M.TECH STRUCTURAL ENGINEERING

SCHEME OF INSTRUCTION AND SYLLABUS

M.Tech-19 (w.e.f 2019– 2020)

Department of Civil Engineering

VELAGAPUDI RAMAKRISHNA SIDDHARTHA ENGINEERING COLLEGE

(An Autonomous Institution affiliated to Jawaharlal Nehru Technological University Kakinada, Kakinada
NBA Accredited & ISO 9001:2015 Certified)
(Sponsored by Siddhartha Academy of General & Technical Education)
Kanuru, Vijayawada-520007, A.P. India
www.vrsiddhartha.ac.in

INSTITUTE VISION

To nurture excellence in various fields of engineering by imparting timeless core values to the learners and to mould the institution into a centre of academic excellence and advanced research.

INSTITUTE MISSION

To impart high quality technical education in order to mould the learners into globally competitive technocrats who are professionally deft, intellectually adept and socially responsible. The institution strives to make the learners inculcate and imbibe pragmatic perception and pro-active nature so as to enable them to acquire a vision for exploration and an insight for advanced enquiry.

DEPARTMENT VISION

To impart teaching, research and develop consultancy that serves the society and to strive continuously for excellence in education.

DEPARTMENT MISSION

To provide quality education for successful career and higher studies in Civil Engineering that emphasizes academic and technical excellence in profession and research, effective communication, team work and leadership to meet the challenges of the society.

PROGRAM OUTCOMES

PO1: An ability to independently carry out research/investigation and development work to solve practical problems.

PO2: Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program

PO3: Use different software tools to analyse and design of various structural components

PO4: An ability to write and present a substantial technical report/document

PO5: Function as a member in a team effectively with sense of ethics, integrity and social responsibility.

VELAGAPUDI RAMAKRISHNA SIDDHARTHA ENGINEERING COLLEGE SCHEME OF INSTRUCTION FOR TWO YEAR PG PROGRAMME [M.TECH 19]

M.TECH IN (Structural Engineering) SCHEME OF INSTRUCTIONS

SEMESTER I Contact Hours: 23

S.No	Course Type	Course Code	Title of the Course	L	T	P	Cre dits
1.	Programme Core - I	19CESE1001	Advanced Structural Analysis	3	0	0	3
2.	Programme Core - II	19CESE1002	Theory of Plates & Shells	3	0	0	3
3.	Programme Core - III	19CESE1003	Advanced Steel Design	3	0	0	3
4.	Programme Elective - I	19CESE1014	 Structural Health Monitoring Sub-Structure Design Analytical and Numerical Methods for Structural Engineering Industry Oriented Subject 	3	0	0	3
5.	Programme Elective - II	19CESE1015	 Prefabricated Structures Fracture Mechanics of Concrete Structures Structural Optimization Design of Prestressed Concrete Structures 	3	0	0	3
6.	Mandatory Learning Course	19MTMC1026	Research Methodology and IPR	2	0	0	0
7.	Laboratory - I	19CESE1051	Advanced Concrete Lab	0	0	3	1.5
8.	Laboratory - II	19CESE1052	Numerical Analysis Lab	0	0	3	1.5
			Total	17	0	6	18

L – Lecture, T – Tutorial, P – Practical, C – Credits

SEMESTER II Contact Hours: 25

S.No	Course Type	Course Code	Title of the Course	L	T	P	Credits
1.	Programme	19CESE2001	FEM in Structural	3	0	0	3
	Core – IV		Engineering				
2.	Programme Core – V	19CESE2002	Stability of Structures	3	0	0	3
3.	Programme Core – VI	19CESE2003	Structural Dynamics	3	0	0	3
4.	Programme Elective – III	19CESE2014	 Design of High-Rise Structures Soil Structure Interaction Advanced Bridge Engineering Industry Oriented Subject 	3	0	0	3
5.	Programme Elective – IV	19CESE2015	 Repair and Rehabilitation of Structures Design of Steel-Concrete Composite Structures Design of Formwork Earthquake Resistant Design of Structures 	3	0	0	3
6.	Audit Course	19CESE2036	Technical Report Writing	2	0	0	-
7.	Term Paper	19CESE2063	Term Paper seminar – Literature Review for the proposed problem	2	0	0	1
8.	Laboratory - I	19CESE2051	Structural Dynamics lab	0	0	3	1.5
9.	Laboratory - II	19CESE2052	Structural Design Lab/Industry Oriented lab	0	0	3	1.5
			Total	19	0	6	19

L – Lecture, T – Tutorial, P – Practical, C – Credits

#Students should conduct the Literature Survey for the proposed research topic and they need to develop a prototype or simulation based (must be outcome oriented) – the same to be presented in any conference (national or international)

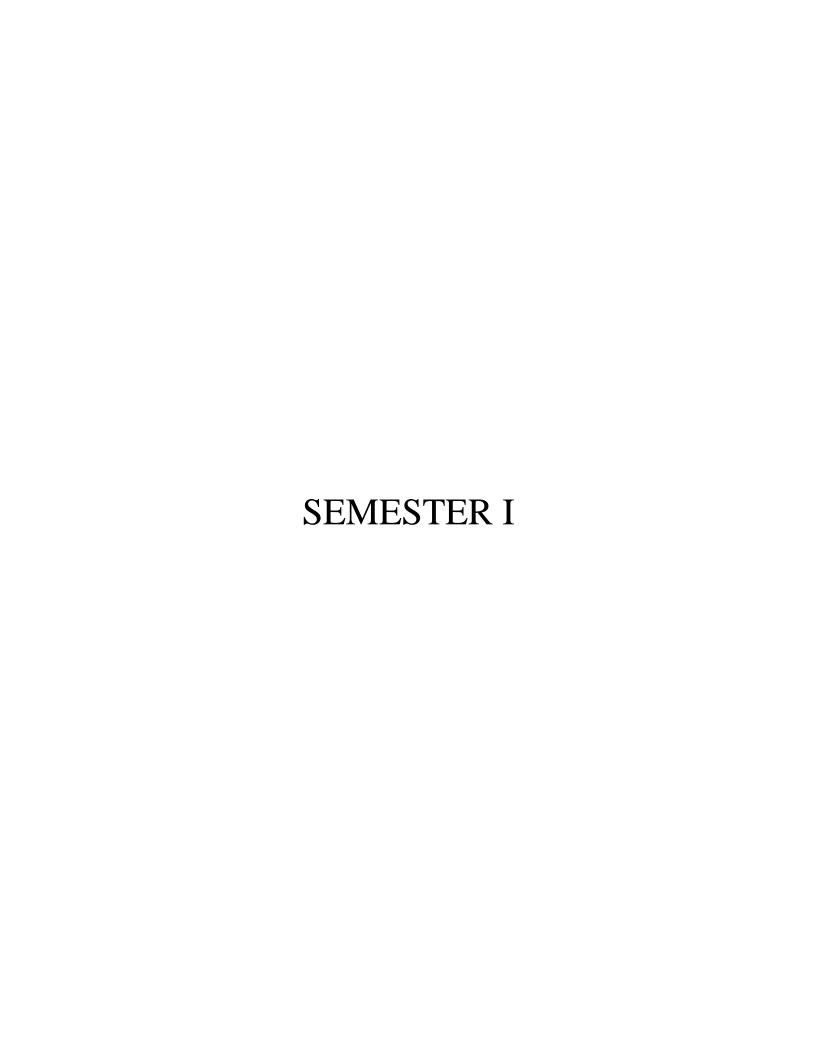
^{*}Students to be encouraged to go industrial training for at least Six weeks during semester break

S.No	Course	Course Code	Title of the Course	L	T	P	Credits
	Туре						
1.	Programme Elective - V	19CESE3011	Choice for students to complete course in any MOOCS Platform	3	0	0	3
2.	Project (Part-A)	19CESE3061	Dissertation*/ Project/ Research Organization	0	0	18	10
3.	Internship	19CESE3052	Internship/Summer Training in Research Organizations/ Institutions of Higher Learning (After II Sem)	0	0	0	2
			Total	3	0	18	15

L – Lecture, T – Tutorial, P – Practical, C – Credits

Program Elective V may be completed in semester I or II by satisfying the pre-requisites those who are going for industrial project

Semester IV Contact Hours:32


S.No	Course Type	Course Code	Title of the Course	L	Т	P	Credits
1.	Project (Part-B)	19CESE4061	Dissertation/ Industrial Project	0	0	32	16
			Total	0	0	32	16

L – Lecture, T – Tutorial, P – Practical, C – Credits

Total Credits:68

Semester	Credits
1	18
2	19
3	15
4	16

^{*}To be continued in the IV Semester

19CESE1	O	O	1
	·v	v	ı

ADVANCED STRUCTURAL ANALYSIS

Course Category:	Programme Core-1	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3 hrs/week
Prerequisites:		Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

Course	On successful completion of the course, the student will be able to:							
Outcomes	CO1	1100	Apply energy principles for the analysis of determinate and indeterminate structures.					
	CO2 Analyze structures comprising axial elements, Beams Plane and space frames using matrix methods.							
	CO3	•	Analyse continuous beams and grids by flexibility and stiffness matrix methods.					
	CO4	Apply matrix effects includ			bility and seco	nd order		
Contribution of		PO1	PO2	PO3	PO4	PO5		
Course Outcomes	CO1	2	2					
towards achievement of	CO2	3	3					
Program Outcomes	CO3	3	3					
(1 – Low, 2 –Medium, 3 – High)	CO4	3	3					
Course Content		UNIT-I						
		REVIEW OF BASIC CONCEPTS IN STRUCTURAL ANALYSIS: Analysis of statically determinate structures(Trusses, Beams, Frames)Applications of principle of virtual work and displacement based and force -based energy principles, deriving stiffness and flexibility coefficients						

REVIEW OF ANALYSIS OF INDETERMINATE STRUCTURES

Force methods - Statically indeterminate Structures,

Displacement Methods - Kinematically indeterminate Structures; Matrix concepts and matrix analysis of structures.

UNIT-II

MATRIX ANALYSIS OF STRUCTURES WITH AXIAL ELEMENTS:

Introduction; One dimensional axial Structures; Plane trusses; Space trusses.

	UNIT-III MATRIX ANALYSIS OF BEAMS AND GRIDS: Conventional Stiffness method for beams, Reduced stiffness method for beams, Flexibility method for fixed and continuous beams, Stiffness method for grids. UNIT-IV MATRIX ANALYSIS OF PLANE AND SPACE FRAMES: Conventional Stiffness method for plane frames, Reduced Stiffness method for plane frames, Flexibility method for plane frames, Stiffness method for Space Frames. ANALYSIS OF ELASTIC INSTABILITY AND SECOND ORDER EFFECTS: Effects of axial force on flexural stiffness, Solution by slope deflection method, Solution by matrix method.
Text Books	 [T1] Devdas Menon, "Advanced Structural Analysis", Narosa Publishing House, 2009 [T2] Devdas Menon," Structural Analysis", Narosa Publishing House, 2008
Reference Books	 [R1] Asslam Kassimali, "Matrix Analysis of Structures", Brooks/ Cole Publishing Co., USA ,1999 [R2] Amin Ghali, Adam M Neville and Tom G Brown," Structural Analysis: A Unified Classical and matrix Approach", Sixth Edition, 2007, Chapman &Hall.
E-resources and other digital material	https://nptel.ac.in/courses/105106050/

400000	4000
19CESE	141417
91 0.50.	

THEORY OF PLATES AND SHELLS

Course Category:	Programme Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3 hrs/week
Prerequisites:		Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

Course	On succe	essful completion	sful completion of the course, the student will be able to:					
Outcomes	CO1	Identify the co	Identify the concept of thin plates using various approaches					
	CO2	_	Analyze the thin plates subjected to different loading and boundary conditions.					
	CO3	Analyse the st	ress-strain r	elationship of	shells.			
	CO4	_	Investigate the behaviour of shells subjected to different loading criterion and boundary conditions					
Contribution of		PO1	PO2	PO3	PO4	PO5		
Course	CO1	2	3					
Outcomes			3					
towards	CO2	3						
achievement of								
Program	CO3	2	3					
Outcomes								
(1 – Low,		2	3					
2 –Medium,	CO4							
3 – High)								

Course Content

UNIT- I

Introduction to thin plates, small deflection theory, plate equation. Isotropic and orthotropic plates, bending and twisting of plates, Navier's solution, Levy's solution and energy method.

UNIT-II

Rectangular, circular plates with variable rigidity in Cartesian and polar co-ordinates, Numerical solutions. Plastic analysis of plates, yeild-line theory, Introducing to stability of plates.

UNIT-III

Shell behavior, shell surfaces and characteristics, classification of shells, equilibrium equations in curvilinear co-ordinates. Stressstrain & force displacement relations. Membrane analysis of shells of revolution.

	UNIT-IV					
	Cylindrical shells under different loads. Shallow shells, membrane solution of elliptic paraboloids and hyperboloids. Solution of some typical problems. Introducing to stability of shells					
Text Books	[T1]Theory of plates and shells by S.P.Timoshenko and					
	S.Woinowsky-Krieger, McGraw-Hill, 1959.					
	[T2] N. K. Bairagi, "Shell Analysis", Khanna Publishers.					
Reference Books	[R1]R. Szilard, "Theory & Analysis of Plate - Classical &					
	Numerical Methods", John Wiley & Sons Publishing					
	Company.					
	[R2]Ramaswamy, G. S., "Design & Construction of Concrete					
	Shell Roofs", McGraw-Hill Publishing Company.					
E-resources and other	http://nptel.ac.in/video.php?subjectId=112101095					
digital material						

1000001	$\Delta \Delta \Delta$
19CESE1	11114
17010101	ww

ADVANCED STEEL DESIGN

Course Category:	Programme Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3 hrs/week
Prerequisites:		Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

Course	On succe	On successful completion of the course, the student will be able to:				
Outcomes	CO1	Analyse wind	Analyse wind loads on buildings and pitched roof trusses			
	CO2	Analyze and o	lesign tower	structures.		
	CO3	Analyze and o	lesign variou	is connection	S	
	CO4	Analyze and o	lesign truss	bridges		
Contribution of		PO1	PO2	PO3	PO4	PO5
Course	CO1	2	3		2	2
Outcomes						
towards	CO2	2	3		2	2
achievement of	002					
Program	CO3	2	3		2	2
Outcomes						
(1 – Low,		2	3		2	2
2 –Medium,	CO4					
3 – High)						

Course Content

UNIT-I

WIND LOADS ON BUILDINGS

Introduction to wind load; Design wind speed and pressure; Wind pressure on roofs; Wind effect on cladding and louvers; Design of purlins for roofs and rails for cladding; Open sheds – Pitched roofs.

UNIT-II

TOWERS

Basic structural configurations - free standing and guyed towers - wind loads - foundation design - design criteria for different configurations and transmission line towers.

UNIT-III

CONNECTIONS

Bearing type joints - unstiffened and stiffened seat connections (bolted & welded); bracket connections type I & II (bolted and welded)-semi-rigid connections.

	TINITED IN					
	UNIT-IV					
	DESIGN OF STEEL TRUSS GIRDER BRIDGES:					
	Types of truss bridges, component parts of a truss bridge,					
	economic proportions of trusses, self weight of truss girders,					
	design of bridge compression members, tension members,					
	stringer breams, cross beams; wind load on truss girder bridges;					
	wind effect on top lateral bracing; bottom lateral bracing; portal					
	bracing; sway bracing					
Text Books	[T1]Design of steel structures by N Subramanian, oxford					
	university press, 2018					
	[T2]Limit state design of steel structures by S K Duggal, McGraw					
	Hill Education (India) Pvt Ltd., 2017					
Reference Books	[R1]Design of Steel Structures by A S Arya and J L Ajmani, Nam					
	Chand Brothers Publication, 2011					
	[R2]Steel structures: Design and behaviour by C G Salmon and J					
	E Johnson, Prentice-Hall, 1997.					
E-resources and other	https://nptel.ac.in/courses/105106113/					
digital material	https://nptel.ac.in/courses/105106112/					

19CESE1014/A	STRUCTURAL HEALTH MONITORING

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3 hrs/week
Prerequisites:		Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

Course	On succe	accessful completion of the course, the student will be able to:				
Outcomes	CO1	Acquire funda	Acquire fundamentals of structural health monitoring			
	CO2	Assess the hea	alth of struct	ure by using	Vibration tech	niques
	CO3	Design consid	lerations for	structural hea	alth monitoring	g of bridges.
	CO4	Apply repairs	and rehabili	tation measu	es of the struc	eture
Contribution of		PO1	PO2	PO3	PO4	PO5
Course	CO1	1	2			
Outcomes	COI					
towards	CO2	2	2			
achievement of						
Program	CO3	2	3		2	2
Outcomes		_				
(1 – Low,		2	3		1	1
2 – Medium,	CO4					
3 – High)						

Course Content

UNIT-I

INTRODUCTION TO STRUCTURAL HEALTH MONITORING:

Definition of Structural Health Monitoring, Motivation for Structural Health Monitoring, Structural Health Monitoring as a way of making materials and structures smart, SHM and biomimetics, Process and pre-usage monitoring as a part of SHM,SHM as a part of system management, Passive and active SHM,NDE, SHM and NDECS, Variety and multidisciplinary the most remarkable characters of SHM

UNIT-II

VIBRATION-BASED TECHNIQUES FOR STRUCTURAL HEALTH MONITORING:

Introduction, Basic vibration concepts for SHM, Local and global methods, Damage diagnosis as an inverse problem, Model-based damage assessment, Mathematical description of structural systems with damage Structural Health Monitoring, General dynamic behavior

	UNIT-III						
	APPLICATIONS OF STRUCTURAL HEALTH MONITORING IN CIVIL INFRASTRUCTURE SYSTEMS: Structural health monitoring of bridges: general issues and applications, Introduction: bridges, Integrated structural health monitoring systems, Designing and implementing a structural health monitoring system, Bridge monitoring, Application examples.						
	UNIT-IV						
	INTRODUCTION TO REPAIRS AND REHABILITATION OF STRUCTURES:						
	Case Studies (Site Visits), piezo-electric materials and other smart materials, electro-mechanical impedance (EMI) technique, adaptations of EMI technique.						
Text Books	[T1]Structural Health Monitoring, Daniel Balageas, Claus Peter Fritzen, Alfredo Güemes, John Wiley and Sons, 2006.						
	[T2]Health Monitoring of Structural Materials and Components Methods with Applications, Douglas E Adams, John Wiley and Sons, 2007.						
Reference Books	[R1]Structural Health Monitoring and Intelligent Infrastructure, Vol1, J. P. Ou, H. Li and Z. D. Duan, Taylor and Francis Group, London, UK, 2006.						
	[R2]Structural Health Monitoring with Wafer Active Sensors, Victor Giurglutiu, Academic Press Inc, 2007.						
E-resources and other digital material	https://nptel.ac.in/courses/112104160/3						

19CESE1014/I

SUB-STRUCTURE DESIGN

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3 hrs/week
Prerequisites:		Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

Course	On succe	essful completion of the course, the student will be able to:				
Outcomes	CO1 Plan soil investigation and calculate the stresses on soil due to applied loads					
	CO2	Calculate bearing capacity of soil to design shallow foundations & calculate the settlements in soils				
	CO3	Design pile fo	undations fo	or structures		
	CO4	Design well for	oundations			
Contribution of		PO1	PO2	PO3	PO4	PO5
Course Outcomes	CO1	2	3			
towards achievement of	CO2	2	3			
Program Outcomes	CO3	2	3	1	2	2
(1 – Low, 2 –Medium, 3 – High)	CO4	2	3	1	2	2

Course Content

UNIT - I

SUB SOIL INVESTIGATION AND SAMPLING

Introduction; Planning of sub-surface exploration Program; Stages in sub-surface exploration; Methods of exploration; Soil sampling and samplers; Water table location; Depth and number of borings; Bore hole logging; In-situ tests – Standard penetration test, Static cone penetration test, Dynamic cone penetration test and Vane shear tests.

STRESSES DUE TO APPLIED LOADS

Stress-strain parameters; Vertical and horizontal stresses due to concentrated loads; Boussinesq and Westergarrd solutions; Isobars; Influence diagram; Newmark's influence charts; Contact pressure distribution

UNIT - II

SHALLOW FOUNDATIONS

Different bearing capacity equations; Types of shear failures; Effect of inclined load, eccentric load and water table on bearing capacity; Bearing capacity from in-situ tests; Methods of improving bearing capacity; Plate load test

	SETTLEMENT ANALYSIS					
	Settlement of foundations; Immediate and consolidation					
	settlements; Allowable settlement; Proportioning of a foundation					
	for a given settlement.					
	UNIT - III					
	PILE FOUNDATIONS					
	Necessity of pile foundation; Classification of piles; Construction					
	of piles; Load carrying capacity of single pile from static,					
	dynamic and in-situ test methods; Pile load tests; Pile group and					
	its efficiency; Settlement of pile foundation; Negative skin					
	friction; Under-reamed pile foundation in swelling soils.					
	UNIT - IV					
	WELL FOUNDATIONS					
	Forces acting on well foundation; Types, different shapes of					
	wells; Analysis of well foundation; Individual components of					
	well; Sinking of wells; Measures for rectification of tilts and					
	shifts.					
Text Books	[T1]Basic and Applied Soil Mechanics, GopalRanjan and					
	A.S.R.Rao, New Age International (P) Limited Publishers,					
	2 nd Edition, 2006					
	[T2]Soil Mechanics and Foundation Engineering K.R.Arora; Standard Publishers and Distributors, 2009					
Deference Dealer	,					
Reference Books	[R1]Advanced Foundation Engineering, V.N.S.Murthy, CBS Publishers and Distributors, New Delhi, 2007					
	[R2]Foundation Analysis and Design, Joseph E.					
	Bowles, McGraw – Hill International Editions, 4 th Edition,					
	1988					
E-resources and other	http://nptel.ac.in/courses/105101083					
digital material	r r					

19CESE1014/C	ANALYTICAL AND NUMERICAL METHODS FOR
	STRUCTURAL ENGINEERING

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3 hrs/week
Prerequisites:		Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

Course	On succe	Solve one dimensional wave equation and one dimensional heat conduction problems					
Outcomes	CO1						
	CO2	Explain functional dependency and solve Laplace and Euler's equations.					
	CO3	Apply separate equations of s		rative metho	d to solve integ	gral	
	CO4	Estimate functional relationship between variables and parameters.					
Contribution of		PO1	PO2	PO3	PO4	PO5	
Course Outcomes	CO1	3	1				
towards achievement of	CO2	3	2	2			
Program Outcomes	СОЗ	3 2 2					
(1 – Low, 2 –Medium, 3 – High)	CO4	3	1				

Course Content

UNIT-I

TRANSFORM METHODS

Laplace transform methods for one-dimensional wave equation - Displacements in a long string - Longitudinal vibration of an elastic bar - Fourier transforms methods for one-dimensional heat conduction problems in infinite and semi-infinite rod.

UNIT-II

ELLIPTIC EQUATIONS

Laplace equation - Properties of harmonic functions - Fourier transform methods for Laplace equation

CALCULUS OF VARIATIONS

Variation and its properties - Euler's equation - Functionals dependent on first and higher order derivatives - Functionals dependent on functions of several independent variables - Some applications - Direct methods - Ritz and Kantorovich methods

	UNIT-III
	INTEGRAL EQUATIONS Fredholm and Volterra integral equations - Relation between differential and integral equations - Green's function -Fredholm equation with separable kernel - Iterative method for solving equations of second kind. UNIT-IV
	RANDOM VARIABLES AND ESTIMATION THEORY Probability - Probability distributions - moments, M.G.F-Two dimensional random variables correlation, regression multiple and partial correlation and regression - Curve fitting - Principle of least squares - Fitting of straight line and parabola. Estimation theory basic concepts (Review) - Estimation of parameters - Maximum likelihood estimates - method of moments
Text Books	 [T1] Sankara Rao. K, "Introduction to Partial Differential Equations", PHI, New Delhi, 1995. [T2] Sneddon. I.N, "Elements of Partial Differential Equations", McGraw Hill, 1986
Reference Books	 [R1]Elsgolts. L, "Differential Equations and Calculus of Variations", Mir Publishers, Moscow, 1966. [R2] Gupta. S.C,&Kapoor. V.K, "Fundamentals of Mathematical Statistics", Sultan Chand & Sons, Reprint 1999. [R3] Venkataraman. M.K, "Higher Engineering Maths for Engg. And Sciences", National Publishing Company, Chennai
E-resources and other digital material	https://nptel.ac.in/courses/105105043/

19CESE1	014	/D
	\mathbf{v}	u

PRE ENGINEERED BUILDINGS

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3 hrs/week
Prerequisites:		Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

Course	On succe	successful completion of the course, the student will be able to:					
Outcomes	CO1	Identify different materials used for pre-engineered buildings					
	CO2	Classify pre-e	ngineered bu	uilding compo	onents		
	CO3	Analyse pre-engineered building elements for various design loads					
	CO4	Design pre-en	gineered bui	ilding compor	nents		
Contribution of		PO1	PO2	PO3	PO4	PO5	
Course	CO1	2	2				
Outcomes		2	2				
towards	CO2	2	2				
achievement of		2	2			2	
Program	CO3	2	2			2	
Outcomes		3	3		2	2.	
(1 - Low,	go 4	3	3		2	2	
2 –Medium,	CO4						
3 – High)							

Course Content

UNIT-I

INTRODUCTION TO PRE-ENGINEERED BUILDINGS

Introduction – History - Advantages of PEB - Applications of PEB – Materials used for manufacturing of PEB. Difference between Conventional Steel Buildings and Pre-Engineered buildings.

UNIT-II:

PRE-ENGINEERED BUILDING COMPONENTS

Primary System: Main frames, Gable End Frame - Secondary frame system: Sizes and Properties of Purlins & Girts - Bracing System: Rod, angle, Portal, Pipe bracing - Sheeting and Cladding: Roof Sheeting and Wall sheeting - Accessories: Turbo Ventilators, Ridge vents, Sky Lights, Louvers, Insulation, Stair cases.

UNIT-III

DESIGN LOADS ON PRE-ENGINEERED BUILDINGS.

Design of PEB frame under the influence of Dead, Live, Collateral, Wind, Seismic and Other applicable Loads. Serviceability Limits as per code.

	UNIT-IV
	PEB DESIGN METHODOLOGY Design Parameters of PEB Frames - Depth of the section, Depth to Flange width ratios, Thickness of Flange to thickness of Web ratio. d/tw, bf/tf ratios of sections as per IS code. Section Sizes as per Manufacturing Limitations. Analysis and Design of Rigid Frames. Rigid Frame Moment Connection, Shear Connection-Anchor bolt and base plate design (Pinned and Fixed)
Text Books	[T1]Alexander Newman, Metal Building Systems Design and Specifications, 2 nd Edition
Reference Books	[R1] K.S.Vivek&P.Vaishavi – Pre Engineered Steel Buildings, Lambert Academic Publishing
E-resources and other digital material	Open Web

19CESE1	015	/A
	ULU	

PREFABRICATED STRUCTURES

Course Category:	Programme Elective - II	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3 hrs/week
Prerequisites:		Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

On succe	On successful completion of the course, the student will be able to:					
CO1	Identify desig	Identify design principles and IS code specifications				
CO2	Analyze and d	lesign shear	walls			
CO3	Analyze and o	lesign differ	ent types of f	loors and roof	slabs	
CO4	Design indust	rial building	S			
	PO1	PO2	PO3	PO4	PO5	
CO1	1	2			1	
CO2	2	3		2	2	
CO3	2	3		2	2	
				_	_	
		2		3	2	
CO4						
	CO1 CO2 CO3 CO4 CO1 CO2	CO1 Identify desig CO2 Analyze and C CO3 Analyze and C CO4 Design indust PO1 CO1 1 CO2 2 CO3 2 CO4	CO1 Identify design principles CO2 Analyze and design shear CO3 Analyze and design differed CO4 Design industrial building PO1 PO2 CO1 1 2 CO2 2 3 CO3 2 3 CO3 2 2	CO1 Identify design principles and IS code so CO2 Analyze and design shear walls CO3 Analyze and design different types of from CO4 Design industrial buildings PO1 PO2 PO3 CO1 1 2 CO2 2 3 CO3 2 3 CO4	CO1 Identify design principles and IS code specifications CO2 Analyze and design shear walls CO3 Analyze and design different types of floors and roof CO4 Design industrial buildings PO1 PO2 PO3 PO4 CO1 1 2 CO2 2 3 2 CO3 2 3 2 CO3 2 3 3	

Course Content

UNIT-I

INTRODUCTION:

General Civil Engineering requirements, specific requirements for planning and layout of prefabricates plant. IS Code specifications

DESIGN PRINCIPLES:

Modular coordination, standardization, Disuniting, of Prefabricates, production, transportation, erection, stages of loading and codal provisions, safety factors, material properties, Deflection control, Lateral load resistance, Location and types of shear walls.

UNIT-II

WALLS: Prefabricated structures, Long wall and cross wall large panel buildings, framed buildings with partial and curtain walls, single storey. Types of wall panels, Partition and load bearing walls, load transfer from floor to wall panels, vertical loads, Eccentricity and stability of wall panels, Design Curves, types of wall joints, their behaviour and design, Leak prevention, joint sealants, sandwich wall panels, approximate design of shear walls.

	UNIT-III				
	FLOORS, STAIRS AND ROOFS: Types of floor slabs analysis and design example of cored and panel types and tw way systems, types of roof slabs and insulation requirements. Description of joints, their behaviour and reinforcement requirements, deflection control for short term and long term loads, ultimate strength calculations in shear and flexure.				
	UNIT-IV				
	DESIGN OF INDUSTRIAL BUILDINGS: Components of single storey industrial sheds with crane gantry systems, design of R.C. Roof Trusses, roof panels, design of R.C. crane gantry girders, corbels and columns, wind bracing design, Design of shell roofs for Industrial sheds.				
Text Books	 [T1] S.R.Damodaraswamy & S.Kavitha, Basics of Dynamics and Aseismic Design, PHI Learning ,2009. [T2] PankajAgarwal&shrikhande, Earth quake resistant Design of Structures, PHI Learning ,2009. Chopra A.K., "Dynamics of Structures - Theory and Applications to Earthquake Engineering", Second Edition, Pearson Education, 2007 				
Reference Books	[R1] V.Soundararajan,R.Jagadeesh kumar, S Kalpana Devi Pre fabricated structures ars publications				
E-resources and other digital material	https://www.youtube.com/watch?v=wXNlCrqbOwg				

19CESE1015/B	FRACTURE MECHANICS OF CONCRETE STRUCTURES
--------------	---

Course Category:	Programme Elective - II	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3 hrs/week
Prerequisites:		Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

On succe	essful completion	ssful completion of the course, the student will be able to:				
CO1	Apply the prin	Apply the principles of linear elastic fracture mechanics				
CO2	Illustrate the p	principles of	non-linear fra	acture mechan	ics	
CO3	Evaluate the f	racture proc	ess of concre	te		
CO4	Implement the	e fracture me	echanics to co	ncrete structu	res	
	PO1	PO2	PO3	PO4	PO5	
CO1	2	2				
COI						
CO2	1	3				
CO3	2	3				
CO3						
	1	3		2		
CO4						
	CO1 CO2 CO3 CO4 CO1 CO2	CO1 Apply the print CO2 Illustrate the property CO3 Evaluate the form CO4 Implement the PO1 CO1 2 CO2 1 CO2 1 CO3 2	CO1 Apply the principles of lin CO2 Illustrate the principles of CO3 Evaluate the fracture proc CO4 Implement the fracture me PO1 PO2 CO1 2 2 CO2 1 3 CO3 2 3	CO1 Apply the principles of linear elastic fra CO2 Illustrate the principles of non-linear fra CO3 Evaluate the fracture process of concret CO4 Implement the fracture mechanics to co PO1 PO2 PO3 CO1 2 2 CO2 1 3 CO3 2 3	CO2 Illustrate the principles of non-linear fracture mechan CO3 Evaluate the fracture process of concrete CO4 Implement the fracture mechanics to concrete structu PO1 PO2 PO3 PO4 CO1 2 2 CO2 1 3 CO3 2 3 1 3 2	

Course Content

UNIT-I

INTRODUCTION TO FRACTURE MECHANICS OF CONCRETE

Structural failure based on material performance; Concepts of linear elastic fracture mechanics; Fracture mechanics of concrete.

PRINCIPLES OF LINEAR ELASTIC FRACTURE MECHANICS

Airy stress functions for problems in elasticity; Complex stress function; Elastic stress and displacement fields at crack tip; Stress intensity factors and crack opening displacements for useful geometries; Superposition of stress intensity factors; Plastic zone at crack tip; Griffith's fracture theory; Strain energy release rate for crack propagation; Relationship between stress intensity factor and strain energy release rate.

UNIT-II

PRINCIPLES OF NON-LINEAR FRACTURE MECHANICS

Energy principles for crack propagation in non – linear materials; J-integral for non-linear elastic materials; Fracture resistance (R curve); Crack tip opening displacement

	UNIT-III					
	STRUCTURE AND FRACTURE PROCESS OF CONCRETE					
	Constituents and microstructure of concrete; Fracture behavior and strain localization of concrete; fracture process zone and toughening mechanisms; Influence of fracture process zone on fracture behavior of concrete.					
	UNIT-IV					
	APPLICATIONS OF FRACTURE MECHANICS TO CONCRETE STRUCTURES					
	Behavior of concrete structures and fracture mechanics; Size					
	effect on nominal strength of plain concrete specimen; Tension of reinforced concrete members; Bending of reinforced concrete beams; Minimum reinforced ratios of concrete members.					
Text Books	[T1] Fracture mechanics of concrete: Applications of fracture mechanics to concrete, rock, and other quasi-brittle materials by Surendra P. Shah, Stuart E. Swartz &Chengsheng Ouyang, John Wiley & Sons, 1995.					
	[T2] Elements of fracture mechanics by Prashant Kumar, Tata-McGraw-Hill, 2009.					
Reference Books	[R1] Fracture Mechanics of Concrete Structures edited by ZDENEK P. BAZANT Walter P. Murphy Professor of Civil					
	Engineering, Northwestern University, Evanston, Illinois, USA					
E-resources and other digital material	nptel.ac.in/courses/105106053/18					

190	CESE	C101	5/C

STRUCTURAL OPTIMIZATION

Course Category:	Programme Elective - II	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3 hrs/week
Prerequisites:		Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

Course	On succe	nt will be able	to:				
Outcomes	CO1	Classify optimization and various techniques					
	CO2	Solve various	linear and N	lon-linear pro	blems		
	CO3	Evaluate a proprogramming	Evaluate a problem by geometric programming and dynamic programming				
	CO4	Apply optimiz	zation to var	ious structura	l elements.		
Contribution of		PO1	PO2	PO3	PO4	PO5	
Course	CO1	CO1 1	2				
Outcomes	COI						
towards	CO2	1	2				
achievement of	CO2						
Program	CO3	1	2				
Outcomes	C03						
(1 – Low,		CO4 2					
2 –Medium,	CO4						
3 – High)							

Course Content

UNIT-I

INTRODUCTION TO OPTIMIZATION

Statement of an Optimization problem, Classification Applications, Optimization literature

CLASSICAL OPTIMIZATION TECHNIQUES

Single Variable Optimization, Multivariable Optimization with and without constraints, Kuhn-Tucker Conditions

UNIT-II

LINEAR PROGRAMMING

Graphical Method, Analytical Method, Two Phase Simplex Method, Z_i-C_i Method, Primal Dual Algorithm, Big M Method.

NON LINEAR PROGRAMMING (NUMERICAL METHODS)

Unimodal Function, Elimination Methods, Interpolation Methods, Direct Search Methods, Indirect Search Methods.

UNIT-III

GEOMETRIC PROGRAMMING

Unconstrained Minimization Problem, Constrained Minimization,

	Primal Dual Relationships				
	DYNAMIC PROGRAMMING				
	Bellman's principle of optimality, multistage decisions processes,				
	concept of sub optimization, conversion of final value problem to				
	initial value problem.				
	UNIT-IV				
	NON TRADITIONAL OPTIMIZATION TECHNIQUES				
	Multi-objective Optimization, Genetic Algorithms, Simulated				
	Annealing, Neural Network Based Optimization, Optimization of				
	Fuzzy Systems				
	STRUCTURAL OPTIMIZATION				
	Methods of Optimum Structural elements, minimum weight				
	design of truss members, optimum reinforced design of RCC				
	slabs and beams, principles of optimization of design of multistorey structures, shell roofs, folded plates, water tanks				
Text Books	•				
Text Books	[T1] Singiresu S. Rao (2011). "Engineering Optimization: Theory and Practice" New Age International Publishers, ISBN 978-				
	81-224-2723-3				
	[T2] G. Hadley, "Linear programming", Narosa Publishing House,				
	New Delhi, 1990.				
Reference Books	[R1] Deb K, (1995), "Optimization for Engineering Design:				
	Algorithms and Examples", Prentice Hall, New Delhi.				
	[R2] RGallagher R.H. and O.C. Zienkiewicz, "Optimum				
	Structural Design: Theory and Applications", John Wiley				
	and Sons, ISBN 0-471-29050-5.				
E-resources and other	http://www.nptel.ac.in/courses/105108127/				
digital material					

19CESE10	15/D
- エクしょいついょし	113/17

DESIGN OF PRESTRESSED CONCRETE STRUCTURES

Course Category:	Programme Elective - II	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3 hrs/week
Prerequisites:		Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

On succe	essful completion of the course, the student will be able to:				
CO1	Distinguish statically determinate and indeterminate members				
CO2	Design of pre-	stressed con	crete pipes an	d tanks	
CO3	Analyze the p	ore-stressed	concrete slabs	3	
CO4	Design the pre	e-stressed co	ncrete ,piles,	sleepers, and	shell roofs
	PO1	PO2	PO3	PO4	PO5
CO1	2	3			
CO2	2	3		2	2
CO3	3	3		2	2
CO4	3	3		2	2
	CO1 CO2 CO3 CO4 CO1 CO2	CO1 Distinguish st CO2 Design of pre- CO3 Analyze the pro- CO4 Design the pro- PO1 CO1 2 CO2 2 CO3 3 3	CO1 Distinguish statically determined CO2 Design of pre-stressed content CO3 Analyze the pre-stressed content CO4 Design the pre-stressed content CO4 PO1 PO2 CO1 PO1 PO2 CO2 PO3 CO3 PO3 PO3 CO3 PO3 PO3 ROS	CO1 Distinguish statically determinate and in CO2 Design of pre-stressed concrete pipes an CO3 Analyze the pre-stressed concrete slabs CO4 Design the pre-stressed concrete ,piles, PO1 PO2 PO3 CO1 2 3 CO2 2 3 CO3 3 3 3 CO3 3 3	CO2 Design of pre-stressed concrete pipes and tanks CO3 Analyze the pre-stressed concrete slabs CO4 Design the pre-stressed concrete ,piles, sleepers, and second concrete ,piles, sleepers, and concrete concrete concrete ,piles, sleepers, and concrete concret

Course Content

UNIT-I

DESIGN OF PRE-TENSIONED AND POST-TENSIONED FLEXURAL MEMBERS

Difference between reinforced and pre-stressed concrete, Principles of pre-stressing – Classification of prestressed concrete structures – Materials – High strength concrete and High strength steel- Losses in pre-stress. Analysis of prestressed concrete (Pressure line ,load balancing concepts)Design of post-tensioned beams.

STATICALLY INDETERMINATE PRE-STRESSED CONCRETE STRUCTURES

Design of continuous beams; Cable profile – Concordant cable and linear transformation .Sketching of pressure lines for continuous beams.

UNIT-II

PRESTRESSED CONCRETE PIPES

Circular prestressing; Types of prestressed concrete pipes; Advantages of prestressed concrete pipes, Design of prestressed concrete pipes(cylinder, Non cylinder);

	PRESTRESSED CONCRETE TANKS General features of prestressed concrete tanks; Analysis of prestressed concrete tanks; Design of circular pre-stressed concrete tanks. UNIT-III PRE-STRESSED CONCRETE SLABS Types of pre-stressed concrete floor slabs; Design of pre-stressed concrete one-way slabs; Design of pre-stressed concrete two-way slabs; Design of pre-stressed concrete simple flat slabs UNIT-IV PRE-STRESSED CONCRETE PILES AND PRE-STRESSED SLEEPERS Advantages of prestressed concrete piles ,Types of prestressed concrete piles, Types of prestressed concrete piles, Types of prestressed concrete sleepers; Design considerations for prestressed sleepers. PRE-STRESSED CONCRETE SHELLS Advantages of pre-stressing long span shell structures; Methods of pre-stressing shell structures; Design procedure of pre-stressed
Text Books	concrete shell structures. [T1] Pre-stressed concrete by N.KrishnaRaju, Tata-McGraw-Hill,
	1995. [T2] Pre-stressed concrete by N.Rajagopalan, NarosaPublishing House, 2005.
Reference Books	 [R1] Pre-stressed concrete by T.Y.Lin&N.H.Burns, John Wiley & Sons, 198 [R2] Design of Prestressed Concrete Book by Neil C. ickleborough and R. I. Gilbert, published by Unwin Hyman Ltd,
E-resources and other digital material	https://nptel.ac.in/syllabus/105106118

10	A /		102/
- 19	UV.		1026

RESEARCH METHODOLOGY AND IPR

Course Category:	MLC	Credits:	0
Course Type:	Theory	Lecture - Tutorial -Practice:	2 hrs/week
Prerequisites:		Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

Course	On succe	On successful completion of the course, the student will be able to:						
Outcomes	CO1	1	Acquire an overview of the research methodology and techniques to define research problem					
	CO2	Review the lit	erature and	identify the p	roblem			
	CO3	Analyze the o	ptimum sam	pling techniq	ues for collect	ed data		
	CO4	Apply various work	Apply various forms of the intellectual properties for research work					
Contribution of		PO1	PO2	PO3	PO4	PO5		
Course	CO1	1						
Outcomes towards achievement of	CO2	1	3		1	1		
Program Outcomes	СОЗ	1			2	1		
(1 – Low, 2 –Medium,	CO4	1			1	2		
3 – High)	204							

Course Content

UNIT-I

RESEARCH METHODOLOGY:

Introduction, Meaning of Research, Objectives of Research, Motivation in Research, Research Approaches, Significance of Research, Research and Scientific Methods, Research Process, Criteria of Good Research, and Problems Encountered by Researchers in India.

RESEARCH PROBLEM:

Defining the Research Problem, Selecting the Problem, Necessity of Defining the Problem, Technique Involved in Defining a Problem, an Illustration

UNIT-II

REVIEWING THE LITERATURE:

Place of the literature review in research, improving research methodology, broadening knowledge base in research area, enabling contextual findings.

RESEARCH DESIGN:

Meaning of Research Design, Need for Research Design, Features of a Good Design, Important Concepts Relating to Research Design, Basic Principles of experimental Designs, Important Experimental Designs.

UNIT-III

DESIGN OF SAMPLING:

Introduction, Sample Design, Sampling and Non-sampling Errors,

SampleSurveyversusCensusSurvey,MeasurementandScaling:Q ualitative andQuantitative Data, Classifications of Measurement Scales, Goodness of Measurement Scales, sources of error in measurement tools.

DATA COLLECTION:

Experimental and Surveys, Collection of Primary Data, Collection of Secondary Data, Selection of Appropriate Method for Data Collection, Case Study Method

TESTING OF HYPOTHESES:

Hypothesis, Basic Concepts, Testing of Hypothesis, Test Statistics and Critical Region, Critical Value and Decision Rule, Procedure for Hypothesis Testing.

UNIT-IV

Interpretation and Report Writing:

Meaning of Interpretation, Technique of Interpretation, Precaution in Interpretation, and Significance of Report Writing

INTELLECTUAL PROPERTY:

The Concept, Intellectual Property System in India, Development of

TRIPSCompliedRegimeinIndia,PatentsAct,1970,TradeMarkAct,1 999,TheDesignsAct, 2000, The Geographical Indications of Goods (Registration and Protection)Act1999, Copyright Act,1957, Trade Secrets, Utility Models WTO, Paris Convention for the Protection of Industrial Property, National Treatment, Right of Priority, Common Rules, Patents, Marks, Industrial Designs, Trade Names, Indications of Source, Unfair Competition, Patent Cooperation Treaty (PCT), Trade Related Aspects of Intellectual Property Rights(TRIPS) Agreement, Covered.

Text Books

[T1] Research methodology: Methods and Techniques, C.R. Kothari, GauravGarg, New Age International, 4th Edition, 2018.

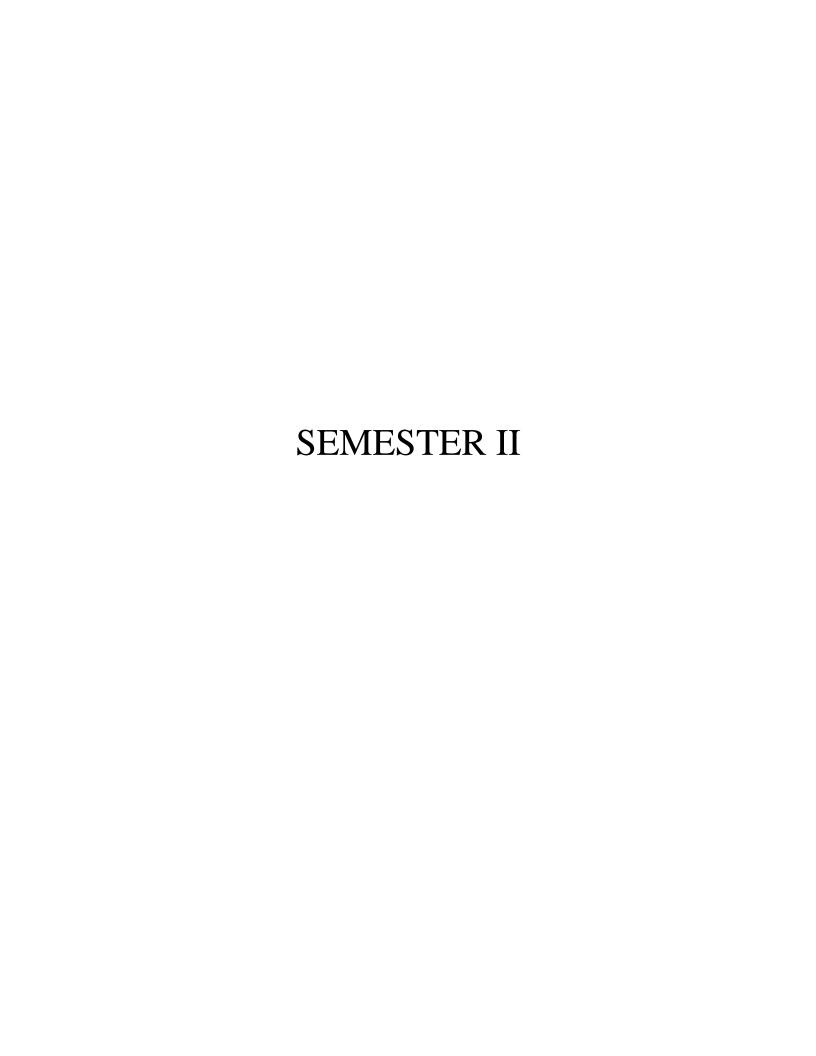
[T2]Research Methodology a step-by-step guide for beginners.

	Ranjit	Kumar,	SAGE	Publications	Ltd.,3rd		
	Edition,2	2011					
	[T3] Study Material, Professional Programme Intellectual						
	Property	Rights, Law	and Pract	ice, The Institute	e of		
	Compan	y Secretario	es of India	, Statutory Body	under an Act		
	of Parlia	ment, Septer	mber2013.				
Reference Books	[R1]An introd	duction to R	esearch Me	thodology, Garg	B.L et al		
	,RBSA P	Publishers200	02				
	[R2]An Intro	duction to M	Iultivariate	Statistical Analys	sis		
	Anderson	n T.W, Wile	y 3rdEditio	on,			
	[R3]Research	Methodolo	gy, Sinha,	S.C, Dhiman,			
	EssEssPu	ublications20	002				
	[R4]Research	Methods: tl	he concise	knowledge base,	Trochim		
	,Atomic Dog Publishing,2005						
	[R5]How to Write and Publish a Scientific Paper, Day R.A,						
	Cambridge University Press1992						
	[R6]Conducting Research Literature Reviews: From the						
	Internet to Paper, Fink A, Sage Publications, 2009						
	[R7]Proposal Writing, Coley S.M. Scheinberg, C.A, Sage						
	Publications, 1990 Intellectual Property Rights in the Global						
	Economy, Keith Eugene Maskus, Institute for International						
	Economi	ics					
E-resources and other	Open web						
digital material							

19CESE1051	

ADVANCED CONCRETE LAB

Course Category:	Laboratory	Credits:	2
Course Type:	Practical	Lecture - Tutorial -Practice:	3
Prerequisites:		Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100


Course	On succe	On successful completion of the course, the student will be able to:					
Outcomes	CO1	Investigate the effect of water cement ratio, aggregate cement ratio and chemical admixtures on properties of Concrete					
	CO2	Design the co		sing IS and A	CI codes with	n study of	
	CO3	Examine the p	properties of	fresh and har	dened concret	te.	
	CO4	Analyze the c of structural c		Non destruc	tive methods a	and behavior	
Contribution of		PO1	PO2	PO3	PO4	PO5	
Course Outcomes	CO1	3	2		3	3	
towards achievement of	CO2	3	2		3	3	
Program Outcomes	CO3	3	2		3	3	
(1 – Low, 2 –Medium, 3 – High)	CO4	3	2	1	3	3	
Course Content		Concrete. 2. Study the estrength of conditions of the strength	ffect of aggrecrete. Different Chaperties of cermethods using the method an attended enaviour of fredened concretelation between and modulus are effect of spanning.	egate cement remical Admixtment and aggregate general Admixtment and aggregate general performance and the concrete aggregate general performance	ance concrete) and strength and eth, cylinder strength on IS Method o on the failure	bility and see esign d elastic rength, split d. pattern of RC	

19CESE1052	
13CESE1032	

NUMERICAL ANALYSIS LAB

Course Category:	Laboratory	Credits:	2
Course Type:	Practical	Lecture - Tutorial -Practice:	3
Prerequisites:		Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

Course	On succe	On successful completion of the course, the student will be able to:					
Outcomes	CO1	Determine root of algebraic and transcendental equations					
	CO2	Develop a curve for given data					
	CO3	Solve system			rically		
	CO4				y differential e	quation	
Contribution of		PO1	PO2	PO3	PO4	PO5	
Course	CO1	3	2	2		3	
Outcomes	COI						
towards	CO2	3	2	2		3	
achievement of		_		_			
Program	CO3	3	2	2		3	
Outcomes		2	2	2	2	2	
(1 – Low,	004	3	2	2	2	3	
2 – Medium,	CO4						
3 – High)							
Course Content		Method. 2. Find the Find Method. 3. Curve Fittin 4. Solve the Elimination Method. 5. Solve the Iteration Method. 7. Integrate medium Method. 9. Numerical Euler's Method.	Roots of No. Ing by Least See System of Independent System of Independent System of Independent System of Independent Solution of Solutio	n-Linear Equalization Equations Equa	ations Using Gions Using Galons Using Galidal Rule.	Newton's Gauss - auss - Seidal auss - Jordan ations By	

19CESE2001 FEM IN STRUCTURAL ENGINEERING	
--	--

Course Category:	Programme Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3 hrs/week
Prerequisites:		Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

Course	On successful completion of the course, the student will be able to:							
Outcomes	CO1	Interpret the concepts behind formulation methods in FEM						
	CO2	Explain the characteristics and application of different types of elements						
	CO3	Develop element characteristic equation and generation of global equation						
	CO4	Apply boundary conditions to a global equation and evaluate the displacements, stress and strains for structural components						
Contribution of		PO1	PO2	PO3	PO4	PO5		
Course Outcomes	CO1	2	2					
towards achievement of	CO2	2	2					
Program Outcomes	СОЗ	3	3					
(1 – Low,	CO4	3	3					
2 – Medium, 3 – High)								
0 0 4 4		TINITED T		•				

Course Content

UNIT-I

Approximate solution of boundary value problems-Methods of weighted residuals, Approximate solution using variational method, Modified Galerkin method, Boundary conditions and general comments.

Basic finite element concepts-Basic ideas in a finite element solution, General finite element solution procedure, Finite element equations using modified Galerkin method, Application: Axial deformation of bars, Axial spring element.

UNIT-II

Analysis of trusses-Two dimensional truss element, Three dimensional space truss element, Stresses due to lack of fit and temperature changes.

Beam bending-Governing differential equation for beam bending, Two node beam element, and Exact solution for uniform beams

	subjected to distributed loads using superposition, Calculation of stresses in beams, Thermal stresses in beams.
	UNIT-III
	Higher order elements for one dimensional problems-Shape functions for second order problems, Isoparametric mapping concept, Quadratic isoparametric element for general one dimensional boundary value problem, One dimensional numerical integration, Application: Heat conduction through a thin film.
	Two dimensional boundary value problems using triangular elements, Equivalent functional for general 2D BVP, A triangular element for general 2D BVP, Numerical examples. Isoparametric quadrilateral elements-Shape functions for rectangular elements, Isoparametric mapping for quadrilateral elements, Numerical integration for quadrilateral elements, Four node quadrilateral element for 2D BVP, Eight node serendipity element for 2D BVP. Isoparametric triangular elements-Natural (or Area) coordinates for triangles, Shape functions for triangular elements, Natural coordinate mapping for triangles, Numerical integration for triangles, Six node triangular element for general 2D BVP. UNIT-IV
	Numerical integration-Newton-Cotes rules, Trapezium rule, Simpson's rule, Error term, Gauss-Legendre rules, Changing limits of integration, Gauss-Leguerre rule, Multiple integrals, Numerical integration for quadrilateral elements, Numerical integration for triangular elements.
	Two dimensional elasticity-Governing differential equations, Constant strain triangular element, Four node quadrilateral element, and Eight node isoparametricelement. Axisymmetric elasticity problems-Governing equations for axisymmetric elasticity, Axisymmetric linear triangular element, Axisymmetric four node isoparametric element.
Text Books	 [T1] Bhatti, M.A., Fundamental Finite ElementAnalysis and Applications: with Mathematica and Matlab Computations, Wiley, 2005 [T2] Reddy, J. N., An Introduction to the Finite Element Method,
Defenence Dealer	3rd Edition, McGraw-Hill Science/Engineering/Math, 2005.
Reference Books	[R1] Logan D. L., A First Course in the Finite Element Method, Thomson Engineering, 3 rd edition, 2001.
	[R2] Cook, R. D., Malkus, D.S., Plesha, M.E., and Witt, R.J., Conce and applications of Finite Element Analysis, 4 th Edition, Wile India, 2007
E-resources and other digital material	nptel.ac.in/courses/105106053/18

190	CESE	2002
17	الالالالالا	4004

STABILITY OF STRUCTURES

Course Category:	Programme Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3 hrs/week
Prerequisites:		Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

Course	On succe	essful completion	ssful completion of the course, the student will be able to:				
Outcomes	CO1	Explain the bu	Explain the buckling theories of columns and beam-columns				
	CO2	Analyze the l	ateral buckli	ng of beams			
	CO3	Determine the	buckling of	rectangular p	olates		
	CO4	Analyze the b	uckling of a	xially loaded	cylindrical she	ells	
Contribution of		PO1	PO2	PO3	PO4	PO5	
Course	CO1	3	3				
Outcomes	CO1						
towards	CO2	3	3				
achievement of							
Program	CO3	3	3				
Outcomes							
(1 – Low,		3	3				
2 – Medium,	CO4						
3 – High)							

Course Content

UNIT-I

BUCKLING OF COLUMNS

Introduction; Methods of finding critical loads; Critical loads for straight columns with different end conditions and loading; Inelastic buckling of axially loaded columns; Energy methods; Prismatic and non-prismatic columns under discrete and distributed loading.

BEAM COLUMNS

Theory of Beam column - Stability analysis of beam column with different types of loads.

UNIT-II

LATERAL BUCKLING OF BEAMS

Beams under pure bending; Cantilever and simply supported beams of rectangular and I sections; Beams under transverse loading; Energy methods; Solution of simple problems.

UNIT-III

BUCKLING OF RECTANGULAR PLATES

Plates simply supported on all edges and subjected to constant

	compression in one or two directions; Plates simply supported along two opposite sides perpendicular to the direction of compression and having various edge conditions along the other			
	two sides			
	UNIT-IV			
	BUCKLING OF SHELLS			
	Introduction to buckling of axially compressed cylindrical shells,			
	Linear theory of cylindrical shells-donnell equations, critical load			
	of an axially loaded cylinder, failure of axially compressed cylindrical shells			
Text Books	[T1] Theory of elastic stability by Timoshenko & Gere, McGraw			
Text Doors	Hill, 1961.			
	[T2] Background to buckling by Allen and Bulson, McGraw-Hill, 1980.			
Reference Books	[R1] Elastic stability of structural elements by N.G.R.Iyengar,			
	Macmillan India Ltd., 2007.			
	[R2] Principles of Structural stability theory by AlexandarChajes			
E-resources and other	https://nptel.ac.in/courses/105/105/105105108/			
digital material				

19	CESE	2003
		4000

STRCUTURAL DYNAMICS

Course Category:	Programme Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3 hrs/week
Prerequisites:		Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

Course	On succe	On successful completion of the course, the student will be able to:				
Outcomes	CO1	Distinguish th	e principles	of structural	dynamics.	
	CO2	Apply the suit	able techniq	ue for dynam	nics of MDOF	systems.
	CO3	Analyze natur	al frequenci	es and mode	shapes	
	CO4	Analyse for la structures	iteral loads a	and apply the	design concep	ts to
Contribution of		PO1	PO2	PO3	PO4	PO5
Course Outcomes	CO1	2	2			
towards achievement of	CO2	3	3			
Program Outcomes	CO3	2	3			
(1 – Low, 2 –Medium, 3 – High)	CO4	3	3		2	1

Course Content

UNIT-I

INTRODUCTION TO STRUCTURAL DYNAMICS:

Fundamental objectives of dynamic analysis- types of prescribed loading- Formulation of equations of motion by different methods- direct equilibration using Newton's Law of motion/ D'Alembert's principle, principle of virtual work and Hamilton principle.

SINGLE DEGREE OF FREEDOM SYSTEMS:

Formulation and solution of the equation of motion-Free vibration of SDOF systems- Undamped and damped vibrations, critical damping, logarithmic decrement, Forced vibration of SDOF systems – response to harmonic, periodic, impulsive and general dynamic loadings, Duhamel's integral; Numerical evaluation of dynamic response Newmark's method

UNIT-II

MULTI DEGREE OF FREEDOM SYSTEMS:

Selection of single degree of Freedom- Evaluation of structural property matrices- Formulation of the MDOF equations of

	motions- Undamped Free vibrations- Solutions of Eigen value problem for natural frequencies and mode shapes, Stodola-Vainello method - Analysis of dynamic response-Normal coordinates – Uncoupled equations of motion- orthogonal properties of normal modes- Mode superposition procedure- Review of time history and spectrum methods of analysis UNIT-III
	CONTINUOUS SYSTEMS Introduction — Flexural and Axial Vibrations of beams- Elementary case- derivation of governing differential equation of motion- analysis of undamped free vibrations of beams in flexure- Natural frequencies and mode shapes of simple beams with different end conditions. Response of continuous systems to dynamic loads UNIT-IV
	INTRODUCTION TO EARTHQUAKE RESPONSE OF STRUCTURES Introduction- response of single degree of freedom system to earthquake excitation- Response spectra; Response of MDOF systems to Earthquake excitations; Discussions on IS 1893-2016Codal provisions for building structures- I.S.Code methods of analysis for obtaining response of multi storied buildings.
Text Books	 [T1] Dynamics of Structures: Theory and application to Earthquake Engineering by A.K.Chopra, Prentice-Hall of India, 2001. [T2] Dynamics of Structures by R.W. Clough and P.E. Penzien, McGraw-Hill, 1993. [T3] Structural Dynamics: Theory and Computation by Mario Paz, Kluwer Academic Publishers, 2003.
Reference Books	 [R1] Theory of Vibration An Introduction by A.A.Shabana, Springer International Edition, 2010 [R2] Dynamics of Structures by J L Humar, Prentice-Hall Structural Dynamics An Introduction to Computer Methods by Roy R. Craig.Jr., JOHN WILEY & SONS, Inc., [R3] Earthquake resistance design of building structures vinodhosur WILEY [R4] Vibrations structural dynamics by m mukhopadhaya oxford
E-resources and other digital material	http://nptel.ac.in/courses/105101006/

10	CTC	\mathbf{r}_{20}	11	/ A
19	CES	E.ZU	14	IA

DESIGN OF HIGH-RISE STRUCTURES

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3 hrs/week
Prerequisites:		Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

Course	On successful completion of the course, the student will be able to:					
Outcomes	CO1	Identify the different systems and various loads in Tall structures				
	CO2	Distinguish va	arious struct	ural systems a	and their behav	viour
	CO3	Analyse vario	us structural	systems for s	static and dyna	amic loads
	CO4	Classify vario	us Flooring	systems and r	need of variou	s materials
	CO4	for design of t	all structure	S		
Contribution of		PO1	PO2	PO3	PO4	PO5
Course	CO1	2	2			
Outcomes						
towards	CO2	2	2			
achievement of						
Program	CO3	3	3			
Outcomes		1				
(1 – Low,	GO 4	I	1			
2 – Medium,	CO4					
3 – High)						

Course Content

UNIT-I

INTRODUCTION:

History: advantages and disadvantages; essential amenities; fire safety; water supply; drainage and garbage disposal; service systems; structural and foundation systems; factors affecting height; growth and form; human comfort criteria; Development of high-rise architecture; structural concepts.

LOADS:

Gravity loading – Dead and Live load calculation; Impact and construction loads; Wind loading- static and dynamic approach-Analytical and wind tunnel experimental method; Earthquake loading-Equivalent lateral force; Modal analysis- combination of loading in various design philosophies.

UNIT – II

STRUCTURAL SYSTEMS:

Behavior of High Rise structures- Different systems for load distribution in steel and concrete; Vertical and horizontal load resistant systems; Rigid frames; braced frames; in- filled frames;

	shear walls- wall frames; tubular systems; outrigger braced systems; mega systems.						
	UNIT – III						
	ANALYSIS AND DESIGN: Analysis and design principles of various horizontal load transfer						
	systems; approximate methods; modeling for accurate analysis-						
	3D analysis; member forces; displacements. Stability analysis overall buckling analysis of frames; wall frames; approxima methods. Dynamic analysis- principles of design of tall brace frames for earthquake and blast resistant design. Detailing as p						
	IS codes. UNIT – IV						
	UNII – IV						
	FLOORING SYSTEMS & ADVANCED TOPICS:						
	Introduction to various flooring systems in concrete and steel. Structural systems for future generation buildings; economics; need of new materials for design of tall buildings.						
Text Books	[T1] Tall Building Structures by B.S.Smith and A.Coull, John Wiley & sons, 1991.						
	[T2] Structural Analysis and Design of Tall Buildings by B.S.Taranath, McGraw Hill Co 1988.						
Reference Books	[R1] Structural Concepts and Systems for Architects and Engineers" by Lyn T.Y. and Burry D.Stotes, John Wiley, 1994.						
	[R2] High Rise Building Structures" by Sehuller .W.G, John Wiley & sons, 1977						
E-resources and other digital material	https://www.youtube.com/watch?v=EIDXE28_8eQ						

19CESE2014/B	SOIL STRUCTURE INTERACTION

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3 hrs/week
Prerequisites:		Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

Course	On succe	essful completion of the course, the student will be able to:				e to:
Outcomes	CO1	Explain the co	l structure int	re interaction		
	CO2		Evaluate different types of structures under various loading conditions and subsoil characteristics			
	CO3	Analyse the	oile and pile	groups for gr	avity loads	
	CO4		Evaluate action of group of piles under lateral loading considering stress-strain characteristics of real soils			
Contribution of		PO1	PO2	PO3	PO4	PO5
Course Outcomes	CO1	2	2			
towards achievement of	CO2	2	2			
Program Outcomes	CO3	3	3			
(1 – Low, 2 –Medium, 3 – High)	CO4	2	2			
Course Content		UNIT – I				
		SOIL-FOUN Introduction behavior, Fou	to soil-fo	undation int	teraction pro	

Introduction to soil-foundation interaction problems, Soil behavior, Foundation behavior, Interface behavior, Scope of soil foundation interaction analysis, soil response models, Winkler, Elastic continuum, Two parameter elastic models, Elastic plastic behavior, Time dependent behavior

UNIT – II

BEAM ON ELASTIC FOUNDATION-SOIL MODELS:

Infinite beam, Two parameters, Isotropic elastic half space, Analysis of beams of finite length, Classification of finite beams in relation to their stiffness.

PLATE ON ELASTIC MEDIUM:

Thin and thick plates, Analysis of finite plates, Numerical analysis of finite plates, simple solutions

	UNIT – III
	ELASTIC ANALYSIS OF PILE: Elastic analysis of single pile, Theoretical solutions for settlement and load distributions, Analysis of pile group, Interaction analysis, Load distribution in groups with rigid cap
	UNIT – IV
	LATERALLY LOADED PILE: Load deflection prediction for laterally loaded piles, Subgrade reaction and elastic analysis, Interaction analysis, Pile-raft system, Solutions through influence charts.
Text Books	[T1] Foundation analysis and design - J E Bowles, McGraw Hill, NY [T2] Design of Foundation System- Principles & Practices,
	Kurian N. P., Narosa Publishing
Reference Books	[R1] Analysis & Design of substructures, Swami Saran, Oxford & IBH Publishing Co. Pvt. Ltd.
	[R2] Selvadurai, A.P.S., Elastic Analysis of Soil Foundation Interaction, Elsevier, 1979.
E-resources and other digital material	https://www.youtube.com/watch?v=Ng2tH7CX-WU

190	CESE	2014/	'C

ADVANCED BRIDGE ENGINEERING

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3 hrs/week
Prerequisites:		Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

Course	On successful completion of the course, the student will be able to:					
Outcomes	CO1	Explain hydrological and geological details including flood discharge estimation for major bridge proposals				
	CO2	Design beam	and slab bri	dge decks		
	CO3	Design variou	s componen	ts of a bridge	sub structure	
	CO4	Design box g	irder concre	te bridges and	l bearings	
Contribution of		PO1	PO2	PO3	PO4	PO5
Course Outcomes	CO1	2	3			
towards achievement of	CO2	2	2	2		
Program Outcomes	СОЗ	2	3		2	2
(1 – Low, 2 –Medium,	CO4	2	3		2	2
3 – High)						

Course Content

UNIT-I

INVESTIGATION FOR MAJOR BRIDGES

Coverage; Topographical details; Catchment area map; Hydrological particulars; Geotechnical details; Seismology of the area; Navigational requirements; Construction resources; Particulars of nearest bridges; Traffic forecast.

DESIGN OF FLOOD DISCHARGE

Introduction; Contribution factors; Methods of determination of design flood; Unit hydrograph method; Choice of method; Foundation design discharge

UNIT-II

DESIGN OF BEAM AND SLAB BRIDGE DECKS

Classification of bridges; Loads on bridges I.R.C. loading standards – Bridge slabs – Effective width method as per I.R.C. – Pigeaud's method – Bridge girders – Courbon's method – Assumptions and analysis and design of reinforced concrete Tbeam bridge for Class AA tracked loading

Slab decks; Voided slab deck; Pseudoslab; Maunshell top beam; Beam and slab; Box girders; Curved and skew dec UNIT-III	
	k
UNIT-III	
PIERS AND ABUTMENTS	
Types of piers and abutments; Materials of construction;	Design
of piers and abutments.	
FOUNDATIONS FOR BRIDGES	
Types of bridge foundations; Design of well foundations.	
UNIT-IV	
BEARINGS	
Classification and types of bearings; Guidelines for selec	
Bearings; Design considerations; Basis for metallic bear	-
Ferrous bearings of traditional type; Design of elastomet	ric
Bearings	
BOX GIRDER BRIDGE DECKS	
Box culvert (Single vent only) – Single span rigid frame b	bridges
(Barrel of solid slab type only)	
Text Books [T1]Bridge engineering by S.Ponnuswamy, TataMcGraw 1986.	-Hill,
[T2] Bridge superstructure by N.Rajagopalan, Narosa Pub House, 2006.	olishing
[T3] Essentials of bridge engineering by D. John Victor, 6 & IBH, 2001.	Oxford
Reference Books [R1] Swami Saran, "Analysis and Design of Substructu Oxford & IBH Publishing Co., 1996.	res",
[R2] R.E. Rowe, "Concrete Bridge Design", 1 st Edition,	Elsevier
Science and Technology	
[R3] L.G. Hendry and A.W. Jaeger, "The Analysis of C	Grid
Frameworks and Related Structures", Chatto&Wind	
E-resources and other https://nptel.ac.in/courses/105/105/105165/	
digital material	

10	CE	CL	201	11/	\mathbf{T}
17	CE	OL.	4U.	L 4 /	v

ADVANCED PRE-ENGINEERED BUILDINGS

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3 hrs/week
	-		
Prerequisites:		Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

Course	On succe	essful completion	ssful completion of the course, the student will be able to:				
Outcomes	CO1	Classify struc	Classify structural stability system of pre-engineered buildings				
	CO2	Design pre-en	gineered bu	ildings with c	rane systems		
	CO3	Design pre-en	gineered but	ildings with n	nezzanine floo	r systems	
	CO4	Design pre-en	gineered bu	ildings with o	ptimization		
Contribution of		PO1	PO2	PO3	PO4	PO5	
Course	CO1	3	3				
Outcomes	CO1						
towards	CO2	3	3	2	2	2	
achievement of							
Program	CO3	3	3		2	2	
Outcomes		_				_	
(1 – Low,		3	3	2	2	2	
2 – Medium,	CO4						
3 – High)							

Course Content

UNIT-I

STRUCTURAL STABILITY SYSTEM OF PEB

Shear buckling effect (d/t ratio exceeding 67 ϵ), Effective Cross-sectional area concept for Compression Members d/t ratio exceeding 42 ϵ ; Effect of d/t ratio for flexural members according to section classifications, Lateral Torsional Restraint system : Flange Bracing and design considerations. Global and Local behavior of Frame system depending on Slenderness ratio, d/t and b/t ratio. Bracing system : Rod Bracing, Angle Bracing, Portal Bracing.

UNIT-II

CRANE SYSTEM

Different types of Cranes – EOT Cranes, Monorail Cranes, Underslung and Wall mounted - Design of Crane beams with and Without Top Channels (Surge Beam), Design of Crane Brackets – Frame design with different types of Cranes using software.

	UNIT-III					
	MEZZANINE FLOOR SYSTEMS					
	Design of Mezzanine Beams, Columns and joists - Mezzanine					
	decking, Different types of Mezzanine Floor systems – Grating,					
	Chequered plate and Rigid floor System.					
	UNIT-IV					
	ANALYSIS AND DESIGN OF PRE-ENGINEERED					
	BUILDINGS					
	2D and 3D Modelling of Portal Frames, Optimization					
	Techniques, Comparison of software output with manual					
	calculations. Design of Cold Formed Sections i.e., Purlins and					
	Girts, Design of Roof Sheeting, trapezoidal, Standing seam					
	sheeting, Erection Procedures. Welding Technology and process					
	for the PEB Sections					
Text Books	[T1]Alexander Newman, Metal Building Systems Design and					
	Specifications, 2 nd Edition					
Reference Books	Nil					
E-resources and other	Open Web					
digital material						

19CESE2015	/A

REPAIR AND REHABILITATION OF STRUCTURES

Course Category:	Programme Elective- IV	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3 hrs/week
Prerequisites:		Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

Course	On successful completion of the course, the student will be able to:					to:	
Outcomes	CO1	•	ntify the causes for deterioration of structures and remedies ugh damage assessment.				
	CO2		Explain various methods of diagnosis for the damage by Semi destructive and non-destructive tests				
	СОЗ	chemical envi	Demonstrate the effect of earthquake on structures and repairs in chemical environment and fire damage assessment through case studies				
	CO4	Recommend procedures.	appropriate r	etrofitting tec	chniques and re	epair	
Contribution of		PO1	PO2	PO3	PO4	PO5	
Course Outcomes	CO1	2	2				
towards achievement of	CO2	2	2				
Program Outcomes	CO3	2	2		2	2	
(1 – Low, 2 –Medium,	CO4	2	2				
3 – High)							
Course Content		UNIT – I AGE AN STRUCTUR STRUCTUR	ES AND	FORMANCI CAUSES	E RESPO FOR FAI		
		Introduction, service life and syndrome year, Reparamintenance, rehabilitation; Causes of distress in structure members and mechanism, symptoms, prevention for Accident loadings, chemical attack, construction errors, corrosion, designate errors, erosion, freezing and thawing, settlement and movement shrinkage, temperature changes, fire, weathering. TRAINED DAMAGE ASSESSMENT FOR SOURCE visual examination, Action plan, common observations damage assessment procedure pre and post repair evaluation					

UNIT - II

DIAGNOSIS AND ASSESSMENT OF DISTRESS BY VARIOUS TESTS:

SEMI DESTRUCTIVE TESTS:

purpose, methods ,Core test, LOK Test, CAPO Test, North American pull-out test, pull off test, Figg's Air and water – permeability test

NON DESTRUCTIVE TESTS: PURPOSE, METHODS

Compressive strength of concrete -rebound hammer test, Windsor probe test Cracks, voids, changes in condition of concrete tests – ultra pulse velocity test, acoustic method, pulse echo method, radiography. Surface absorption test on concrete, Deterioration of concrete -radar technique, infra red thermograph test

Chloride test-quntab test, corbonation test, Corrosion test —open circuit and surface potential measuring techniques, electro chemical noise analysis, resititivity of concrete test Strain guages —vibrating type and contact type strain guages

UNIT – III

REPAIRS IN CHEMICAL ENVIRONMENT

Investigations and recommendations for repairs

DAMAGE DUE TO EARTHQUAKE: VARIOUS DAMAGES TO STRUCTURES,

Strengthening of buildings – provisions of BIS 1893 and 4326. FIRE DAMAGE ASSESSMENT AND RESTORATION: Case studies of Large auditorium structure and Tower podium of Five star hotel

UNIT-IV

MODERN TECHNIQUES OF SEISMIC RETROFITTING:

Introduction, Global level and local level and Local level retrofitting techniques

REPAIR MATERIALS AND REPIR METHODS

Epoxy resins, epoxy mortor, quick-setting cement, gypsum cement mortar. Mechanical anchors, Crack repair techniques, stitching, blanketing, jacketing and types, shotcrete, guniting, grouting, pressure injection of epoxy.

Text Books

- [T1] R.N.Raikar ,Diagnosis and Treatment of Structures in Distress, R&D Centre, SDCPL,New Bombay,1994.
- [T2] Repair of concrete structures R.T.Allen and S.C.Edwards, Blakie and Son UK 1987

Reference Books	[R1]CPWD Hand book on Repair and Rehabilitation of RCC Buildings. [R2]Pankaj agarwal & Manish shikhakonde Earth quake resistant design of structures, Prentica-Hall of India, new delhi,2006 [R3]Raikar, R., Learning from failures- deficiencies in design, construction and service- R&D Centre(SDCPL), Raikar Bhavan, Bombay 1987. [R4]A.R.Santhakumar, Concrete technology, Schand, second edition, 2018.
E-resources and other digital material	Open web

19CESE2015/B DESIGN OF STEEL-CONCRETE COMPOSITE STRUCTURES	
--	--

Course Category:	Programme Elective - IV	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3 hrs/week
Prerequisites:		Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

On succe	On successful completion of the course, the student will be able to:					
CO1	Identify the b	Identify the behaviour of composite beams and columns				
CO2	Design compo	site beams,	columns and	trusses		
CO3	Design connec	ctions in con	nposite struct	ures		
CO4	Analyse the b	ehaviour of	composite gir	der bridges		
	PO1	PO2	PO3	PO4	PO5	
CO1	2	2				
CO2	2	3		2	2	
CO3	2	3		2	2	
	2	3				
CO4						
	CO1 CO2 CO3	CO1 Identify the b CO2 Design comport CO3 Design connect CO4 Analyse the b PO1 CO1 2 CO2 2 CO3 2	CO1 Identify the behaviour of CO2 Design composite beams, CO3 Design connections in correct PO1 PO2 PO2 PO2 PO2 PO3	CO1 Identify the behaviour of composite be CO2 Design composite beams, columns and CO3 Design connections in composite struct CO4 Analyse the behaviour of composite gir PO1 PO2 PO3 CO1 2 2 CO2 2 3 CO3 2 3	CO1 Identify the behaviour of composite beams and column CO2 Design composite beams, columns and trusses CO3 Design connections in composite structures CO4 Analyse the behaviour of composite girder bridges PO1 PO2 PO3 PO4 CO1 2 2 CO2 2 3 2 CO3 2 3 2 CO3 2 3 2	

Course Content

UNIT I

INTRODUCTION

Introduction to Steel - Concrete Composite Construction - Theory of Composite Structures -Introduction to Steel - Concrete - Steel - Sandwich Construction - Behaviour of composite beams and columns .

UNIT II

DESIGN OF COMPOSITE MEMBERS

Design of Composite beams – Design of Composite Columns - Design of Composite Trusses.

UNIT III

DESIGN OF CONNECTIONS

Types of Connections - Design of Connections in Composite structures - Shear Connections - Design of Connections in composite trusses.

UNIT IV

COMPOSITE GIRDER BRIDGES & CASE STUDIES

Behaviour of girder bridges - Design concepts. Case Studies on steel - concrete composite construction structures in buildings - Seismic behaviour of composite structures and design methods

Text Books	 [T1]Teaching Resource Material for Structural Steel Design", Volume 2/3 jointly prepared by 1. I.I.T., MS 2. Anna University [T2]SERC, MS 4. "Institute for Steel Development and growth", Calcutta. [T3]Owens .G.W, &Knowels.P. "Steel Designs Manual", (sixth Edition) Steel Concrete 			
Reference Books	[R1]Composite structures of steel and concrete Johnson R.P Blackwell Scientific Publications(Second Edition), UK 2001 [R2]Steel Designers manual (Fifth edition) Owens, G.W. and Knowels.P Oxford Blackwell Scientific Publications 200			
E-resources and other digital material	https://www.youtube.com/watch?v=h-rQCvxH61c http://www.steel-insdag.org/TM_Contents.asp			

19CESE2015/C DESIGN OF FORMWORK	19CESE2015/C	DESIGN OF FORMWORK
---------------------------------	--------------	--------------------

Course Category:	Programme Elective - IV	Credits:	2
Course Type:	Theory	Lecture - Tutorial -Practice:	2 hrs/week
Prerequisites:		Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

Course	On succe	On successful completion of the course, the student will be able to:					
Outcomes	CO1	Identify an appropriate material for false work and form work					
	CO2		Evaluate the pressure of concrete on form work				
	CO3	Design deckir	ng, form wor	k and false w	ork		
	CO4		Explain the sequence of construction and safety steps involved in form work and false work.				
Contribution of		PO1	PO2	PO3	PO4	PO5	
Course Outcomes	CO1	2	2				
towards achievement of	CO2	2	2		1		
Program Outcomes	CO3	2	2		3	1	
(1 – Low, 2 –Medium, 3 – High)	CO4	1	1			2	
Course Content		UNIT-I					
		Introduction: Formwork and false work, Temporary work systems, Construction planning and site constraints, Materials and construction of the common formwork and false work systems, Special and proprietary forms.					
		UNIT-II Formwork – Design: Concrete pressure on forms, Design of timber and steel forms, Loading and moment of formwork.					
		UNIT-III Design of Decks and False works: Types of beam, decking and column formwork, Design of decking, False work design, Effects of wind load, Foundation and soil on false work design.					
		UNIT-IV Special Forms: The use and applications of special forms. Construction Sequence and Safety in use of Formwork: Sequence of construction, Safety use of formwork and false work.					
Text Books		[T1]Robert L. Peurifoy and Garold D. Oberiender, Formwork for Concrete Structures, McGraw-Hill, 1996. [T2]Tudor Dinescu and ConstantinRadulescu, Slip Form					

	Techniques, Abacus Press, Turn Bridge Wells, Kent, 2004.
Reference Books	 [R1] Austin, C.K., Formwork for concrete, Cleaver - Hume Press Ltd., London, 1996 [R2]Michael P. Hurst, Construction Press, London and New York., 2003
E-resources and other digital material	Open web

19CESE2015	/D
	u

EARTHQUAKE RESISTANT DESIGN OF STRUCTURES

Course Category:	Programme Elective - IV	Credits:	4
Course Type:	Theory	Lecture - Tutorial -Practice:	4 hrs/week
Prerequisites:		Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

Course	On successful completion of the course, the student will be able to:					
Outcomes	CO1	Identify a goo	d structural	configuration	for seismic re	esistance
	CO2	Estimate the e	arthquake d	esign forces u	sing appropria	ate methods
	CO3	Apply the con resistant struc	1	isolation in o	designing eartl	hquake
	CO4	Design of eart of ductility	Design of earthquake resistant structures by applying the concepts of ductility			
Contribution of		PO1 PO2 PO3 PO4 PO5				
Course	CO1	3	3			
Outcomes		_				
towards	CO2	3	3			
achievement of		_				
Program	CO3	2	2		1	1
Outcomes						
(1 - Low,		3	3		2	2
2 – Medium, 3 – High)	CO4					

Course Content

UNIT-I

SEISMO-RESISTANT BUILDING ARCHITECTURE

Introduction; Lateral load resisting systems- moment resisting frame, Building with shear wall or bearing wall system, building with dual system; Building configuration — Problems and solutions; Building characteristics — Mode shape and fundamental period, building frequency and ground period, damping, ductility, seismic weight, hyperstaticity /redundancy, non-structural elements, foundation soil/liquefaction. Foundations; Quality of construction and materials — quality of concrete, construction joints, general detailing requirements.

UNIT-II

DESIGN FORCES FOR BUILDINGS

Introduction; Equivalent static method; Mode superposition technique; Dynamic inelastic-time history analysis; Advantages and disadvantages of these methods; Determination of lateral forces as per IS1893(Part 1) – Equivalent static method, Model analysis using response spectrum, Estimate of deflection and drift, $P-\Delta$ Effects in frame structures, Torsional effects.

	UNIT-III
	DUCTILITY Ductility relationships; Ductility considerations in earthquake resistant design of RCC buildings Introduction; Impact of ductility; Requirements for ductility; Assessment of ductility—Member/element ductility, Structural ductility; Factor affecting ductility; Ductility factors; Ductility considerations as per IS13920::2016-Aspects of detailing- Detailing of columns for ductility-Transverse reinforcement for confinement, spacing of column vertical reinforcement; Bond and anchorage-Development of bar strength, lapped splices, Additional considerations for anchorages. Design and detailing of typical flexural member, typical column, footing and detailing of a exterior joint as per IS13920:2016. UNIT-IV
	BASE ISOLATION OF STRUCTURES
	Introduction; Isolation from seismic motion, Considerations for seismic isolation-Seismic isolation using flexible bearings-Seismic isolation using flexible piles and energy dissipators; Basic elements of seismic isolation; seismic-isolation design principle; Feasibility of seismic isolation; Seismic isolation configurations; codal provisions for seismic isolation.
	SEISMIC EVALUATION AND RETROFITTING OF STRUCTURES Seismic evaluation of structures or condition appraisal; Seismic Retrofitting.
Text Books	 [T1]Earthquake resistant design of structures by PankajAgarwal and Manish Shrikhande, Prentice-Hall of India, 2006. [T2]Seismic design of reinforced concrete and masonry buildings by T.Paulay and M.J.N.Priestley, John Wiley & Sons, 1991. [T3]Earthquake-Resistant Design of Building Structures by Dr. VinodHosur, WILEY, 2013.
Reference Books	[R1]Earthquake Resistant Design and Risk Reduction by David Dowrick, WILEY Student Edition, 2012.
	 [R2]Earthquake Resistant Design of Structures by S.K.Duggal, OXFORD Higher Education. [R3]Elements of Earthquake Engineering by Jai Krishna & Brijesh Chandra, South Asian Publishers Private Limited, 2000.
E-resources and other digital material	http://nptel.ac.in/courses/105102016/

19CESE2036	TECHNICAL REPORT WRITING

Course	On succe	essful completion	on of the cou	rse, the stude	nt will be able	to:		
Outcomes	CO1	Describe the s	Describe the significance of Technical Report Writing					
	CO2	Develop profi	iciency in wr	riting technica	al reports			
	CO3	Apply the bas LATEX	Apply the basic principles to prepare documentation using LATEX					
	CO4	1	Understanding the need of Bibliography and Reference Books for quality report writing					
Contribution of		PO1	PO1 PO2 PO3 PO4 PO5					
Course Outcomes	CO1		1		2	1		
towards achievement of	CO2		1	1	3	1		
Program Outcomes	CO3		1	2	3	1		
(1 – Low,					3	1		
2 –Medium, 3 – High)	CO4							
Course Content	IINIT I							

Course Content

UNIT - I

WRITING SCIENTIFIC AND ENGINEERING PAPERS

Title, Abstract, Introduction, Materials And Methods, Result, Discussion, Conclusion, Reference Books, Acknowledgements, Appendices, Hedging and Criticizing, Paraphrasing and Plagiarism.

UNIT – II

EFFECTIVE USE OF CHARTS, GRAPHS AND TABLES, WRITING TECHNICAL REPORTS

Bar Chart, Line Chart, Pie Chart, Area Chart, Cylindrical Chart, Column Bars, Bubble Chart, Flow Diagram, Screen Capture, Tables, Objectives Of Technical Report, Types Of Reports, Steps

In Writing A Technical Report, Guidelines For Writing ATechnical Report.

UNIT – III LATEX

Introduction, Document Structure –Creatinga Title, Sections , Labeling ,Table of Contents , Font Effects , Colored Text , FontSizes , Lists , Comments & Spacing , Special Characters

UNIT - IV

TABLES, FIGURES , EQUATIONS , INSERTING REFERENCE BOOKS

Inserting Equations, Mathematical Symbols, Practical, introduction, The BibTeX file, Inserting the bibliography, Citing Reference Books, Styles, Practical.

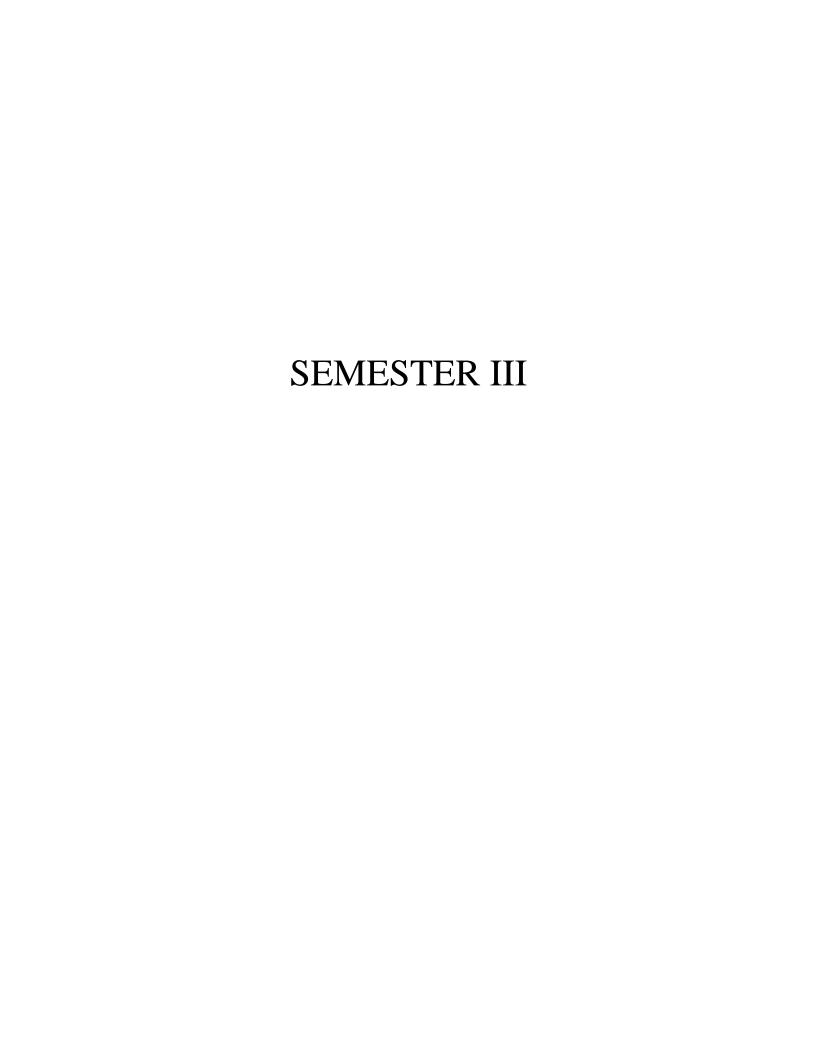
Text Books	 [T1]BarunKMitra, Effective Technical Communication - A Guide for Scientists and Engineers, Oxford University Press, ISBN:978019568291. [T2]LATEX for Beginners, Workbook Edition 5, Document Reference: 3722-2014.
Reference Books	 [R1]GoldbortR, Writing for Science, Yale University Press(available on Google Books) [R2]DayR, How to Write and Publish a Scientific Paper, Cambridge University Press
E-resources and otherdigital material	https://www.overleaf.com/learn/latex/sections_and_chapters https://libguides.cu-portland.edu/citationstyles

19CESE2063	TERM PAPER

Course Category:	Term paper	Credits:	1
Course Type:	Term paper	Lecture - Tutorial -Practice:	0-0-2
Prerequisites:	NIL	Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

Course	On succe	essful completion	on of the cou	rse, the stude	nt will be able	to:
Outcomes	CO1	Identify real w	vorld proble	ms related to	Structural Eng	gineering
	CO2	Analyse the place feasible solution		n its state of t	he art for arriv	ving at
	CO3	Prepare an org writing & crit	-	1 0	elements of te	echnical
	CO4	Summarize an effective man		cate the conte	ent to audience	in an
Contribution of		PO1	PO1 PO2 PO3 PO4 PO5			
Course Outcomes	CO1	2	2			1
towards achievement of	CO2	2	2			1
Program Outcomes	CO3			2	3	1
(1 – Low, 2 –Medium, 3 – High)	CO4			2	2	1
Course Content		Student shall collect the literature on the advanced topic in relevant fields and critically review the literature and submit it to the department in a form of report and shall make an oral				
	presentation before the Academic Committee					

19CESE2051	STRUCTURAL DYNAMICS LABORATORY


Course Category:	Laboratory	Credits:	1.5
Course Type:	Practical	Lecture - Tutorial -Practice:	3 hrs/week
Prerequisites:		Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

Course	On succe	On successful completion of the course, the student will be able to:						
Outcomes	CO1	Determine the principles	Determine the unknown resistance and static strain using accepted principles					
	CO2	Determine the	Determine the principal stresses for various loadings					
	CO3	Examine the r and non-harm			building unde	er harmonic		
Contribution of		PO1	PO2	PO3	PO4	PO5		
Course Outcomes towards	CO1	2	2		3			
achievement of Program Outcomes	CO2	2	2		3			
(1 – Low, 2 –Medium, 3 – High)	CO3	2	2		3	2		
Course Content		bridge 2. Measu gauge. 3. Determent photo 4. Determent disc sures. 5. Determent axial to 6. Determent 7. Dynam	nination of the lastic material and the lastic materia	tatic strain by the material frial. principal stre iametrical cor principal stre tress concentree storey bu	sses in a bar	istance strain a given in a circular subjected to		

19CESE2052	STRUCTURAL DESIGN LAB

Course Category:	Laboratory	Credits:	1.5
Course Type:	Practical	Lecture - Tutorial -Practice:	3 hrs/week
Prerequisites:		Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

Course	On succe	successful completion of the course, the student will be able to:						
Outcomes	CO1	Analyze the vloads.	Analyze the various structural components for gravity and lateral loads.					
	CO2	Design of stru	ctural comp	onents and fra	amed building	S		
	CO3	Prepare detail	ed drawings	for structural	buildings			
Contribution of		PO1	PO2	PO3	PO4	PO5		
Course	CO1	3	3	3	3			
Outcomes								
towards	CO2	3	3	3	3	2		
achievement of						4		
Program	CO3	2	3	3	3	1		
Outcomes								
(1 – Low,								
2 – Medium,								
3 – High) Course Content		Docian and D	Design and Drawing the minformatic data its of the C. II.					
Course Content		Design and Drawing the reinforcement details of the following RCC Structural elements						
		 Concrete of Concrete of Concrete of Design of and wind in Design of wind loads Steel fram connection Building I Note: The aborders of the programs/App 	 Concrete beam (singly/doubly) Concrete column subjected to uniaxial/biaxial bending. Concrete slab (One-way/Two-way) Design of G+5 concrete frame building for gravity, seismic and wind loads. Design of G+5 steel frame building for gravity, seismic and wind loads including connections. Steel frame building as per relevant is codes including connections. Building Information Modeling through CYPE CAD. Note: The above problems are to be solved using Computer programs/Application software's like Staad.Pro/CYPE CAD/ETABS (any two) 					

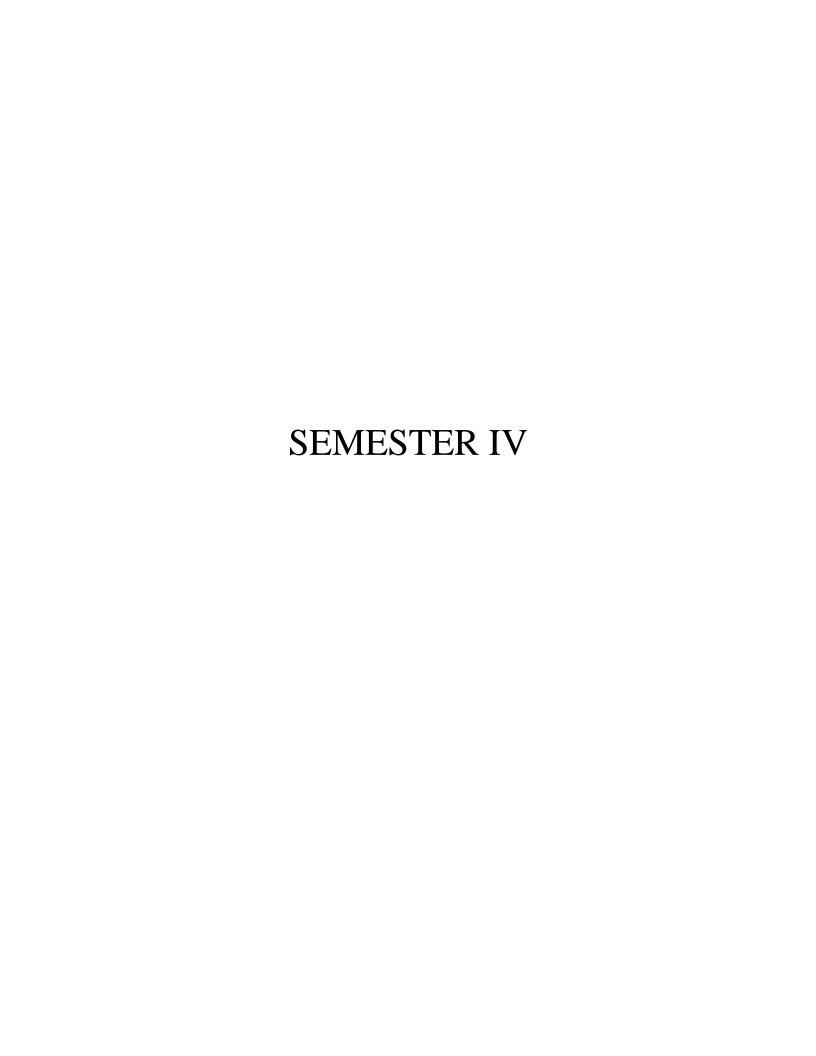
19CESE3011 SELF LEARNING (MOOCS COURSE)	
---	--

Course Category:	Program Elective-V	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3-0-0
Prerequisites:	Basic concepts of civil engineering	Continuous Evaluation: Semester end Evaluation:	-
	engineering	Total Marks:	100

Course	On succe	essful completion	on of the cou	rse, the stude	nt will be able	to:		
Outcomes	CO1	Understand the fundamental scientific and engineering concepts in Flexibility of time, place, topic and university						
	CO2	_	Acquire knowledge in the domain of Civil Engineering from Professors of Premier Institutes					
	CO3		Describe software tools and methods to related to structural engineering by themselves					
	CO4	Interaction through peer review and group collaboration helps social network building						
Contribution of		PO1	PO1 PO2 PO3 PO4 PO5					
Course Outcomes	CO1	2	2			1		
towards achievement of	CO2	1	2			1		
Program Outcomes	CO3		1	2				
(1 – Low, 2 –Medium, 3 – High)	CO4				1	2		

The department will recommend the self-learning courses from the available open courseware. The self- learning courses shall be taken from the list of approved MOOCs providers (SWAYAM/NPTEL/EDX/Others). They must be approved/ratified in the respective Board of Studies

19CESE3061	PROJECT PART-A


Course Category:	Project Part-A	Credits:	10
Course Type:	Project	Lecture - Tutorial -Practice:	0-0-20
Prerequisites:	Term paper	Continuous Evaluation:	40
	1 1	Semester end Evaluation:	60
		Total Marks:	100

Course	On succe	essful completion	on of the cou	rse, the stude	nt will be able	to:		
Outcomes	CO1	Identify a topi	Identify a topic in relevant are as of Structural Engineering					
	CO2	Review literat of the project	Review literature to identify gaps and define objectives & scope of the project					
	CO3	Apply approp		h methodolog	gy to provide a	solution to		
	CO4	-	Prepare a technical report effectively, organizing the data by using modern tools.					
Contribution of		PO1	PO2	PO3	PO4	PO5		
Course	CO1	3	3					
Outcomes								
towards	CO2	3	3		2	2		
achievement of								
Program	CO3	2	2	2	2	1		
Outcomes								
(1 – Low,				2	3	3		
2 – Medium,	CO4							
3 – High)								
Course Content		The project shall be carried out in the major areas pertaining to						
		the program approved by Project Review Committee and may address the societal problems/issues related to the program.						

19CESE3052	INTERNSHIP

Course Category:	Internship	Credits:	2
Course Type:	Practical	Lecture - Tutorial -Practice:	0-0-0
Prerequisites:		Continuous Evaluation:	-
		Semester end Evaluation:	100
		Total Marks:	100

Course	On successful completion of the course, the student will be able to:					
Outcomes	CO1	Apply theoretical and practical knowledge in accomplishing the tasks assigned in the industry.				
	CO2	Evaluate civil engineering structures by following required Specifications Apply various soft skills such as time management, positive attitude and communication skills during performance of the task assigned in the internship.				
	CO3					
В		PO1	PO2	PO3	PO4	PO5
Contribution of	CO1	2	2			
Course	COI					
Outcomes	CO2	2	2	2	2	
towards						
achievement of	CO3	1				3
Program						
Outcomes						
(1 - Low,						
2 –Medium,						
3 – High)						
Course Content		The students shall undergo Internship for a period of six weeks in				
		Industry/Research organizations/ institute of higher learning				
		approved by the Head of the Department during any time after the second semester.				

19CESE4061	PROJECT PART-B

Course Category:	Project Part-B	Credits:	16
Course Type:	Project	Lecture - Tutorial -Practice:	0-0-32
Prerequisites:	Project Part-A	Continuous Evaluation:	40
	J	Semester end Evaluation:	60
		Total Marks:	100

Course	On successful completion of the course, the student will be able to:					
Outcomes		1				
	CO1	Identify methors	ods and reso	urces To	carry out a	nalysis and
	CO2	Apply the procedures with a concern for society, environment and Ethics Generate possible alternative solutions to chosen problem, compare, analyze and interpret the result				
	CO3					
	CO4	Prepare a comprehensive report of the project work and also explore possibility of publishing the work.				
Contribution of		PO1	PO2	PO3	PO4	PO5
Course Outcomes	CO1	3	3	2		
towards achievement of	CO2	3	3	2		3
Program Outcomes	CO3	3	3	2	3	3
(1 – Low, 2 –Medium, 3 – High)	CO4			2	3	2
Course Content		Project Part B shall be the extension of project Part A.				