | CO3 | Understand the process to counter the cyber crimes. | | CO4 | Analyze various tools and methods used in cyber crimes | # Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2 - Medium, 3 - High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-------------|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | 3 | | | | | | | | | | | | | | | CO2 | | 2 | | | 2 | | | | | | 2 | | | | | CO1 CO2 CO3 | 3 | | | | | | | | | | | | | | | CO4 | | 2 | | | 2 | | | | | | 2 | | | | ## **COURSE CONTENT** ## UNIT I Introduction of Cybercrime: Definition and Origins of the Word, Cybercrime and Information Security, Cybercriminals, Classifications of Cybercrimes: E-Mail Spoofing, Spamming, Internet Time Theft, Salami Attack/Salami Technique, Data Diddling, Forgery, Web Jacking, Hacking, Online Frauds, Pornographic Offenses, Software Piracy, Computer Sabotage, E-Mail Bombing/Mail Bombs, Computer Network Intrusions, Password Sniffing, Credit Card Frauds, Identity Theft Cyber offenses: Criminals Plan: Categories of Cybercrime, ### UNIT II Cyber Attacks: Reconnaissance, Passive Attack, Active Attacks, Scanning/Scrutinizing gathered Information, Attack (Gaining and Maintaining the System Access), Social Engineering, and Classification of Social Engineering Cyberstalking: Types of Stalkers, Cases Reported on Cyberstalking, Working of Stalking, Real- Life Incident of Cyber stalking, Cybercafe and Cybercrimes, Botnets: The Fuel for Cybercrime, Botnet, Attack Vector #### UNIT III **DoS and DDoS Attacks**: DoS Attacks, SQL Injection, Buffer Overflow, Attacks on Wireless Networks. **Malicious Softwares:** Threat Model, Virus – types, Worms- types, **Penetration Testing:** Introduction, Penetration Testing types, Phases, Reconnaissance, Scanning-Types, Techniques, Gaining Access, Maintaining Access, Reporting and Analysis. ## **UNIT IV** **Tools and Methods:** Proxy Servers and Anonymizers, Phishing and Identity Theft: Working of Phishing, Identity Theft (ID Theft), **Password Cracking**: Online Attacks, Offline Attacks, Strong, Weak and Random Passwords, Random Passwords, **Keyloggers and Spywares**: Software Keyloggers, Hardware Keyloggers, Antikeylogger, Spywares, **Legal And Ethical Issues**: Cybercrime and Computer Crime, Intellectual Property, Privacy, Ethical Issues #### **TEXT BOOKS** - [1] Nina Godbole, Sunit Belapur, "Cyber Security Understanding Cyber Crimes, Computer Forensics and Legal Perspectives", 2nd edition, Wiley India Publications, April, 2011 - [2] William Stallings, Cryptography and Network Security: Principles and Practice. 7th Ed, Pearson Education, 2017 #### REFERENCE BOOKS - [1] "Fundamental on Cyber Security", CISCO - [2] "Cyber Security Essentials", CISCO - [3] "Security Analyst", NASSCOM #### E-RESOURCES AND OTHER DIGITAL MATERIAL [1] Michael McPhee, "Mastering Khali Linux for Web Penetration testing", Pact Publishing, 2017 | | 17CS28
BLOCKCHAIN TE | | | |-------------------------|-------------------------|-----------------------------|-----------| | Course Category: | Open Elective | Credits: | 3 | | Course Type: | Theory | Lecture -Tutorial-Practice: | 3 - 0 - 0 | | Prerequisites: | Cryptography and | Continuous Evaluation: | 30 | | • | Network Security | Semester end Evaluation: | 70 | | | | Total Marks: | 100 | ## Upon successful completion of the course, the student will be able to: | CO1 | Understand the blockchain architecture and design | |-----|--| | CO2 | Analyze the consensus protocols Role in Blockchain | | CO3 | Understand functioning of Bitcoins | | CO4 | Analyze security and privacy aspects of Bitcoin | # Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2 - Medium, 3 - High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |---------|---------|---------|---------|---------|---------
---------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | 3 | | | | | | | | | | | | | | | CO2 | | 2 | | | 2 | | | | | | 2 | | | | | CO2 CO3 | 3 | | | | | | | | | | | | | | | CO4 | | 2 | | | 2 | | | | | | 2 | | | | ## **COURSE CONTENT** ## UNIT I **Blockchain:** Introduction, Structure of a Block, Block Header, Block Identifiers - Block Header Hash and Block Height, The Genesis Block, Linking Blocks in the Blockchain, Merkle Trees, Merkle Trees and Simplified Payment Verification (SPV). **Mining and Consensus I :** Introduction, Bitcoin Economics and Currency Creation, De-centralized Consensus, Independent Verification of Transactions, Mining Nodes, Aggregating Transactions into Blocks, Transaction Age, Fees, and Priority ## UNIT II **Mining and Consensus II:** The Generation Transaction, Coinbase Reward and Fees, Structure of the Generation Transaction, Coinbase Data, Constructing the Block Header, Mining the Block, Proof-of-Work Algorithm, Difficulty Representation, Difficulty Target and Re-Targeting, Successfully Mining the Block, Validating a New Block , Assembling and Selecting Chains of Blocks, Blockchain Forks, Mining and the Hashing Race, The Extra Nonce Solution, Mining Pools, Consensus Attacks. **Bitcoin:** Introduction, History, Bitcoin Uses, Users and Their Stories, Getting Started, Quick Start, Getting your first bitcoins, Sending and receiving bitcoins, #### **UNIT III** **Bitcoin Functioning:** Transactions, Blocks, Mining, and the Blockchain, Bitcoin Overview, Buying a cup of coffee, Bitcoin Transactions, Common Transaction Forms, Constructing a Transaction, Getting the right inputs, Creating the outputs, Adding the transaction to the ledger, Bitcoin Mining, Mining transactions in blocks, Spending the transaction **Bitcoin Transactions :** Bitcoin Transactions, Common Transaction Forms, Constructing a Transaction, Getting the right inputs, Creating the outputs, Adding the transaction to the ledger, Bitcoin Mining, Mining transactions in blocks, Spending the transaction ## **UNIT IV** **Bitcoin Network**: Peer-to-Peer Network Architecture, Nodes Types and Roles, The Extended Bitcoin Network, Network Discovery, Full Nodes, Exchanging "Inventory", Simplified Payment Verification (SPV) Nodes, Bloom Filters, Bloom Filters and Inventory Updates, Transaction Pools, Alert Messages Bitcoin Security: Security principles, Developing Bitcoin Systems Securely, The Root of Trust, User Security Best Practices, Physical Bitcoin Storage, Hardware Wallets, Balancing Risk (loss vs. theft), Diversifying Risk, Multi-sig and Governance, Survivability Alternative Chains, Currencies, and Applications: A taxonomy of alternative currencies and chains, Meta-Coin Platforms, Colored Coins, Mastercoin, Counterparty, Alt-coins, Evaluating an alt-coin, Alt-Coins: CryptoNote, Bytecoin, Monero, Zerocash/Zerocoin, Darkcoin, Namecoin, Bitmessage, Ethereum ## **TEXT BOOKS** [1] Andreas M. Antonopoulos, "Mastering Bitcoin", O'Reilly, 2016 ## REFERENCE BOOKS - [1] Melanie Swan, "Blockchain -Blueprint For a New economy", 1st Edition, O'Reilly, 2018 - [2] Don TapScott, Alex Tapscott, "Block chain Revolution". 2nd Edition, Penguin publisher, 2018 #### E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] https://onlinecourses.nptel.ac.in/noc18 cs47/announcements?force=true Last accessed on 01-06-2019 - [2] Marco Iansiti, Karim R. Lakhani, "Truth About Blockchain", Harvard Bsiness Review, Harward University, Jan 2017 | 17CS2802B
CYBER FORENSICS | | | | | | | | | | | |------------------------------|-------------------|-----------------------------|-----------|--|--|--|--|--|--|--| | Course Category: | Open Elective | Credits: | 3 | | | | | | | | | Course Type: | Theory | Lecture -Tutorial-Practice: | 3 - 0 - 0 | | | | | | | | | Prerequisites: | Computer Networks | Continuous Evaluation: | 30 | | | | | | | | | - | _ | Semester end Evaluation: | 70 | | | | | | | | | | | Total Marks: | 100 | ## Upon successful completion of the course, the student will be able to: | CO1 | Understand the concepts of cyber forensics related Issues. | |-----|--| | CO2 | Analyse the process of various forensic systems. | | CO3 | Analyze Evidence capture mechanism and Recovery steps | | CO4 | Evaluate and Report electronic communications evidences. | # Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-------------|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 CO2 CO3 | | | | | 3 | | | | | | | | | | | CO2 | 2 | | | | | | | | 2 | | | | | | | CO3 | | | | | 3 | | | | | | | | | | | CO4 | 2 | | | | | | | | 2 | | | | | | ## **COURSE CONTENT** ## UNIT I ## Forensic overview: Introduction, Use of Computer Forensics in Law Enforcement, Computer Forensics Assistance to Human Resources/ Employment Proceedings, Forensics Services, Benefits of Professional Forensics Methodology, Steps Taken by Computer Forensics Specialists. Types of Forensics Systems: Internet Security Systems, Intrusion Detection Systems, Firewall Security Systems, Storage Area Network Security Systems, Network Disaster Recovery Systems, Public Key Infrastructure Systems, Wireless Network Security Systems, Satellite Encryption Security Systems, Instant Messaging (IM) Security Systems, Net Privacy System, Identity Management Security Systems, Identity Theft, Homeland Security Systems ## UNIT II **Data Recovery:** Defination, Data Backup and Recovery, The Role of Backup in Data Recovery, The Data-Recovery Solution, Hiding and Recovering Hidden Data **Evidence Collection and Data Seizure**, Need of collection, Collection Options, Obstacles, Types of Evidence, The Rules of Evidence, Volatile Evidence, General Procedure, Collection and Archiving, Methods of Collection, Artifacts, Collection Steps. ## **UNIT III** **Duplication and Preservation of Digital Evidence**, Preserving the Digital Crime Scene, Computer Evidence Processing Steps, Legal Aspects of Collecting and Preserving Computer Forensic Evidence, Special Needs of Evidential Authentication. Computer Image Verification and Authentication: Special Needs of Evidential Authentication, Practical Consideration, Practical Implementation, **Reconstructing Past Events**: Introduction, Useable File Formats, Unusable File Formats, Converting Files. ## **UNIT IV** Forensic Analysis: Computer Forensic Analysis, Discovery of Electronic Evidence, Electronic Document Discovery: A Powerful New Litigation Tool, Identification of Data, Timekeeping, Forensic Identification and Analysis of Technical Surveillance Devices. **Network Forensics Scenario:** A Technical Approach, Destruction of Email, Damaging Computer Evidence, Tools Needed for Intrusion Response to the Destruction of Data, System Testing **E-mail Forensic:** Exploring the Role of E-mail in Investigations, Exploring the Role of Client and Server in E-mail, Investigating E-mail Crimes and Violations, Using Specialized E-mail Forensics Tools, Understanding Acquisition Procedure for Cell. Report Writing ### TEXT BOOKS - [1] Marjie T.Britz, "Computer Forensics and Cyber Crime": An Introduction", Pearson Education, 3rd Edition, 2015. - [2] John R. Vacca, "Computer Forensics, Computer Crime Investigation", Firewall Media, 2005 Andreas M. Antonopoulos, "Mastering Bitcoin", O'Reilly, 2016 ## REFERENCE BOOKS [1] Nelson, Phillips Enfinger, Steuart "Computer Forensics and Investigations", CENGAGE, 2015 #### E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] https://www.cybrary.it/glossary/d-the-glossary/digital-forensics/ Last accessed on 01-06-2019 - [2] https://www.udemy.com/topic/digital-forensics/ Last accessed on 01-06-2019 | 170 | CS2802C | |--------|----------| | DEEP 1 | LEARNING | | Course Category: | Open Elective | Credits: | 3 | |------------------|------------------|-------------------------------|-----------| | Course Type: | Theory | Lecture -Tutorial-Practice: | 3 - 0 - 0 | | Prerequisites: | Machine learning | Continuous Evaluation: | 30 | | | | Semester end Evaluation: | 70 | | | | Total Marks: | 100 | | | | | | ## Upon successful completion of the course, the student will be able to: | CO1 | Understand the fundamentals of Applied Math for deep learning | |-----|---| | CO2 | Understand deep networks and Regularization for Deep Learning | | CO3 | Analyse Sequence Modeling and convolutional neural networks | | CO4 | Apply Monte Carlo Methods and recurrent neural networks | # Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO 2 | |-----|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|-------| | CO1 | 2 | | | | | | | | | | | | 2 | 2 | | CO2 | | 2 | | | | | | | 1 | | | | 2 | 2 | | CO3 | | 2 | | | | | | | 2 | | | | 2 | 2 | | CO4 | | 2 | | | | | | | 2 | | | | 2 | 2 | #### **COURSE CONTENT** ## **UNIT I** **Introduction:** Historical Trends in Deep Learning Applied Math and Machine Learning Basics: Linear Algebra, Scalars, Vectors, Matrices and Tensors, Linear Dependence and Span, Norms, Special Kinds of Matrices and Vectors, Eigen decomposition, Singular Value Decomposition, The Moore-Penrose Pseudoinverse, The Trace Operator, The Determinant **Probability and Information Theory:** Random Variables, Probability Distributions, Marginal Probability, Conditional Probability, The Chain Rule of Conditional Probabilities,
Independence and Conditional Independence, Expectation, Variance and Covariance, Bayes' Rule, Information Theory. ## UNIT II **Deep Networks**: Deep Feedforward Networks, Example: Learning XOR, Gradient-Based Learning, Hidden Units, Architecture Design, Back-Propagation and Other Di□erentiation ## Algorithms **Regularization for Deep Learning:** Parameter Norm Penalties, Norm Penalties as Constrained Optimization, Regularization and Under-Constrained Problem, Dataset Augmentation, Noise Robustness, Semi-Supervised Learning, Multitask Learning, Early Stopping, Sparse Representations, Bagging and Other Ensemble Methods, Tangent Distance, Tangent Prop and Manifold, Tangent Classifier ## **UNIT III** **Optimization for Training Deep Models:** How Learning Di□ers from Pure Optimization, Challenges in Neural Network Optimization, Basic Algorithms, Algorithms with Adaptive Learning Rates **Convolutional Networks:** The Convolution Operation, Pooling, Convolution and Pooling as an Infinitely Strong Prior, Variants of the Basic Convolution Function, Data Types, E□cient Convolution Algorithms, Random or Unsupervised Features, The Neuroscientific Basis for Convolutional Networks, Convolutional Networks and the History of Deep Learning ## **UNIT IV** **Sequence Modeling:** Recurrent and Recursive Nets: Recurrent Neural Networks, Bidirectional RNNs, Encoder-Decoder Sequence-to-Sequence Architectures, Deep Recurrent Networks, Recursive Neural Networks, Echo State Networks, Leaky Units and Other Strategies for Multiple Time Scales Practical Methodology: Performance Metrics, Selecting Hyperparameters, Debugging Strategies Monte Carlo Methods: Sampling and Monte Carlo methods, Marko Chain Carlo Methods, Gibbs Sampling #### **TEXT BOOKS** [1] Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press, 2017 #### REFERENCE BOOKS - [1] Antonio Gulli, Sujit Pal, Deep Learning with Keras, Packt Publishing, 2017 - [2] Tom Hope, Yehezkel S. Resheff, Itay Lieder, Learning Tensor Flow: A Guide to Building Deep Learning Systems, OReilly 2017 ## E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] Ian GoodFellow, Introduction to Deep Learning, https://www.youtube.com/embed//vi7lACKOUao Last accessed on 01-06-2020 - [2] Ian GoodFellow, Deep Feed forward Neural Netowrks, https://drive.google.com/file/d/0B64011x02sIkRExCY0FDVXFCOHM/view Last accessed on 01-06-2020 - [3] Ian GoodFellow, Recurrent and Recursive Nets, https://www.youtube.com/watch?v=ZVN14xYm7JA&feature=youtu.be Last accessed on 01-06-2020 | 17CS2802D
USER INTERFACE AND EXPERIENCE DESIGN | | | | | | | |---|---------------|-----------------------------|-----------|--|--|--| | Course Category: | Open Elective | Credits: | 3 | | | | | Course Type: | Theory | Lecture -Tutorial-Practice: | 3 - 0 - 0 | | | | | Prerequisites: | - | Continuous Evaluation: | 30 | | | | | _ | | Semester end Evaluation: | 70 | | | | | | | Total Marks: | 100 | | | | | | | | | | | | ## Upon successful completion of the course, the student will be able to: | CO1 | Understand the key terms of interactive graphical systems. | |-----|--| | CO2 | Use appropriate device and screen based controls for presenting information. | | CO3 | Apply design principles for developing sophisticated User interfaces. | | CO4 | Identify faults in the interfaces and suggest alternative designs. | # Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2 - Medium, 3 - High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |---------|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | 2 | | | | | | | | | | | | | | | CO2 CO3 | | 3 | | | | | | | 2 | | 2 | | 2 | | | CO3 | | 3 | | | | | | | 2 | | 2 | | | | | CO4 | | 3 | | | | | | | 2 | | 2 | | 2 | | ## **COURSE CONTENT** ## UNIT I **Introduction:** Importance of user Interface – definition, importance of good design, benefits of good design, a brief history of screen design. **The Graphical User Interface**: Popularity of graphics, the concept of direct manipulation, graphical system, characteristics. **Web User Interface:** Popularity, principles and characteristics. ## UNIT II **Design process**: Understanding how people interact with computers, Important Human Characteristics in Design, Human Considerations in Design, Human interaction speeds. **Screen designing:** Interface design goals, screen meaning and purpose, organizing screen elements, ordering of screen data and content, screen navigation and flow, visually pleasing composition, amount of information, focus and emphasis, presenting information simply and meaningfully, technological considerations in interface design. #### UNIT III **Windows:** Characteristics, components, operations, Selection of devices based and screen based controls. **Components:** Icons and images, Multimedia. ## **UNIT IV** **Organize and Layout windows and pages:** General Guidelines, Organization guidelines, control navigation, window guidelines, web page guidelines. **Testing User interfaces:** The purpose of Usability testing, Importance of Usability testing, Scope of Testing, prototypes and kind of Tests, Developing and Conducting the Test. ## **TEXT BOOKS** [1] Wilbert O Galitz, "The Essential Guide to User Interface Design- An Introduction to GUI Design Principles and Techniques", 3rd Edition, Wiley DreamaTech, 2017. #### REFERENCE BOOKS - [1] Steven Jacobs, Ben Shneiderman, Catherine Plaisant, Maxine Cohen, "Designing the User Interface: Strategies for Effective Human Computer Interaction" 6th Edition, Pearson Education Asia, 2017. - [2] Alan Dix, Janet Fincay, Gre Goryd, Abowd and Russell Bealg, "Human Computer Interaction", 2nd Edition, Pearson Education. - [3] Scott Mackenzie, "Human-Computer Interaction: An Empirical Research Perspective" 2016, Elsevier Publications. - [4] Rogers, "Interaction Design: Beyond Human Computer Interaction", Third Edition, Wiley Publications, 2013. ## E-RESOURCES AND OTHER DIGITAL MATERIAL - [1] Dr. Samit Battacharya IIT Guwahati, Department of Computer Science & Engineering, NPTEL Videos, Available:https://nptel.ac.in/courses/106103115/ Last accessed on August 2018. - [2] Prof. Pradeep Yammiyavar IIT Guwahati, Department of Design, NPTEL Videos, Available:https://nptel.ac.in/courses/106103115/ Last accessed on August 2018. | 17CS2802E PATTERN RECOGNITION | | | | | | |-------------------------------|-----------------|-------------------------------|-----------|--|--| | Course Category: | Open Elective | Credits: | 3 | | | | Course Type: | Theory | Lecture -Tutorial-Practice: | 3 - 0 - 0 | | | | Prerequisites: | Probability and | Continuous Evaluation: | 30 | | | | _ | Statistics | Semester end Evaluation: | 70 | | | | | | Total Marks: | 100 | | | | | | | | | | | Upon successful | completion o | of the course, | the student wil | I be able to: | |-----------------|--------------|----------------|-----------------|---------------| | | | | | | | CO1 | Explain the basic concepts and importance of pattern recognition. | |-----|---| | CO2 | Compare the supervised, unsupervised and semi-supervised learning | | CO3 | Discuss the Bayesian decision theory for continuous and discrete features | | CO4 | Explain the Maximum likelihood and Bayesian parameter estimation | | CO5 | Identify the major issues in clustering | # Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2 - Medium, 3 - High) | | PO
1 | PO
2 | PO
3 | PO
4 | PO
5 | PO
6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO
2 | |-----|---------|---------|---------|---------|---------|---------|-------------|---------|---------|----------|----------|----------|----------|----------| | CO1 | 1 | | | | | | | | | | | | | | | CO2 | | | | | | | | | | | 1 | | | | | CO3 | 2 | 2 | | | | | | | | | | | | | | CO4 | 3 | 2 | | | | | | | 1 | | | | | | | CO5 | 2 | | 1 | | | | | | 1 | | 1 | | | | ## **COURSE CONTENT** ## UNIT I **Introduction:** Machineperception, pattern recognition example, pattern recognition systems, the design cycle, learning and adaptation, Bayesian Decision Theory: Introduction, continuous features –two categories classifications, minimum error-rate classification-zero—one lossfunction, classifiers, discriminant functions, and decision surfaces. ## Unit II **Normal density:** Univariate and multivariate density, discriminant functions for the normal density different cases, Bayes decision theory –discrete features, compound Bayesiandecision theory and context. #### **Unit III** Maximum likelihood and Bayesian parameter estimation: Introduction, maximum likelihood estimation, Bayesian estimation, Bayesian parameter estimation—Gaussian case, Component analysis and Discriminants: Principal Component Analysis, Fisher Linear Discriminant, Multiple Discriminant Analysis ## **Unit IV** **Un-supervised learning and clustering:** Introduction, mixture densities and identifiability, maximum likelihood estimates, application to normal mixtures, K-means clustering. Date description and clustering –similarity measures, criteria function for clustering. ## **TEXT BOOKS** [1] Richard O. Duda, Peter E. Hart and David G. Stroke, "Pattern Classifications", 2nd Edition, Wiley Student Edition, 2011. ## **REFERENCE BOOKS** [1] Earl Gose, Richard John Baugh and Steve Jost, "Pattern Recognition and Image Analysis", PHI, 2004. ## E-RESOURCES AND OTHER DIGITAL MATERIAL [1] Prof. P.K. Biswas. (June 2014). Pattern Recognition and Applications [NPTEL, Video lecture]. Available: http://www.nptel.ac.in/courses/117105101/ Last accessed on 01-06-2020 | 17CS5851
MAJOR PROJECT | | | | | | | | | |---------------------------|----------------|-----------------------------|-----------|--|--|--|--|--| | Course Category: | Programme Core | Credits: | 9 | | | | | | | Course Type: | Project | Lecture -Tutorial-Practice: | 0 - 5 - 8 | | | | | | | Prerequisites: | - | Continuous Evaluation: | 30 | | | | | | | _ | | Semester end Evaluation: | 70 | | | | | | | | | Total Marks: | 100 | | | | | | - 1. Formulate a real world problem and develop its requirements - 2. Develop and design solution for a set of requirements - 3. Test and validate the conformance of the developed prototype against the original requirements of the problem - 4. Work as a responsible member and possibly a leader of a team in developing software solutions - 5. Express technical and behavioral ideas and thought in oral settings - 6. Participate in and possibly moderate, discussions that lead to making decisions - 7. Express technical ideas, strategies and methodologies in written form - 8. Prepare and conduct oral presentations - 9. Self learn new tools, algorithms, and/or techniques that contribute to the software solution of the project - 10. Generate alternative solutions, compare them and select the optimum one | | PO 1 | PO 2 | PO 3 | PO
4 | PO
5 | PO 6 | PO 7 | PO
8 | PO
9 | PO
10 | PO
11 | PO
12 | PSO
1 | PSO 2 | |------|------|------|------|---------|---------|------|------|---------|---------|----------|----------|----------|----------|-------| | CO1 | 1 | 2 | 2 | - | 3 | | 1 | 0 | | 10 | 11 | 12 | 2 | 2 | | CO2 | 1 | 2 | 2 | | 1 | 2 | 1 | 2 | 2 | | | | 2 | 2 | | CO3 | 1 | 2 | 2 | | 1 | 2 | 1 | 2 | 2 | | | | 2 | 2 | | CO4 | | | | | | 1 | | | 3 | 2 | 2 | 2 | 2 | 2 | | CO5 | | | | | | | | 2 | 3 | | 2 | | 2 | 2 | | CO6 | | | | | | | | 2 | 3 | | 2 | | 2 | 2 | | CO7 | | | | | | | | 2 | 3 | | 2 | | 2 | 2 | | CO8 | | | | | | | | 2 | 3 | | 2 | | 2 | 2 | | CO9 | | | | | 2 | 2 | 2 | 2 | | 2 | 2 | 3 | 2 | 2 | | CO10 | | | | 2 | 2 | | | | | | | 2 | 2 | 2 |