VELAGAPUDI RAMAKRISHNASIDDHARTHA ENGINEERING COLLEGE DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING SCHEME OF INSTRUCTION FOR FOUR YEAR UG PROGRAMME VR23

Second Year – Third & Fourth Semester Syllabus

Effective from 2023-24

Velagapudi Ramakrishna Siddhartha Engineering College

ELECTRONICS & INSTRUMENTATION ENGINEERING

Scheme of Instructions for Four Year B.Tech Programme-VR23

SEMESTER I

S. No	Course Code	Course	Subject	L	Τ	P	Credits
1.	23BS1101	Basic Science	Linear Algebra & Calculus	3	0	0	3
2.	23BS1102B	Basic Science	Chemistry	3	0	0	3
3.	23BS1103B	Basic Science	Basic Electrical & Electronics Engineering	3	0	0	3
4.	23ES1104	Engineering Science	Introduction to Programming	3	0	0	3
5.	23ES1105	Engineering Science	Engineering Graphics		0	4	3
6.	23BS1151B	Basic Science	Chemistry Lab	0	0	2	1
7.	23ES1152	Engineering Science	Computer Programming Lab	0	0	3	1.5
8.	23ES1153	Engineering Science	Electrical and Electronic Engineering Lab		0	3	1.5
9.	23BS1154B	Basic Science	Health and wellness, Yoga and Sports		0	1	0.5
	Total			13	0	13	19.5
10.	23MC1106	Mandatory Course	Induction Program				-

Category	Credits				
Basic Science Courses	3+3+3+1+1.5=11.5				
Engineering Science Courses	3+3+1.5+0.5=8				
Humanities and Social Science	0				
Mandatory Courses	0				
TOTAL CREDITS	19.5				

SEMESTER II

S.No	Course Code	Course	Course Subject		Т	Р	Credits
1.	23BS2101	Basic Science	cience Differential Equations & Vector Calculus				3
2.	23BS2102	Basic Science	Engineering Physics	3	0	0	3
3.	23ES2103A	Engineering Science	Basic Civil and Mechanical Engineering	3	0	0	3
4.	23PC2104C	Professional Core	Network Analysis	3	0	0	3
5.	23HS2105	Basic Science	Communicative English	2	0	0	2
6.	23BS2151	Basic Science	Engineering Physics Lab	0	0	2	1
7.	23PC2152C	Professional Core	Network Analysis & Simulation Lab	0	0	3	1.5
8.	23HS2153	Basic Science	Communicative English Lab	0	0	2	1
9.	23ES2154	Engineering Science	Engineering Workshop	0	0	3	1.5
10.	23ES2155	Engineering Science	IT Work shop	0	0	2	1
11.	23BS2156	Basic Science	NSS/NCC/Community Service	-	-	1	0.5
Total		•	·	14	0	13	20.5

Category	Credits
Basic Science Courses	3+3+2+1+1+0.5=10.5
Engineering Science Courses	3+1.5+1=5.5
Humanities and Social Science	0
Mandatory Courses	0
Professional Core	3+1.5=4.5
TOTAL CREDITS	20.5

II Year I Semester (Semester III)

S.No	Course Code	Course	Subject	L	Τ	P	Credits
1.	23BS3101C	Basic Science	Complex Analysis and Numerical Methods	3	0	0	3
2.	23HS3102	Humanities and Social Sciences	Universal Human Values – Understanding Harmony	2	1	0	3
3.	23ES3103F	Engineering Science	Analog Electronic Circuits	2	0	0	2
4.	23EI3304	Professional Core	Digital Circuits and Systems	3	0	0	3
5.	23EI3305	Professional Core	Sensors and Transducers	3	0	0	3
6.	23TP3106	Soft Skills - 1	Logic and Reasoning	0	0	2	1
7.	23MC3107	Audit	Environmental Science	2	0	0	-
8.	23EI3651	Skill Enhancement	Numerical Computing using MATLAB	0	0	2	1
9.	23ES3152	Engineering Science	Electronic Circuits Lab	0	0	2	1
10.	23EI3353	Professional Core	Digital System Design Lab	0	0	3	1.5
11.	23EI3354	Professional Core	Transducers Lab	0	0	3	1.5
			Total		1	12	20

Category	Credits
Basic Science Courses	3
Engineering Science Courses	2+1=3
Humanities and Social Science	3
Mandatory Courses	-
Professional Core	3+3+1.5+1.5 =9
Elective: Skill Enhancement course	1+1=2
TOTAL CREDITS	20

II Year II Semester (Semester IV)

S.No	Course Code	Course	Subject	L	Τ	P	Credits
1.	23HS4101	Humanities and Social	8 8 8 8				2
		Sciences	Wanagement				
2.	23ES4102C	Engineering Science	Linear Integrated Circuits and Applications	2	0	0	2
3.	23EI4303	Professional Core	Control Systems	3	0	0	3
4.	23EI4304	Professional Core	Industrial Instrumentation	3	0	0	3
5.	23EI4305	Professional Core	Electrical and Electronic Measurements	3	0	0	3
6.	23TP4106	Soft Skills - 2	English for Professionals	0	0	2	1
7.	23EI4651	Skill Enhancement course	Virtual Instrumentation Lab	0	0	2	1
8.	23ES4152	Engineering Science	Design Thinking & Innovation	1	0	2	2
9.	23EI4353	Professional Core	Linear Integrated Circuits Lab	0	0	3	1.5
10.	23EI4354	Professional Core	Control Systems Lab	0	0	2	1
11.	23EI4355	Professional Core	Measurements Lab	0	0	3	1.5
		То	tal	14	0	14	21

Category	Credits
Basic Science Courses	-
Engineering Science Courses	2
Humanities and Social Science	2+2 =4
Mandatory Courses	-
Professional Core	3+3+3+1+1.5+1.5 =13
Elective: Skill Enhancement course	1+1=2
TOTAL CREDITS	21

Second Year (III Semester)

23BS3101C - Complex Analysis and Numerical Methods

Course Category:	Basic Science	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	23BS1101LinearAlgebra	Continuous Evaluation:	30
	& Calculus	Semester end Evaluation:	70
	23BS2101DifferentialEqua	Total Marks:	100
	tions& Vector Calculus		

Course	Upon	succe	ssful	com	pletic	on of	the c	ourse	, the	stude	nt wi	ll be	able	to:		
outcomes	CO1	Dete	ermine	e anal	ytic, r	non-ar	nalytic	func	tions	and ev	valuat	e com	plex	integr	als	
	CO2			mine analytic, non-analytic functions and evaluate complex integrals yze Taylor, Laurent series and apply residue theorem for computing real te integrals solutions for algebraic, transcendental equations and estimate functions using												
	CO3			olutions for algebraic, transcendental equations and estimate functions using omial interpolation												
	CO4	Solv	e init	initial value problems numerically												
Contributi on of Course		РО 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
Outcomes towards achieveme	CO1	3	2													
nt of Program	CO2	3	2													
Outcomes (L – Low, M -	CO3	3	2			2								L		
Medium, H – High	CO4	3	2			2								L		
Course Content									ems, sidue ation on lental nces- ation ulae-							

	UNIT- IV Numerical Differentiation: First and second order derivatives using Newton's forward and backward difference formulae, Numerical integration with Trapezoidal rule and Simpsons 1/3 Rule, Numerical Solutions of Differential Equations-Taylor's series method, Euler's method, Modified Euler's method and Runge - Kutta method of 4th order.
Text books and Reference books	 Text Book: [T1] B.S.Grewal, "Higher Engineering Mathematics", 44th Ed., Khanna Publishers, 2019 Reference Books: [R1] Erwin Kreyzig, "Advanced Engineering Mathematics", 10th Ed., John Wiley & Sons, 2015. [R2] R.K.Jain, S.R.K.Iyengar, "Advanced Engineering Mathematics", 5th Ed., Narosa Publishers, 2016. [R3] N.P.Bali, Manish Goyal, "A Textbook of Engineering Mathematics", 9th Ed., Lakshmi Publications (P) Limited, 2016. [R4] H. K. Das, Er. Rajnish Verma, "Higher Engineering Mathematics", 3rd Revised Ed., S.Chand & Co., 2014. [R5] S. S. Sastry, "Introductory Methods of Numerical Analysis", 5th Ed., PHI Learning, 2012.
E- resources and other digital material	 Prof.Pranav Haridas, Kerala School of Mathematics, Complex Analysis, Available: https://onlinecourses.nptel.ac.in/noc21_ma39/preview Prof. Ameeya Kumar Nayak, Sanjeev Kumar, IIT Roorkee, Numerical methods, Available: https://onlinecourses.nptel.ac.in/noc21_ma45/preview Jeremy Orloff, Massachusetts Institute of Technology: MIT Open Courseware, Complex Variables with Applications, Available: https://ocw.mit.edu. Henrik Schmidt, Massachusetts Institute of Technology: MIT Open Courseware, Introduction to Numerical Analysis for Engineering, Available: https://ocw.mit.edu.

23HS3102 – Universal Human Values – Understanding Harmony

Course Category:	Humanities and Social Sciences	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	2 - 1- 0
Prerequisites:		Continuous Evaluation:	30
-		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succe	ssful	com	pletic	on of	the co	ourse	, the	stude	nt wi	ll be	able	to:		
outcomes	CO1				nd av ature)		of th	nemse	elves	and	their	surr	ound	ings	(fan	nily,
	CO2	Han	dle p	oroble	ems	with			ole s		ons,	while	e kee	eping	g hu	man
			elationships and human nature in mind xhibit critical ability and become sensitive to their commitment wards their understanding of human values, human relationship and uman society													
	CO3	tow														
	CO4	App	apply what they have learnt to their own self in different day-to-day ettings in real life													
Contributi		РО	PO	РО	PO	РО	РО	РО	РО	РО	РО	РО	РО	PS	PS	PSO
on of Course		1	2	3	4	5	6	7	8	9	10	11	12	01	02	3
Outcomes towards	CO1						1			1						
achieveme nt of Program	CO2			3												
Outcomes (L – Low,	CO3						2									
M - Medium, H – High	CO4								3				2			
Course		-														L
Content	UNIT Course		roduc	ction.	Nee	d. Ba	asic (Guide	elines.	Сот	ntent	and	Proc	cess	for	Value
	Educa			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		.,		0		001						
	Part-1	: Pur	pose	and	motiv	vation	for	the o	course	e, rec	apitul	ation	from	n UH	IV-I,	Self-
	explora							-				-			-	
	validat look at			-			-explo	oratioi	n. Cor	ntinuo	us ha	ppine	ss and	1 pros	sperit	y – A
				1												
	Part-2	•			0			-				•			-	
	for ful Unders			-				-			-				-	-
	scenari															

harmony at various levels.

(Practice sessions are to be included to discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and co-existence) rather than as arbitrariness in choice based on liking-disliking).

UNIT- II

Understanding Harmony in the Human Being – Harmony in Myself:

Part-1: Understanding human being as a co-existence of the sentient 'I' and the material 'Body'. Understanding the needs of self ('I') and 'body' – Happiness and physical facility, Understanding the body as an instrument of 'I' (I being the doer, seer and enjoyer).

Part-2: Understanding the characteristics and activities of 'I' and harmony in 'I'. Understanding the harmony of I with the body: Sanyam and health; Correct appraisal of physical needs, Meaning of prosperity in detail, Programs to ensure sanyam and health.

(Practice sessions are to be included to discuss the role others have played in making material goods available to me. Identifying from one's own life. Differentiate between prosperity and accumulation. Discuss program for ensuring health vs. dealing with disease).

UNIT- III

Understanding Harmony in the Family and Society – Harmony in Human-Human Relationship:

Part-1: Understanding values in human-human relationship; Meaning of justice (nine universal values in relationships) and program for its fulfillment to ensure mutual happiness; Trust and respect as the foundational values of relationship, Understanding the meaning of trust; Difference between intention and competence, Understanding the meaning of respect, Difference between respect and differentiation; The other salient values in relationship.

Part-2: Understanding the harmony in the society (society being an extension of family); Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive human goals, Visualizing a universal harmonious order in society–Undivided society, Universal order– From family to world family.

(Practice sessions are to be included to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education, etc. Gratitude as a universal value in relationships. Discuss with scenarios. Elicit examples from students' lives).

UNIT- IV

Part-1: Understanding Harmony in Nature & Existence – Whole existence as Coexistence: Understanding the harmony in the nature, Interconnectedness and mutual fulfillment among the four orders of nature – Recyclability and self-regulation in nature, Understanding existence as co-existence of mutually interacting units in all-pervasive space, Holistic perception of harmony at all levels of existence.

	Part-2: Implications of the above Holistic Understanding of Harmony on Professional Ethics: Natural acceptance of human values, Definitiveness of ethical human conduct, Basis for humanistic education, Humanistic constitution and humanistic universal order, Competence in professional ethics: a) Ability to utilize the professional competence for augmenting universal human order, b) Ability to identify the scope and characteristics of people-friendly and eco-friendly production systems, c) Ability to identify and develop appropriate technologies and management patterns for above production systems, Case studies of typical holistic technologies, management models and production systems, Strategy for transition from the present state to universal human order: a) At the level of individual: as socially and ecologically responsible engineers, technologists and managers, b) At the level of society: as mutually enriching institutions and organizations.
	(Part-1: Practice sessions are to be included to discuss human being as cause of imbalance in nature (film "Home" can be used), pollution, depletion of resources and role of technology, etc. Part-2: Practice exercises and case studies are to be taken up in practice (tutorial) sessions eg. to discuss the conduct as an engineer or scientist, etc.).
Text	Text Book:
books and	[T1] R. R. Gaur, R. Sangal and G. P. Bagaria, "Human Values and Professional Ethics",
Reference	Excel Books Private Limited, New Delhi (2010).
books	Reference Books:
	[R1] A. Nagaraj, Jeevan Vidya Prakashan, Amarkantak, "Raman Jeevan Vidya: Ek
	Parichaya (1999).
	[R2] A. N. Tripathi, "Human Values", New Age International Publishers, New Delhi (2004).
	[R3] Annie Leonard, "The Story of Stuff: The Impact of Overconsumption on the Planet, our Communities, and our Health and how we can make it better", Free Press, New York (2010).
	[R4] Mohandas Karamchand Gandhi, "The Story of my Experiments with Truth:
	Mahatma Gandhi Autobiography", B. N. Publishing (2008).
	[R5] E. F. Schumacher, "Small is Beautiful: A Study of Economics as if People
	Mattered", Vintage Books, London (1993).
	[R6] Cecile Andrews, "Slow is Beautiful: New Visions of Community", New Society
	Publishers, Canada (2006).
	[R7] J. C. Kumarappa, "Economy of Permanence", Sarva-Seva-Sangh Prakashan Varanasi
	(2017).
	[R8] Angreji Raj, Pandit Sunderlal, Prabhath Prakashan, "Bharat Mein" Delhi (2018).
	[R9] Dharampal, "Rediscovering India Society for Integrated Development of Himilayas"
	(2003).

	[R10] M. K. Gandhi, "Hind Swaraj or Indian Home Rule", Navajivan Publishing House,
	Ahmedabad (1909)
	[R11] Maulana Abul Kalam Azad, "India Wins Freedom: The Complete Version", Orient
	Blackswan (1988).
	[R12] Romain Rolland, "The Life of Vivekananda and the Universal gospel", Advaitha
	Ashrama, India (2010).
	[R13] Romain Rolland, "Mahatma Gandhi: The Man who become one with the Universal
	Being", Srishti Publishers & Distributors, New Delhi (2002).
E-	1. AICTE – SIP Youtube Channel
resources	https://www.youtube.com/channel/UCo8MpJB_aaVwB4LWLAx6AhQ
and other	2. AICTE – UHV Teaching Learning Material
digital	https://fdp-si.aicte-india.org/download.php#1
material	

23ES3103F – Analog Electronic Circuits

Course Category:	Engineering Science	Credits:	2
Course Type:	Theory	Lecture - Tutorial - Practice:	2 - 0- 0
Prerequisites:	Basic Electronics,	Continuous Evaluation:	30
_	Network Theory	Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon s	succes	ssful c	omple	etion	of the	e coui	se, tł	ne stu	dent	will be	e able t	0:			
outcomes	CO1	Ana	lyze v	variou	s stab	ility	biasir	ig tec	hniqu	les in	BJT	and FE	Т			
	CO2	Ana	lyze a	mplif	ier ci	rcuits	at lo	w fre	quen	cies						
	CO3	Des	ign di	fferen	t osci	illatoı	circu	uits								
	CO4						1						ficiency	7		
	CO5	Dev	elop a	inalog	elec	tronic	circu	iits u	sing 1	mode	rn too	ls	T	1	1	1
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
towards	CO1		3												2	
achievement of Program	CO2	3													2	
Outcomes	CO3			2											2	
(L – Low, M – Medium, H	CO4		2												2	
– Medium, H – High	CO5					2										2
	therma	compensation for V_{BE} and I_{CO} , Thermistor and Sensistor compensation; Thermal runaway an thermal stability, JFET biasing circuits - Fixed bias, Voltage divider bias. UNIT- II Transistor Amplifiers at Low frequencies														ay and
Course Content	BJT Amplifiers: Hybrid parameter model of transistor, Analysis of transistor amplifier using parameter model, Simplified CE hybrid model, Simplified calculations for CC & Cl configurations, Cascaded stage (CE-CE), Cascode (CE-CB), Darlington Pair(CC-CC). FET Amplifiers: FET small signal model, Analysis of FET amplifiers at low frequencies CS/CD/CG configurations.														& CB	
	UNIT	· III														
	Feedb	ack A	mpli	fiers:												
		resist	tance,	Meth	od o	f ana	lysis	of fe	edbad	ck an			-	rs, Inpu series, C		
	Oscilla Classif			Osci	llator	s, Si	nusoi	dal	oscill	ators	, Barl	khause	n crite	ria, RC	c phase	e shift

	oscillator using BJT, Wein bridge oscillator, LC oscillators- Hartley and Colpitts Oscillator.
	UNIT- IV
	Power Amplifiers : Classification of Power amplifiers, Class A series fed and Transformer Coupled, Second Harmonic distortion, Class B Transformer coupled Push-Pull and Complementary Symmetry Push-Pull, Cross over distortion.
Text books and	Text Book
Reference books	 Jacob Millman and Christos C Halkias, "Integrated Electronics: Analog and Digital Circuits and Systems", 12thed, TMH, 1991. G.K.Mithal, "Electronic Devices and circuits", 23rded, Khanna Publishers 2010.
	Reference books
	 [1]A.P.Godse and U.A.Bakshi "Electronic Circuit Analysis", 1sted, fourth reprint, Technical Publications,2010. [2] Robert Boylestad and Louis Nashelsky, "Electronic Devices and Circuit Theory", 6thed, PHI 2000.
E	
E-resources and other digital	http://nptel.iitm.ac.in/courses.php?branch=Ece
material	

23EI3304 – Digital Circuits and Systems

Course Category:	Professional Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succe	ssful	com	pletic	on of	the co	ourse	, the	stude	ent wi	ill be	able	to:		
outcomes	CO1	Ana	lyze	digit	al ele	ctron	ic cir	cuits	using	g ana	lytica	l tool	ls			
	CO1 CO2	Des	ign d	igital	elect	ronic	circu	iits w	vith a	nd wi	thout	t men	nory	eleme	ents	
	CO3													m des		
	CO4	Use	the s	pice	softw	are to	o desi	gn th	e dig	ital e	lectro	onic c	ircui	ts		
Contributi		РО	PO	PO	РО	PO	PO	PO	PO	РО	PO	PO	PO	PS	PS	PS
on of		1	2	3	4	5	6	7	8	9	10	11	12	01	O2	03
Course Outcomes towards	CO1		3												1	
achieveme nt of Program	CO2		3												2	
Outcomes (L – Low, M -	CO3	2													1	
Medium, H – High	CO4					2										2
Course Content	UNIT Digital forms, Karnau UNIT Combi Full - S Binary Combi design design,	Fun Stand gh ma - II natio Subtra code natio using	lard f ap min nal L actor, conve nal L multi	orms, nimiz ogic 1 BCD erters ogic plexe	Simp ation Desig to 7 s Desig rs, De	plifica and Q n: Par segme gn Us emulti	tion of puine- rallel ent de ing N plexe	of Bo McCl adder coder	olean uskey , Carr , Desi C ircu i	funct meth y Loo gn of its: N	tions od of ok-ahe a Bin Iultip	using minir ead ac nary t lexer,	alge nizati lder, l o G+ Com	braic on. Half - +ray a ıbinati	Subtrand G	iques ractor, ray to logic

	 UNIT- III Flip-Flops: Clocked S-R flip-flop, Preset and clear, J-K flip-flop, Race around condition, Master slave J-K flip-flop, D flip-flop, T flip-flop, Excitation table of a flip-flop, Flip-Flop conversions. Sequential Logic Design: Shift register, Bi-directional shift register, Applications of shift resisters: Ring counter, Twisted ring counter, Sequence generator. Asynchronous counters – Up/Down counters, Modulus of the counter, Design of synchronous counters. UNIT- IV
	 Memory Devices: Functional block diagram and operation - ROM, PROM, EPROM, EEPROM, Flash memory, RAM: Static and dynamic RAM, ROM as a PLD, PAL and PLA Programming. Digital Integrated Circuits: Characteristics of Digital ICs, Logic Families: MOS and CMOS logic families
Text books and Reference books	Text Book: [T1] R P Jain "Modern Digital Electronics", 4th Ed., TMH Reference Books: [R1] M. Morris Mano, "Digital Logic and Computer Design", PHI,2003 [R2] A. Anand Kumar, "Fundamentals of Digital Circuits", PHI, 2006
E- resources and other digital material	

23EI3305 – Sensors and Transducers

Course Category:	Professional Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succe	ssful	com	pletic	on of	the co	ourse	, the	stude	nt wi	ll be	able	to:		
outcomes	CO1					perfoi ment.		ce ch	narac	teristi	ics c	of in	strun	nent	and	the
	CO2						sduce	r bas	ed or	n tran	sduct	ion r	rinci	ples		
	CO3	Sele		rele	-									ious	phys	ical
	CO4		Apply the concepts of signal conditioning circuit for various transducers													
Contributi on of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
Outcomes towards achieveme	CO1		2											1		
nt of Program	CO2	2												1		
Outcomes (L – Low, M -	CO3		3											2		
Medium, H – High	CO4	2														1
	UNIT Instrum charact Transfe instrum Measu of limit UNIT Transf Variab Charac thermo conditio	- I ment eristic er fur hents t remen ing er - II lucers ble R teristi meter	es - f action o step nt Er ror, S s: Cla s: Cla esista cs an , The	Desira , Dyn) inpu rors a statisti ssifica ance d app ermist	able namic t. and S acal tro ation of Tran olication cors,	& Ui resp Statist eatme of tran nsduc ons o Hot-v	ndesir onse ical A nt, Cu nsduce ers: f Res vire	able of Z analys urve fi ers, Cl Princ istanc	chara ero c sis: I itting i haract iple e pot	cteris order, Defini metho ceristic of o entior	tics; First tion c ods cs of t perati neters	Dyna orde of para ransd on, o	mic er and amete ucers Const ain ga	charac d Sec ors, Co	ombin ombin de Resis	Static ics - order ation etails, tance

	UNIT- III
	Reactance Transducers Variable Inductance Transducers: Principle of operation, Construction, Characteristics
	and applications of LVDT - RVDT, Variable reluctance accelerometer, Signal conditioning of inductive transducers
	Capacitive Transducers – Principle of operation, Construction, Characteristics and applications of Variable air gap, Variable distance, Variable permittivity capacitive transducer, Frequency response, Signal conditioning of capacitive transducers
	UNIT- IV Special Sensors: Introduction, Smart sensors, Micro Sensors, IR radiation Sensors, Ultrasonic Sensors, Fiber optic sensors, Colour sensor, Proximity sensors, Chemical sensor, IC sensor, Bio Sensors.
Text books and Reference books	Text Book:[T1] A.K.Sawhney & Puneet Sawhney, "A Course In Electrical And ElectronicMeasurements And Instrumentation", 19 th Ed., Dhanapat Rai & Co., 2015[T2] D.V.S.Murty, "Transducers & Instrumentation", 2 nd Ed., PHI, 2013Reference Books:[R1]A.K.Ghosh, "Introduction to Measurements & Instrumentation", 3 rd Ed., PHI, 2009[R2] Raman Pallas & John G.Webster, "Sensors & Signal Conditioning", 2 nd Ed., J.Wiley,2012
E- resources and other digital material	1. https://nptel.ac.in/courses/108/108/108108147

23TP3106 – Logic and Reasoning

Course Category:	Soft Skills-1	Credits:	1
Course Type:	Learning by Doing	Lecture - Tutorial - Practice:	0 - 0- 2
Prerequisites:		Continuous Evaluation:	100
		Semester end Evaluation:	0
		Total Marks:	100

Course	Upon	succe	ssful	comp	oletio	n of t	he co	ourse,	the s	stude	nt wi	ll be	able	to:		
outcomes	CO1	Thi	nk rea	son l	ogica	ally ir	any	critic	al sit	uatio	n					
	CO2		lyze g									1				
	CO3		educe										ical li	ife		
	CO4		elop hods	time	man	agem	lent	skills	by	appr	oachi	ing o	liffer	ent	short	cut
	CO5	Use	math	emat	ical t	ased	reasc	oning	to m	ake d	lecisi	ons				
	CO6		oly log ns foi										les in	n qu	alify	ing
Contributi on of		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
Course Outcomes towards	CO1						2									
achieveme nt of Program	CO2		2													
Outcomes (L – Low, M -	CO3								2							
Medium, H – High	CO4									2						
	CO5	2														
	CO6	1														
Course Content	2. 3. 4. 5. UNIT-	Serie Codin Blood Puzzl Direc II	s Com ng-Ded d Rela les test ction se al Ver	coding tion E t ense t	g Blood est											

	2. Number test, Ranking test
	3. Mathematical operations
	4. Arithmetical Reasoning
	5. Syllogism
	UNIT-III
	1. Binary Logic
	2. Inserting missing character
	3. Data sufficiency
	4. Analogy
	5. Classification
	UNIT- IV
	1. Water images,
	2. Mirror images,
	3. Paper folding,
	4. Paper cutting,
	5. Embedded Figures,
	6. Dot situation,
	7. Cubes & Dice
Text	Text Book:
books and	[T1] S. Aggarwal, "Verbal and Non-Verbal reasoning", S Chand Publication, 2017
Reference	[11] 5. Aggar war, verbar and tron-verbar reasoning, 5 chand 1 ubileation, 2017
books	
Е-	1. <u>https://www.indiabix.com/</u>
resources	2. <u>https://treeknox.com/</u>
and other	3. <u>https://www.examveda.com/</u>
digital material	

23MC3107 – Environmental Science

Course Category:	Audit Course	Credits:	-
Course Type:	Theory	Lecture - Tutorial - Practice:	2 - 0- 0
Prerequisites:		Continuous Evaluation:	100
		Semester end Evaluation:	0
		Total Marks:	100

Course outcomes	Upon	succe	ssful	com	pletio	on of	the co	ourse	, the	stude	nt wi	ll be	able	to:		
outcomes	CO1			vario neasu		ctors	caus	sing	degra	datio	on of	natu	ıral r	esou	rce a	ind
	CO2					osyste	em ar	nd ne	ed fo	r hio	diver	sity				
													ental	pollu	tion	and
	CO3	its n	nanag	gemei	nt											
	CO4					tion a /ironi		echno	logy	to ar	nalyse	e soci	ial iss	sues,	use a	icts
Contributi on of		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
Course					-			-	-	-						
Outcomes towards	CO1	1							1							
achieveme nt of Program	CO2		1	1							1					
Outcomes (L – Low,	CO3		1 1													
M - Medium, H – High	CO4															
Course Content	UNIT The mu Need for Natura Renew (a)For (a)For (b) Wat Drough (c) Min using m (d) Foo overgra Salinity	altidis or pub al Res able a est re a Dam ter R nt, Con eral 1 ninera d Res azing,	olic av ource and N source as and esour nflicts Resou l reso source	varene es : (on-re es: U their ces: 1 over irces: urces: es: V	ess. enewa Ise an effec Use a water Use World	able R ad over ts on t and over r, Dan and e food	er-exp forest: ver-ut ns-ber exploi d pro	r ces : 1 loitati s and ilizati nefits tation	Natura ion, I tribal on of and p , Env s, Ch	al reso Defore peopl surfa robler rironn	ources estatio le. ace an ns. nental	and a on. Tip nd group effect	associa mber ound ets of by ag	ated p extra water extra gricul	proble ction, r, Flo cting ture	ods, and and

(e) Energy Resources: Growing energy needs, Renewable and non-renewable energy sources, Use of alternate energy sources.

(f) Land Resources: Land as a resource, Land degradation, Man induced landslides, Soil erosion and desertification. Role of an individual in conservation of natural resources. Equitable use of resources for sustainable lifestyles

UNIT- II

Ecosystems: Concept of an ecosystem. Structure and function of an ecosystem. Producers, Consumers and decomposers. Energy flow in the ecosystem. Ecological succession. Food chains, Food webs and ecological pyramids. Introduction, Types, Characteristic features, Structure and function of the following ecosystem: (a) Forest ecosystem (b)Grassland ecosystem (c)Desert ecosystem

(d)Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

Biodiversity and its Conservation

Introduction, Definition: Genetic, Species and ecosystem diversity. Biogeographically classification of India. Value of biodiversity: Consumptive use, Productive use, Social, Ethical, Aesthetic and option values. Biodiversity at global, National and local levels. India as a mega-diversity nation. Hot-spots of biodiversity. Threats to biodiversity: Habitat loss, Poaching of wildlife, Man-wildlife conflicts. Endangered and endemic species of India. Conservation of biodiversity: in-situ and ex-situ conservation of biodiversity

UNIT- III

Environmental Pollution: Definition, Causes, Effects and control measures of (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards

Solid waste management: Causes, Effects and control measures of urban and industrial wastes. Role of an individual in prevention of pollution.

Disaster management: Floods, Earthquake, Cyclone and landslides

UNIT- IV

Social Issues and the Environment: From unsustainable to sustainable development. Urban problems related to energy. Water conservation, Rain water harvesting, Watershed management. Resettlement and rehabilitation of people; Its problems and concerns.

Environmental ethics Issues and possible solutions. Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Wasteland reclamation, Consumerism and waste products.

Environment Protection Act: Air (Prevention and control of pollution) act. Water

	(Prevention and control of pollution) act. Wildlife protection act. Forest conservation act. Issues involved in enforcement of environmental legislation.
	Public awareness: Human population and the environment, Population growth, Variation among nations, Population explosion - Family Welfare Programme.
	Environment and Human Health: Human rights, Value education, HIV/AIDS, Women and child welfare, Role of information technology in environment and human health.
	Field Work/ Case Studies: Visit to a local area to document environmental assets – River/ Forest/ Grassland/ Hill/ Mountain. Visit to a local polluted site – Urban/Rural/Industrial/Agricultural. Study of common plants, insects, birds. Study of simple ecosystems - Pond, river, hill slopes, etc.
	Self-Study : Water resources, Threats to biodiversity, Solid waste management, Role of information technology in environment and human health
Text	Text Book:
books and	[T1] "Grants Commission", New Delhi, Bharati Vidyapeeth Institute of Environment
Reference	Education and Research
books	Reference Books:
	[R1]AnjaneyuluY. "Introduction to Environmental Sciences", B S Publications PVT Ltd,
	Hyderabad
	[R2].Anjireddy.M "Environmental Science & Technology", BS Publications PVT Ltd, Hyderabad.
	[R3]Benny Joseph, "Environmental Studies", The Tata McGraw- Hill publishing company limited, New Delhi, 2005.
	[R4]. P.VenuGopalaRao, "Principles of Environmental Science. & Engineering", Prentice-Hall of India Pvt. Ltd., New Delhi, 2006.
	[R5]Santosh Kumar Garg, RajeswariGarg, "Ecological and Environmental Studies", Khanna Publishers, New Delhi 2006.
	[R6] Kurian Joseph & R Nagendran, "Essentials of Environmental Studies", Pearson Education publishers, 2005.
	[R7] A.K Dee, "Environmental Chemistry", New Age India Publications.
	[R8] BharuchaErach, "Biodiversity of India", Mapin Publishing Pvt.Ltd
E- resources and other digital	
material	

23EI3651 – Numerical Computing using MATLAB

Course Category:	Skill Enhancement	Credits:	1
Course Type:	Learning by Doing	Lecture - Tutorial - Practice:	0 -0- 2
Prerequisites:		Continuous Evaluation:	100
		Semester end Evaluation:	0
		Total Marks:	100

Course	Upon	succe	ssful c	ompl	etion	of the	e coui	se, th	ne stud	lent v	vill be	e able	to:			
outcomes	CO1		elop a	-												
	CO2		elop a	<u> </u>					for lin	ear al	gebra	1				
	CO3		elop a			U					U		terpol	ation		
	CO4		elop a													
Contributi		РО	PO	РО	PO	PO	РО	PO	PO	PO	PO	PO	PO	PSO	PSO	PS
on of		1	2	3	4	5	6	7	8	9	10	11	12	1	2	03
Course	CO1			3		3									3	
Outcomes	CO2			3		3									3	
towards	CO3			3		3									3	
achieveme	003			5		5									3	
nt of																
Program																
Outcomes	CO4			3		3									3	
(1–Low, 2	001			U		0									5	
- Medium,																
3 – High																
Course	Week															
Content	Week									0						
	Week				0											
	Week		-	-			-		-							
	Week			0		•••			near A	lgebr	aic eo	quatio	ns			
	Week			-		-										
	Week															
	Week			-			-	d Inte	rpolat	tion						
	Week						1									
	Week						1.	1.	CC							
	Week											ons (O	DE's)			
	Week		ontini	ung v	vith r	numer	ical s	olutio	on to (JDE'S	5					
Text books	Text I	Book														
and	[1] Ge	erald	& Wh	eatle	y, "A	pplie	d Nu	meri	cal Ai	nalysi	is", P	earso	n- 7tł	n Editio	on, 200)3.
Reference			-		ents o	of Nu	neric	al A	nalysi	s", se	cond	editi	on, Ca	ambrid	lge	
books	unive	• •	· · · ·	2015												
	Refer															
	[1] Ma			-					•				-			
			1 ·		<u> </u>	tarted	with	MAT	LAB	: A qı	iick i	ntrodı	uction	for scie	entist &	k
	engine															
Е-	https:/	/in.ma	athwor	ks.co	<u>m/</u>											
resources																
and other																
digital																
material																

23ES3152 – Electronic Circuits Lab

Course Category:	Engineering Science	Credits:	1
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0- 2
Prerequisites:		Continuous Evaluation:	30
-		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succe	ssful	com	pletic	on of	the co	ourse	, the	stude	nt wi	ll be	able	to:		
outcomes	CO1	Des	ign v	ariou	s ana	alog e	electr	onic	circui	its						
	CO2		~		-		nd ir rms a		1		0			oy el	lectro	nic
	CO3						s an i e such					sing	discr	ete co	ompo	nents
	CO4						ort ba									
Contributi on of		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
Course Outcomes towards	CO1		3											3		
achieveme nt of Program	CO2				3										3	
Outcomes (L – Low,	CO3					3				1		1				3
M - Medium, H – High	CO4															
Course Content	2. 3. 4. 5. 6. 7. 8. 9. 10. 11.	-	e Mo acteris gn of t gn of t gn of t gn of t acteris acteris acteris gn of I gn of V	dule: stics o transis transfe unbias clippe stics o stics o respo Hartle Wein	stor se er cha sed cla rs. f Una f SC nse of nse of y Osc Bridg	elf-bia racter amper i Junc R Cha f CE a f CS A cillato e osci	s circ istics rs. tion T aracter amplif Ampli r. llator	uit. of jur Transis ristics Tier. fier.	nction stor.		-					

23EI3353 – Digital System Design Lab

Course Category:	Professional Core	Credits:	1.5
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0- 3
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	I non s		C 1	1	<i>.</i> •	C .1		.1		1 /	111.1	11 /				
	*											e able t				
	CO1													and F	PGA	
	CO2				-					-		d FPG				
	CO3						-				-	en pro				
	CO4												ng moo	lern too	ols	
	CO5										rimen	ts.	1	1		1
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
towards achievement	CO1			3		2										
of Program Outcomes	CO2 CO3			3	3	2										
(L – Low, M	CO4									3			2			
– Medium, H – High	CO5										3					
	2.	LED Num Mult	s and bering i-Out	7-seg g Syst put Ci	ment ems (rcuits	displ Create	ays e a 4- ign a	bit rij	ople o	carry	adder		lataflov	ittons, a w model	ing.	-

13. Counters, Timers, and Real-Time Clock- Generate several kinds of counters, timers, and

	real-time clocks. 14. Finite State Machines- Model Mealy FSMs, Model Moore FSMs. 15. Sequential System Design using Algorithmic State Machine (ASM) Charts.
Text books and Reference books	Text Book [T1] M. Rafiquzzaman, Steven A. McNinch, "Digital Logic: With an Introduction to Verilog and FPGA-Based Design", 1st Ed., Wiley, 2019. [T2] Cem Unsalan, Bora Tar, "Digital System Design with FPGA: Implementation Using Verilog and VHDL", 1st Ed., McGraw Hill Professional, 2017. [T3] Frank Bruno, "FPGA Programming for Beginners: Bring your ideas to life by creating hardware designs and electronic circuits with SystemVerilog", Packt Publishing Ltd., 2021
E-resources and other digital material	1.https://www.xilinx.com/ 2.https://digilent.com/reference/learn/programmable-logic/tutorials/start

23EI3354 – Transducers Lab

Course Category:	Professional Core	Credits:	1.5
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0- 3
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succe	ssful	com	pletic	on of	the co	ourse	, the	stude	nt wi	ll be	able	to:		
outcomes	CO1	Use t	ransdi	licers	for m	easure	ement	of va	rious	param	neters					
	CO2	Analy								.						
	CO3	Cond	uct ex	perin	nents a	as an :	indivi	dual c	or tear	n.						
	CO4															
Contributi		PO PS PS PS 1 2 3 4 5 6 7 8 9 10 11 12 01 02 03														
on of		1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
Course																
Outcomes towards	CO1	3														
achieveme																
nt of	CO2															
Program	002															
Outcomes																
(L - Low,	CO3									1			1	2		
M -																
Medium, H – High	CO4										2					
Course																
Content	List of	Expe	rimei	nts												
	1. Cha	-			esistar	nce Te	emper	ature	Detec	tor (R	(TD)					
	2. Ter						-				,					
	3. Cha	aracter	ristics	of Li	ght D	epend	ent R	esisto	or (LE	DR) ar	nd pho	ototrai	nsisto	r		
	4. Me	asurei	nent o	of mag	gnetic	flux	densit	y usir	ng Hal	ll effe	ct trai	nsduce	er			
	5. Spe	ed me	easure	ment	using	magi	netic p	vick-u	p and	photo	belect	ric pic	k-up			
	6. Flo				-	-	-		-	-		-	-			
	7. Cal	ibratio	on of j	pressu	ire ga	uges i	using	dead	weigh	t teste	er.					
	8. Dis	place	ment i	measu	Ireme	nt usi	ng Lir	near V	ariab	le Dif	ferent	ial Tr	ansfo	rmer ((LVD	T)
	9. Pre	ssure	meası	ıreme	nt usi	ng str	ain ga	uge								
	10. 1	nterfa	cing a	a Pass	ive In	frared	l (PIR) sens	sor wi	th Are	duino	for m	otion	detec	tion	
	11. 1	nterfa	cing a	an ind	uctive	e prox	imity	sense	or with	n Ardı	uino f	or obj	ect de	etectio	n	
	12. I	nterfa	cing a	a soil	moist	ure se	nsor	with A	Arduir	10						
	Note: A	•		-								-	ed by	the st	udent	for
	him/her	to be	eligib	le to y	write	Unive	rsity]	Practi	cal Ex	kamin	ations					

Text	[T1] A.K.Ghosh, "Introduction to Measurements & Instrumentation", 3rd Ed., PHI,
books and	2009.
Reference	[T2] A.K.Sawhney & Puneet Sawhney, "A Course in Mechanical Measurements
books	& Instrumentation", 7 th Ed., Dhanapat Rai & Co., 2012
E-	https://create.arduino.cc/
resources	https://www.allaboutcircuits.com/
and other	
digital	
material	

Second Year (IV Semester)

23HS4101 – Engineering Economics and Management

Course Category:	Humanities and Social Sciences	Credits:	2
Course Type:	Theory	Lecture - Tutorial - Practice:	2 - 0- 0
Prerequisites:		Continuous Evaluation:	30
-		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succ	essfu	l con	npleti	on of	f the	cours	e, the	e stud	ent w	ill be	e able	e to:		
outcomes	CO1	Und	lerstar	nd var	ious f	orms	of org	ganiza	tions	and p	rincip	les of	mana	igeme	ent.	
	CO2					us asp								<u> </u>		
	CO3	Perc	ceive t	the kn	owled	dge or	n Hum	nan re	source	es and	l Marl	keting	funct	tions.		
	CO4	Evaluate various alternatives economically.														
Contributio		PO PO PO PO PO PO PO PO PO PS PS PS 1 2 2 4 5 6 7 8 9 10 11 12 91 92 93														
n of Course		1	2 3 4 5 6 7 8 9 10 11 12 O1 O2 O3													
Outcomes	CO1	2														
towards the achievement	01	2														
of Program Outcomes	CO2	2				3										
(1– Low, 2– Medium, 3 –	CO3	2														
High)	CO4	2				3										
Course Content	UNIT Forms Joint s Mana scienti UNIT Introd Margin margin Dema inelast Suppl functio	s of I tock of geme fic m fic m C – II luctional u nal ut nal ut nal ut nal scl ic den y Ana	comparation of the second seco	any, C ntrodu ement. Econ and t is: Th e and , Type	Co-ope action , Mod omics total neory dema es of e	to n ern pr s: Intr utility of de nd cu elastic	e soci nanag rincip roduct , Lav mand rve, S ity.	ety an ement les of ion to v of o : Den hift in	nd pub , Fun mana) basic dimin nand : n dem	lic se actions geme c econ ishing functi and, l	ctor. s of 1 nt. nomic g mar on, Fa	nanag conc ginal actors city o	gemen epts, utilit influ f dem	utilit, Pri Utilit, y, La encin and: I	nciple y anal w of g den Elastic	es of lysis: equi hand, c and

	UNIT – III Human Resource Management: Meaning and difference between personnel management and human resource management, Functions of human resource management.
	Marketing Management: Concept of selling and marketing – Differences, Functions of marketing, Product life cycle, Concept of advertising, Sales promotion, Types of distribution channels, Marketing research, Break-Even analysis
	UNIT – IV Financial Management: Functions of financial management, Time value of money with cash flow diagrams, Concept of simple and compound interest.
	Depreciation: Causes of depreciation, Factors influencing depreciation, Common methods of depreciation: Straight line method, Declining balance method, Sum of year's digits method –Problems.
	Economic Alternatives: Methods of evaluating Alternatives under present worth method, Future worth method, Annual equivalent method - Problems.
Textbooks	Text Book:
and	[T1] M.Mahajan, "Industrial Engineering and Production Management", 2 nd
Reference	Ed., DhanpatRaiPublications
books	[T2]MartandTelsang" Industrial & Business Management" S.Chand
	publications
	Reference Books:
	[R1] R.Paneerselvam "Production and Operations Management" PHI
	[R2]Philip Kotler & Gary Armstrong "Principles of Marketing", Pearson
	Prentice Hall,NewDelhi,2012
	[R3] IM Pandey, "Financial Management", 11 th Ed., Vikas Publications
	[R4]B.B.Mahapatro, "Human Resource Management", New Age International
E-resources	1. <u>https://www.toppr.com/guides/fundamentals-of-economics-and-</u> management/supply/supply-
and other	function/
digital	2. <u>https://keydifferences.com/difference-between-personnel-management-and-human-</u>
material	resource- management.html
	3. <u>http://productlifecyclestages.com/</u> 4. <u>http://spacehfacdia.com/acch_flow_diagrams/</u>
	4. <u>https://speechfoodie.com/cash-flow-diagrams/</u>

23ES4102C – Linear Integrated Circuits and Applications

Course Category:	Engineering Science	Credits:	2
Course Type:	Theory	Lecture - Tutorial - Practice:	2 - 0- 0
Prerequisites:	Electronic Devices and	Continuous Evaluation:	30
	Circuits, Network Theory	Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succe	essful	com	pletic	on of	the c	ourse	, the	stude	ent w	ill be	able	to:		
outcomes	CO1	Und	lersta	nd th	e cha	racte	ristic	s of 7	741IC	7						
	CO2	App		e cor					mpler		varic	us li	near a	and n	on-li	near
	CO3				ent IC	circ	uits u	sing	741.5	555 a	nd 72	3 IC	s.			
	CO4	Design different IC circuits using 741,555 and 723 ICs.Illustrate the operation of Special purpose ICs and their applications.														
Contributi			PO P													
on of		1														
Course																
Outcomes	CO1	2														
towards	001	-													2	
achieveme																
nt of	CO2	3													2	
Program																
Outcomes	CO3		3												3	
(L – Low, M -																
Medium,	CO4	2													2	
H – High	CO4	2													2	
Course	UNIT	- I		I				I			I	I				I
Content	Operat	tional	Am	plifie	r: Int	egrate	ed cir	cuits	- Pac	ckage	type	s and	tem	oeratu	re rai	nges,
	Power			-		U				U	• 1		-	-		0
	practic				0		-			-	- ·		-	- ·		
	charact	-	-	-				-	-			-			· •	-
	Rate.	CIIStic	.5 D	C un	u ne	Cildia				opn	mp	ricqu	ency	Respt	J115C,	
	Rate.															
	Linear	appl	icatio	ns of	Op-A	Amp ·	- Inve	rting	ampli	fier, l	Non-i	nverti	ng an	nplifie	er, Vo	ltage
	followe	er, Dif	fferen	tial ar	nplifi	er, Su	mmin	g amp	olifier	, Instr	umen	tation	ampl	ifier,	Integr	ator,
	Voltage	e to ci	ırrent	conve	erter a	ind cu	rrent	to vol	tage c	conver	ter.					
	TINIT	TT														
	UNIT Non-lii		nnlia	ation	s of ()n. 4 •	nn• D	raciai	on die	de A	nnlia	ations	_ Dro	cision	, full -	Wava
	rectifie					-	-					ations	- 110	C15101	i i ulli V	wave
	recuire	г, сп <u></u>	pers			cicci	, 5a	inpic (cuit.					
	Compa	arator	rs an	d Wa	avefo	rm (Gener	ators	: Bas	ic co	mpar	ator,	Appli	cation	ns —	Zero
	crossin										-					
	generat	-							-							
	TINIT	TTT														
			κα • Λ -	stiva I	Don	1 UD	filtora	Sall	an kar	, I D c	nd U	D filta	TO D	and ne	nee file	are
	Active								•					-		
	Wide t	and p	pass a	ind N	arrow	banc	1 pass	filtei	rs; Ва	ind st	op til	ters -	W1de	e bano	1 stop	and

	notch filters.
	Analog to Digital and Digital to Analog Converters:Introduction, Basic DAC techniques - Weighted resistor DAC, R-2R ladder D/A converter; A/D conversion - Parallel comparator type ADC, Successive approximation ADC and Dual slope ADC;DAC and ADC specifications
	UNIT- IV Special Purpose ICs and Applications: 555 Timer - 555 as Monostable and Astable operation, Applications, Schmitt trigger;IC 566 Voltage controlled oscillator; Phase locked loops - Operating principle,565 Monolithic PLL, 565 PLL Applications.
Text books and Reference books	 Text Book: [T1] D. Roy Choudhry and Shail B. Jain, "Linear Integrated Circuits" - (4/e), New Age International Pvt. Ltd, 2011. [T2] Rama Kant A. Gayakwad, "Op-Amps and Linear Integrated Circuits", 4th Ed,PHI, 2012. Reference Books: [R1] S. Franco, "Design with Operational Amplifiers and Analog Integrated Circuits", TMH, 2016. [R2] R. F. Coughlin & F. F. Driscoll, "Operational Amplifiers and Linear Integrated Circuits", 6thEd,PHI, 2012. [R3] Jacob, "Applications and Design with Analog Integrated Circuits", 1st Ed, Katson educational series,2008. [R5] S.Salivahanan & V.S. KanchanaBhaskaran, Linear Integrated Circuits, TMH, 2nd edition, 2015.
E- resources and other digital material	 www.analog.com https://nptel.ac.in/courses/108106068/ https://www.allaboutcircuits.com/ https://www.linkwitzlab.com/filters.htm

23EI4303 - Control Systems

Course Category:	Professional Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Laplace transforms and	Continuous Evaluation:	30
	integral calculus, Network	Semester end Evaluation:	70
	theory	Total Marks:	100

Course	Upon	succ	essful	com	pletic	on of	the co	ourse,	the s	tuden	t will	be a	ble to):	
outcomes	CO1	Def	ine ar	nd exp	plain	the co	oncep	ts of	contro	ol sys	tems.				
	CO2	and signal flow graph approaches													
	CO3	trequency domain approaches													
	CO4	Analyze the stability of the given control system using modern tools.													
Contributio n of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 3
towards achievement	CO1													2	
of Program Outcomes	CO2	2												2	
(1 – Low, 2 – Medium, 3 –	CO3		3												2
High	CO4		2			2									2
Course Content	syster overa Math equati Zeros syster UNIT Time impul respon and o doma consta UNIT Stabi and B	ducti ns - ll gai ions $mathemath{\mathbf{o}}$ ions ns, S T - II Don se, T nse o ver c in sp ants, T lity A bound	Open n, Sta for e aract ignal nain Time f seco lampe pecific Propo I Analy ed O	 loop bility Mod electri eristic flow Anal respond o ed system cation ortion 	o and y, Sen lels o ical, c equ graph lysis: onse o rder s stems ns, S al, Int (BIB	close sitivit of Ph mech uatior is and Stan of fir syster syster teady tegral mplex O) sta	ed loo ty and nysica anica n, Bl l Mas dard st-orc ns-un ne do stat and o x Pla ability	op co l exte al Sy l and ock on's g test s der sy damp main deriva	ntrol rnal r v stem d elec diagr gain f signal ystem bed, u spec ror a ative	syste noise. s: Fe ctrom cam formu ls – ificat ificat ind s contre ity de	ms, I ormul echar repres la. Step, standa damp ions, static ol act	Effect lation nical sentat ramp ard te bed, c Expr and ions ons – ed on	of f of syste- tion o, pa est si ritica essio dyn	differ ems, 1 of c raboli gnals, lly da ns for amic unded s of cl	ontrol ck on rential Poles, ontrol c and Step mped c time error Input losed- erion.

	 Root Locus Technique: The root locus concept, Magnitude and angle conditions, Properties and construction of the root loci (For positive K only),Effect of adding poles and zeros to root locus UNIT – IV Frequency Domain Analysis: Frequency domain specifications, Correlation between time and frequency response, Bode plot – Magnitude plot, Phase plot, Determination of phase margin and gain margin, Stability analysis from Bode plots, Polar plots, Nyquist stability criterion, Nyquist Plot.
Text books and Reference books	Text Book:[T1] A.Anand Kumar, "Control Systems", 2 nd Ed., PHI, 2014[T2] I J Nagrath& M Gopal, "Control Systems Engineering", 5 th Ed., New AgeInternational, 2008Reference Books:[R1] Katsuhiko Ogata, "Modern Control Engineering", 4 th Ed., PearsonEducation, 2003[R2] A.NagoorKani, "Control Systems", 2 nd Ed., RBA Publications, 2006
E-resources and other digital material	1 <u>http://www.nptelvideos.com/control_systems/</u> 2 <u>https://nptel.ac.in/courses/108101037/</u>

Г

23EI4304 – Industrial Instrumentation

Course Category:	Professional Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Sensors and Transducers	Continuous Evaluation:	30
_		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succ	essful	comp	letio	n of th	ne cou	rse, tl	he stu	ıdent	will be	e able t	:0:		
outcomes	C01	Exp	lain t	he bas	ic co	ncepts	s of in	dustr	ial pr	ocess	variat	oles			
	CO2											ne engin	neering	g proble	ems
	CO3	Ider	ntify s	uitabl	e trar	nsduce	er for 1	measi	urem	ent of	indust	trial pr	ocess	variab	oles
	CO4		alyze the performance of various measurement techniques in industrial process iables												
Contribution		PO	PO PO<												
of Course		1	2	3	4	5	6	7	8	9	10	11	12	1	2
Outcomes towards achievement	CO1														
of Program Outcomes	CO2	3													
(L – Low, M - Medium, H	CO3	3													
– High	CO4		2												
	based Chang Therm therm UNIT Press summ Resist measu pressu UNIT Flow tube measu Anem	on ge in nocou omet '- II ure ing c ive, ure ga '- III Mea and uremen	chang n ele uples; er, Ul Meas levice Inducent - auges suren Pitot ent typ ters; N	ge in ectrica IC s trasor urem s – D ctive, Mcle using nent : tube; pe flow Mass	dima l pr senso: ic the ent: iaphr Capa od, l dead Intro Var w me flow	ensior operti rs, Ra ermon Introc agms, acitive Knuds weigl duction iable ters - meas	ns -] es – adiatic neter. ductio Bello e, Pie en, Pie en, Pie nt teste on, He area Electu ureme	Bime RT on py n, pr ows, I zoele firani er. ad ty type comagent ty	tals D, Tomo ressur Bource ectric & 1 rpe fl flov gentio	& Li Thern eters, re sta lon tu and loniza ow m w me c, Tur Corio	quid-inistor; Fiber Indarda bes; S Hall tion g eters - ters - bine, bine, bine	of tem n-Glas Ther -optic s, Ma econda Effect gauges - Orifi - Rota Ultrasc nd The	s ther moele sense nomet ary tra ; Lov ; Cali ce pla umeter onic fl- ermal	rmome ectricit ors, Q eers; H insduc w pres ibratio te, Ve w me mass	Force ers – ssure on of enturi ocity eters, flow
	chann							lers -	INUť	ung C	nsc an	d lobe	u mp	ener; (Jpen
	TINTE	1 117													

UNIT- IV

	 Level Measurement: Introduction, Mechanical level indicators - Differential pressure type; Optical level sensors; Electrical type - Resistive, inductive and Capacitive; Acoustic Level Sensors – Ultrasonic; Radiative methods - Gamma ray and Radar Level Sensors. Humidity, Density & Viscosity Measurement: Introduction, Hygrometers-Wet and dry bulb, Electrolytic, piezoelectric hygrometers; Moisture Analyzer-Neutron back scatter Moisture analyzer; Densitometers- Ultrasonic and gamma ray densitometers; Viscometers-Say bolt, Rotational and Float viscometers.
Text books and Reference books	 Text Book: [T1] A.K.Ghosh, "Introduction to Measurements & Instrumentation", IIIrd ed, PHI, 2009. [T2] A.K.Sawhney & Puneet Sawhney, "A Course in Mechanical Measuremnets & Instrumentation", XIIth ed, Dhanapat Rai & Co., 2012. Reference Books: [R1] Ernest O Doebelin/Dhanesh, N Manik, "Measurement systems", VIth ed, Tata Mc Grawhill. [R2] C.S.Rangan, G.R.Sarma & V.S.V.Mani "Instrumentation Devices & Systems", IInd ed, TMH, 2011.
E-resources and other digital material	[1]http://nptel.ac.in/courses/108105064 [2]http://nptel.ac.in/courses/108106074

23EI4305 – Electrical and Electronic Measurements

Course Category:	Professional Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Circuit analysis	Continuous Evaluation:	30
-		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succ	essful	comp	oletio	n of th	e cou	rse, tl	he stu	ıdent	will be	e able t	:0:		
outcomes	CO1		-				Deflec	tion	type	techr	nique	to me	asure	presc	ribed
	~~~			paran suita			instr	umen	nt to	meas	sure r	hysica	and	elec	trical
	CO2	para	amete	rs.		U					1	5			
	CO3											robes.			
Contribution	CO4	Exp PO	Explain the principles of various signal generators and wave analyzers.POPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPO												
of Course		1	2	3	4	5	6	7	8	9	10	11	12	1	2
Outcomes towards	CO1	3													
achievement of Program Outcomes	CO2		3												
(L – Low, M	CO3		2												
- Medium, H – High	CO4														
Course Content	Torqu mecha band s Electu Multin Multin Shunt instrum power UNIT Bridg bridge Electu Digita ramp	rome anism suspe rical range range type ment remea <b>'- II</b> ges: Wi e, Wi conic al vol	quations; Peension Meae amme e amme voltr e ohmme s - El suren Wheat en bri e Inst timetee M, S	on at rmane , Tem asuren neters neter, neter, lectroo nents, stone dge, V rume ers - R uccess	stea ent m perat <b>nent</b> , The Ohm Cali dynar Watt bridg Wagn <b>nts</b> : amp sive	ady s agnet ure co s: D( e Ayr is per bratio hour ge, Kel er gro AC V techn appro	tate movin mpens C am ton s volt r n of d ter, Th meter, lvin br und co /oltme ique, ximat	defle ng co sation mete shunt ating c ins nermo Pow ridge onnec eter u Dual ion	ction il me n. rs - , DC , Loa trumo o Ins er fa , Maz ction. using slop type	s, Dy echani Shu C volt ding e ents, A trume ctor m xwell xwell recti e inte e DV	namic sm – nt re meters effect, Alterna nts, E neters. bridge fiers, grating M, Q	n type beha Torque sistor, s - Mu Series ating c lectrod e, Hay True g type Meto rement	Ayr Ayr ultipli type urrent lynam bridg RMS DVM er -	Dam ntion, ' ton s er res ohmm indic omete e, Sch voltm I, Stai Impeo	hunt, istor, neter, ating ers in ering neter, rcase lance

	<b>UNIT- III</b> <b>Oscilloscopes:</b> Block diagram of oscilloscope, Cathode Ray Tube, Vertical amplifier, Horizontal deflecting system, Typical CRT connections, Delay line in triggered sweep, Dual beam CRO, Dual trace oscilloscope (basic block diagram), Sampling oscilloscope, Digital storage oscilloscope, Probes for CRO - Direct probes, Passive voltage probe, Active probes, Attenuators - Uncompensated attenuators, Simple compensated attenuator
	<b>UNIT- IV</b> <b>Signal Generators</b> : Basic standard sine wave generator, Standard signal generator, Function generator, Laboratory square wave and pulse generator.
	<b>Wave Analyzers:</b> Basic wave analyzer, Frequency selective wave analyzer, Heterodyne wave analyzer, Harmonic distortion analyzers, Spectrum analyzer.
	<b>Frequency Counters And Time-Interval Measurements</b> : Digital frequency meter - Principle of operation, Basic circuit of a digital frequency meter, Digital measurement of time - Principle of operation, Time base selector, Period measurement
Text books	Text Book:
and	[T1] W D Cooper & A D Helfrick, "Electronic Instrumentation and Measurement
Reference	Techniques", PHI, 1998 (Unit-I)
books	[T2] H.S.Kalsi, "Electronic Instrumentation", 2ndEd., TMH. (Units-II, III and IV)
	Reference Books:
	[R1] A.K. Sawhney, "A Course in Electrical and Electronic Measurements and
	Instrumentation", Dhanpat Rai & Co
	[R2] Oliver & Cage, "Electronic Measurements and Instrumentation", Mc Graw Hill, 1975
E-resources	https://www.youtube.com/watch?v=3eYmFjHnQjY&list=PLbRMhDVUMngcoKr
and other	A4sH-zvbNVSE6IpEio
digital	
material	

# 23TP4106 – English for Professionals

<b>Course Category:</b>	Soft Skills-2	Credits:	1
<b>Course Type:</b>	Learning by Doing	Lecture - Tutorial - Practice:	0 - 0- 2
Prerequisites:		<b>Continuous Evaluation:</b>	100
		Semester end Evaluation:	0
		Total Marks:	100

Course outcomes	Upon				L											
outcomes	CO1								the p ting i				rld by	y she	dding	; off
	CO2	Intro	ntroduce themselves as well as others appropriately													
	CO3	thin	Use vocabulary to form sentences and narrate stories by using creative ninking skills													
	CO4	deve	nvolve in practical activity-oriented sessions and respond positively by eveloping their analytical thinking earn about various expressions to be used in different situations													
	CO5	Lea	rn ab	out v	ariou	s exp	ressio	ons to	b be u	ised i	n dif	feren	t situ	ation	5	
Contributi on of		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
Course Outcomes towards achieveme	CO1										3	3				
nt of Program	CO2									3	3	3				
Outcomes (L – Low, M -	CO3										3	3				
Medium, H – High	CO4								2		3	3				
	CO5										3	3				
Course Content	<ul> <li>UNIT- I</li> <li>1. Beginners, Functional, Situational conversations</li> <li>2. Practicing on functional conversations</li> <li>UNIT- II</li> <li>1. Errors in usage of parts of speech with a thrust on verbs, adjectives and conjunctions, idioms/phrases.</li> <li>2. Introducing basic grammar</li> <li>3. Practicing on functional conversations</li> <li>UNIT- III</li> <li>1. Introducing self &amp; Others</li> </ul>															

	3. Telephonic etiquette, Social etiquette and table manners
	4. Practicing on functional conversations
	UNIT- IV
	1. Direct, Indirect/Reporting speech
	2. Public speaking basics
	3. Versant test preparation
	4. Practicing on situational conversations
Text	Text Books:
books and	[T1] Swaroopa, Polineni, "Practicing on Situational Conversations - Strengthen Your
Reference	Communication Skills", 1 st Ed., Maruthi Publications, 2013.
books	[T2] Mamta Bhatnagar & Nitin Bhatnagar, "Communicative English", 1 st Ed., Pearson
	India, 2010.
Е-	
resources	
and other	
digital	
material	

#### 23EI4651 – Virtual Instrumentation Lab

<b>Course Category:</b>	Skill Enhancement	Credits:	1
<b>Course Type:</b>	Learning by Doing	Lecture - Tutorial - Practice:	0 - 0- 2
<b>Prerequisites:</b>		<b>Continuous Evaluation:</b>	100
		Semester end Evaluation:	0
		Total Marks:	100

Course outcomes	Upon	succe	ssful	com	pletic	on of	the co	ourse	, the	stude	nt wi	ll be	able	to:		
outcomes	CO1	Unde								g tern	ninol	ogy a	and a	ble t	o cre	eate a
		virtu					<u> </u>									
		Able												and c	luste	rs
	CO3		e to use various data plotting techniques and structures e to use the data acquisition device to acquire the measurement data													
	04		n real world into PC													
Contributi		PO	PO PS PS PS													
on of		1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
Course																
Outcomes	CO1	3														
towards						3										
achieveme	<b>GO</b>															
nt of Program	CO2				2	3										
Outcomes																
(L - Low,	CO3				2	3										
М -																
Medium,	CO4				2	3										
<u>H – High</u>																
Course	T															
Content		-	xperiments ction to Virtual Instrumentation and LabVIEW													
								and L	LabVI	EW						
	2.Progra															
	3.Progra				-											
	4.Progra				perat	ions										
	5.Progra 6.Progra				and 1	0000										
	7.Progra		-		and r	oops										
	8.Progra		•	, ,												
	9.Progra															
	9.F10g17 10. Prog				tting											
	11. Prog															
	12. Prog	-				s and	math	script	node	s						
	13 Pro							pt								
	14. Tem	0		0			-wire	RTD.								
	15. Prog	-		-												
	16.Prog					).										
				_ , _ , _ , _ ,	,											

	<b>Note</b> : Any 10 of the experiments in the above list need to be completed by the student, by choosing a minimum of 3 experiments from part- A and 7 from part-B for him/her to be eligible to write University Practical Examinations
Text	Text Books:
books and Reference books	<ul> <li>[T1] Jovitha Jerome, "Virtual Instrumentation using LabVIEW", 1st Ed., PHI, 2013.</li> <li><b>Reference Books:</b></li> <li>[R1] Sanjay Gupta, Joseph John, "Virtual Instrumentation using LabVIEW", 1st Ed., TataMcGraw-Hill, 2005</li> <li>[R2] Gary Johnson, Richard Jennings, "LabVIEW Graphical Programming", Tata McGraw-Hill, 2006</li> </ul>
E- resources and other digital material	http://www.ni.com

23ES4152 – Design	Thinking & Innovation
-------------------	-----------------------

<b>Course Category:</b>	Humanities and Social Sciences	Credits:	2
<b>Course Type:</b>	Theory	Lecture - Tutorial - Practice:	1 - 0- 2
Prerequisites:		<b>Continuous Evaluation:</b>	30
		Semester end Evaluation:	70
		Total Marks:	100

# 23EI4353 – Linear Integrated Circuits Lab

<b>Course Category:</b>	Professional Core	Credits:	1.5
<b>Course Type:</b>	Lab	Lecture - Tutorial - Practice:	0 - 0- 3
Prerequisites:		<b>Continuous Evaluation:</b>	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succ	essfu	l cor	nplet	ion o	f the	cours	se, th	ie stu	ıdent v	vill b	e abl	e to:		
outcomes	CO1	Des	ign li	near a	pplic	ations	s of o	o-amp	circu	uits,						
	CO2		Design non-linear applications of op-amp circuits,													
	CO3		Design applications of 555 timer and IC voltage regulators													
	CO4		Conduct the experiment as well as analyze the outputs for given specifications as an individual or a team.												ons as	
	CO5		Prepare an effective report based on experimental results.													
Contribut ion of		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO 11	PO 12	PS O 1	PS O 2	PSO 3
Course Outcomes	CO1				3										2	
towards achieveme	CO2				3										2	
nt of	CO3				3											
Program Outcomes	CO4				3					2		1			2	
(1 – Low, 2 - Medium, 3 – High)	CO5															
Course	List o	f Ex	perin	nent	s								•			
Content	Analog															
	1.									ertin	g am	plifie	er, N	Von	Inve	rting
								lifier			74110	r				
			1gn o ign o					-	fier u	ising	;741IC					
			-		-		-		ισ Ο	n-Ar	mp 74	1IC				
								rator	<u> </u>		-	110				
											, triang	gular	)			
			0			0		illato		0		_				
			-						-		l high	pass	filter	usin	g 74	1IC
			0					able								
			-				-	sing I								
			-		-	-	-	or usi 14 bi	-		3 dder ci	ircuit	-			
Note:		0 of t	the ex	perin	nents	in the	e abor	ve list	need	1 to t	be com			he stu	ıdent	to be
					isity I	inuction			auon							

# 23EI4354 - Control Systems Lab

<b>Course Category:</b>	Professional Core	Credits:	1
<b>Course Type:</b>	Lab	Lecture - Tutorial - Practice:	0 - 0- 2
<b>Prerequisites:</b>		<b>Continuous Evaluation:</b>	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succe	ssful	com	pletic	on of	the co	ourse	, the	stude	nt wi	ll be	able	to:		
outcomes	CO1	Appl	y cor	ntrol	syste	m tec	hniqu	ues/a	oproa	ches	to so	lve p	roble	ms		
	CO2	CO1Apply control system techniques/approaches to solve problemsCO2Analyze the responses and stability of the given control system														
		I														
	CO4	D4 Make an effective report based on experiments														
Contributi		РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PS	PS	PS
on of		1	2	3	4	5	6	7	8	9	10	11	12	01	O2	03
Course																
Outcomes	CO1	2				2										1
towards achieveme						2										1
nt of	CO2															
Program	02				3	2										2
Outcomes																
(L - Low,	CO3									2			1			
<b>M</b> -																
Medium, H – High	CO4										2					
Course																
Content	List of	Expe	rimei	nts												
	Part-A	-														
	1.Deter	-	tion o	f trans	sfer fu	inctio	ns of t	first o	rder s	vster	IS.					
	2.Time											ems.				
	3.Char										2					
	4.DC r	notor	positi	on con	ntrol ı	ising	PI cor	ntrolle	er							
	5.Char	acteris	stics o	of Mag	gnetic	Amp	lifier									
	Part-B	<u>}</u>														
	1.	Using	MAT	LAB/	SIMU	LINK	for co	ontrol	syster	ns						
	]	Part I	: Intro	oducti	on to	MAT	LAB/S	SIMU	LINK	/LabV	<b>'IEW</b>					
	]	Part II	: Pol	ynomi	als in	MAT	LAB									
	] ]	Part II	I: Scr	ipts, F	unctio	ons &	flow c	contro	l in M	ATLA	AB					
	2.	Block	diagra	ım red	luction	n techi	niques	for de	etermi	natior	n of tra	nsfer	functi	on of	a give	n
	:	system	n using	g MA	ГLAB	/LabV	/IEW.									
	3.	Simula	ation c	of stan	dard t	est sig	nals u	sing N	<b>MATL</b>	AB/L	abVII	EW				
		Detern			1 '	1	e and	ramp	respon	ises fo	or first	order	unity	feedb	ack sy	vstem
		using l Dotorn					a and	rom <del>a</del>	00000	non fa	r cooc	ndar	lor	ity for	dhaal	~
		Detern system			-	-		amp	lespon	ises IO	r seco	nu or	ler un	ity tee	CUDACK	ί.
		Detern	-	-				esnon	ses foi	r a tvn	e '0' t	vne '1	' and	tvne '	2' eve	stems
					-	-		-		• •		• •		• -	- 3y3	
	/•	7. Root locus plot for a given transfer function using MATLAB/LabVIEW														

	<ul> <li>8. Stability studies using Bode and Nyquist plots for a given transfer function using MATLAB/LabVIEW</li> <li>Note: Any 10 of the experiments in the above list need to be completed by the student, by choosing a minimum of 3 experiments from part- A and 7 from part-B for him/her to be eligible to write University Practical Examinations</li> </ul>
Text	Text Book:
books and	[T1] A.Ananda Kumar, "Control Systems", PHI Learning, 2nd Ed.
Reference	[T2] I.J.Nagrath & M.Gopal, "Control systems Engineering", New Age publisher, 5th Ed
books	Reference Books:
	[R1] B.C.Kuo, "Automatic Control Systems", 7 th Ed., PHI.
<b>E-</b>	1. <u>www.linearcontrolsystems.com</u>
resources	2. <u>www.linearcontrols.net</u>
and other	
digital	
material	

# 23EI4355 – Measurements Lab

<b>Course Category:</b>	Professional Core	Credits:	1.5
<b>Course Type:</b>	Lab	Lecture - Tutorial - Practice:	0 - 0- 3
Prerequisites:		<b>Continuous Evaluation:</b>	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succe	ssful	com	pletic	on of	the co	ourse	, the	stude	nt wi	ll be	able	to:		
outcomes	CO1	Appl	y the	basi	c me	asure	ement	t tech	nniqu	es to	mea	sure	the p	aram	eters	such
		as resistance, capacitance, inductance, etc														
	CO2	O2 Analyze the outputs and integrate the data generated from the bridge measurements														
	CO3		onduct the experiments as individual or team													
			Make an effective report based on experiments													
Contributi		РО	PO	PO	PO	PO	РО	PO	PO	РО	PO	PO	РО	PS	PS	PS
on of		1	2	3	4	5	6	7	8	9	10	11	12	01	O2	O3
Course																
Outcomes towards	CO1	3														
achieveme																
nt of	CO2				3											
Program					5											
Outcomes (L – Low,	CO3									1	2					
M - M -										1						
Medium,	CO4											1				
H – High																
Course	Listof	Evno	nimar	ta												
Content	List of	-			1				1 .1	:	~~ ~~ 4					
	1.DC m 2. AC n		-			-					-					
	2. AC 1. 3. Meas		-			-					-			CRO		
	4. Simu				-	-			-	-			-	CRO.		
	5. Meas					-			-	-		-				
	6. Meas								-				0			
	7. Meas					-	-		-							
	8. Simu	lation	of S	pectru	ım an	alyzei	r using	g Ana	log di	scove	ry kit	•				
	9. Meas				,				1		U					
	10.Meas				itude	and fi	requer	ncy of	diffe	rent ty	pes o	f wav	eform	is usii	ng	
		ion ge			•, •	<b>6</b> 11	66		C	6			т -	22.67		
	11.Meas		ent of	ampl	itudes	ot di	tteren	t type	es of w	vavefo	orms ı	ising	True I	KMS		
		neter.	ont of	indu	topas	of h:	$ah \Omega$		laina	Աուե	ridaa					
	12.Meas 13.Meas								-	11ay 0	nuge	•				
	14.Calib			-	•	-			-							
	15.Calib								•							
						<u> </u>										

	<b>Note</b> : Any 10 of the experiments in the above list need to be completed by the student, by choosing a minimum of 3 experiments from part- A and 7 from part-B for him/her to be eligible to write University Practical Examinations
Text books and Reference books	
E- resources and other digital material	