DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING

VELAGAPUDI RAMAKRISHNASIDDHARTHA ENGINEERING COLLEGE SCHEME OF INSTRUCTION FOR FOUR YEAR UG PROGRAMME [VR17]

> Syllabus for Ist– VIIIth Semesters

VELAGAPUDI RAMAKRISHNASIDDHARTHA ENGINEERING COLLEGE <u>ELECTRONICS & INSTRUMENTATION ENGINEERING</u>

Vision

- To impart excellent education to provide globally competent Electronics and Instrumentation Engineers.
- To establish Centre of Excellence and Research in Electronics and Instrumentation Engineering and allied fields.

Mission

- To prepare competent Electronics and Instrumentation Engineers who can pursue professional career and/or higher studies.
- To promote excellence in teaching with academically good ambiance that allows the learners to be socially responsible with professional ethics.

Program Educational Objectives(PEOs)

In alignment with the vision and mission of the department, the EIE graduates are expected to attain the PEOs listed below

- 1. Graduates excel in academic and professional career in Electronics and Instrumentation enabled industries or software industries or be an entrepreneur in the domain area.
- 2. Graduates pursue higher education in the core or allied areas of electronics and instrumentation engineering and actively contribute to academic/R&D activities.
- 3. Graduates exhibit professional and ethical attitudes having all-round personality to work in multi-disciplinary allied areas to be of use to the society.

VELAGAPUDI RAMAKRISHNASIDDHARTHA ENGINEERING COLLEGE <u>ELECTRONICS & INSTRUMENTATION ENGINEERING</u>

Program Outcomes

- 1. An ability to apply knowledge of mathematics, science and engineering fundamentals appropriate to the discipline.
- 2. An ability to identify, formulate and solve problems by applying the principles of electronic instrumentation and control systems.
- 3. An ability to design and implement instrumentation and control systems to meet desired needs with appropriate consideration for public health and safety, environment, society, economics and sustainability.
- 4. An ability to design and conduct experiments as well as to analyze and interpret data.
- 5. An ability to use the techniques, skills and modern engineering tools necessary for his engineering practice.
- 6. The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental and societal context.
- 7. Knowledge of contemporary issues.
- 8. An understanding of professional, ethical, legal and social issues and consequent responsibility relevant to professional engineering practice.
- 9. An ability to function on multidisciplinary teams.
- 10. An ability to communicate effectively with a range of audience in his professional engineering practice.
- 11. A recognition of the need for and an ability to engage in lifelong learning.
- 12. An ability to use engineering and management principles to one's own work, as a member and leader in a team to manage projects

Program Specific Outcomes

PSO1: Use basic engineering principles, concepts of measurement, and sensor selection to design an industrial process.

PSO2: Apply basic knowledge related to circuits and devices for designing electronic systems to solve engineering problems.

PSO3. Demonstrate proficiency in the use of software and hardware required in industrial automation systems

VELAGAPUDI RAMAKRISHNA SIDDHARTHA ENGINEERING COLLEGE SCHEME OF INSTRUCTION FOR FOUR YEAR UG PROGRAMME [VR17] <u>ELECTRONICS & INSTRUMENTATION ENGINEERING</u>

Semester I

Contact Hours: 26

S.No	Course Code	Title of the Course	L	Τ	P	Credits
1.	17MA1101	Matrices and Differential Calculus	3	1	0	4
2.	17PH1102	Engineering Physics	3	0	0	3
3.	17CS1103	Problem Solving Methods	2	1	0	3
4.	17EE1104	Basics of Electrical Engineering	3	0	0	3
5.	17HS1105	Technical English and Communication	2	0	2	3
		Skills				
6.	17PH1151	Engineering Physics Lab	0	0	3	1.5
7.	17CS1152	Computing and Peripherals Lab	0	0	2	1
8.	17ME1153	Basic Workshop	0	0	3	1.5
		Total	13	2	10	20
9.	17MC1106A	Technology and Society	1	0	0	-
10.	17MC1107	Induction Program				-

Semester II

Contact Hours: 27

S.No	Course Code	Course	L	Τ	Р	Credits
1.	17MA1201	Laplace Transforms and Integral Calculus	3	1	0	4
2.	17CH1202	Engineering Chemistry	3	0	0	3
3.	17CS1203	Programming in C	3	0	0	3
4.	17EI1204	Electronic Devices and Circuits	3	0	0	3
5.	17ME1205	Engineering Graphics	2	0	4	4
6.	17CH1251	Engineering Chemistry Lab	0	0	3	1.5
7.	17CS1252	Computer Programming Lab	0	0	3	1.5
		Total	14	1	10	20
8.	17MC1206B	Professional Ethics& Human Values	2	0	0	-

Semester III

Contact Hours: 28

S.No	Course Code	Course	L	Т	Р	Credits
1.	17MA1301	Complex Analysis & Numerical Methods	3	1	0	4
2.	17EI3302	Network Theory	3	1	0	4
3.	17EI3303	Analog Electronic Circuits	3	1	0	4
4.	17EI3304	Sensors and Transducers	3	0	0	3
5.	17HS2305	Humanities Elective	1	0	0	1
6.	17TP1306	Logic & Reasoning	0	0	2	1
7.	17EI3351	Electronic Circuits Lab	0	0	3	1.5
8.	17EI3352	Transducers Lab	0	0	3	1.5
9.	17HS1353	Communication Skills Lab	0	0	2	1
	Total		13	3	10	21
10.	17MC1307B	Indian Constitution	2	0	0	-

List of Humanities Electives

Α	Yoga & Meditation	G	Film Appreciation
В	Music	Н	Sanskrit Bhasa
С	Human Rights and Legislative Procedures	Ι	Foreign Languages (German/French)
D	Philosophy	J	Law for Engineers
Е	Development of societies	Κ	Psychology
F	Visual Communication		

Semester IV

Contact Hours: 27

S.No	Course Code	Course	L	Т	Р	Credits		
1.	17EI3401	Analytical	3	0	0	3		
		Instrumentation						
2.	17EI3402	Integrated Circuits and	3	1	0	4		
		Applications						
3.	17EI3403	Industrial Instrumentation	3	1	0	4		
4.	17EI3404	Electrical and Electronic	3	0	0	3		
		Measurements						
5.	17TP1405	English for Professionals	0	0	2	1		
6.	17EI3406	Digital Circuits and	3	0	0	3		
		Systems						
7.	17EI3451	Analog and Digital	0	0	3	1.5		
		Integrated Circuits Lab						
8.	17EI3452	Measurements Lab	0	0	3	1.5		
	Total		15	2	8	21		
9.	17MC1407A	Environmental Studies	2	0	0	-		

Semester V

Contact Hours: 25

S.No	Course Code	Course	L	Т	P	Credits	
1.	17EI3501	Control Systems	3	1	0	4	
2.	17EI3502	Digital Signal Processing	3	1	0	4	
3.	17EI3503	Microcontrollers and Embedded Systems	3	0	0	3	
4.	17EI2504	Open Elective – I	3	0	0	3	
5.	17EI2505	Open Elective –II	3	0	0	3	
		(Inter Disciplinary Elective)					
6.	17EI2506	Open Elective-III	0	0	0	2	
		(Self-Learning Elective Course)*					
7.	17HS1507	Personality Development	0	0	2	1	
8.	17EI3551	Simulations Lab	0	0	3	1.5	
9.	17EI3552	Microcontrollers and Embedded Systems	0	0	3	1.5	
		Lab					
	Total			2	8	23	
10.	17MC1508	Biology for Engineers	2	0	0	-	

S.No	Course Code	Open Elective – I	L	Τ	P	Credits
1.	17EI2504/A	Biomedical Electronics	3	0	0	3
2.	17EI2504/B	Control System Components	3	0	0	3

S.No	Course Code	Open Elective – II (Inter Disciplinary Elective)	L	Т	Р	Credits
1.	17EI2505/A	Instrumentation Engineering	3	0	0	3
2.	17EI2505/B	Fundamentals of Industrial Automation	3	0	0	3

S.No	Course Code	Open Elective – III (Self-Learning Elective Course)	L	Т	Р	Credits
1.	17EI2506/A	MOOCS	0	0	0	2
2.	17EI2506/B	MOOCS	0	0	0	2

*Students can opt any one of the self-learning courses prescribed by the Department. Students register and complete the opted course in approved MOOCS platform on or before the Last Instruction Day of <u>V semester</u>. They have to submit the certificate before the Last Instruction Day of <u>V semester</u>

Semester VI

Contact Hours: 27

S.No	Course	Course	L	Т	Р	Credits
	Code					
1.	17EI3601	Process Control	3	1	0	4
2.	17EI3602	Computer Control of	3	1	0	4
		Processes				
3.	17EI4603	Programme Elective-1	3	0	0	3
4.	17EI4604	Programme Elective -2	3	0	0	3
5.	17EI2605	Open Elective-IV	3	0	0	3
6.	17TP1606	Quantitative Aptitude	1	0	0	1
7.	17EI3651	Process Control Lab	0	0	3	1.5
8.	17EI3652	Virtual Instrumentation Lab	0	0	3	1.5
9.	17EI5653	Engineering Project for	0	1	2	2
		Community services*				
	Total			3	8	23

S.No	Course Code	Program Elective – I	L	Τ	P	Credits
1.	17EI4603/A	Fiber Optic Sensors	3	0	0	3
2.	17EI4603/B	VLSI Design	3	0	0	3
3.	17EI4603/C	Robotics and Control	3	0	0	3
4.	17EI4603/D	Industrial Communication Networks	3	0	0	3

S.No	Course Code	Program Elective – II	L	Τ	P	Credits
1.	17EI4604/A	Renewable Energy	3	0	0	3
2.	17EI4604/B	Industrial Electronics	3	0	0	3
3.	17EI4604/C	Process Modeling and Simulation	3	0	0	3
4.	17EI4604/D	Biomedical Signal Processing	3	0	0	3

S.No	Course Code	Open Elective – IV	L	Τ	Р	Credits
1.	17EI2605/A	Virtual Instrumentation	3	0	0	3
2.	17EI2605/B	Intelligent Instrumentation Principles and	3	0	0	3
		Application				

* Students will go to the society (Villages/ Hospitals / Towns etc,.) to identify the problem and survey the literature for a feasible solution. The work will be carried out during summer vacation after IV Semester. The student is encouraged to take up real life problems leading to innovative model building

Semester VII

Contact Hours: 25

S.No	Course	Course	L	Т	Р	Credits
	Code					
1.	17EI3701	Industrial Automation	3	1	0	4
2.	17EI4702	Programme Elective -3	3	0	0	3
3.	17EI4703	Programme Elective -4	3	0	0	3
4.	17EI4704	Programme Elective -5	3	0	0	3
5.	17HS1705	Engineering Economics and	2	0	0	2
		Finance				
6.	17EI3751	Industrial Automation Lab	0	0	3	1.5
7.	17EI3752	Advanced Instrumentation	0	0	3	1.5
		Lab				
8.	17EI5753	Mini Project *	0	0	4	2
9.	17EI6754	A Internship				2
		B Industry offered Course				
		C Global Professional				
		Certification				
		Total	14	1	10	22

S.No	Course Code	Program Elective – III		Τ	P	Credits
1.	17EI4702/A	Power Plant Instrumentation		0	0	3
2.	17EI4702/B	Industrial Internet of Things		0	0	3
3.	17EI4702/C	Wireless Sensor Networks		0	0	3
4.	17EI4702/D	Drives and Control for Industrial	3	0	0	3
		Automation				

S.No	Course Code	Program Elective – IV		Τ	Р	Credits
1.	17EI4703/A	Fundamentals of Petrochemical	3	0	0	3
		Engineering				
2.	17EI4703/B	Database Management Systems		0	0	3
3.	17EI4703/C	Intelligent Systems and Control		0	0	3
4.	17EI4703/D	Digital Image Processing	3	0	0	3

S.No	Course Code	Program Elective – V		Τ	Р	Credits
1.	17EI4704/A	Instrumentation and Control in Paper	3	0	0	3
		Industries				
2.	17EI4704/B	Computer Networks	3	0	0	3
3.	17EI4704/C	Sensor Signal Conditioning	3	0	0	3
4.	17EI4704/D	Machine Learning	3	0	0	3

* Could be done in a group of students; involves working under a faculty member and carrying out a detailed feasibility study, literature survey and preparing a work plan for major project.

Contact Hours: 19

S.No	Course Code	Course	L	Т	Р	Credits
1.	17EI4801	Programme Elective – 6	3	0	0	3
2.	17EI2802	Open Elective –V*	3	0	0	3
3.	17EI5851	Major Project**	0	5	8	9
Total		6	5	8	15	

Semester VIII

S.No	Course Code	Program Elective – VI	L	Τ	Р	Credits
1.	17EI4801/A	Measurement and Control in Food	3	0	0	3
		Processing				
2.	17EI4801/B	Biomedical Instrumentation		0	0	3
3.	17EI4801/C	System Identification		0	0	3
4.	17EI4801/D	Real World Instrumentation with Python	3	0	0	3

S.No	Course Code	Open Elective – V	L	Т	Р	Credits
1.	17EI2802/A	MOOCS	3	0	0	3
2.	17EI2802/B	MOOCS	3	0	0	3

*Open Elective- V may also opt as self-learning course. Students register and complete the opted course in approved MOOCS platform on or before Last Instruction Day of VIII Semester. They have to submit the certificate before the last Instruction Day of VIII Semester. Students who have not opted as a self-learning are required to attend for the class work and internal assessment as per the regular theory course.

**Major project involves continuation of Mini Project. The objective is to complete the work as per the prepared work plan and prepare a detailed project report.

First Year (I Semester)

17MA1101 - Matrices and Differential Calculus

Course Category:	Institutional Core	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 1 - 0
Prerequisites:	Fundamentals of Matrices,	Continuous Evaluation:	30
	Fundamentals of Calculus,	Semester end Evaluation:	70
	Integration, Differentiation	Total Marks:	100

outcomes Image: CO1 Determine Eigen values, Eigen vectors of a matrix CO2 Estimate maxima and minima of multi variable functions CO3 Solve the linear differential equations with constant coefficien CO4 Solve the linear differential equations with variable coefficien CO4 Solve the linear differential equations with variable coefficien Contributio PO
CO2Estimate maxima and minima of multi variable functionsCO3Solve the linear differential equations with constant coefficienCO4Solve the linear differential equations with variable coefficienOutcomesCO13CO131CO231CO231CO231CO331IIICO431 <t< th=""></t<>
CO4Solve the linear differential equations with variable coefficienContributio n of Course Outcomes towards achievement of Program OutcomesPO<
Contributio n of Course Outcomes towards achievement of Program OutcomesPO 1PO 2PO 3PO 4PO 5PO 6PO 7PO 8PO 9PO 10PO 11PO 12CO1311111111Outcomes towards achievement of Program OutcomesCO13111111CO231111111111OutcomesCO2311111111Medium, 3 - HighCO4311111111Course ContentUNIT- I Matrices:Rank of a matrix, Elementary transformations, Inverse of Jordan Method), Consistency of linear system of equations, Linear t Vectors, Eigen values, Properties of Eigen values, Finding inverse a matrix by Cayley-Hamilton theorem. Reduction to diagonal form quadratic form to canonical form, Nature of a quadratic form, Complete
n of Course Outcomes towards achievement of Program Outcomes123456789101112CO1311111111111of Program OutcomesCO2311111111(1 - Low, 2 - Medium, 3 - HighCO331111111Course ContentCO4311111111Vectors, Eigen values, Properties of Eigen values, Finding inverse of Matrix by Cayley-Hamilton theorem. Reduction to diagonal form quadratic form to canonical form, Nature of a quadratic form, Complete
Outcomes CO1 3 1 1 Outcomes CO1 3 1 1 of Program Outcomes CO2 3 1 1 (1 - Low, 2 - Medium, 3 - High CO3 3 1 1 1 Course Content CO4 3 1 1 1 1 Matrices:Rank of a matrix, Elementary transformations, Inverse of Jordan Method), Consistency of linear system of equations, Linear to Vectors, Eigen values, Properties of Eigen values, Finding inverse a matrix by Cayley-Hamilton theorem. Reduction to diagonal form quadratic form to canonical form, Nature of a quadratic form, Completion of the completion of the canonical form, Nature of a quadratic form, Completion of the canonical form, Nature of a quadratic form, Completion of the canonical form, Nature of a quadratic form, Completion of the canonical form, Nature of a quadratic form, Completion of the canonical form, Nature of a quadratic form, Completion of the canonical form, Nature of a quadratic form, Completion of the canonical form, Nature of a quadratic form, Completion of the canonical form, Nature of a quadratic form, Completion of the canonical form, Nature of a quadratic form, Completion of the canonical form, Nature of a quadratic form, Completion of the canonical form, Nature of a quadratic form, Completion of the canonical form, Nature of a quadratic form, Completion of the canonical form
towards achievement of Program OutcomesCO1311CO231111(1 - Low, 2 - Medium, 3 - HighCO3311CO431111Course ContentCO43111Course ContentUNIT- I Matrices:Rank of a matrix, Elementary transformations, Inverse of Jordan Method), Consistency of linear system of equations, Linear to Vectors, Eigen values, Properties of Eigen values, Finding inverse a matrix by Cayley-Hamilton theorem. Reduction to diagonal form quadratic form to canonical form, Nature of a quadratic form, Compl
achievement of Program Outcomes CO2 3 1 1 1 1 (1 - Low, 2 - Medium, 3 - High CO3 3 1 1 1 1 1 Course Content CO4 3 1 1 1 1 1 1 Keitur, 3 - High CO4 3 1 1 1 1 1 1 Keitur, 3 - High CO4 3 1 1 1 1 1 1 1 Keitur, 3 - High CO4 3 1
of Program OutcomesCO231111111(1 - Low, 2 - Medium, 3 - HighCO33111 <t< th=""></t<>
Medium, 3 - HighCO431IICourse ContentUNIT- I Matrices:Rank of a matrix, Elementary transformations, Inverse of Jordan Method), Consistency of linear system of equations, Linear to Vectors, Eigen values, Properties of Eigen values, Finding inverse a matrix by Cayley-Hamilton theorem. Reduction to diagonal form quadratic form to canonical form, Nature of a quadratic form, Completing
High CO4 3 1
Content UNIT- I Matrices:Rank of a matrix, Elementary transformations, Inverse of Jordan Method), Consistency of linear system of equations, Linear to Vectors, Eigen values, Properties of Eigen values, Finding inverse a matrix by Cayley-Hamilton theorem. Reduction to diagonal form quadratic form to canonical form, Nature of a quadratic form, Comple
 Differential Calculus: Rolle's theorem, Lagrange's mean value the mean value theorem, Taylor's theorem, Malaren's series. Application: Curvature, Radius of curvature. Functions of two or more Variables: Partial derivatives, Chang Jacobians, Taylor's theorem for function of two variables, Maxima functions of two variables, Lagrange's method of undetermined mult UNIT III Differential Equations of First Order: Formation of a differential equations, Equations reducible to exact equations. Applications: Orthogonal trajectories, Newton's law of cooling. Linear Differential Equations of Higher Order: Definitions, Op

	farticular integral, Working procedure to solve the equation.
	 UNIT IV Linear dependence of solutions, Method of variation of parameters, Method of undetermined coefficients, Equations reducible to linear equations with constant coefficients: Cauchy's homogeneous linear equation, Legendre's linear equation, Simultaneous linear differential equations with constant coefficients. Applications: L-C-R Circuits
Text books and Reference books	Text Book: [T1] B.S.Grewal, "Higher Engineering Mathematics", Khanna Publishers, 43 rd Ed., 2014.
DUOKS	 Reference Books: [R1] Erwin Kreyszig, "Advanced Engineering Mathematics", 10th Ed., John Wiley & Sons, 2015. [R2] B.V.Ramana, "Higher Engineering Mathematics", 1st Ed., Tata MC Graw Hill, 2007 [R3] N.P.Bali, Dr. Manish Goyal, "A Text Book of Engineering Mathematics", 9th Ed., Lakshmi Publications, 2014.
E-resources and other digital material	 https://nptel.ac.in/courses/122104017/ https://www.nptel.ac.in/courses/111105035/ https://plus.maths.org/content/open-learning-foundation-mathematics-working-group

17PH1102–Engineering Physics

Course Category:	Institutional Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0 - 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succ	essfu	l con	npleti	ion of	the c	cours	e, the	stude	ent wi	ill be	able	to:		
outcomes	CO1	Unc	dersta	nd th	ne im	porta	nce o	of qua	ntum	mech	nanics	5				
	CO2		nalyze and understand various types of lasers and their applications laborate different types of optical fibers and understand holography													
	CO3															
	CO4		1		r	1	1	1	1		1	r	r	otube	1	1
Contribution		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
of Course Outcomes towards achievement	CO1	3	2	5	4	5	0	1	0	3	10	11	12	1	2	5
of Program Outcomes	CO2	3														
(1 – Low, 2 - Medium, 3 –	CO3	3								2						
High	CO4	3								2						
	hypotl applic One signifi UNIT Laser Stimu coeffic Differ CO ₂), UNIT Fibre optica chang optics	hesis ation dime icance II s: I lated cient Dye III Opt l fibe e, V- in co	, G. In G. In Solution Second Second Introde	CO4 3 2 2 UNIT- I Quantum Mechanics: Dual nature of light, Matter waves and Debroglie's hypothesis, G. P. Thomson experiment, Heisenberg's uncertainty principle and its applications (Non existence of electron in nucleus, Finite width of spectral lines), One dimensional time independent Schrödinger's wave equation, Physical significance of wave function, Particle in a box (One dimension). UNIT II Lasers: Introduction, Characteristics of laser, Absorption, Spontaneous emission, Stimulated Emission, Pumping, Population inversion, Cavity resonance, Einstein's coefficients, Different types of lasers: Solid-state lasers (Ruby, Neodymium), gas lasers (He-Ne, CO ₂), Dye lasers, Applications of lasers in science, engineering and medicine. UNIT III Fibre Optics: Introduction, Fundamental of optic fibre, Propagation of light through optical fiber, Types of optical fibers, Numerical aperture, Fractional refractive index change, V- number and cut-off Parameters of fibres, Fibre attenuation (losses), Fiber optics in communication and its advantages. Holography: Basic principle of Holography, Construction of the hologram,											nd its ines), ysical ssion, tein's e-Ne, rough index Fiber	

	nano materials, Surface to volume ratio, General properties of Nano materials
	naio materiais, surface to volume fatio, General properties of ivano materiais
	Fabrication of nano materials: Plasma Arcing, Chemical vapour deposition
	Characterization of nano materials : AFM, SEM, TEM, STM, Carbon nano tubes: SWNT, MWNT, Formation of carbon nanotubes: Arc discharge, Laser ablation, Properties of carbon nano tubes, Applications of CNT's & Nanotechnology.
Text books and Reference books	 Text Book: [T1] M.N. Avadhanulu& P.G. Kshirsagar, "Engineering Physics", S. Chand Publications, Revised Edition, 2014 [T2] P.K. Palanisamy, "Applied Physics", Vth Ed., Scitech Publications (INDIA) Pvt. Ltd., 2008. Reference Books: [R1] B. K. Pandey and S. Chaturvedi, 'Engineering Physics' Cengage Learning', Delhi, 2012. [R2] O. Svelto, Principles of Lasers, VthEd., Springer, London, 2010. [R3] M.R. Srinivasan, "Engineering Physics", New Age International Publishers, IstEd., 2011.
E-resources and other digital material	 <u>https://ocw.mit.edu/courses/physics/8-04-quantum-physics-i-spring-2013/lecture-videos/</u> <u>https://ocw.mit.edu/resources/res-6-005-understanding-lasers-and-fiberoptics-spring-2008/laser-fundamentals-i/</u> <u>https://nptel.ac.in/courses/112106198/19</u> <u>https://www.peterindia.net/NanoTechnologyResources.html</u>

17CS1103 – Problem Solving Methods

Course Category:	Institutional Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	2 - 1 - 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succ	essfu	l con	npleti	on of	the c	cours	e, the	e stud	ent w	vill be	able t	0:		
outcomes	CO1		dersta lysis			-	uter	prob	lem	solv	ing	approa	aches,	effi	ciency	and
	CO2						thods	to so	lve t	he gi	ven p	roblen	n			
	CO3					_				_	_	or the g		proble	em	
	CO4						ng MA					L		1		
Contribution		PO	PO	PO	PO	PO	PO	PO	PO	PO	PO 10	PO	PO 12	PSO	PSO	PSO
of Course Outcomes towards	CO1	1	2 2	3	4	5	6	7	8	9	10	11	12	1	2	3
achievement of Program Outcomes	CO2	1		3												
(1 – Low, 2 - Modium 3	CO3	1		3												
Medium, 3 – High	CO4	1	1							3						
Content	UNIT Introd Chara Flowc The I proble Gener Top-I Establ of loo The eleme condit Analy averag UNIT Funda descri numbo	ducti cteris chart, Prob em, S al pr Down lishin ps; Effic nts, ions, vsis o ge ca II amen ption ers, I	stics Pseu Pseu Iem– Simil obler n des ng ini cienc; Ineff , Trac of Alg se be ntal n - Ex Facto	of an ido-co aritie nsolv ign: tial c y of icience ling s gorith havic Alg chan rial c	n alg ode ving s an ing s Brea ondit Alg storag storag or.	Aspenong trates king ions gorith ae to ge for Com ums: valu utatio	n, Ro ect: 1 prob gies; a pro- for lo ms: late effic putat Pro- es of on, G	equire Problems oblems Ned term viency ional	emen em c , Wo into Findi unda inatio gain com	ts fo lefini orkin o sub- ing th ng th ng th ng th ng th ng th ng th ns; plexi Algor bles, of F	r solv tion g bac -prob ne iter Compu- Early ty, T ithm Coun- ibona	ving p phase, ckward lems, rative utation detect he ord devo nting, cci se	Gett ds fro Const const as, R tion o er no elopm Sumr queno	ms by ting s om th truction ruct, T eferen of des tation, nent, nation ce, Re	Algo versin	outer; on a ution, oops, ation array utput at and rithm set of g the

	algorithms.
	Factoring Methods : Finding the square root of a number: Smallest divisor of an Integer, GCD of two integers, Generating prime numbers, Computing the prime factors of an integer, Raising a number to a large power, Pseudo random number generation, Computing n th Fibonacci number
	UNIT III Array Techniques : Introduction, Array order reversal, Array counting, Finding the maximum number in a set, Removal of duplicates from an ordered array, Partitioning an array, Finding The K th Smallest Element.
	Merging, Sorting and Searching: Sorting by selection, Sorting by exchange, Linear search, Binary search
	UNIT IV MATLAB Environment : User interface, Syntax and Semantics operators, Variables and constants: Simple arithmetic calculations. Data types, Control structures: ifthen, loops, Functions, Matrices and vectors: Matrix manipulations and operations.
	MATLAB Programming : Reading and writing data, File handling, MATLAB Graphic functions.
Text books and Reference books	Text Book: [T1]R.G.Dromey, "How to solve it by Computer", Prentice-Hall International Series in Computer Science,1982 [T2] Bansal.R.K, Goel.A.K, Sharma.M.K, "MATLAB and its Applications in Engineering", Pearson Education, 2012
	Reference Books: [R1] Michael Schneider, Steven W. Weingart, David M. Perlman, "An Introduction to Programming and Problem Solving with Pascal", John Wiley and Sons Inc ,1984 [R2] David Gries, "The Science of Programming", SpringerVerlag, 1981 [R3] ReemaThareja, "Computer Fundamentals and C Programming", Oxford, 2012
E-resources and other digital material	1. <u>https://www.mathworks.com</u>

17EE1104 – Basics of Electrical Engineering

Course Category:	Engineering Sciences	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0-0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succ	essfu	l con	npleti	on of	f the o	cours	e, the	stud	ent w	vill be	e able	to:		
outcomes	CO1	Ana	alyze	elect	ric ci	rcuit	fund	amen	tals							
	CO2															
	CO3															
	CO4															
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
Outcomes towards	CO1	3	1			2										_
achievement of Program Outcomes	CO2	3	1													
(1 – Low, 2 - Medium, 3 –	CO3	2 2 2														
High	CO4	2														
Content	Electr Capac Netwo independent source conne Analy UNIT Altern basic of mean peak f Magn magno mutua UNIT DC M	ducti ic p itors ork ender es, Se ction sis (v 'II natin defin squa factor etic c l ind 'III /Iach ation	ower . Elec Ana nt cuource of R with i ag Qu ition re an r, Pha Circ notive circui uctar	and ctrom lysis: urrent con , L at indep nanti s, Re d ave asor r uits: re for ts, M nce, E	ene agne Ne sou versiond C, ende ties: lation rage epres Intro rce, agne Energ	rgy, tic pl tworl rce, on, V Star nt so Intro- ship value entat oduct Perm tic po y in l tion, and	Basi henor Depo Joltag -Delt urces oduct betw es of ion o ion, eabil otenti inear Con torqu	c cin nenos urces ender ge an a or, only ion; (veen f alter f alter f alter Magnity, I al dro mag struc e pro	-Idea In and Idea It so d cur Delt). Gener Treque nating rnatin Reluc Dp, N netic tion ducti	com l relation l inconstruction urcess trent a- Stan ration ency, g curring qu circu tance lagne syste of de on in	pone ted la lepen s, Pra divis ar tra n of a spee rent a lantiti uits, 1 e, Ar etic c ems c ma a do	nts- ws, F dent actica ion r nsfor c. vo d and nd vo ies. Magr ircuit	Resis Xirchh volta al vol rule, S matio oltage d num oltage hetic f y bety comp es, An chine, ⁷	tors – noff's la lage so lage so lage so series n. Mes s, Way ber of s, Forn field s ween putatio	ource, and cu and pa sh and weform poles, n facto trength electric ns, Se e wind	Ideal urrent urallel nodal as and Root or and a (H), c and lf and dings, action

	as a motor.
	Induction Motors: Introduction, Constructional features of three-phase induction motors, Principle of operation of three-phase induction motor- Slip and rotor frequency, Voltage and current equations and equivalent circuit of an induction motor
	UNIT IV Interface Measuring Instruments: Introduction, Classification of instruments, Operating principles, Essential features of measuring instruments, Ammeters and voltmeters, Measurement of power.
	Solar photovoltaic Systems : Solar cell fundamentals, Characteristics, Classification, Module, Panel and array construction, Maximizing the solar PV output and load matching, Maximum Power Point Tracker(MPPT), Balance of system components, solar PV systems and solar PV applications.
Text books and Reference books	Text Book: [T1]T.K.Nagasarkar and M.S. Sukhja, "Basic Electric Engineering", 2 nd Ed., Oxford University press 2011
	 Reference Books: [R1] B.H.Khan, "Non Conventional Energy Resources", 2nd Ed., Mc.Graw Hill Education PvtLtd.,New Delhi,2013 [R2] AshfaqHusain , Haroon Ashfaq, "Fundamentals of Electrical Engineering", 4th Ed., Dhanpat Rai & Co , 2014 [R3] I.J.Nagrath and Kothari , "Theory and problems of Basic Electrical Engineering", 2nd Ed., Prentice-Hall of India Pvt.Ltd.,2016
E-resources and other digital material	1. <u>https://nptel.ac.in/courses/108108076/</u>

17HS1105 – Technical English & Communication Skills

Course Category:	Institutional Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	2 - 0–2
Prerequisites:	Basic understanding of the	Continuous Evaluation:	30
	language skills, viz Listening,	Semester end Evaluation:	70
	Speaking, Reading and writing, including sentence construction abilities	Total Marks:	100

Course outcomes	Upon successful completion of the course, the student will be able to:															
outcomes	CO1		Develop administrative and professional compilations including web elated(online) communication with felicity of expression Demonstrate proficiency in interpersonal communication, in addition to tandard patterns of pronunciation Apply the elements of functional English with sustained understanding for uthentic use of language in any given academic and/or professional nvironment												web	
	CO2	Der													on to	
	CO3	App auth														
	CO4	Exe	accute tasks in technical communication with competence													
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
Outcomes towards achievement	CO1				2	3	3	3	3		2					
of Program Outcomes	CO2				3	3	3	3	3		2					
(1 – Low, 2 - Medium, 3 –	CO3	2			3	3	3	3	3		2					
High	CO4	1	1	2	3	2	3	3	3		2					
Course Content	> UNIT Interj > Vocal >	ssion Prof Essa Adm e-m II perso Con Acc Arti Alp III pular A ba Veri Coll	fessic ay W: ninist nail onal (nmun ceptar culat ohabe cy an asic I bal locati	Comm riting- trative Comm licative nce, C ion-or t, Pri d Fun List of analo ons	etter- Desc and nunic e Fa Concu iente mary 500 gies,	Busi cripti On-li cation cet- urrend d Fa y Stre nal E word Co	ve an ine di n Ski Spee ce, D acet- ss nglis s – C onfus	nd An raftin Ils ech a isagr Tra h Overvi ables,	alytio g ski cts- eeing nscri iew	cal lls –I Exter with ption	Minu nding out b usi	tes ar g Inv being ing 1 expre	itatio disag Interr	eb note on, Re- greeabl nationa ns an g, Sca	ciproca e 1 Pho 1d Ph	ation, onetic nrasal

	 Understanding the textual patterns for tackling different kinds of questions Functional Grammar with special reference to Concord, Prepositions, use of Gerund and Parallelism UNIT IV Technical Communication skills: > Technical Proposal writing > Technical Vocabulary- a representative collection will be handled > Introduction to Executive Summary > Technical Report writing(Informational Reports and Feasibility Report
Text books and Reference books	Text Book: [T1] Martin Cutts, "Oxford Guide to Plain English", Oxford University Press, 7 th Ed., 2011 [T2] TM Farhathullah, "Communication Skills for Technical Students", Orient Longman, I st Ed., 2002 [T3] John Langan, "College Writing Skills", McGraw Hill, IX th Ed., 2014. "Eclectric Learning materials offered by the Department
	Reference Books: [R1] Randolph Quirk, "Use of English", Longman, I st Ed., (1968) Reprinted 2004 [R2] Thomson A.J & A.V, Martinet, "Practical English Grammar", Oxford University Press, III rd Ed., 2001 [R3] V.Sethi and P.V. Dhamija, "A Course in Phonetics and Spoken English", PHI, II nd Ed., 2006
E-resources and other digital material	1. <u>https://www.britishcouncil.org/english</u>

17PH1151 – Engineering Physics Lab

Course Category:	Institutional Core	Credits:	1.5
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0 -3
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succ	essfu	l con	pleti	on of	the c	ourse	, the	stude	ent w	ill be	able	to:		
Succomes	CO1		fune fune		gene	rator,	spec	etrom	eter	and t	rave	ling	micr	oscope	e in va	arious
	CO2															
	CO3		Determine the V-I characteristics of solar cell and photo cell and appreciate he accuracy in measurements													
Contribution		РО	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
of Course Outcomes towards	CO1	1	3	1	4	5	0	/	0	9	10	11	12	1	2	3
achievement of Program Outcomes	CO2		3	1												
(1 – Low, 2 – Medium, 3 – High	CO3		3	1												
Course Content	1. 2. 3. 4. 5. 6. 7. 8. 9. 10 11 12	 burse Content 1. Photo cell-Study of V-I characteristics, Determination of work function 2. Newton's rings-Radius of curvature of plano convex lens. 3. Compound pendulum-Measurement of 'g' 4. LCR circuit - Study resonance 5. AC Sonometer - Verification of vibrating laws 6. Solar cell - Determination of Fill Factor 7. Diffraction grating-Wavelength of laser light 8. Optical fiber- Study of attenuation and propagation characteristics 9. Diffraction grating-Measurement of wavelength of mercury source 10. Hall effect - Hall coefficient measurement 11. Figure of merit of a galvanometer 12. Variation of magnetic field along the axis of current-carrying circular coil 														
Text books and Reference books	[T1] Public [T2]	Text Book: [T1] Madhusudhan Rao, "Engineering Physics Lab Manual", 1 st Ed., Scitech Publications, 2015 [T2] Ramarao Sri, ChoudaryNityanand and Prasad Daruka, "Lab Manual of Engineering Physics", 5 th Ed., Excell Books, 2010														
E-resources and other digital material			-			a.edu a.edu										

17CS1152 – Computing and Peripherals Lab

Course Category:	Institutional Core	Credits:	1
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0 - 2
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succ	uccessful completion of the course, the student will be able to:													
outcomes	CO1	Unc	Understand and apply MS office tools													
	CO2		Configure the components on the motherboard and install different operating													
	02		systems													
	CO3		Understand and configure different storage media													
	CO4	Per	erform networking, troubleshooting and system administration tasks													
Contribution		PO												PSO	PSO	
of Course		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
Outcomes	CO1	3								2		1				
towards achievement	001	5								2		1				
of Program	G Q Q		4													
Outcomes	CO2		1							2						
(1 – Low, 2 -	CO3	3														
Medium, 3 –																
High	CO4															
Course																
Content	CYCI	LE -	I:													
	Word	Pro	cessi	ng, P	resen	tatio	ns ar	nd Sp	read	Shee	ets					
	1.	Wo	rd Pr	ocess	ing											
			-	ersona			-		ord.							
				resum										C .		
	c)													of cont bering		
														Symb		
				ack cl				none,	100	Stilot	, 11	ly per	,	Sym	, ,	Spen
	d)				0		Featu	res t	o be	cove	ered:-	- Tat	ole of	f conte	ent, L	ist of
														, Draw		
		and	word	l art,	Form	atting	g ima	ages,	Text	boxe	s, Pa	ragra	phs a	nd ma	il mer	ge in
		wor	d.													
	n	Smr		boot												
		-		Sheets works		conta	ining	r nav	detai	ls of	the e	mnlo	vees			
							-					-	-	es, Fo	rmat	cells.
	- /		-	on, A								. –				,
	c)									dent	resul	ts: Fo	eature	es to b	e cove	ered:-
					0					U				ning a		U
					• •		ng, C	Count	func	ction,	LOC	JKUI	P/VL	OOKU	P, So	rting,
	(L			nal fo		0	rtina	data	from	data	base	and		lata arr	mofo	11 tha
	u)		ine a mns.		sneet	mpo	nung	uata	nom	i uata	Jase	anu (Jaicu	late su		
		010														

3. Presentations
a) Create a presentation using themes.
b) Save, edit, print and import images/videos to a presentation.
c) Create a power point presentation on business by using master layouts,
adding animation to a presentation and see the presentation in different views
4. MS Access:
a) Create simple table in MS access for results processing.
b) Create a query table for the results processing table.
c) Create a form to update/modify the results processing table.
d) Create a report to print the result sheet and marks card for the result
CYCLE - II:
Hardware Experiments:
1) Identification of system layout: Front panel indicators & switches and front
side & rear side connectors. Familiarize the computer system Layout: Marking positions of SMPS, Motherboard, FDD, HDD, CD, DVD and add on
cards. Install hard disk. Configure CMOS- Setup. Partition and format hard
disk.
2) Install and configure a DVD writer or a Blue - ray disc writer.
3) Install windows operating system and check if all the device (graphics, sound,
network etc.) drivers are installed.
4) Install Linux operating system and check the working of all devices
(graphics, sound, network etc.) in the computer.
5) Assemble a Pentium IV or Pentium Dual Core Pentium Core2 Duo system
with necessary peripherals and check the working condition of the PC.
6) PC system layout: Draw a computer system layout and mark the positions of
SMPS, Mother Board, FDD, HDD, and CD-Drive/DVDDrive add on cards in
table top / tower model systems.
7) Mother board layout: Draw the layout of Pentium IV or Pentium Dual core or
Pentium Core2 DUO mother board and mark processor, Chip set ICs. RAM,
cache, Cooling fan, I/O slots and I/O ports and various jumper settings.
8) Configure BIOS setup program to change standard and advanced settings to
troubleshoot typical problems.
9) Install and configure Printer/Scanner/Webcam/Cell phone/bio-metric device
with system. Troubleshoot the problems
CYCLE – III : Networking
1) Prepare an Ethernet/UTP cable to connect a computer to network switch.
Crimp the 4 pair cable with RJ45 connector and with appropriate color code.
2) Manually configure TCP/IP parameters (Host IP, Subnet mask and default
gateway) for a computer and verify them using IPCONFIG command. Test
connectivity to a server system using PING command.
3) Creating a shared folder in the computer and connecting to that folder using Universal Naming Convention (UNC) format. (Ex:
\mathbf{e}
computernamesharename) 4) Connects computers together via Switch/ Hub
5) Connect different devices via Switch/Hub
6) Statically configure IP address and subnet mask for each computer
7) Examine non-existent IP address and subnet conflicts
8) Configure a computer to connect to internet (using college internetsettings)
and troubleshoot the problems using PING, TRACERT and NETSTAT
commands.

	 9) Using scan disk, disk cleanup, disk Defragmenter, Virus Detection and Rectifying Software to troubleshoot typical computer problems. 10)Configure DNS to establish interconnection between systems and describe how a name is mapped to IP Address. 11)Remote desktop connections and file sharing. 12)Installation antivirus and configure the antivirus. 13)Introducing Ethereal, a packet capture tool
Text books and Reference books	
E-resources and other digital material	1. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-00sc-introduction- to-computer-science-and-programming-spring-2011/

17ME1153 – Basic Workshop

Course Category:	Engineering Sciences	Credits:	1.5
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0 - 3
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	TT		C	1	1	6	.1		.1	. 1			1.1			
outcomes	Upon	succ	essfu	l con	pleti	on of	the c	ourse	, the	stude	ent w	ill be	able	to:		
	CO1				-			-						y trade	e	
	CO2					isic p							<u> </u>			
	CO3													tin sm	ithy	
<u> </u>	CO4					rious				_				- U	1	
Contribution		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
of Course Outcomes		1	2	5	4	5	0	/	0	9	10	11	12	1	2	5
towards	CO1		2						1			3	2			
achievement																
of Program	CO2		2						1			3	2			
Outcomes	002		2						1			5	2			
			_									_	_			
(1 - Low, 2 -	CO3															
Medium, 3 –																
High	CO4						1									
Content	b. c. UNIT Weldi a.	entry Stuc Prac tail Sim II ing: Stuc Prac	ly of trice joint ple g ly of trice	of op roup tools of v	en br exerc and o	ise lil	oint, ke pro tions ts lik	Cross epara of Ga	s half tion c as we eld la	lap of sin lding	joint, gle w and pract	Half vidow arc w	E Lap / fran /eldir	ne. 1g.		Dove Double
	b. c. UNIT House a. b.	mith Stuc Prac Gro Sim F IV e Wi To c To c	ly of etice oved ple e ring: conne	of v Sean xercia	variou n. se like ne lam vo lam	eratic s join e Fab p wit ps wit scent	nts li ricati h one ith or	on of e swit ie sw	squa ch.	0		red 1	Edge.	, Lap	Seam	n, and

d. Stair case wiring.

	 e. Godown wiring. f. Study of single phase wiring for a office room. g. Nomenclature & measurement of wire gauges and cables. h. Estimation of cost of indoor wiring for a wiring diagram (plan of a building). i. Test procedure for continuity of wiring in a electric installation. j. Measurement of electric energy by using meter.
Text books	Text Book:
and	[T1] Kannaiah P. & Narayana K. C., "Manual on Workshop Practice", Scitech
Reference	Publications, Chennai, 1999
books	[T2] Venkatachalapathy, V. S., "First year Engineering Workshop Practice", RamalingaPublications, Madurai, 1999
	Reference Books: [R1] Gopal, T.V., Kumar, T., and Murali, G., "A first course on workshop practice – Theory, Practice and Work Book", Suma Publications, Chennai, 2005.
E-resources and other digital material	

17MC1106A – Technology and Society

Course Category:	Institutional Core	Credits:	0
Course Type:	Theory	Lecture - Tutorial - Practice:	1 - 0 - 0
Prerequisites:		Continuous Evaluation:	100
		Semester end Evaluation:	0
		Total Marks:	100

Course outcomes	Upon	Upon successful completion of the course, the student will be able to:														
outcomes	CO1			ind th	he or	igins	of te	chno	logy	and	its ro	ole in	the	histor	y of h	uman
	CO2	progress CO2 Know the industrial revolution and its impact on society														
	CO3	O3 Interpret the developments in various fields of technology till twentieth century.														
	CO4	D4 Distinguish the impacts of technology on the environment and achievements of great scientists														
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
Outcomes towards	CO1	3										1				
achievement of Program Outcomes	CO2	3					2									
(1 – Low, 2 - Madium 3	CO3	3										1				
Medium, 3 – High	CO4	O4 3 2 1														
Course Content	contril Indian UNIT Indus backg textile UNIT The electri UNIT Techr techno Achie (Worl	ducti butio is and is and it trial round indu indu flow rs, In cal to is, In cal to cal to is, In cal to cal to is, In cal to is, In to is, In cal to is, In	Re d. Chi Re d, Sta ustry, vering terna echno gy, So y on the ents of timest	f and nese. volute eam: The g of l com blogy cience he en of fan ein, N	tion:' The impa Mo nbust , Two viror wiror Mous Newto	civili The powe ict of dern ion e entiet I Soc iment scie t on, Fa	socia er beh indus Tec ngine h cen iety: 1 t, Sust ntists : araday	l an ind t trial t hnol s, Pro tury: Impac ainat	d p he in revolu- ogy: oduct The f ole de aham	olitica dustr ution Mar ion o flowe techn evelop Bell,	an, E al b ial re on so nufacto f me ering pology pmen	Egypt ackgr evolu ociety turing tals a of mo t. son, S	ians, rounc tion, g tec ind a odern socie	Greel d, Th The r chnolo lloys, techn ty, Th vking.	e impa	mans, hnical ion in Prime rth of
	(Indi	a):	CV	Rama	an, S	S.Cha	ndras	ekhaı	, Ar	yabh	atta,	Hon	ni J	Bhab	ha, V	ikram

	Sarabhai, APJ Abdulkalam, S.Ramanujan, M.Visweswarayya
Text books and Reference	Text Book: [T1] Dr. R.V.G Menon, "Technology and Society", Pearson Education, 2011
books	Reference Books: [R1] Quan-Haase, A., "Technology and Society: Inequality, Power, and Social Networks", Oxford University Press, 2013.
E-resources and other digital material	

17MC1107 – Induction Program

Course Category:	Institutional Core	Credits:	0
Course Type:	Theory	Lecture - Tutorial - Practice:	0 - 0 - 0
Prerequisites:		Continuous Evaluation:	0
		Semester end Evaluation:	0
		Total Marks:	0

First Year (II Semester)

17MA1201 - Laplace Transforms and Integral Calculus

Course Category:	Institutional Core	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 1 - 0
Prerequisites:	Vectors, Curve Tracing	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon successful completion of the course, the student will be able to:															
outcomes	CO1	Sol	ve lin	ear d	iffere	ntial	equat	ions	using	g Lap	lace 1	rans	forms	5		
	CO2 Examine the nature of the infinite series.															
	CO3 Evaluate areas and volumes using double, triple integrals															
	CO4	O4 Convert line integrals to area integrals and surface integrals to volu integrals											olume			
Contribution of Course		PO 1	РО 2	РО 3	PO 4	PO 5	PO 6	PO 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
Outcomes towards achievement	CO1	3				1										
of Program Outcomes	CO2	3				1										
(1 – Low, 2 -	CO3	3				1										
Medium, 3 – High	CO4	3				1										
	 UNIT- I Laplace Transforms: Introduction, Definition, Conditions for existence Transforms of elementary functions, Properties of Laplace transforms, Transform of periodic functions, Transforms of derivatives, Transforms of integrals Multiplication by 't', Division by 't', Inverse transforms, Method of partia fractions, Other methods of finding inverse transform, Convolution theorem, Unistep and Unit impulse functions. Applications: Evaluation of improper integrals, Solving differential equations b Laplace transform UNIT II Partial Differential Equations: Introduction, Formation of partial differential equations, Solutions of partial differential equations, Equations solvable by direct integration, Linear equations of first order. Sequence and Series: Convergence of series, Comparison test, Integral test D'Alembert's ratio test, Cauchy's root test, Alternating series test, Absolute an conditional convergence. 										grals, oartial Unit ns by ential direct test,					

	 Special Functions: Beta function, Gamma function, Relation between Beta and Gamma function, Error function. UNIT IV Vector Calculus: Scalar and vector point functions, Del applied to scalar point functions, Del applied to vector point functions, Physical interpretation of divergence, Del applied twice to point functions, Del applied to products of point functions. Integration of vectors, Line integral, Surface integral, Green's theorem in a plane, Stokes'stheorem, Volume integral, Gauss divergence theorem, Irrotationalfield
Text books and Reference books	 Text Book: [T1] B.S.Grewal, "Higher Engineering Mathematics", Khanna Publishers, 43rd Ed., 2014. Reference Books: [R1] Erwin Kreyszig, "Advanced Engineering Mathematics", 10th Ed., John Wiley & Sons, 2015. [R2] B.V.Ramana, "Higher Engineering Mathematics", 1st Ed., Tata MC Graw Hill, 2007 [R3] N.P.Bali, Dr. Manish Goyal, "A Text Book of Engineering Mathematics", 9th Ed., Lakshmi Publications, 2014.
E-resources and other digital material	 <u>https://nptel.ac.in/courses/122104017/</u> <u>https://www.nptel.ac.in/courses/111105035/</u> <u>https://plus.maths.org/content/open-learning-foundation-mathematics-working-group</u>

17CH1202 – Engineering Chemistry

Course Category:	Institutional Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0 - 0
Prerequisites:	Knowledge of chemistry at	Continuous Evaluation:	30
_	intermediate level	Semester end Evaluation:	70
		Total Marks:	100

Course	Upon successful completion of the course, the student will be able to:															
outcomes	CO1	Ana	nalyze various water treatment methods and boiler troubles													
	CO2		oply the principles of spectroscopic techniques to analyze different materials d apply the knowledge of conventional fuels for their effective utilization.													
	CO3		bly the knowledge of working principles of conducting polymers, electrodes batteries for their application in various technological fields													
	CO4	Eval	luate	corro	sion j	proce	sses a	ıs wel	l as p	rotec	tion 1	netho	ds	1		
Contribu tion of		PO 1	PO 2	РО 3	PO 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PS O 2	PSO 3
Course Outcome s	CO1		3													
s towards achievem	CO2	2														
ent of Program Outcome	CO3											3				
(1 – Low, 2 - Medium, 3 – High	CO4			2												
Course Content	UNIT- Water Sedimo chlorin process Water conditi alumin - Causo UNIT Spectr with r electro Probles aldehy Infrar interpr ketone	Tec entation s of e tech oning ate, C es and II roscoj natter nic t ms o des an ed (on, on and lectro nolog g me Causti l con Dic T causti l con Dic T causti n int n int nd ke	Coagu its so odialy gy-II: thods trol. echni Ultrav tions, erpre tones spec	ulatio signif sis ar Boil - P brittle brittle iolet- Lan tatior	n, F icanc nd rev ler tro hosph ement and visibl nbert- n of copy:	iltrati e - I verse o oubles nate o t-reas Appl i le spo -Beer UV-v Pri:	on, 2 Desali osmo s - Sc condit ons, 1 icatio ectros 's law visible nciple	Disin natio sis, A cales f tionin Mech ons: In copy w – e spe	fection n of dvan forma ag, C anism nterac : Fra Defin ctra	on by brac tages ation, algor n and ction nk-C nition of si of	y chi kish and c Disa con its co of ele ondo and mple vibra	lorina water lisady dvant dition ontrol ectron n pri- num mole	tion, - Privantage tages a ning a , Boile nagnet nciple, nerical ecules	Break inciple es. and in nd sc er corr ic rad Typ prob of an	ternal odium osion iation es of lems, cenes,

	Fuel Technology: Fuel- Definition, Calorific value - Lower and higher calorific values, Analysis of coal - Proximate analysis and ultimate analysis, Refining of petroleum, Fue gas analysis by Orsat's apparatus, Numericals based on calculation of air required for combustion
	UNIT III Conducting Polymers: Definition, Examples, Classification - Intrinsically conducting polymers and extrinsically conducting polymers - Mechanism of conduction of undopedpolyacetylene, Doping of conducting polymers - Mechanism of conduction of p-doped and n-doped polyacetylenes - Applications of conducting polymers.
	Electrochemistry : Construction and working of Calomel electrode, Silver-silver chloride electrode and principle, Construction and working of glass electrode, Determination of pH using glass electrode - Chemistry of modern batteries -Li/SOCl2 battery and LixC/LiCoO2 battery - Construction, Working and advantages, Chemistry of H2-O2 fuel cell - Advantages.
	UNIT IV Corrosion Principles: Introduction, Definition, Reason for corrosion, Examples - Electrochemical theory of corrosion, Types of electrochemical corrosion - Hydrogen evolution and oxygen absorption - Corrosion due to dissimilar metals, Galvanic series - Differential aeration corrosion - Pitting corrosion and concept of passivity.
	Corrosion Control Methods : Cathodic protection - Principle and types - Impressed current method and sacrificial anode method, Anodic protection - Principle and method, Corrosioninhibitors - Types and mechanism of inhibition - Principle, Process, Advantages of electroplating and electroless plating.
Text	Text Book:
books	[T1] Shikha Agarwal, "Engineering Chemistry – Fundamentals and Applications",
and	Cambridge University Press, New Delhi, 1 st Ed., 2015.
Referenc	
e books	Reference Books:
	 [R1] Sunita Rattan, "A Textbook of Engineering Chemistry", S.K. Kataria& Sons, New Delhi, 1st Ed., 2012. [R2] P.C. Jain, "Engineering Chemistry", Dhanpat Rai Publishing Company (P)
	Limited, New Delhi, 15 th Ed.
	[R3] B.S. Bahl, G. D. Tuli and ArunBahl, "Essentials of Physical Chemistry", S.
	Chand and Company Limited, New Delhi.
	[R4] O. G. Palanna, "Engineering Chemistry", Tata McGraw Hill Education Pvt. Ltd.,
	New Delhi. [R5] Y.Anjaneyulu, K. Chandrasekhar and ValliManickam, "Text book of
	AnalyticalChemistry", Pharma Book Syndicate, Hyderabad.
	[R6] H. Kaur, Spectroscopy, 1 st Ed., 2001, PragatiPrakashan, Meerut
Е-	1. <u>C:\Users\BANNULUCKY\paruc\Downloads\VR17 03-02-</u>
resource	2020.docxhttp://www.cip.ukcentre.com/steam.htm
s and	 <u>http://nopr.niscair.res.in/bitstream/123456789/5475/1/JSIR%2063%289%29%20715728.pdf</u> <u>https://www.khanacademy.org/test-prep/mcat/physical-processes/infrared-andultraviolet-visible-</u>
other	3. <u>https://www.khanacademy.org/test-prep/mcat/physical-processes/infrared-andultraviolet-visible-spectroscopy/e/infrared-and-ultraviolet-visible-spectroscopyquestions</u>
digital material	4. NPTEL online course, "Analytical Chemistry", offered by MHRD and instructed by
material	Prof.Debashis Ray of IIT Kharagpur.
	5. NPTEL online course, "Corrosion Part-I" offered by MHRD and instructed by Prof.KallolMondal
1	of IIT Kanpur

17CS1203 – Programming in C

Course Category:	Institutional Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0 - 0
Prerequisites:	Problem Solving Methods	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon s	pon successful completion of the course, the student will be able to:														
outcomes	CO1	Und	ersta	nd the	e fun	dame	ntals	and s	tructu	ire of	a C r	orogra	ammi	ng lang	guage	
	CO2	App	oply the loops, arrays, functions and string concepts in C to solve the given oblem													
	CO3		bly the pointers and text input output files concept to find the solution for the en applications													
	CO4	Use	the e	enum	erated	l, data	atype	s, stru	cture	s and	unio	ns				
Contribu		PO	РО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
tion of		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
Course Outcome	CO1	3														
s towards achievem	CO2		1	3												
ent of Program Outcome	CO3		1	3												
s																
(1 – Low, 2 - Medium, 3 – High	CO4	3	1													
Content	UNIT- Introd Variab Struct expres Selecti selecti UNIT Repeti progra Array Two d Functi	luctio les, C ure o sions, ion: S on, M II ition: m. s: Co imens	Consta of a Type Storag fore s Cone ncept	e con ge cla tanda cept c s, Us array	input/ ogra versic ass,La rd fun of a la ing a /s, M	Outp ^o m: E on, St ogica nctior oop, 1 rray i ulti d	ut, Pr Express ateme 1 data 15 Loops n C, 2 imens	ogran ssions ents, S a and s in C Inter- sional	, Pre Samp ope C, Loo funct array	g exa ceeden le pro rators op ex ion co ys.	mples nce a ogram s, Tw ample	s. ind a is. o-Wa es, Ra unica	ssocia ay se ecursi	atively lection ion, Th Array	, Eval , Mul ne calc applica	uating ti-way culator ations,
	Funct i Standa					<i>.</i> , Us	ser d	efined	1 tun	ction	s, Int	ter fu	inctio	on con	nmunno	cation,

	Strings : String concepts, C Strings, String Input/Output functions, Arrays of strings, String manipulation functions, String - Data conversion
	UNIT III Pointers: Introduction, Pointers for inter function communications, Pointers to pointers, Compatibility, Lvalue and Rvlaue.
	Pointer Applications: Arrays and pointers, Pointer Arithmetic and arrays, Passing an array to a function, Memory allocations functions, Array of pointers.
	Text Input/output: Files, Streams, Standard library Input/Output functions, Formatting Input/output functions and character Input/Output Functions, Command-line arguments.
	UNIT IV Enumerations: The type definition(Typedef), Enumerated types: Declaring an enumerated Type, Operations on enumerated types, Enumeration type conversion, Initializing enumerated constants, Anonymous enumeration:Constants, Input/Outputoperators.
	Structures: Structure type declaration, Initialization, Accessing structures, Operations on structures, Complex structures, Structures and functions, Sending the whole structure, Passing structures through pointers.
	Unions: Referencing Unions, Initializers, Unions and structures, Internet address, Programming applications.
Text	Text Book:
books	[T1] Behrouz A. Forouzan& Richard F. Gilberg, "Computer Science A Structured
and	Programming Approach using C", 3 rd Ed., Cengage Learning.
Referenc	
e books	 Reference Books: [R1] Kernighan and Ritchie, "The C programming language", 2nd Ed., PHI. [R2] YashwantKanetkar, "Let us C", BPB Publications, 2nd Ed., 2001. [R3] Paul J. Dietel and Dr. Harvey M. Deitel, "C: How to Program", Prentice Hall, 7th Ed., 2012. [R4] Herbert Schildt, "C: The Complete reference", McGraw Hill, 4th Ed., 2002. [R5] K.R.Venugopal, Sundeep R Prasad, "Mastering C", McGraw Hill, 2nd Ed., 2015.
Е-	[K5] K.K. venugopai, Sundeep K Flasad, Mastering C, McGlaw IIII,2 Ed., 2015.
resource	
s and	
other	
digital	
material	

17EI1204 – Electronic Devices and Circuits

Course Category:	Programme Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0 - 0
Prerequisites:	Engineering Physics	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succ	essfu	l com	pletio	on of	the co	ourse,	the s	studer	nt wil	l be a	ble to	:		
outcomes	CO1		-					pts to	dete	rmine	the o	conce	ntrati	on an	d resis	stivity
	CO2		semiconductor materials. alyze basic diode circuits for various applications													
	CO3		alyze the operation of BJTs and FETs													
Contribution		PO	PO	PO	РО	PO	PO	PO	PO	PO	PO	PO	PO	PS	PSO	PSO
of Course		1	2	3	4	5	6	7	8	9	10	11	12	O 1	2	3
Outcomes	CO1	2													2	
towards	COI	2														
achievement			_												2	
of Program Outcomes	CO2		3													
(1 - Low, 2 -															2	
Medium, 3 –	CO3		3												2	
High			_													
Course			T													
Content	UNIT		tion in Semiconductors: Conductivity of a semiconductor, Carrier													
			rations in an intrinsic semiconductor, Donor and acceptor impurities, Charge													
	densit	les II	s in a semiconductor, Diffusion, nductor Diode Characteristics : Qualitative theory of P-N junction, P-N as a diode, The volt ampere characteristics, The temperature dependence of													
	Semio	cond														
							-					-			capaci	
	Diffus	sion c	capac	itance	es. Br	eakd	own c	liodes	5.		-				-	
	UNIT	' II														
			plica	tions	: Dio	de a	pprox	imati	ons.	Serie	s dio	de co	onfigu	iratio	ns wit	h DC
			_										-		s, Cli	
	Clam	pers.												-	-	-
	Dest	fi o	D:-	da c		o o ti fi		Ialf -		D11		10	Cont		nad T) mid a a
															ped, E :, L se	-
	Zener			at 1111		u vvl			muu			Capa		intel	, ц зс	cuon,
		- 0 -														
	UNIT	' III														
							•					acter	istics	of co	mmon	base,
	Comn	non e	mitte	er and	com	mon	collec	tor co	onfig	uratio	n.					
	Trane	ristar	· Bia	sina 4	and 7	Chorr	nal C	tahili	izatio	n• T	he on	oratin		int P	ias sta	hility
	Collec			-							-				nistor	and
	sensis										-		,			
			-					-				-				

	 UNIT IV Field Effect Transistors: Construction and characteristics of JFETs, Transfer characteristics, Specification sheets (JFETs), Depletion-type MOSFET and enhancementtype MOSFET FET Biasing: Introduction, Fixed bias configuration, Self bias configuration, Voltage divider biasing, Depletion type MOSFET and Enhancementtype MOSFET
Text books and Reference books	 Text Book: [T1] Jacob Millman, Christos C Halkias&Satyabrata JIT, "Millman'sElectronic Devices and Circuits", 4th Ed., TMH, 2015. (Unit I, II& III). [T2] Robert L Boylested and Louis Nashelsky, "Electronic Devices and Circuit Theory", 10th Ed., Pearson India, 2009. (UNIT IV). Reference Books: [R1] Nandita Das Gupta and AmitavaDas Gupta, "Semiconductor Devices Modelling and Technology", PHI Learning Pvt. Ltd., 2013 [R2] DavidA Bell., "Electronic Devices and Circuits", 5th Ed., Oxford University Press, 2008
E-resources and other	1. <u>http://www.nptelvideos.in/2012/12/basic-electronics-drchitralekha-</u> mahanta.html
digital	2. http://nptel.ac.in/courses/117103063/
material	 3. <u>http://nptel.ac.in/courses/117106033/</u> 4. <u>http://nptel.ac.in/courses/117102061/</u>

17ME1205 – Engineering Graphics

Course Category:	Institutional Core	Credits:	4
Course Type:	Theory and Practice	Lecture - Tutorial - Practice:	2 - 0 - 4
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Unce		f1		lation	of 1		m a a 4	he et-	Idant		an al-1	la ta:			
outcomes	Upon s			-												
	CO1 CO2						nics a					ec an	d soli	de		
	-													surface	s and	their
	CO3		esenta		cuon			01 5	ondo	, uc ,	ciopi	nent	01 5	, ai i ac ci	o una	unon
	CO4	1			netric	scale	e, iso	metri	c pro	jectio	ons, i	some	tric	views	and co	onvert
	CO4						aphic		-	-		-	-			-
Contributio		РО	РО	PO	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
n of Course		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
Outcomes	CO1	3				3				3						
towards achievemen	001					5				5						
t of		2								2						
Program	CO2					3				3						
Outcomes		2														
	CO3					3				3						
(1 – Low, 2		1														
- Medium,	CO4	1				3				3						
3 – High Course																
Content	Introd	NIT-I ntroduction to Engineering Drawing: Principles of engineering graphics and their gnificance														
	Scales	: Con	struct	tion o	f plai	n and	l diag	onals	scales	5						
	Conic to ecce						-		arabo	ola an	d hyj	perbo	la (Ti	reatme	nt is li	mited
	Engin	eering	g Cui	ves:	Cycle	oidal	curve	s - C	ycloid	l, Epi	cyclo	id an	d Hyj	pocyclo	oid	
	Ortho points, regular UNIT Project cylinde	UNIT II Orthographic Projections: Principles of orthographic projections - Projections of points, Lines (Treatment is limited to first angle projection) and Projections of plane regular geometric figures (upto plane inclined to both of the reference planes) UNIT III Projections of Solids: Projections of simple solids such as cubes, prisms, pyramids, cylinders and cones with varying positions (limited to solid inclined to one of the														
	referen Section cones.	ns of	Solic								· •			•	•	

	planes)
	UNIT IV Development of Surfaces: Lateral development of cut sections of cubes, prisms, pyramids, cylinders and cones
	Isometric Projections: Isometric Projection and conversion of isometric views into Orthographic Projections (Treatment is limited to simple objects only)
	Conventions Auto CAD: Basic principles only (Internal assessment only)
Text books and Reference books	Text Book: [T1]N.D. Bhatt & V.M. Panchal, "Elementary Engineering Drawing", Charotar Publishing House, Anand. 49 th Ed., 2006. [T2] Basanth Agrawal & C M Agrawal," Engineering Drawing", McGraw Hill Education Private Limited, New Delhi
	 Reference Books: [R1] K. L. Narayana & P. Kannaiah, "Text Book on Engineering Drawing", Scitech publications (India) Pvt. Ltd., Chennai, 2nd Ed., fifth reprint 2006 [R2] K. Venugopal, "Engineering Drawing and Graphics + Auto CAD", New Age International, New Delhi [R3] D M Kulkarni, AP Rastogi, AK Sarkar, "Engineering Graphics with Auto CAD", PHI Learning Private Limited, Delhi Edition – 2013
E-resources and other digital material	 <u>https://www.slideshare.net/</u> <u>http://edpstuff.blogspot.com/</u>

17CH1251 – Engineering Chemistry Lab

Course Category:	Institutional Core	Credits:	1.5
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0 - 3
Prerequisites:	Knowledge of chemistry	Continuous Evaluation:	30
	practical's at intermediate level	Semester end Evaluation:	70
		Total Marks:	100

Course	Upon s	succes	sful	comp	letior	n of th	ie cou	irse, t	he stı	ıdent	will l	be ab	le to:			
outcomes	CO1	-		_										ources		
	CO2		form quantitative analysis using instrumental methods													
	CO3		oply the knowledge of mechanism of corrosion inhibition, metallic coatings d photochemical reactions													
Contributio		PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
n of Course Outcomes towards	CO1	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
achievemen t of Program Outcomes	CO2					2										
(1 – Low, 2 - Medium, 3 – High	CO3		2													
Course																
Content	1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.	Deter Deter Deter Deter Deter Deter Deter Cond pH m Deter Cherr Prepa	Experiments: Determination of total alkalinity of water sample Determination of chlorides in water sample Determination of hardness of water sample Determination of available chlorine in bleaching powder Determination of copper in a given sample Determination of Mohr's salt - Dichrometry Determination of Mohr's salt - Permanganometry Determination of purity of boric acid sample Conductometric determination of a strong acid using a strong base H metric titration of a strong acid vs. a strong base Determination of corrosion inhibition efficiency of an inhibitor for mild steel Chemistry of blue printings Determination of urea-formaldehyde resin													
Text books and Reference books	Refere [R1] F Dhanp [R2] S New D	K. Bh at Ra unitha	asin ai Pu	and blishi	ng Co	ompa	ny, 2'	nd Ed.,	, New	/ Dell	ni.		-	-		
E-resources and other digital material																

17CS1252 – Computer Programming Lab

Course Category:	Institutional Core	Credits:	1.5
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0 - 3
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succ	essful	l com	pletio	on of	the co	ourse,	the s	studer	ıt will	be ab	le to:			
outcomes	CO1				e us langu		prog	ramm	ning	const	ructs	in a	struc	tured	orie	nted
	CO2	1	/	0	0	0	user d	lefine	d fun	ction	s to s	olve re	al tin	ne pro	blem	s
	CO3		~		-							on da		- I		
	CO4	-		lement the user defined data types via structures and unions to solve real problems												
Contribution of Course		PO 1	PO 2	РО 3	PO 4	РО 5	PO 6	РО 7	РО 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
Outcomes towards achievement	CO1	3														
of Program Outcomes	CO2								1	3						
(L – Low, M - Medium, H	CO3								1	3						
– High	CO4	3							1							
Course Content	2.	Intr a b Dat a t Bra a b	 coduction coduction control control<th>e of f e strupes an ogram ogram ogram nstam ogram ng an spe- teme cho teme st stat execu ocho ndition ntain none</th><th>nd Va ns to magnetic ns to magnetic stand ts and ts and d Sel cify nts of t Sel cify nts sh ose e nts) t temer ute if ose o a gr ons u a def of the</th><th>C II of C II of C ariab usage deci diffe perfor ection the c ould exactl o be nt is t these one st oup nder ault s ese co</th><th>DE Prog les: of ke laratic erent f rm on n: condit be ex y on exect o be cond atema of st whic tatem</th><th>ram v eywor on of type o to vario tions ecute e out uted; execu itions ent (p atemo h eac nent (i ons a</th><th>rds an F vari of cor ous of unde ed. f of t spec: ated a s are r possib ents ch sta in an re me</th><th>ables istant perato er wh two s ifies t and pr not mo bly co (poss ateme else c et. No</th><th>ntifier, rule s, data ors in nich a tatem the co rovide et. ompou ibly nt m clause ote th</th><th>rs in c es for a types</th><th>nami s ement (possi ons un altern o be ound); exec end) he abs</th><th>t or bly c nder v ative execu ; spec suted to be sence</th><th>group which staten uted t cifies and exect of a</th><th>p of ound the nent from the may uted final</th>	e of f e strupes an ogram ogram ogram nstam ogram ng an spe- teme cho teme st stat execu ocho ndition ntain none	nd Va ns to magnetic ns to magnetic stand ts and ts and d Sel cify nts of t Sel cify nts sh ose e nts) t temer ute if ose o a gr ons u a def of the	C II of C II of C ariab usage deci diffe perfor ection the c ould exactl o be nt is t these one st oup nder ault s ese co	DE Prog les: of ke laratic erent f rm on n: condit be ex y on exect o be cond atema of st whic tatem	ram v eywor on of type o to vario tions ecute e out uted; execu itions ent (p atemo h eac nent (i ons a	rds an F vari of cor ous of unde ed. f of t spec: ated a s are r possib ents ch sta in an re me	ables istant perato er wh two s ifies t and pr not mo bly co (poss ateme else c et. No	ntifier, rule s, data ors in nich a tatem the co rovide et. ompou ibly nt m clause ote th	rs in c es for a types	nami s ement (possi ons un altern o be ound); exec end) he abs	t or bly c nder v ative execu ; spec suted to be sence	group which staten uted t cifies and exect of a	p of ound the nent from the may uted final

	4. Unconditional control Transfer statements in C:
	a) Design and develop programs that use of gotostatement
	b) Design and develop programs that use break statement
	c) Design and develop programs that use continue statement
	5. Looping constructs:
	Design and develop programs based on a) Iterative loops using While, Do While, For, Nested For
	b) Selection statement using the switch-case statement
	c) Multiple way selections that will branch into different code segments
	based on the value of a variable or expression
	6. Arrays:
	a) Design and develop programs which illustrates the implementation of
	singledimensional arrays and multi dimensional arrays
	7. Strings:
	a) Create programs to initialize strings and usage of them for various
	input, output operations.
	b) Design and develop programs to handle string functions
	, 0 III 0 III 0 III 0 III 0 III 0
	CYCLE - II:
	Advanced Programming Constructs
	1. Concept of user defined functions
	a) Design and develop programs depending on functions both user
	defined and standard library functions in C with different approaches
	2. File handling operations
	a) FILE structure
	b) Opening and closing a file, file open modes
	c) Reading and writing operations performed on a file
	d) File Pointers: stdin, stdout and stderr
	e) FILE handling functions: fgetc(), fputc(), fgets() and fputs() Functions
	3. Pointers:
	a) Programs on declaration of pointers and their usage in C
	b) Programs to relate between arrays and pointers and use them
	efficiently in a program
	c) To pass pointers as an argument to a function, and use it efficiently in
	program 4. Command Line Arguments
	a) Design and develop programs that accept arguments from command
	line to perform different kinds of operations
	5. Structures and Unions
	a) Programs to define, declare and access structure and union variables
	b) Design and develop programs to work with pointers to access data
	within a structure programs to pass structure as an argument to a
	function
Text books	Text Books:
and	[T1] Ashok N Kamthane, "C And Data Structures", Pearson Education; 1 st Ed., 2008.
Reference	
books	Reference Books:
	[R1] Brain W Kernighan and Dennis Ritchie, "The C Programming language",
	Pearson Education India,2015
	[R2] David Griffiths and Dawn Griffiths, "Head First C:A Brain Friendly Guide",
	O:Reilly media, 2012

E-resources	1. https://nptel.ac.in/courses/106104128/
and other	2. <u>https://www.youtube.com/watch?v=S47aSEqm_0I&list=PLeCxvb23g7hrw27</u>
digital	XlekHtfygUTQ0TmFfP
material	3. <u>https://www.youtube.com/watch?v=zjyR9e-N1D4&</u>

17MC1206B – Professional Ethics & Human Values

Course Category:	Mandatory Learning	Credits:	0
Course Type:	Theory	Lecture - Tutorial - Practice:	2 - 0 - 0
Prerequisites:		Continuous Evaluation:	100
		Semester end Evaluation:	00
		Total Marks:	100

outcomes –	001			n successful completion of the course, the student will be able to:												
	CO1	Kno	w the	mora	al aut	onom	y and	luses	of et	hical	theor	ries				
	CO2				-		sty an				<u> </u>					
-	CO3										right			a		-
	CO4			on's o				odal 1	ssues	relat	led to	envi	ronm	ent, c	compt	ners
Contributio		PO	PO	PO	PO	PO	PO	РО	PO	РО	РО	РО	PO	PSO	PSO	PSO
n of Course		1	2 3 4 5 6 7 8 9 10 11 12 1 2 3													
Outcomes towards achievemen	CO1	2														
	CO2								2							
	CO3						3									
(1 − Low, 2 - Medium, 3 − High	CO4															
	Engine of inqu theory right ac UNIT I Human - Civic Courag Charac UNIT I Project experim balance Rights: reducim loyalty interest Propert UNIT I Global	iry - Corction - II n Val virtu ge - V ter - S III tions nenta ed ou Safe ng rist - Res t - Octy Rig IV	Mon nsensy –Self ues:N e - R aluin Spirit En tion tlook ty an k - T spect ccupa ghts (1	ral di us and intere Moral espec g tim uality ngine - Eng on la d risl he th for au tiona IPR)	lemn d con est - C s, Va t for e - Co z ering gineer aw - c - A uree r uthori l crim - Disc	as - trove Custor lues a other p-ope s as The ssess nile i ty - C ne - 1 crimin	Mora rsy - ns an and et s - Li ratior Solution Solution	al aut Mode d reli hics - ving j a - Co ocial onsible of sa and tive b ssiona	Ex Ex Ex Ex Ex Ex Ex Ex Ex Ex Ex Ex Ex E	ny - profe Uses grity- efully tment perim study and ri- nobyl ining hts -	Kohll ession of et Wor - Can - En nenta enter y, Saf isk - case - Cor Empl	tion: s - C fety, 1 Risk studi fider	s theo les - theor ic - S Shar y - Se Er Codes Respo benef es. C ntiality right	ory -(Theories. ervice ing - elf con of e onsibi it ana colleg y - Ce s - Ir	Gillig ries a e lear Hone nfider thics lities alysis iality onflic ntelled	an's bout ning sty - nce - as - A and and ts of ctual

	as expert witnesses and advisors - Moral leadership - Sample code of ethics (specific to a particular engineering discipline).
Text books and Reference books	 Text Book: [T1] Mike Martin and Roland Schinzinger, "Ethics in Engineering", McGraw Hill, New York 1996. [T2] Govindarajan M, Natarajan S, Senthil Kumar V. S., "Engineering Ethics", Prentice Hall of India, New Delhi2004.
	 Reference Books: [R1] K. Baum, R.J. and Flores, A., "Ethical Problems in Engineering, Center for the studyof the Human Dimensions of Science and Technology", Rensellae Polytechnic Institute, Troy, New York, 1978. [R2] Beabout, G.R., Wennemann, D.J. "Applied Professional Ethics: A Developmental Approach for use with Case Studies", University Press of America Lanham, MD,1994.
E-resources and other digital material	

Second Year (III Semester)

17MA1301 – Complex Analysis and Numerical Methods

Course Category:	Basic Sciences	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3 -1- 0
Prerequisites:	Algebra of complex numbers,	Continuous Evaluation:	30
	Convergence of infinite series,	Semester end Evaluation:	70
	Theory of equations	Total Marks:	100

Course outcomes	Upon s	succes	ssful o	comp	letion	of th	ne cou	ırse, t	he stu	ıdent	will	be ab	le to:			
outcomes	CO1			e ana integr	•		non a	nalyt	ic fur	nction	is and	l und	erstan	d the	conce	pt of
	CO2	Ana	nalyze Taylor and Laurent series and evaluation of real definite integrals sing residue theorem and understand the concept of transformations olve algebraic and transcendental, system of equations and understand the oncept of polynomial interpolation													grals
	CO3	Solv conc														
	CO4		nderstand the concept of numerical differentiation and integration. Solve tial and boundary value problems numerically													
Contributio n of Course		PO 1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
Outcomes towards achievemen	CO1	3						1								
t of Program	CO2	3						1								
Outcomes	CO3	3			2	2		1								
(1 – Low, 2 - Medium, 3 – High	CO4	3	3 2 2 1 1													
Course Content	UNIT- Compl function integra UNIT Taylor of reside Standa reflection UNIT Numer Newto elimina Interpo differe interpo formul formul	lex A ons, H l theo II: 's seri- dues, rd tra ion - I III: rical I n - I ation : olation aces, olation	Harmo orem, ies, L Evalu ansfor Biline Meth Raph metho on: I Symin, Cer	onic f Cauc auren ation matio car tra ods: son f od - C Introc bolic ntral	functi hy's i hy's se of re ons: ' insfor Solut metho Gauss luctio relati differ	ons, ntegr ries, eal de Trans matio ion o od, S - Sei on, F ions, ence	Orthoral for Zeros finite flation on. f alge colution del ite finite Diffe inter	egona mula s and integ n - N ebraic on of erativ diff erence polati	singurals (and the mether of the mether of the second sec	tems, ilariti by ap ficati transc nultan thod. ees - a pol ormula	Con es. R pplyin on an eende eous For ynom ae - (nplex esidu g the nd ro ntal e linea ward nial, M Gauss	integ e theor residu tation quatio ar equ , Bac Newton 's, Ste	ration rem, (e theo - Inv ons: In ations ekward n's fo erling'	, Cau Calcul orem). vertion troduc s - C d, Ce rmula s, Bes	ation ation and ction, Gauss entral e for ssel's

	 UNIT – IV Numerical Differentiation and Integration: Finding first and second order differentials using Newton's formulae, Trapezoidal rule and Simpsons 1/3 rule Numerical Solutions of Differential Equations: Taylor's series method, Picard's method, Euler's method, Runge - Kutta method of 4th order, Boundary value problems, Solution of Laplace's and Poisson's equations by iteration
Text books and	Text Book:
Reference	[T1] B.S.Grewal, "Higher Engineering Mathematics", 42 nd Ed., Khanna Publishers, 2012.
books	
	Reference Books: [R1] Krezig, "Advanced Engineering Mathematics", 8 th Ed., JohnWiley& Sons.2007.
	[R2] R.K.Jain and S.R.K.Iyengar, "Advanced Engineering Mathematics", 3 rd Ed., Narosa Publishers
	[R3] N.P.Bali, Manish Goyal, "A Text book of Engineering Mathematics", 1 st Ed., Lakshmi Publications (P) Limited, 2011.
	[R4] H.K.Das, Er. RajnishVerma, "Higher Engineering Mathematics", 1 st Ed., S.Chand& Co., 2011
	[R5] S. S. Sastry, "Introductory Methods of Numerical Analysis", PHI, 2005.
E-resources	
and other	
digital	
material	

17EI3302 – Network Theory

Course Category:	Program Core	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 1-0
Prerequisites:	Calculus, Basics of Electrical	Continuous Evaluation:	30
_	Engineering	Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	Jpon successful completion of the course, the student will be able to:														
outcomes	CO1	App	ly the	basic	netwo	ork co	ncepts	s to so	lve ele	ectric	circuit	proble	ms.			
	CO2											vork pr		s.		
	CO3											of elec	trical o	circuit	s.	
~	CO4	Deri			port n	etworl	k para	1	1	their re	elatior	iship.				-
Contribution of Course		PO 1	РО 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
Outcomes towards achievement	CO1	2						,								
of Program Outcomes	CO2		3												3	
(1 – Low, 2 - Medium, 3–	CO3		2												2	
High	CO4			1												
Content	eleme proble UNIT Netwo source theore theore	ducti nts; e tran nts a ems. 1 - II ork 7 es w em, T ems.	Ideal nsforr ind th Energ Fheo r ith p 'hever	, Pra matio neir s gy sto rems roble	ctical n, Vo series red in : Mes ms; 2	l and oltage / pa n indu sh an Appli	dep and rallel ictors d noc	ender curre com and o lal an	nt so ent di binat capac alysi theor	urces vision ion; itors, s hav rems	and n; V- Star ing in to D	their chara Delta ndeper	V-I acteris transf udent cuits.	chara stics o forma and o Sup	depen erpos	stics, ssive and dent ition
	 UNIT - III Sinusoidal Steady State Analysis: 'j' notation and concept of phasor, Phasor notation of voltage, Current and circuit elements in single phase and three phase circuits, Mesh and nodal analysis of obtaining steady state response of R,L,C circuits with problems, Application of network theorems such as superposition theorem, Thevenin's and Norton's theorems, Maximum power transfer theorems to AC circuits. Computation of active power, Power factor. UNIT - IV 											hase ,L,C ition ns to				
	and Q	1- IV nance and Transients: Series and parallel resonance, Selectivity, Bandwidt factor, Series and parallel RLC circuits. Transient analysis of RL, RC, RLC ts with DC using Laplace transforms.														

	Two-port networks: Calculation ofZ, Y and h parameters and their conversions.
Text books and	Text Book: [T1] A Sudhakar and S.P.Shyam Mohan, "Circuits and Networks: Analysis and
Reference	Synthesis", 2 nd Ed., TMH, 2002
books	Reference Books: [R1] FraklinF.Kuo, "Network Analysis and Synthesis", 2 nd Ed., John Wiley & Sons, 2003 [R2] William H. Hayt, Jack E. Kemmerly and Steven M. Durbin, "Engineering Circuit Analysis", 6 th Ed., TMH, 2002
E-resources and other digital material	

17EI3303 – Analog Electronic Circuits

Course Category:	Program Core	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3-1-0
Prerequisites:	Electronic Devices and Circuits	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon s	succes	ssful	comp	letion	n of th	ne cou	ırse, t	he stu	ıdent	will	be ab	le to:			
outcomes	CO1	Dete	ermin	e the	parar	neters	s of B	JT ar	nd FE	T am	plifie	rs at 1	low f	reque	ncies.	
	CO2				_			olifier			-			-		
	CO3							cuits								
	CO4		alyze various types of power amplifiers used in electronic applications th respect to efficiency.													
Contributio n of Course		РО 1	2 3 4 5 6 7 8 9 10 11 12 1 2 3												PSO 3	
Outcomes towards achievemen	CO1	3				2									3	1
t of Program	CO2		2			2									2	1
Outcomes	CO3		3												3	
(1 – Low, 2 - Medium, 3 – High	CO4		2 2 2 2 2 1													
Content	UNIT- Transi BJT A amplifi calcula CB),D2 FET A frequen UNIT- Feedba feedba feedba feedba feedba feedba feedba feedba feedba feedba feedba feedba feedba	istor Amplier under under under under under standard and and and and and and and and and an	ifiers sing for ton F ifiers - CS/ Amp nplifi nplific class nift o Osci plifie	: Hy hpan CC 2air(C :: FE CD/C lifier: ers - ers - ers - ers - ers - ers - ers -	vbrid ramet & C C-CC T sn CG co s: Fe Input Volt ation tor us	para er n B co C). nall s nfigu eedba resis age s of os sing F	meter nodel, nfigu signal ration ck c stance eries, cillate 3JT, V	ration ration module module module module module module ration module mo	del o nplifi ns, C del, A ots, C outpu rent s Sinusc bridg wer a	ed (ascac Analy Gener t resi series bidal ge osc ampli	CE h led s vsis o cal cl stanc , Vol oscill cillato	ybrid tage(f FE harac e, M tage ators, or, LC	I mo CE-C T an teristi ethod shun , Barl C osci	odel, E),Ca nplific ics o l of a t, Cu khaus illator	Simpl ascode ers at f neg analys rrent s en cri s - Ha	ified (CE- low ative is of shunt teria, urtley and

	pull and complementary symmetry push-pull, Cross over distortion
Text books	Text Book:
and	[T1]JacobMillman and Christos C Halkias, "Integrated Electronics: Analog and
Reference	Digital Circuits and Systems", 12thEd., TMH, 1991. (UNIT I,II& III)
books	[T2] A.Anandkumar, "Pulse and Digital Circuits", 2 nd Ed., PHI,2010. (UNIT IV)
Emogournoog	Reference Books: [R1] G.KMithal, "Electronic Devices and Circuits", 23 rd Ed., Khanna Publishers 2010. [R2]RobertBoylestad and Louis Nashelsky, "Electronic Devices and Circuit Theory", 6 th Ed., PHI 2000
E-resources	1. <u>http://nptel.iitm.ac.in/courses.php?branch=Ece</u>
and other	
digital	
material	

17EI3304 – Sensors and Transducers

Course Category:	Program Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon s	succes	ssful o	comp	letion	of th	ne cou	ırse, t	he stu	ıdent	will l	be abl	le to:			
outcomes	CO1															
	CO2	App	ly tra	nsdu	ction	princ	iples	in pai	ramet	er me	easure	ement	•			
	CO3		ct the lerati		vant t	ransd	ucer	for m	easur	emen	t of d	isplac	cemer	nt, vel	locity	and
	CO4				dditio	nal a	ttribu	tes in	sense	ors ad	lvanc	emen	t.			
Contributio		РО	РО	РО	РО	РО	РО	РО	РО	РО	PO	РО	РО	PSO	PSO	PSO
n of Course		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
Outcomes towards	ards CO1 3													3		
achievemen t of	CO2	2												2		
Program																
Outcomes	CO3		2											2		
(1 – Low, 2 - Medium, 3 – High	CO4	2														
Content	UNIT- Instruis Static charactise condi Measu Combi UNIT- Transo Passive area;V Produc dielectis Active effects UNIT- Displa transdu displac Veloci	ment char char teristi order reme nation II ducer e Tr ariable tion of ric. Tra	acter: cs - 1 r instr ent 1 n of li es: Cl ansdu e ind of ed nsdu nsdu Elect t tran	istics Frans rumer Erron imitir assifi ucer uctan dy cu cer l easun rical isduce	fer funts to rs and rs and gerro cation Princ Princ Princ Princ rement trans er.	Desir inctio step : nd Sor, St n of tr ciple Chang s, Va iples: nt: In sduce	able n, Dy input. Statistic cansdu cansdu s: V ge in riable : The trodu rs -	& mami tical cal tre acers, ariab self in e cap ermoe	Unde c resj Ana eatme , Chan le re nduct acitar electri	esirab ponse alysis nt, Cu racter sistan ance, ace - ic, Pi umati indu	e of ze of ze istics istics ice - Chan Chan iezoel	harac ero or efiniti- fitting of tra Cha nge in lectric and	on o meth ansdu ansdu area a mutu area c and ers - I capa	ics; First of pa ods. cers. in le tal in , Dist Pho Flapp citive	Dyna order urame ngth ducta tance toele er Nc e; Di	amic and ters, and ince, and ctric ozzle gital

	 Digital Methods- Photo electric and toothed rotor variable reluctance tachometers, Principles of accelerometers, Types of accelerometers - LVDT, Strain guage and piezo electric accelerometers. UNIT- IV Developments in Sensor Technology: Introduction, Smart sensors, Micro sensors, IR radiation sensors, Ultrasonic sensors, Fiber optic sensors, Chemical sensors and Bio sensors.
Text books and Reference books	 Text Book: [T1] A.K.Ghosh, "Introduction to Measurements & Instrumentation", 3rdEd., PHI, 2009. (UNIT I) [T2] A.K.Sawhney&PuneetSawhney,"A Course in Mechanical Measurements & Instrumentation", 12thEd., Dhanapat Rai & Co., 2012. (UNIT II & III) [T3] D.V.S.Murty, "Transducers & Instrumentation", 2nd, Ed., PHI. (UNIT IV) Reference Books: [R1] Raman Pallas-Arney& John G.Webster, "Sensors & Signal Conditioning", 2ndEd., J. Wiley,2012. [R2] D.Patranabis, "Sensors and Transducers" 2nd Ed., PHI, 2013
E-resources and other digital material	 <u>http://nptel.ac.in/courses/112103174/4</u> <u>http://nptel.ac.in/courses/112103174/3</u>

17HS2305 – Humanities Elective

Course Category:	Humanities and Social Sciences	Credits:	1
Course Type:	Theory	Lecture - Tutorial - Practice:	1 - 0- 0
Prerequisites:		Continuous Evaluation:	100
		Semester end Evaluation:	00
		Total Marks:	100

List of Humanities Electives

Α	Yoga & Meditation	G	Film Appreciation
В	Music	Η	Sanskrit Bhasa
С	Human Rights and Legislative	Ι	Foreign Languages (German/French)
	Procedures		
D	Philosophy	J	Law for Engineers
E	Development of societies	K	Psychology
F	Visual Communication		

17HS2305A – Yoga and Meditation

Course Category:	Humanities Elective	Credits:	1
Course Type:	Practical	Lecture - Tutorial - Practice:	1 - 0- 0
Prerequisites:		Continuous Evaluation:	100
		Semester end Evaluation:	
		Total Marks:	100

Course	Upon s	succes	sful	comp	letion	n of tł	ne cou	ırse, t	he stu	ıdent	will l	be ab	le to:			
outcomes	CO1	Equi	ip bet	ter at	titude	and	behav	viour								
	CO2								nced	life f	ocuse	d on	an etl	nical n	nateri	al
	CO3	Dev	elop l	levels	of co	oncen	tratio	n thro	ough	media	ation					
	CO4	App	ly co	nscie	nce fo	or the	miss	ions c	of life	•	T	1	1	r	1	
Contributio		РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
n of Course		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
Outcomes towards	CO1						2									
achievemen t of							2									
Program Outcomes	CO2						2									
(1 - Low, 2)	CO3						2									
- Medium, 3 – High	CO4															
Content	UNIT- Under yoga, A (Lec-d system UNIT- Yogic of yog (Activ UNIT- Practic Conter (Activ demor UNIT- Towar manag (Lec-d	stand Applic n relation n relation ity basis ity basis	cation pattor ted p cices: grati- sed p of N on, N based ions v Profe t, Cho	Yoga on of v von of oroce Aedita ledita ledita ssion pices	alues with ial wi a, Sel value sses v ation ation a roces be imp al F we m	in realities realit	al life ratio follov Ultir Yoga Assas art o oncer invo ented lence Excel	, Uni ns ro wed) nate g anas anas of m ntratic lving	versa epres goal c and l nedita on M	l valu entin of yog Prana ation, ediat Yo	es. g Yo ga, In ayam Ot ion	bgic trodu a wil oserva sess and	Postu ction Il be i ation, ions	to var mplei Intr follo	and v ious t mente ospec	ypes d)
Text books and Reference	Text B [T1] C [T2] Jo	ommo		U 1			-		•							
		, ai 110 j	011		VI 141	iu			2005	, 1100	, en y 1					

books	
	Reference Books:
	[R1]Lectures from Colombo to Almora, Swami Vivekakanada, 2010 Ramakrishna
	Mission.
	[R2] Essays of Ralph Waldo Emerson, 1982, Eastern press
	[R2] Eclectic materials offered by English Dept.
E-resources	1. <u>www.heartfulness.org</u>
and other	2. <u>www. ayush.gov.in</u>
digital	3. <u>www. belurmath.org</u>
material	

17HS2305D – Philosophy

Course Category:	Humanities Elective	Credits:	1
Course Type:	Practical	Lecture - Tutorial - Practice:	1 - 0- 0
Prerequisites:		Continuous Evaluation:	100
		Semester end Evaluation:	
		Total Marks:	100

Course	Upon s	ucces	cessful completion of the course, the student will be able to:													
outcomes	CO1	Und	Inderstand major philosophical issues													
	CO2		ppreciate the philosophical doctrines of western thinkers nderstand the eminence of Indian classical thought													
	CO3															
	CO4	App	reciat	e rela	ation	betwe	een sc	ience	and	value	S	-	-			
Contributio		РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
n of Course		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
Outcomes	CO1															
towards	CO1															
achievemen																
t of	CO2															
Program																
Outcomes	CO3															
(1 - Low, 2)																
- Medium,	CO4															
3 – High	CO4															
Course																
Content	UNIT-	I														
	What's	s Philo	osoph	y: De	efiniti	on, N	lature	, Sco	pe an	d bra	nches					
			_	-					_							
	UNIT-															
	Introdu	iction	to w	esterr	ı phil	osopł	ny: Ai	ncient	t Gree	ek and	d moo	lern p	ohilos	ophy		
	UNIT-	ттт														
	Introdu		to In	dian	thous	ht. S	iv eve	tems	- Mo	dern	nhilos	onhe	re			
	muouu	iction	to m	ulall	moug	<u>ап. э</u>	IA SYS	icilis	- 1010		pinios	soprie	15			
	UNIT-	IV														
	Philoso		of sci	ence&	&tech	nolog	gy: Hu	ıman	value	es and	l prof	essio	nal et	hics		
		÷ •									-					
Text books	Text B															
and	[T1] "]															
Reference	[T2] "A	An Int	trodu	ction	to Ph	iloso	phy",	0.0.I	Fletch	ner, W	/ord I	Public	: Libr	ary,20	010	
books																
	Refere					D1 11		D 11	D							
	[R1] Si	•					1 V	,			0 0	1 /	100	0		
	[R2] T	ne Ple	easure	es or	rn110	sopny	/, W1l	1 Dur	an, S	imon	æ Sc	nuste	r,192	9		
E-resources																
and other																
digital																
material																

17HS2305I – Foreign Language (German)

Course Category:	Humanities Elective	Credits:	1
Course Type:	Practical	Lecture - Tutorial - Practice:	1 - 0- 0
Prerequisites:		Continuous Evaluation:	100
		Semester end Evaluation:	
		Total Marks:	100

Course	Upon s	ucces	ccessful completion of the course, the student will be able to:													
outcomes	CO1	Learr	earn basics of German language Vrite German writing													
	CO2						-									
	CO3					hear	ing									
	CO4	Form	n sen	tence	in pr	esent	past	and f	uture	tense	•					
Contributio		РО														
n of Course	\mathbf{S}													1	2	3
Outcomes																
towards	CO1										2					
achievemen																
t of	CO2										2					
Program	002															
Outcomes	CO3											2				
(1 T)	COS											2				
(1 - Low, 2)																
- Medium,	CO4											2				
3 – High Course																
Content	UNIT-	I														
	Alphab	oets, N	Numb	ers, E	Exact	articl	es and	d not	exact	Artic	eles					
	UNIT-	II														
	Prepos	itions	, Pres	sent to	ense											
	TINITT	TTT														
	UNIT-		nd ok	out f	omily	r										
	Past Te		inu al	out I	anniy											
	UNIT-	IV														
	Future	tense	S													
Text books	Text B	ook:														
and	[T1] St	udio	d Al	Corne	elsen	Goya	laas F	Public	ation	s Nev	v Del	hi.				
Reference																
books																
E-resources																
and other																
digital																
material																

17HS2305K – Psychology

Course Category:	Humanities Elective	Credits:	1
Course Type:	Practical	Lecture - Tutorial - Practice:	1 - 0- 0
Prerequisites:		Continuous Evaluation:	100
		Semester end Evaluation:	
		Total Marks:	100

Course outcomes	Upon	succ	essfu	l com	pletio	on of	the co	ourse,	, the s	tuder	nt will	be a	ble to	:		
outcomes	CO1		ate ł aviou		gical	and	soci	o-cult	tural	facto	ors in	n un	dersta	andin	g hu	man
	CO2				e nati	are of	sense	ory p	rocess	ses, ty	vpes o	of atte	ention	IS		
	CO3	Exp	lain	diffe	rent	types		learn	ing a	-	_				ingui	shes
	CO4	Der	nonstrate an understanding of some cognitive processes involved in blem solving and decision-making													
Contribution of Course		PO 1	PO P													
Outcomes towards achievement	CO1						2									
of Program Outcomes	CO2						2									
(1 – Low, 2 - Medium, 3 –	CO3		2													
High	CO4															
Course Content	Introd cultur UNIT Senso UNIT Cogn UNIT Think	UNIT-II Cognition and affect: Learning and memory. Emotion and motivation UNIT-IV Chinking, Problem solving and decision making, Personality and intelligence														
Text books and Reference books	[T1] 2 Refer [R1] I [R2] 0 Behav	 Text Book: [T1] Zimbardo, P. G. "Psychology and Life" 20th Ed., Pearson Education, 2013. Reference Books: [R1] Baron, R. A. "Psychology" 5th Ed., New Delhi: Pearson Education, 2006 [R2] Coon, D., &Mitterer, J. O. "Introduction to Psychology: Gateway to Mind and Behaviour" New Delhi: Cengage, 2007. [R3] Feldman, R. S. "Psychology and your Life" 2nd Ed., McGraw Hill, 2013 														
E-resources																

17TP1306 – Logic & Reasoning

Course Category:	Humanities and Social Sciences	Credits:	1
Course Type:	Theory	Lecture - Tutorial - Practice:	0 - 0- 2
Prerequisites:		Continuous Evaluation:	100
		Semester end Evaluation:	0
		Total Marks:	100

Course	Upon	pon successful completion of the course, the student will be able to:														
outcomes	CO1	Thi	nk rea	ason l	ogica	ally in	any	critica	al situ	ation						
	CO2						on to									
	CO3								¥		-	ractica				
	CO4											ifferen	t shoi	rtcut 1	netho	ods
	CO5		mathematical based reasoning to make decisions by logical thinking to solve problems and puzzles in qualifying exams in													
	CO6		v competitive exam													
Contribution		PO	PO P													
of Course		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
Outcomes towards achievement	CO1						2									
of Program Outcomes	CO2		2													
(1 – Low, 2- Medium,3 –	CO3								2							
High	CO4									2						
	CO5	2														
	CO6	1														
Course Content	2. 3. 4. UNIT 1. 2. 3. 4. UNIT 1. 2.	Seri Cod Bloo Puzz - II Dire Log Num Mat - III Arit Inse	es co ing-E od rel zles to ection ical V nber t hema hmeti rting ogisn	Decod ation est sense Venn est, F tical ical re	ing, blood e test diagra Cankin opera	, ams, ng tes tions ing,										

	UNIT- IV
	1. Water images,
	2. Mirror images,
	3. Paper folding,
	4. Paper cutting,
	5. Embedded figures,
	6. Dot situation,
	7. Cubes & dice
Text books	Text Book:
and	[T1] R. S. Aggarwal, "Verbal and Non-verbal Reasoning", RevisedEdition, S Chand
Reference	publication, 2017 ISBN:81-219-0551-6
books	
E-resources	
and other	
digital	
material	

17EI3351 – Electronic Circuits Lab

Course Category:	Program Core	Credits:	1.5
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0- 3
Prerequisites:		Continuous Evaluation:	30
_		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	on successful completion of the course, the student will be able to:														
outcomes	CO1	Anal	yze a	nd de	sign l	oasic	diode	circu	its re	elated	to va	rious	appli	icatio	ns	
	CO2		erstan	d the	e wor	king	of E	JT,F	ET a	nd it	s app			s an		ifier
	CO3		yze the working of BJT, FET and its application as an amplifier virtually nfer their salient parameters													
Contribution of Course		PO 1														
Outcomes towards achievement	CO1	3	3		3	3				2	2	1			2	2
of Program Outcomes	CO2		3		3	3				2	2	1			3	2
(1 – Low, 2 - Medium, 3– High	CO3	3	1		1	3				2	2	1			3	2
Course Content	2. 3. 4. 5. 6. 7. 8. 9. B. P- 1. 2. 3. 4. 5. 6. 7.	Chara Desig Drain Desig Desig Desig Desig Desig Desig	ic De acteris gn of f gn of f	vices stics of transi transf clippe unbia CE an voltag RC pl class ule: stics of tage 1 n of 1 respo voltag	of transtor s stor s fer ch ers wi sed c nplifi ge ser hase s A pov of PN regula half-v full-w onse c onse c ge shu	nsisto elf-bi aracto ith rel lampo ier. ies fe shift o wer a junc ator u vave r vave r of CE of CS unt fe	ias cin eristic Ference ers. wedbac oscilla mplif tion c sing 2 rectifi ampl Amp	cuit. s of j e vol ck am tor ier. liode Zener er op er op ifier. lifier	and Z eratio	on fie er Zener on wit	eld eff diode	fect tr	ansis	ilter.		
Text books &Reference books																
E-resources																

17EI3352 – Transducers Lab

Course Category:	Program Core	Credits:	1.5
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0- 3
Prerequisites:	-	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succ	essfu	l com	pletic	on of	the co	ourse,	the s	tuder	nt will	be a	ble to	:		
outcomes	CO1		oly th amete		isduc	tion p	orinci	ples t	o me	asure	the c	lispla	ceme	nt and	d velo	ocity
	CO2		alyze the characteristics of level, flow, pressure and miscellaneous asducers.													
	CO3	Ana	lyze	lyze the dynamic characteristics of first and second order systems.												
	CO4	Con	ompare the characteristics of different temperature transducers.													
Contribution of Course		PO 1	PO 2	PO 3	РО 4	РО 5	PO 6	PO 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
Outcomes towards	CO1	3								2	2	1				
achievement of Program Outcomes	CO2				3					2	2	1		3		
(1 – Low, 2-	CO3				3	3				2	2	1		3		3
Medium, 3 – High	CO4									2	2	1				
Course Content	List o 1.Tem 2.Tem 3.Cha 4.Mea 5.Hum 6.Stuc 7.Spec 8.Toro 9.Cha 10. Ca 11.Ch 12.Flc 13.Dis 14.Am 15.Dy	apera apera npera racte suren nidity ly of ed mo que n racte alibra aract ow m splac	ture r ture r ristic: ment measur neasur neasur ristic: tion of eristi easur emen	neasu neasu s of L of ma surer us pr emen reme s of la of pre cs of emen t mea lacen	areme DR, agneti nent u essure t usin nt usi evel t essure synch t usir isurer nent r	nt us photo ic flux using e mea g ma ng str ransm g aug nro tra ng ult nent p neasu	ing th diode diode dry w surin gnetic rain g nitter ges us ansmi rason using ireme	ermo e and sity u vet hy g dev c pick auge ing d tter a ic flo LVD nt usi	coupl photo sing l grom rices c-up a load load w nd re w me T	le and otrans Hall t neter and ph cells veight ceive ter	l IC te istor ransd notoel t teste r	ucer lectric r.	e pick		or	
Text books and Reference books																
E-resources																

17HS1353 – Communication Skills Lab

Course Category:	Humanities and Social Sciences	Credits:	1
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0 - 2
Prerequisites:	Technical English &	Continuous Evaluation:	30
	Communication skills	Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succes	ssful	comp	letior	n of tł	ne cou	ırse, t	he stu	udent	will	be ab	le to:			
outcomes	CO1	Exec	ute ra	tiona	l proi	nunci	ation	of sp	eech	sound	ls inc	ludin	g acce	entua	tion.	
	CO2									on in j						
	CO3	Deve														
	CO4		nonstrate proficiency in the elements of professional communication uding the competitive examination .													
Contribution of Course		PO 1	PO PO<													
Outcomes towards achievement	CO1						3			3	3	2	1			
of Program Outcomes	CO2			2	2		3	3	2	3	3	2	2			
(1 - Low, 2 - 1)	CO3	3		2	3	1	2	3	3	3	3	2	3			
Medium, 3 – High	CO4	2	1 2 2 1 3 3 3 3 3 3 3 1													
Content	 > > UNIT Patter > > UNIT Profesting > > UNIT Life S 	ents Speec Artice Patter Types - II rns of Group Pyrar PNI Semin - III ssiona Self-a Adva Résur Corpo	ch me alatio rns of s and Subs p disc nid di nar ta I Con affirm nced mé pr prate	chani n of v acce proce stanti cussic iscuss lk and nation comp epara ethic	vowel ntuati esses ation on sion d pow nicati oosition of no	ls and of lis and ver po ion: on inc	tening Refu bint pr cludin	onant g com tation resent g me	ts npreho n in F tation mo an unica	Public n nd e-1 tion	n c Spe mail			of :	Liste	ning

	 Select logies, Isms, phobias and manias (25 each) Sentence completion and double unit verbal analogies (50 items) Fundamentals of syllogisms(Descriptive and pictorial)
Text books	Text Book:
and	[T1] Martin Cutts, Oxford Guide to Plain English, 7 th Impression, OUP, 2011
Reference	[T2]LlewellynExercises in Spoken English, Prepared by Department of Phonetics
books	and Spoken English, CIEFL, OUP, 21stImpression, 2003
	Reference Books:
	[R1]Stephen R Covey, The 7 Habits of Highly Effective people, 2 nd Ed., (Pocket
	Books) Simon & Schuster UK Ltd, 2004
	[R2] Eclectic Materials offered by English Dept.
E-resources	1. ODll Language Learner's Software, 27-6-2012 Orell Techno Systems
and other	2. Visionet Spears Digital Language Lab software Advance Pro, 28-01-2015
digital	3. <u>www.natcorp.ox.ac.uk</u>
material	

17MC1307B - Indian Constitution

Course Category:	Humanities Elective	Credits:	0
Course Type:	Theory	Lecture - Tutorial - Practice:	2 - 0- 0
Prerequisites:		Continuous Evaluation:	100
		Semester end Evaluation:	0
		Total Marks:	100

Course	Upon	on successful completion of the course, the student will be able to:														
outcomes	CO1	Know the fundamental law of the land														
	CO2	Understand how fundamental rights are protected														
	CO3	Perceive the structure and formation of the Indian government system														
	CO4	-	Explain when and how an emergency can be imposed and what are the consequences													
Contribution of Course		РО 1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
Outcomes towards achievement	CO1						2									
of Program Outcomes	CO2						2									
(1 – Low, 2 - Medium, 3 –	CO3						2									
High	CO4						2									
Content	Intro consti consti consti UNIT Funda fundar under writs j UNIT Natur and fin Parlia of the Histor Local UNIT	 UNIT- I Introduction to Constitution of India: Meaning of the constitution law and constitutionalism, Historical perspective of constitution of India, Salient features of constitution of India. UNIT- II Fundamental rights: Scheme of the fundamental rights, Scheme of the fundamental right to equality, Scheme of the fundamental right to certain freedoms under Article 19, Scope of the right of life and personal liberty under Article 21, writs jurisdiction UNIT- III Nature of the Indian constitution: Federal structure and distribution of legislative and financial powers between the union and states Parliamentary form of Government in India: The constitution powers and status of the President of India, Amendment of the constitutional powers and procedure, Historical perspectives of the constitutional amendments in India Local Self Government: Constitutional scheme in India UNIT- IV Emergency Provisions: National emergency, President rule, Financial emergency 														
Text books	Text	Book:														
Text books	Text Book:															

and Reference books	 [T1] Dr. J.N. Pandey, "Constitutional Law of India" published by Central law Agency, Allahabad, Edition 2018 Reference Books: [R1] V.N Shukla's, "Constitution of India" Eastern Book Company, Lucknow. [R2] M.P. Jain, "Indian Constitution Law", Wadhwa and Company, Nagpur. [R3] D.D. Basu, "Constitution of India", Wadhwa and Company, Nagpur
E-resources and other digital material	

Second Year (IV Semester)

17EI3401 – Analytical Instrumentation

Course Category:	ProgramCore	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0 - 0
Prerequisites:	Engineering Chemistry	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succ	essful	l com	pletio	on of	the co	ourse,	the s	tuden	t will	be a	ble to	:		
outcomes	CO1	CO1 Illustrate the operation of various spectrophotometers based on the application.														
	CO2															
	CO3	Des	Describe the operation of various radiation detectors and X-ray spectroscopic instruments.													
	CO4	Illu	Illustrate the use of chromatography and gas analyzers in real time industrial environments.											time		
Contribution of Course		РО 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
Outcomes towards achievement	CO1	3	3											3		
of Program Outcomes	CO2	3												3		
(1 – Low, 2 - Medium, 3–	CO3		3					2						3		
High	CO4		3					2						3		
Course Content	UNIT- I															
	Spectrophotometers : Introduction to analytical instruments - Radiation sources, Filters, Monochro mators and detectors, Flame photometer - Basic and clinical types, UV-VIS Spectrophotometers - Single beam null type, Double beam ratio recording, Microprocessor based, FTIR spectrophotometer, Applications															
	UNIT II Mass Spectroscopy : Principle, Types of mass spectrometers - Magnetic deflection, The time of flight, Applications.									netic						
	NMR and ESR Spectroscopy: Principle of NMR spectroscopy, Types of NMR spectrometers - Continuous wave and FT NMR, Principle of ESR spectroscopy, ESR spectrometer, Applications															
	UNIT Radia Count	ntion								-		er Co	ounte	r, Pro	oporti	onal
	X-Ray	X-Ray Spectroscopy: Production of X-Rays and X-Ray spectra, Instrumentation, X-									n, X-					

X-Ray Spectroscopy: Production of X-Rays and X-Ray spectra, Instrumentation, X-Ray diffractometer, X-Ray absorption meter, X-Ray fluorescent spectrometer, Applications.

	 UNIT IV Chromatography: Basic definitions, Classification of chromatographic methods, Gas chromatography - Introduction, Basic parts of chromatograph, Liquid chromatography - Introduction, Types, High performance liquid chromatograph - Detection systems, Applications. Industrial Gas Analysers: Types, Paramagnetic oxygen analyser, Infrared gas analyser, Thermal conductivity analyser, Analysers based on gas density
Text books and Reference books	 Text Book: [T1]R.S.Khandpur, "Handbook of Analytical Instruments", 2nd Ed., TMH, 2006 [T2]Willard H.H, Merrit L.L, Dean J.A, "Instrumental Methods of Analysis", 7th Ed., CBS publishers and Distributors, 1988 Reference Books: [R1] D.A.Skoog and James J.Leary, "Principles of Instrumental Analysis", 5thEd., Holt-Saunders, 1997 [R2] James W.Robinson, Eileen M.SkellyFrame,GeorgeM.Frame, "Undergraduate Instrumental Analysis", 7thEd., CRC Press, 2014
E-resources and other digital material	 <u>http://nptel.ac.in/courses/103108100</u> <u>http://instruct.uwo.ca/chemistry/532/lectures.htm</u>

17EI3402 – Integrated Circuits and Applications

Course Category:	Program Core	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 1 - 0
Prerequisites:	Electronic Devices and Circuits,	Continuous Evaluation:	30
	Analog Electronic Circuits,	Semester end Evaluation:	70
	Network Theory	Total Marks:	100

Course	Upon	succ	essfu	l com	pletic	on of	the co	ourse,	the s	tuder	nt will	l be a	ble to	:		
outcomes	CO1	App	oly th	e con	cepts	of 74	11IC t	to imp	oleme	ent va	rious	linea	r app	licatio	ons.	
	CO2															
	CO3	filte	lustrate the operation of various converters and design aspects of active lters.													
	CO4	Illus	Illustrate the operation of Special purpose ICs and their applications.													
Contribution of Course		PO 1	1 2 3 4 5 6 7 8 9 10 11 12 1 2 3												PSO 3	
Outcomes towards achievement	CO1	3													3	
of Program Outcomes	CO2	2													2	
(1 – Low, 2 - Medium, 3–	CO3		3												3	
High	CO4	2													2	
Content	UNIT Opera and t practic charac Linea Negat Voltag amplif UNIT Non I amplif Clippe Comp compa limiter Triang	ation empe- cal O cteris r Ap ive f ge fo fier, ' II Linea fiers, er and parat arator rs; W gular	eratur p-am tics - plica reedba llowe V-I, I ors a r, Ap Vavefor wave ters: A	e ran ap spectro DC a tions ack c er, Di -V co oplica ision nper and V oplica orm ge gene	nges, ecification of O concej fferen onvert tions dioda circui Wave tions genera erator	Pow ations C cha p-An pt in ntial a ters, I c of C e, Ap it. For , Saw and H	rer su s, 741 aracte nps: Op- <i>A</i> ampli ntegra Dp-A plicat m Ge Zerocr - Osc: 7 tooth	applie Op- ristic Amps fier, ' ator a mps: ions enera cossin illaton h way	es; O amp f s. , Inve The s and di Samp - Prec Samp - Prec s, Sc ze ger	p-am featur featur erting summ fferen le and cision Intro tector hmitt nerato	p bla es an g and ing a ntiato d hole rection oduction trigg r.	ock of d spe non- implif r d circ ifier, f ion to indow er, So	diagra ecifica -inver fier, I Peak D con v det quare	am, I ations ting a nstrui log ar value nparat ector, waveg	deal . Op- ampli menta d and dete or, B Vol gener	and amp fier, ation tilog ctor, ctor, ctor, asic tage ator,

	Wide band stop and notch filter; All pass filters.
	D/A and A/D Converters: Introduction, Basic DAC techniques - Weighted resistor DAC, R-2R ladder D/A converter; A/D conversion - Parallel comparator type ADC, Tracking type A/D converters, Successive approximation ADC and dual slope ADC; DAC and ADC specifications.
	UNIT IV Applications of Special ICs: The 555 timer - 555 as monostable and astable multivibrator and applications; Voltage controlled oscillator; Phase locked loops - Operating principles, Monolithic PLLs, 565 PLL Applications; IC voltage regulators, 723 IC voltage regulator.
Text books and Reference books	Text Book: [T1] Royand Chowdhary, "Linear Integrated Circuits", 4 th Ed., New Age International, 2003 [T2] Rama Kant A. Gayakwad, "Op-Amps and Linear Integrated Circuits", 3 rd Ed., PHI, 1997
	Reference Books: [R1] Jacob, "Applications and Design with Analog Integrated Circuits", 2 nd Ed., PHI, 1996 [R2] Denton J Dailey, "Operational Amplifiers and Linear Integrated Circuits Theory and Applications", Mc Graw Hill Ltd, 1989
E-resources and other digital material	1. www.analog.com 2. https://nptel.ac.in/courses/108106068/ 3. https://www.allaboutcircuits.com/ 4. https://www.linkwitzlab.com/filters.htm

17EI3403 – Industrial Instrumentation

Course Category:	Program Core	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 1 - 0
Prerequisites:	Sensors and Transducers	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

	Upon successful completion of the course, the student will be able to:CO1 Outline the operation of various transducers for temperature measurement.															
outcomes	CO1	Out	line t	he op	eratio	on of	vario	us tra	nsduc	cers fo	or ten	npera	ture n	neasu	reme	nt.
	CO2															
	CO3										-		uirem	ents		
	CO4	Illu	strate	the c	perat	ion o	f mise	cellan	eous	trans	ducer	s	1	1	1	1
Contribution		PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO 12	PSO 1	PSO 2	PSO 3
of Course		1	2	3	4	5	6	7	8	9	10	11	12		2	3
Outcomes towards	CO1		3											3		
achievement																
of Program Outcomes	CO2	3												3		
(1 – Low, 2 -	CO3	2												2		
Medium, 3– High	CO4		2											2		
	 Temperature Measurement: Introduction, Classification of temperature sensor based on change in dimensions - Bimetals &Liquid in glass thermometers; Chang in electrical properties - RTD, Thermistor; Thermo electricity - Thermocouples - IC sensors; Radiation pyrometers, Fibre-optic sensors. UNIT-II Pressure Measurement: Introduction, Manometers, Force summing devices Diaphragms, Bellows & Bourdon tubes; Secondary transducers - Resistiv Inductive, Capacitive, Piezoelectric; Low pressure measurement - Mcleo Knudsen, Pirani & ionization gauges; Calibration of pressure gauges using deaweight tester. UNIT-III Flow Measurement: Introduction, Head type flow meters - Orifice plate, Ventur tube and Pitot tube; Variable area type flow meters - Rotameter; Veloci measurement type flow meters - Electromagentic, Turbine, Ultrasonic flow meter Anemometers; Mass flow measurement type - Coriolis mass flow meter; Positiv displacement flow meter - Nutating disc and lobed impeller; Open channel flom meters - Weirs, Flumes. 										es - tive, eod,					

	Humidity, Density & Viscosity Measurement : Electrolytic hygrometers, Wet and dry bulb hygrometers; Moisture analyzer, Ultrasonic and gamma ray densitometers, Saybolt Viscometer, Float viscometers
Text books	Text Book:
and	[T1] A.K.Ghosh, "Introduction to Measurements & Instrumentation", 3rd Ed., PHI,
Reference	2009
books	[T2] A.K.Sawhney & Puneet Sawhney, "A Course in Mechanical Measurements &
	Instrumentation", 12 th Ed., Dhanpat Rai & Co, 2012
	Reference Books:
	[R1] Ernest O Doebelin/Dhanesh, N Manik, "Measurement systems", 6thEd., Tata
	Mc Grawhill
	[R2] C.S.Rangan, G.R.Sarma & V.S.V.Mani "Instrumentation Devices &
	Systems", 2 nd Ed., TMH, 2011
E-resources	1. <u>https://nptel.ac.in/courses/108/105/108105064/</u>
and other	
digital	
material	

17EI3404 – Electrical and Electronic Measurements

Course Category:	Program Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0 - 0
Prerequisites:	Circuit analysis	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succ	essfu	l com	pletio	on of	the co	ourse,	the s	tuder	nt will	be a	ble to	:		
outcomes	CO1		Apply suitable null or deflection type technique to measure prescribed lectrical parameter. elect a suitable digital instrument to measure physical and electrical arameters.													
	CO2															
	CO3	Cor	npare	the c	operat	tion o	f vari	ous o	scille	scop	es and	d proł	bes.			
	CO4	Exp	olain t	he pr	incip	les of	vario	ous si	gnal g	genera	ators	and v	vave a	analyz	zers.	
Contribution		PO	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
of Course		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
Outcomes towards	CO1	3														
achievement																
of Program Outcomes	CO2		3												3	
(1 – Low, 2 - Medium, 3 –	CO3		3												3	
High	CO4				3										3	
	moven Electr Multin Multin Series Alterr instru: Electr meters UNIT Bridg Practi Wien	rical range range typ nating ment rodyn s. C – II ges: cal K	Me e ami e volt e oh g cur s, amor Whea	asure meter meter imme rent i Typ neters atston	ements, Th , Vol ter, S indica ical s in e's b uble	ts: I he Ay tmete Shunt ating m powe powe	DC a rton r sen: type instru ultime r me e (Me e, Ma	mme shur sitivit e ohr ument eter asure easure	nt, D ay - O mmet as - H cin ement ement	C vo Phms er, C Electr rcuits s, W t of	ltmet per vo Calibr odyna ; att ho resis	ers - olt ra ation amon Ther our r tance	Multing, J of oneter, mo neter,	tiplien Loadi dc in Rect Ins Pow	r resi ing ef istrun ifier strum zer fa s bri	stor, fect, nent, type ents, actor
	Electr Digita ramp	ul vol DV	ltmete M, S	ers - l lucces	Ramp ssive	tech tech	nique	, Dua	al sloj	pe int	tegrat	ing ty	ype D	VM,	Stair	case

measurement using Q Meter.

	 UNIT – III Oscilloscopes: Block diagram of oscilloscope, Vertical amplifier, Horizontal deflecting system, Delay line in triggered sweep, Typical CRT connections, High frequency CRT, Dual beam CRO, Dual trace oscilloscope (basic block diagram), Sampling oscilloscope, Storage oscilloscope, Probes for CRO - Direct probes, Passive voltage probe, Active probes, Attenuators - Uncompensated attenuators, Simple compensated attenuator. UNIT – IV Signal Generators: Basic standard sine wave generator, Standard signal generator, Function generator, Laboratory square wave and pulse generator. Wave Analyzers: Basic wave analyzer, Frequency selective wave analyzer, Heterodyne wave analyzer, Spectrum analyzer. Frequency Counters And Time Interval Measurements: Digital frequency meter - Principle of operation, Basic circuit of a digital frequency meter, Digital measurement of time - Principle of operation, Time base selector, Period measurement
Text books and Reference books	 Text Book: [T1] W D Cooper & A D Helfrick, "Electronic Instrumentation and Measurement Techniques", PHI, 1998 (Unit-I) [T2] H.S.Kalsi, "Electronic Instrumentation", 2ndEd., TMH. (Units-II, III and IV) Reference Books: [R1] A.K. Sawhney, "A Course in Electrical and Electronic Measurements and Instrumentation", Dhanpat Rai & Co [R2] Oliver & Cage, "Electronic Measurements and Instrumentation", Mc Graw Hill, 1975
E-resources and other digital material	https://www.youtube.com/watch?v=3eYmFjHnQjY&list=PLbRMhDVUMngcoKr A4sH-zvbNVSE6IpEio

17TP1405 – English for Professionals

Course Category:	Humanities and Social Sciences	Credits:	1
Course Type:	Theory	Lecture - Tutorial - Practice:	0 - 0- 2
Prerequisites:		Continuous Evaluation:	100
		Semester end Evaluation:	0
		Total Marks:	100

Course	Upon	succ	essfu	l com	pletic	on of	the co	ourse,	the s	tuden	t will	be a	ble to	:		
outcomes	CO1	Pres	sent t	hems	elves	effec	tively	in th	e pro	fessio	onal v	vorld				
	CO2						well a									
	CO3			abula skills		forn	n sen	tence	s and	l nar	rate s	storie	s by	using	g crea	ative
	CO4						orient									
	CO5						essio									
Contribution	CO6						evelop									1
of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
Outcomes towards achievement	CO1										3	3				
of Program Outcomes	CO2											3				
(1 – Low, 2 - Medium, 3 –	CO3											3				
High	CO4										3	3				
	CO5															
	CO6															
Course Content	UNIT	1 2 - II	2. Pra 1. Er a 2. Int	rors i nd co roduc	ng on n usa onjuno cing b	func age of ctions basic	-	s of s ms/pl nar	versat speecl hrases	ions h witl s.			on ve	erbs, a	adject	tives
	UNIT	 2. Introducing basic grammar 3. Practicing on functional conversations NIT – II Introducing self & others Structures and forming sentences Telephonic etiquette, Social etiquette and Table manners Practicing on functional conversations 														

	UNIT – IV 1.Direct, Indirect/Reporting speech 2. Public speaking basics 3. Versant test preparation 4. Practicing on situational conversations
Text books and Reference books	 Text Book: [T1] Swaroopa Polineni, "Strengthen your Communication Skills", 1st Ed., Maruthi Publications, 2013 Reference Books: [R1] Mamta Bhatnagar & Nitin Bhatnagar, "Communicative English", 1st Ed., Pearson India, 2010
E-resources and other digital material	

17EI3406 – Digital Circuits and Systems

Course Category:	Program Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0 - 0
Prerequisites:	Electronic Devices and Circuits	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	pon successful completion of the course, the student will be able to:														
outcomes	CO1	Apr	oly va	rious	num	ber sy	stem	s to a	rithm	etic d	operat	ions				
	CO2										amilie					
	CO3															
	CO4	6 6 6 6														
	CO5															
Contribution of Course		PO PO<														
Outcomes towards achievement	CO1	2					0	,					12		2	
of Program Outcomes	CO2															
(1 – Low, 2 - Medium, 3 –	CO3															
High	CO4															
	CO5	205 2 2 2														
Course Content	system Sign compl Octal Logic couple transis NANI UNIT Boole express forms Minim Karna UNIT	ber S ns an mag emer code Gat ed tra stor 1 D and - II an A ssion of B nizat ugh 1 - III	d the nitud nt ari , Hex es & ansist logic, l NOI Algeb , Imp oolea cion o map r	ir cor e re- thmet adeci Logi or log Sch R Gat ra: H bleme n exp of Sw nethc	versi prese ic - A mal c c Fan gic, R ottky ces, C Boolea oression vitchi od (tw	on. B ntatio Addit code. milies cesisto TTL MOS an al on of on. ng F	inary n, 1 ion/S s: Log or training inversion gebra Boc uncting ree an	addi 's & ubtrad gic ga nsisto iitter rter, C laws lean ons: d fou	tion, a 2 2's ction; ates, (or log coup CMO; s & t expro Simp r vari	Subtr cor Chara ic, Di led la S NA cheore ession	action nplen es - 1 acteris iode 7 ogic, ND a ems, ns us ation , Don	n, Mu nent Exces stics of Frans MOS nd No Simp ing l of log	istor lo S Inve OR ga lificati ogic g	ation, sentation de, G tal IC ogic, T rter, T tes on of gates, function	Divisions, ray c 's, D Frans MOS Boo Stan	sion. 2's ode, irect istor FET lean dard

	Subtractor, BCD to 7 segment decoder, Design of a binary to gray and gray to binary code converters.
	Combinational Logic Design Using MSI Circuits: Multiplexer, Combinational logic design using multiplexers, Demultiplexers / Decoders and their use in combinational logic design.
	UNIT-IV Flip-Flops: Clocked S-R flip-flop, Preset and Clear, J-K flip-flop, Race around condition, Master slave J-K flip-flop, D flip-flop, T flip-flop, Excitation table of flip-flop.
	Sequential Logic Design: Shift register, Bi-directional shift register, Applications of shift resisters, Ring counter, Twisted Ring counter, Sequence generator. Asynchronous counters - UP/DOWN counters, Modulus of the counter, Design of Synchronous counters.
Text books and Reference books	Text Book: [T1] R P Jain "Modern Digital Electronics", 4 th Ed., TMH. Reference Books:
DUUKS	[R1] A.Anand Kumar, "Fundamentals of Digital Circuits", PHI, 2006 [R2] M.Morris Mano, "Digital Logic and Computer Design", PHI,2003
E-resources and other digital material	

17EI3451 – Analog and Digital Integrated Circuits Lab

Course Category:	Program Core	Credits:	1.5
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0 - 3
Prerequisites:		Continuous Evaluation:	30
-		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	Jpon successful completion of the course, the student will be able to:														
outcomes	C01	Design various applications using Analog ICs Design combinational and sequential logic circuits using digital ICs														
	CO2											using	g digi	tal IC	s	
	CO3	Cor	nduct	expe	rimen	ts as	an in	dividu	ial or	team	using	g Ana	alog a	nd di	gital	ICs
	CO4	Pre	pare a	an eff	ective	e repo	ort bas	sed or	n exp	erime	ents					
Contribution		PO	РО	РО	PO	РО	PO	PO	PO	PO	PO	РО	PO	PSO	PSO	PSO
of Course		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
Outcomes	CO1				3										3	
towards achievement	COI				5											
of Program	~ ~ ~														3	
Outcomes	CO2				3											
Outcomes																
(1 - Low, 2 -	CO3	03 3 2 1 1														
Medium, 3 –																
High	CO4	04 2														
Course																
Content	 4. D 74 5. UI 6. De 7. D 8. De 	bg IC easur esign avefce esign esign esign esign esign elizat dders erific esign 4163 P/DC esign esign	<u>s</u> emen of in of in or m g of W of ac of a of a s ion o s/ Sub ation n of DWN of M n of c of ri	t of C tegrat strum enera ein b tive f 555 voltag f logi otracto of fli synch count IUX a ode c	Dp-an or, di entati tion u ridge ilters timer ge reg c gate or usi p flop urono ters u and D onver	fferen ion an using oscill using astab ulato es usi ng IC ps usi us an sing I EMU rtors (ntiato nplifi 74110 lator (7411) ble cin r usin r usin 7483 ng ga d asy C 74 (X (binar	r usin er using C (squ using IC (L) ccuit g IC screte screte tes ynchro 193	ing 74 nare, 1 7411 PF & 723 com onous	41IC triang C HPE poner s cou	-first nts an nters ray to	d uni usin;	versa g flip	flop	os and	
Text books and	Text] [T1]]			Thow	dharv	"Pr	incin	les of	Inte	grated	d Cire	uits"	2^{nd}	Ed	New	Age
Reference	Intern	•			unai y	, 11	merpi	05 01	me	Since		-4113	,	Lu.,		1150
books	[T2] Ed.,	Rar	na K	ant A	. Ga	yakw	ad, "(Op-A	mps	and I	Linear	. Inte	grate	d Ciro	cuits"	, 3 rd
	Ľu.,	r 111,	177/													

E-resources	1. <u>www.allaboutcircuits.com</u> .
and other	
digital	
material	

17EI3452 – Measurements Lab

Course Category:	Program Core	Credits:	1.5
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0 - 3
Prerequisites:		Continuous Evaluation:	30
-		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succes	ssful	comp	letion	n of th	ne cou	ırse, t	he stu	udent	will	be ab	le to:			
outcomes	CO1	Appl	Apply the basic measurement techniques to measure the electrical parameters													
	CO2	Anal	alyze the outputs and interpret the data generated from the null and flection techniques.													
	CO3	Cond			_		ents as	s an i	ndivi	dual c	or tea	m.				
	CO4				-								e.			
Contribution		РО	Dare an effective report based on experimental outcome.POPOPOPOPOPOPOPOPOPOPSOPSOPOPOPOPOPOPOPOPOPOPOPSOPSO													
of Course		1	2 3 4 5 6 7 8 9 10 11 12 1 2 3													
Outcomes towards	CO1	3	3 3 3 3 3 3 3													
achievement of Program Outcomes	CO2															
(1 – Low, 2 -	CO3		3 2 1 3													
Medium, 3 – High	CO4															
Course Content	 AC Me. Me.	meter meter asuren asuren asuren asuren asuren easurer easure on ger leasure eter.	s usin rs usin nent c nent c n	ng D' ng D' of vol of resident of resident of resident of resident of an of an r. of an of an r. of an of fre volt	Arson tage, istanc uctan oacitan moni- sistan mplitu mplitu ducta equer meter	nval g freque e usin e of s ce us nce u cs usin ce, in nde an eudes nce c ncy us	alvar ency, ng W small ing M sing S ing a nductand fre of di of high sing a g pote	nomen phas heats resist laxwe Shear Spect ance, quent fferen n Q co Wien ention	ter an le ang tone b cors u ell bri ing bri rum a capa cy of nt typ oils u n brid neter.	d theight and the sing land th	ir ran d pha e Kelvin zer. ce and rent t	ge ex se shi n dou d qua ypes v veform	tensic ift usi ble b llity f of wa ns us	on. ng a (ridge. factor vefor	using ms us	ing a
Text books and Reference books																
E-resources																

17MC1407A - Environmental Studies

Course Category:	Mandatory Course	Credits:	0
Course Type:	Theory	Lecture - Tutorial - Practice:	2 - 0 - 0
Prerequisites:	Concern on conservation and	Continuous Evaluation:	30
-	preservation of environment	Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	Upon successful completion of the course, the student will be able to:														
outcomes	CO1	management														
	CO2		-		e eco	svste	ms an	d nee	d of l	biodiv	versit	v				
	CO3	Rea	Realize and explore the problems related to environmental pollution and nanagement													
	CO4		Apply the role of information technology and analyze social issues, Acts associated with environment													
Contribution of Course		PO PO<											PSO 3			
Outcomes towards achievement	CO1	1														
of Program Outcomes	CO2			3					3							
(L – Low, M - Medium, H	CO3						3		3							
– High	CO4	CO4 1 3 3														
Course Content	UNIT The M impor Natur Renew proble	Aulti tance cal R wable ems. (((((((((((((((((((e. Nee esour e and a) Fo ex b) Wa pro c) Mi ex d) Fo and pro e) En rer f) La lar n inc	rest I rest I tractionater, oblem ineral tractin od re d over oblem ergy newationater nd re indslid	n-ren resou on, m resou flood is. reso reso regraz is, wa reso ple en esourc es, so ial ir	ic aw ewat rces: ining rces: is, dr ources d usin ces: W zing, ater lo ources lergy ces: L oil erco a con	arene ble R Use , dam Use rough s: Use rough s: Use ng mi Vorld effec ogging : Gr sourc and a osion a serva	ss. esour and o s and t, co e and food ts of g, sali owing es, us as a r and d	rces: over-of their over- nflict l exp resour probl mod nity. g end se of a resour eserti	Na explo effec -utiliz s ov loitat lems, lems, lern a ergy altern rce, la	tural itatio ets on ation er w ion, o chan agricu need ate er and d on.	resou n, De fores of s ater, envire ges ca ilture s, re nergy egrad	efores sts and surfac dam onme aused , fert enewa sourc lation	and a statior d trib ce an s-ben ntal o by a ilizer ble a ces.	associ a. Tin al peo d gro efits effect gricu -pesti and a indu	ated nber ople. ound and s of lture icide non- uced

UNIT- II

Ecosystems: Concept of an ecosystem.

Structure and function of an ecosystem.

Producers, consumers and decomposers.

Energy flow in the ecosystem.

Ecological succession.

Food chains, food webs and ecological pyramids.

Introduction, types, characteristic features, structure and function of the following ecosystem:

(a) Forest ecosystem

(b) Grassland ecosystem

- (c) Desert ecosystem
- (d) Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

Biodiversity and its Conservation:

Introduction, Definition: Genetic, Species and ecosystem diversity.

Biogeographically classification of India.

Value of biodiversity: Consumptive use, Productive use, Social, Ethical, Aesthetic and option values.

Biodiversity at global, National and local levels.

India as a mega-diversity nation.

Hot-spots of biodiversity.

Threats to biodiversity: Habitat loss, Poaching of wildlife, Man-wildlife conflicts. Endangered and Endemic species of India.

Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

UNIT- III

Environmental Pollution: Definition, Causes, effects and control measures of

- (a)Air pollution
- (b) Water pollution
- (c)Soil pollution (e)Noise pollution
- (d) Marine pollution
- (f) Thermal pollution

(g)Nuclear hazards

Solid Waste Management: Causes, Effects and control measures of urban and industrial wastes.

Role of an individual in prevention of pollution.

Disaster Management: Floods, Earthquake, Cyclone and landslides.

UNIT- IV

Social Issues and the Environment:

From unsustainable to sustainable development.

Urban problems related to energy.

Water conservation, Rain water harvesting, Watershed management.

Resettlement and rehabilitation of people; Its problems and concerns.

Environmental ethics: Issues and possible solutions.

Climate change, Global warming, Acid rain, Ozone layer depletion, Nuclear accidents and holocaust.

Wasteland reclamation.

Consumerism and waste products.

Environment Protection Act;

Air (Prevention and Control of Pollution) act.

	Water (Prevention and Control of Pollution) act.
	Wildlife protection act.
	Forest conservation act.
	Issues involved in enforcement of environmental legislation.
	Public awareness.
	Human Population and the Environment:
	Population growth, Variation among nations.
	Population explosion—Family welfare programme
	Environment and human health,
	Human rights,
	Value education.
	HIV/AIDS,
	Women and child welfare.
	Role of information technology in environment and human health.
	Kole of information technology in environment and numan nearth.
	Field Work/Case Studies: { <u>NOT TO BE INCLUDED IN SEMESTER END</u>
	EXAMS}
	Visit to a local area to document environmental assets—river/forest/grassland/hill/
	mountain.
	Visit to a local polluted site—Urban/Rural/Industrial/Agricultural.
	Study of common plants, insects, birds.
	Study of simple ecosystems—pond, river, hill slopes, etc.
Text books	Text Book:
and	[T1] ErachBharucha, "Text book for Environmental Studies', for under graduate
Reference	courses of all branches of higher education" University Grants Commission
books	Courses of an oranches of higher education. University Orants Commission
	Reference Books:
	[R1] AnjaneyuluY "Introduction to Environmental Sciences", B S Publications
	PVT Ltd
E-resources	
and other	
digital	
material	
material	

Third Year (V Semester)

17EI3501 – Control Systems

Course Category:	Program Core	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 1 - 0
Prerequisites:	Linear algebra and differential	Continuous Evaluation:	30
	equations, Network theory	Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succes	ssful	comp	letior	n of th	ne cou	ırse, t	the stu	ıdent	will	be ab	le to:			
outcomes	CO1	Unde	erstan	d the	contr	ol sy	stems	term	inolo	gy.						
	CO2		Model various physical systems using block diagram and signal flow graph approaches.													
	CO3	input test signals.												dard		
	CO4	vario	alyze the frequency response and stability of the given control system using rious techniques.													
	CO5	Mod	odel SISO and MIMO systems using state space approaches.													
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
Outcomes towards	CO1															
achievement of Program Outcomes	CO2	3												3		
(1 – Low, 2 -	CO3		2											2		2
Medium, 3 – High	CO4		2											3		3
	CO5	3	2											2		2
Course Content		ductio loop	and	close	d loo	p co	ntrol	syste					ble cor ack or			

Mathematical Models of Physical Systems: Formulation of differential equations for electrical, mechanical and electromechanical systems, Analogous systems, Block diagram representation of control systems, Signal flow graphs and Mason's gain formula.

UNIT – II

Time Domain Analysis: Standard test signals - Step, ramp, parabolic and impulse, Time response of first-order system to standard test signals, Step response of second order systems, Time domain specifications, Steady state error and error constants.

Stability Analysis in Complex Plane: Stability definitions - Bounded Input and Bounded Output (BIBO) stability, Stability study based on poles of closed-loop transfer function, Absolute and relative stability, Routh–Hurwitz criterion.

	 UNIT – III Root Locus Technique: The root locus concept, Magnitude and angle conditions, Properties and construction of the root loci (For positive K only). Frequency Domain Analysis: Frequency domain specifications, Correlation between time and frequency response, Bode plot - Magnitude plot, Phase plot, Determination of phase margin and gain margin, Stability analysis from bode plots, Polar plots, Nyquist stability criterion, Nyquist Plot.
	UNIT – IV State Space Analysis: Concepts of state, State variables, State model of linear systems, State variable representation using phase variables, Derivation of transfer function from state model, Characteristic equation, Eigen values, Eigenvectors, Solution of state equations (derivations only), State transition matrix and its properties, Computation of state transition matrix by Laplace transform method, Controllability and observability
Text books and Reference books	 Text Book: [T1]A.Anand Kumar, "Control Systems", 2nd Ed., PHI, 2014 [T2] I J Nagrath& M Gopal, "Control Systems Engineering", 5th Ed., New Age International, 2008 Reference Books: [R1] Katsuhiko Ogata, "Modern Control Engineering", 4th Ed., Pearson Education, 2003 [R2] A.NagoorKani, "Control Systems", 2nd Ed., RBA Publications, 2006
E-resources and other digital material	1 http://www.nptelvideos.com/control_systems/ 2 https://nptel.ac.in/courses/108101037/

17EI3502 – Digital Signal Processing

Course Category:	Program Core	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 1 - 0
Prerequisites:	Matrices and differential calculus,	Continuous Evaluation:	30
	Laplace transforms and integral	Semester end Evaluation:	70
	calculus, Complex analysis and	Total Marks:	100
	numerical methods		

Course	Upon	succes	ssful	comp	letior	n of tł	ne cou	ırse, t	he stu	ıdent	will	be ab	le to:			
outcomes	CO1	Anal	yze tł	ne sig	nals a	and sy	/stem	s usir	ng Fo	urier	transf	form a	and Z	Z- tran	sforn	1
	CO2		-					_			mput					
	CO3	using bilinear transformation and impulse invariance transformation methods														
	CO4	Mod	el the	digit	al fin	ite in	pulse	resp	onse	filters	s usin	g win	dowi	ng teo	chniq	ues
Contribution of Course		PO 1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
Outcomes towards	CO1			3											3	
achievement of Program Outcomes	CO2			3	3	2									3	
(1 – Low, 2 -	CO3			3	3	2									3	
Medium, 3 – High	CO4	O4 3 3 2 3														
	system Classi Proper system Z-Tra transfe differe	fication er Th rties of ns, Co ansfor orm, f ence en	on of s ransf of Fo rrelat m: T The	orm: orm: ourier ion o The Z one	ns. Fou trans f disc Z-tran	urier sform rete-t	trans s, Ai ime s i, Pro	form, nalysi ignal	, Fou is of s. es of	urier disc	trans rete-t	form ime	of linear	basic time	sig: -inva	nals, riant e Z-
	Discrete Linear (FFT)	UNIT – II Discrete Fourier Transform (DFT): Introduction to DFT, Properties of DFT, Linear convolution using DFT, Circular convolution, Fast Fourier Transforms (FFT): Radix-2 decimation in time algorithm, Radix-2 decimation in frequency algorithms, Inverse FFT														
	UNIT IIR F Analo filters metho	ilter E og Filt from	er Aj anal	o prox og fi	lters	- Im	pulse	inva	arianc	e me	ethod,	Bili	near	trans	forma	tion

	 systems: Direct-form structures, Cascade-form structures and Parallel-form structures. UNIT – IV FIR Filter Design: FIR filters: Design of linear phase FIR filters using windows, Design of linear phase FIR filters by the frequency sampling method, Comparison of FIR and IIR filters, Basic structures for FIR systems: Direct-form structures and Cascade-form structures.
Text books and Reference books	 Text Book: [T1] John G. Proakis& Dimitris G. Manolakis, "Digital Signal Processing-Principles, Algorithms, and Applications", 4th Ed., Pearson Education, 2007 [T2] Emmanuel C. Ifeachor& Barrie W. Jervis, "Digital Signal Processing a Practical Approach", 2nd Ed., Pearson Education, 2004 Reference Books: [R1] Alan V. Oppenheim, Ronald W. Schafer, Jhon R. Buck, "Discrete-Time Signal Processing", 2nd Ed., Pearson Education, 2004 [R2] Sanjit K. Mitra, "Digital Signal Processing-A Computer Based Approach", 4th Ed., McGraw Hill Education, 2013
E-resources and other digital material	1 https://nptel.ac.in/courses/117102060/ 2. https://www.dspguide.com 3. https://www.coursera.org/learn/dsp 4. https://www.mathworks.com/solutions/dsp.html

17EI3503 – Microcontrollers and Embedded Systems

Course Category:	Program Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0 - 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon s	succes	ssful c	comple	etion of	of the	course	e, the s	studen	t will	be able	to:				
outcomes	CO1	Und	erstar	d the	basic	conce	pts of	an em	nbedde	ed syst	em and	l its de	esign.			
	CO2					-					mbedd			<u> </u>		
	CO3										and va	arious	peripl	neral i	nterfa	cing.
~	CO4				1	1	1	1	1	ction s		1	1	1	1	1
Contribution		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
of Course Outcomes towards	CO1	1	2	3	4	5	0	/	0	9	10	11	12	1		5
achievement of Program Outcomes	CO2	3													2	
(1 – Low,	CO3 2 2											2				
2 - Medium, 3 – High)	CO4	2	2 2 2													
	Introd embed system actuato system UNIT- 8051 M Addres interru UNIT- Hardy LCD, A UNIT- ARM Except ARM instruc constat	ded s as, Th ors, C - II Vlicro ssing pts, I - III vare ADC, - IV Pro- tions, tions,	system e typi Comm contr mode O pro interf DAC cessor Interr ructio	ns, Ma cal en unicat ollers es, In grami Gacing , Rela Fun upts a m Set ware	ajor a hbedde ion ir : Arcl struct ming. : Inter ys etc dame nd the interr	pplica ed sys nterfac nitectu ion s rfacing . and t entals e vecto ta pro- rupt i	ation a tem - ce, En ure, Ti et, Ju g with their in their in cressin	areas Core nbedd mers imps, n LED nterfac gisters e, Cor	of en of the ed fir and co Loop Ds, Se cing to , Cur re exte structi	ounters ounters os, Int ven se o 8051 rent p nsions	ed syst dded sy e, Char s, Inter errupts gment, microo program s, ARM Branch	ems, ystem, racteri rupts, and Sens contro n stat proce instr	Purpo Mem stics Serial retur ors, B llers. tus re essor f uction	se of ory, S of an comr ns, T Basic c egister familie	embe sensor; embe nunica ïmers concep , Pipo es. ad -	dded s and dded ution, and ts of eline, store
Text books and Reference	Text B [T1] N		vadh	anuluz	е р <i>с</i>	F Kel	nirsag	ar "F	ngine	ering	Physic	e" S	Char	nd Pr	ublicat	ions
		1.11.1.1	s v aum	ununu	~ I.C	. 1831	mbaga	м, L	ingine	ering	1 11 y 510	5,0.	Unal		aonea	10113,

books	Revised Edition, 2014
	[T2] Muhammad Ali Mazidi, Janice GillispieMazidi, Rolin D. McKinlay "The 8051
	Microcontroller and Embedded Systems using assembly and C", 2 nd Ed., Pearson.(Unit
	II, III & IV).
	Reference Books:
	[R1] Raj Kamal, "Microcontrollers Architecture, Programming, interfacing and system design" 2 nd Ed., Pearson Education, 2012.
E-resources	1. <u>http://nptel.iitg.ernet.in</u>
and other	
digital	
material	

17EI2504/A – Biomedical Electronics

Course Category:	Open Elective I	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0 - 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succ	essfu	l com	pletio	on of	the co	ourse,	the s	studer	nt will	l be a	ble to	:		
outcomes	CO1	Sele	ct sui	table e	electro	des a	nd trar	nsduce	ers use	ed for	bioele	ctric p	otenti	al mea	asuren	nent.
	CO2	Out sign		arious	ampli	ifiers	used in	n the a	acquis	ition a	and an	nplific	ation	of the	bioele	ectric
	CO3	Illus	trate of	differe	ent sys	stems	used to	o reco	rd the	bioel	ectric	signal	s.			
	CO4		Illustrate on electrical safety, hazards, protection against shock and testing of medical equipment.													dical
Contribution of Course	n PO PO </th <th>PSO 2</th> <th>PSO 3</th>												PSO 2	PSO 3		
Outcomes towards achievement	CO1		3											2		
of Program Outcomes	CO2		2												2	
(1 – Low, 2 -	CO3	3													2	
Medium, 3 – High	CO4	2	2 2 2													
Course Content	UNIT Biome config body.	edica				•									•	
	Bio-el		-				0		ction	pote	ntials	, Pro	opaga	tion	of ac	ction
	UNIT Bio-si amplit Curren compe	gnal fiers, nt an	Me nplifi	dical er, C	prea hoppe	ampli er am	fier, plifie	Bridg r, Sig	ge ai gnal i	mplif: recov	iers, ery a	Line nd da	driv	ing	ampli	fier,
	Displ a CRO	UNIT- III Display Systems and Recorders: Oscilloscopes for biomedical measurements, CRO used in medical equipment - Cardioscope, Bedside and central monitoring systems, Instrumentation tape recorders, ECG, EEG, EMG recorders.														
	UNIT Electi param standa	r ical leters	, Mao	ero sh	nock l	nazaro	ds, M	icro s	hock	haza	rds, E	Electri	ical sa	afety of	codes	and

	distribution and equipment design, Electrical safety analyzers, Tests of the grounding system in patient-care areas, Tests of electric appliances.
Text books	Text Books:
and	[T1] Amshed F. Khan, "Biomedical Electronics", Chintan Publications, 2008.
Reference	[T2] Dr. M. Arumugam, "Biomedical Instrumentation", Anuradha Publications, 2 nd
books	Ed., 2006.
	[T3] John G. Webster, "Medical Instrumentation-Application and Design", John
	Wiley & Sons Inc., 3 rd Ed., 1998.
	Reference Books: [R1] Khandpur R.S, "Hand-book of Biomedical Instrumentation", McGraw Hill Education, 3 rd Ed., 2014. [R2] Leslie Cromwell, Fred J. Weibell, Erich A. Pfeiffer, "Biomedical Instrumentation and Measurements", Prentice-Hall India, 2 nd Ed., 2007.
E-resources and other digital material	

17EI2504/B – Control System Components

Course Category:	Open Elective I	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0 - 0
Prerequisites:	Differential equations, Network	Continuous Evaluation:	30
_	theory	Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succe	ssful	comp	letion	n of tł	ne cou	ırse, t	he stu	ıdent	will	be ab	le to:			
outcomes	CO1	Mod	el the	basic	c elec	trical	syste	ms ai	nd ser	vome	echan	isms.				
	CO2 Use the basic switching components for functioning of electrical systems.															
	CO3															
	CO4	Expl	ain th	e bas	ics of	f PLC	Cs.		1	T		1	1		1	1
Contribution of Course		РО 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
Outcomes towards achievement	CO1	3														
of Program Outcomes (1 – Low, 2 - Medium, 3 –	CO2	2														
	CO3		3													
High	CO4															
	AC/D Alterr UNIT Switc switch Relay Trigg UNIT Electr Electr Hydra pumpa contro	hators. - II hes: T hes: T s: Ele er De - III ric Ac ic line aulic A s, Hyd	Foggle mbwl ctrom vices: tuato ar mo ar mo drauli	e swit neel s necha: UJT ors: E otors ators:	tches, witch nical 's, Di flectri	Push , Mer relay: ac. c line lraulio	i-Butt mbrai s, Sol ear ac c syst	on sv ne sw id-Sta tuator ems,	vitche itch. ate re rs, Le Basic	es, Lin lays. adscr	mit sv ew li ciples	witch near a	, DIP actuat ydrau	switc tors, S	ch, Ro Solene Hydra	otary oids, aulic

	and motion controllers
Text books and Reference books	 Text Book: [T1]Christopher T. Kilian "Modern Control Technology: Components and Systems", 2nd Edition, (UNIT I, II, III & IV) [T2] B. L. Theraja, "A text book of Electrical Technology", S. Chand & Company Ltd.,1st Ed., 1959. (UNIT I). Reference Books: [R1] James R. Carstens, "Automatic Control Systems and Components", Prentice Hall Englewood cliffs, New Jersey [R2] Hasebrink J P &Kobler R, "Fundamentals of Pneumatic Control Engineering", FestoDidactic: Esslinger (W Germany),1989 [R3] Meixner H & Sauer E, "Intro to Electro-Pneumatics", Festo didactic, 1st Ed., 1989.
E-resources and other digital material	

17EI2505/A – Instrumentation Engineering

Course Category:	Open Elective II	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succe	essful	l com	pletio	on of	the co	ourse,	, the s	tuder	nt wil	l be a	ble to):		
outcomes	CO1	Exp	lain v	variou	is pei	form	ance	chara	cteris	tics o	f an i	nstru	ment			
	CO2					ing p										
	CO3	in ir	Select an appropriate transducer for pressure and temperature measurement in industry Illustrate the operation of different transducers in level and flow													
	CO4			the one the other the othe	perat	tion o	f diffe	erent	transo	ducer	s in le	evel a	nd flo	OW		
Contribution of Course		PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
Outcomes towards achievement of Program Outcomes	CO1															
	CO2	3														
(1 – Low, 2 -	CO3		2													
Medium, 3– High	CO4	3														
Content	UNIT Instru instru charace Trans Passiv Active length induct capace Active UNIT Press Mano Bellow Mcleo Ioniza	imen ment cteris duct ve T e ance ance itance itance e Tra - II ure meter ws, D odgua tion	sys tics, I ion F ranso I pass a an , Ch e - Ch ansdu Meas rs - T Diaphn age, I guage	stem; Dynan Princi ducer sive to ad pic nange nange nange nange suren Fypes ragms Knud e.	Stanic c iples: Pri transcezo r in an in an Princ nent: of r s; Me sen	atic harac ncipl ducers resisti mut rea, D iples: Intr nanor asure guage ent:	chara teristi es: In s with ve ef ual istand Then oduct neters ment s, Vis	acteri ics. htrodu h exa ffect; induc ce and rmoel ion, s; Ela of hig scosit	stics uction mple Vari etance d diel ectric Type stic j gh pro y ga	- C s; Va able e, V ectric c, Pie s of pressu essure uge, lassif	Desi Classi uriable induc ariable ; zoelec pres ure el e, Lov Ther icatio	rable fication e resistance e resistance e resistance etric, sure emen v presistance mal of	and on of istance e - Celucta Photo meas its - I ssure condu	tran e - C Chang nce; ovolta uring Bourd meas ictivit	sduce Chang e in Vari ic. dev lon tu urem y ga e ser	rable ers - ge in self able ices, ibes, ents, uge,

	Change in electrical properties - RTD; Thermistors - NTC and PTC types; Thermo electricity - Thermocouple; Cold junction compensation and IC sensors - LM335, and AD592; Radiation pyrometers - Classification of radiation pyrometers - Broad band, Ratio and fiber optic pyrometers; Fibre-optic sensors - Micro bending type. UNIT- IV Level Measurement: Introduction, Mechanical level indicators - Differential pressure type; Optical - Laser sensors, IR and visible light sensors; Electrical type - Resistive, Inductive and capacitive; Radioactive methods - Ultrasonic, Gamma ray. Flow Measurement: Introduction, Variable head flow meters for incompressible fluids; Variable head flow meters for compressible fluids; Rota meter, Electromagnetic flow meters; Laser Doppler Anemometer
Text books and Reference books	 Text Book: [T1] A.K. Ghosh, "Introduction to Measurements & Instrumentation", 3rdEd., PHI, 2009. (UNIT I) [T2] A.K.Sawhney & Puneet Sawhney,"A course in Mechanical Measurements & Instrumentation", 12thEd., Dhanapat Rai & Co., 2012. (UNIT II & III) Reference Books: [R1] D.Patranabis " Sensors and Transducers", 2nd Ed., PHI, 2013 [R2]D.S.Kumar, "Mechanical Measurement & Control", 5th Ed., Metropolitan Book. Co
E-resources and other digital material	1. http://nptel.ac.in/courses/112103174/4 2. http://nptel.ac.in/courses/108106074

17EI2505/B – Fundamentals of Industrial Automation

Course Category:	Open Elective II	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon successful completion of the course, the student will be able to:															
Jucomes	CO1						oncep	ots of	f pro	ogram	ımabl	e log	gic c	ontro	llers	and
	CO2	D2Illustrate the fundamentals of Distributed Control System (DCS).														
	CO3															
	CO4															
Contribution		PO P														PSO
of Course		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
Outcomes towards achievement	CO1		3													
of Program Outcomes	CO2		3													
(1 – Low, 2 - Medium, 3 –	CO3			3												
High	CO4	4 3														
Content	UNIT Progr Basic Progra Softw UNIT Distri contro Comm UNIT PLC Comm archite UNIT Case for wa and di	amma prind ammin are, C - II buted ol sub nunica - III and - III and - IV Study ater tro	ciples ag la onfig Con syst tion c DCS tion l prog : Dis eatme	of ingua uratic atrol cems, optior Prot hier gress, tribut	oper ges, on. Syste Loc is in l tocols archy Field ed co ant, d	em: I al fie Distri bus a ontrol listrib	, Inj ler c ntrodi eld si buted 2/IP j fact archit syste uted	put/or liagra uction tation Cont ory ectur m for contro	utput im i n and , Pre trol S col in autor e type r cem ol sys	syst nstruc histo esenta ysten ntrodu matio es, Hz ent p	tem, ctions orical ation ns, Co uctior n, I ART lant, I for in	Prog back and onfigu , Pro /O l protoo	ramm polear groun moni iration ptocol pus col in buted	nable n mr nd, D toring n. l Arc netwo trodu	dev nemon vistrib g dev chitec orks,F ction.	ices, nics, uted vice, ture, Field
Text books and Reference books	Text I [T1]K Editio [T2] F	rishna n 2010	C	-	1						-					•

	 Hill Edition 2010. [T3] Gary A. Dunning, "Introduction to Programmable Logic Controllers", 3rd Ed., Thomson Delmar learning 2010. [T4] Michael P. Lucas, "Distributed Control Systems", Their Evaluation and Design", Van Nostrand Reinhold Co., 1986. [T5] Popovic D. and Bhatkar V.P., "Distributed Computer Control for industrial automation", Marcel Dekkar Inc., 1990
	 Reference Books: [R1] Madhu Chandra MithraSamarithSen, "PLC & Industrial automation", 1st Ed., 2009. [R2] R. Bliesener, F.Ebel, C.Löffler, B. Plagemann, H.Regber, E.v.Terzi, A. Winter "Programmable Logic Controllers Basic Level", fetto, 2002
E-resources and other digital material	1. http://www.mikroe.com/old/books/plcbook/plcbook.htm 2. https://www.youtube.com/results?search_query=plc 3. https://www.youtube.com/watch?v=PLYosK87D8E 4. https://www.youtube.com/watch?v=-8DVa3SBu38

17EI2506/A – MOOCS

Course Category:	Open Elective III	Credits:	2
Course Type:	Theory	Lecture - Tutorial - Practice:	0 - 0- 0
Prerequisites:		Continuous Evaluation:	100
		Semester end Evaluation:	00
		Total Marks:	100

17EI2506/B – MOOCS

Course Category:	Open Elective III	Credits:	2
Course Type:	Theory	Lecture - Tutorial - Practice:	0 - 0- 0
Prerequisites:		Continuous Evaluation:	100
		Semester end Evaluation:	00
		Total Marks:	100

17HS1507 – Personality Development

Course Category:	Institutional Core	Credits:	1
Course Type:	Practice	Lecture - Tutorial - Practice:	0 - 0- 2
Prerequisites:		Continuous Evaluation:	100
		Semester end Evaluation:	00
		Total Marks:	100

Course	Upon	succ	essful	l com	pletic	on of	the co	ourse,	the s	tuden	t will	be al	ble to:			
outcomes	CO1	Unc	lersta	nd th	e cor	oorate	e etiqu	uette								
	CO2									ropria	te bo	dy laı	nguage)		
	CO3															
	CO4	life.														onal
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
Outcomes towards achievement	CO1	-					0	,	2	2	3		12			
of Program Outcomes	CO2										3					
(1 – Low, 2 - Medium, 3 –	CO3										3					
High	CO4									2	3					
Content	Premj Percep Comr langua UNIT Self-M manag Etique etique UNIT Stand Email Verba senter	tical i (L ption nunicage). - II /Iana geme ette: - III ard & le al A nces	isteni cation geme nt, Si Soc Oper tter w bility - Ana	n Ski ent x thir vial o ration vriting alogio	Activ Ills: V Skills Iking etique n Me g. nony: es, Sj	ity), /erba s: A hats, ette, thod s ms, A	Self l com Anger Tean Busin s: No Antor g err	- A mmuni ma n buil ness ote m nyms, ors, S	Analy catio nager ding, etiqu aking One Sente	vsis, n, No ment, Lead aette, g, No e woi nce c	Deve on ver Str ershi Tele te tak	bal c bal c ess p qua cing, bstitu	ds - A g pos ommu manag lities. e etic Minut ites - , Coun preher	sitive nicati gemer quette es pro Corr	attit on (E nt, 7 , Di epara ection	ude, Body Time ning tion, n of on -

	 UNIT- IV Job-Oriented Skills-I: Group discussion, Mock group discussions. Job-Oriented Skills-II: Resume preparation, Interview skills, Mock interviews.
Text books and Reference books	 Text Book: [T1] Barun K. Mitra, "Personality Development and Soft Skills", Oxford University Press, 2011. [T2] S.P. Dhanavel, English and Soft Skills, Orient Blackswan, 2010 [T3] R.S.Aggarwal, A Modern Approach to Verbal & Non-Verbal Reasoning, S.Chand& Company Ltd., 2018. [T4] Raman, Meenakshi& Sharma, Sangeeta, Technical Communication Principles and Practice, Oxford University Press, 2011 Reference Books:
E-resources and other digital material	 <u>www.Indiabix.com</u> <u>www.freshersworld.com</u>

17EI3551 – Simulations Lab

Course Category:	Program Core	Credits:	1.5
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0- 3
Prerequisites:		Continuous Evaluation:	30
-		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon successful completion of the course, the student will be able to:															
outcomes	CO1	CO1 Obtain the Mathematical modeling of physical systems and analyze the time, frequency response and stability of given control system.														
	CO2	Demonstrate the properties and compute Fourier transform and digital filter design as per the specification given.														
	CO3	Conduct experiment with an individual or team using MATLAB														
Contribution	CO4	Prepare an effective report based on experimentPOPOPOPOPOPOPOPOPOPOPOPSOPSO														
of Course		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
Outcomes towards achievement	CO1	3												2		2
of Program Outcomes	CO2				3									3		2
(1 – Low, 2- Medium,	CO3				3	3				2		1		3		2
3 – High	CO4										2					
Course Content	List of Experiments															
	 <u>Control Systems:</u> Using MATLAB/SIMULINK for control systems Part I: Introduction to MATLAB/SIMULINK. Part II: Polynomials in MATLAB. Part III: Scripts, Functions & flow control in MATLAB. Mathematical modeling of physical systems using MATLAB. Block diagram reduction techniques for determination of transfer function of a given system using MATLAB. Simulation of standard test signals using MATLAB. Time response of first order system for step and impulse inputs using MATLAB/SIMULINK. Time response of second order system for step and ramp inputs using MATLAB/SIMULINK. Root locus plot for a given transfer function using MATLAB. Stability studies using Bode and Nyquist plots for a given transfer function using MATLAB. Simulation of P, PD, PI and PID controllers using MATLAB/SIMULINK. Digital Signal Processing Graphical representation of discrete time signals and calculation of signal power. Properties of Fourier transform. 															

	 State and verify linear convolution State and verify circular convolution Evaluation of DFT & IDFT of a 8 sample sequence using DIT algorithm. Evaluation of DFT & IDET of a 8 sample sequence using DIF algorithm Design of digital IIR filters using impulse invariant transformation technique. Design of digital IIR filters using bilinear transformation technique. Design of FIR filter using windowing methods
Text books and	Text Book: [T1] A.Anand Kumar, "Control Systems", 2 nd Ed., PHI, 2014
Reference	[T2] S.Salivahanan. "Digital Signal Processing" TMH, 2000
books	Reference Books:
	[R1] Simulations lab manual
E-resources	1 www.umu.se/en/education/courses/linear-control-systems2/
and other digital	2 <u>www.dsptutor.freeuk.com</u>
material	3 <u>http://nptel.iitm.ac.in/courses/Webcourse</u>
	contents/IITKANPUR/Digi_Sign_Pro/ui/About-Faculty.html

17EI3552 – Microcontrollers and Embedded Systems Lab

Course Category:	Program Core	Credits:	1.5
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0- 3
Prerequisites:		Continuous Evaluation:	30
-		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succ	essful	l com	pletio	on of	the co	ourse,	the s	tuder	nt will	l be a	ble to):		
outcomes	CO1	Use	the i	nstru	ction	sets o	of 805	51 and	l AR	M to s	solve	the p	roble	ms		
	CO2							<u> </u>							roller	
	CO3								peripl	herals	with	ARN	/ Mic	croco	ntroll	er
	CO4															1
Contribution of Course		РО 1	PO 2	PO 3	PO 4	PO 5	PO 6	РО 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
Outcomes towards	CO1			3	3					2	2	1				3
achievement of Program Outcomes	CO2			3	3					2	2	1				3
(1 – Low, 2 - Medium,	CO3			3	3					2	2	1				3
3 – High)	CO4			3	3	3				2	2	1				3
Course Content	List o	List of Experiments														
	PART Progra Progra Progra Interfa Interfa Interfa Interfa Interfa Interfa Interfa Interfa Interfa Interfa Interfa Interfa	ms or ms or ms or cing of cing of cing	a data a arith a cond serial of LCI of LEI of Step of Step of DA of mus of LCI of traf of key of DC of DA 10 ex	transf metic itiona data t D usin D usin D usin oper M ments oper m C sic tom D fic sig board motor C for	er ins and lo l instr ransm g asse g asse Jotor s usin totor ne gen nals r ADC	truction ogical uction ission embly embly using g ARI erator & tem	ns instru s langu langu assem M LP	ctions age bly la C 2148	nguag S Micr	e rocont			nents	from	each	part
Text book and	Text I [T1]			и "F	mhed	lded	Svete	ms"	3rd F	- bF	Fata	McG	raw	Hill	Educe	ation
Reference	Privat						~,50		5 1	,	uu				Lauci	

books	 [T2] Muhammad Ali Mazidi, Janice Gillispie Mazidi, Rolin D. McKinlay "The 8051 Microcontroller and Embedded Systems using assembly and C", 2nd Ed., Pearson [T3] Sloss Andrew N, Symes Dominic and Wright Chris, "ARM System Developers guide: Designing and Optimizing", Morgan Kaufman Publication, 2004 Reference Books: [R1]Raj Kamal, "Microcontrollers Architecture, Programming, interfacing and system design", 2nd Ed., Pearson Education, 2012.
E-resources and other digital	1. <u>http://nptel.iitg.ernet.in.</u>
material	

17MC1508 – Biology for Engineers

Course Category:	Humanities Elective	Credits:	0
Course Type:	Theory	Lecture - Tutorial - Practice:	2 - 0- 0
Prerequisites:		Continuous Evaluation:	100
-		Semester end Evaluation:	0
		Total Marks:	100

Course	Upon	succ	essfu	l com	pletio	on of	the co	ourse,	, the s	tuder	nt wil	l be a	ble to):		
outcomes	CO1						al co nisms	ncept	s fro	m a	n eng	gineer	ing p	perspe	ctive	and
	CO2	of biological processes														
	CO3		Understand the basic principles of Mendelian genetics, gene interactions an transfer/inheritance of genetic factors/genes Explain the process of cellular respiration and photosynthesis, and illustra important diversified microorganisms and their classification													and
	CO4	-														strate
Contribution of Course		PO 1	PO P													
Outcomes towards achievement	CO1							2								
of Program Outcomes	CO2							2								
(L – Low, M	CO3							2								
- Medium, H – High	CO4							2								
Course Content	UNIT Introd Introd drawin as an 18th c the or Brown Classi Unice Energ excret Molec UNIT Biomon and c structu	ducti ducti ng a indexentu igin n and ificat llular y and cular - II olecu ellula	on: compepend ry that of the Juliu tion: cor d Car d Car taxor taxor	Fund pariso ent s at lea lermo is Ma Clas multio bon u inote nomy nd E Biom Nucle	amen on bet cienti d to 1 dynau yor. sifica cellul tiliza lic, u - Thr nzym olecu	tal d ween ific d major mics tion ar (b tion - ricoto ree ma nes les: S s and	iffere eye iscipl disco by re of li) Ult Auto elic, u ajor k	ences and c ine. D overice ferrin ving ra str otroph ureote ingdo	betw camer Discu es. Ex og to orga ructur is, het elic (coms o of sug	veen a, Bin ass ho ampl the o nisms e - H terotr e)Hat f life. gars (Amino	scier rd fly ow bi es fro origin s bas Prokat ophs, oitat	ing a iologi om Bi al ob ed o ryotes litho - Acc ose at ds an	nd ai ical o rowni serva n (a) s or o troph quatic nd Fr id lip	craft bserv an m tion Cel eukar s (d) , terr uctos ids. I	. Bio vation otion of Ro lulari yotes Amm estria e), St Protei	logy s of and obert ty - . (c) onia l (f) carch ns -

	elements
	 Enzymes: Enzyme classification. Mechanism of enzyme action. Enzyme kinetics and kinetic parameters. UNIT- III Genetics and Gene Information Transfer Genetics: "Genetics is to biology what Newton's laws are to Physical Sciences" Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Concepts of recessiveness and dominance. Gene interaction, Epistasis. Meiosis and Mitosis be taught as a part of genetics. Emphasis to be give not to the mechanics of cell division nor the phases but how genetic material passes from parent to offspring.
	Information Transfer: DNA as a genetic material. Hierarchy of DNA structure - From single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Define gene in terms of complementation and recombination.
	UNIT- IV Metabolism and Microbiology Metabolism: Exothermic and endothermic versus endergonic and exergoinc reactions. Concept of Keq and its relation to standard free energy. ATP as an energy currency. Breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) and synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions.
	Microbiology: Concept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Growth kinetics. Ecological aspects of single celled organisms. Microscopy.
Text books and Reference books	 Text Book: [T1] Campbell, N. A.; Reece, J. B.; Urry, Lisa; Cain, M, L.; Wasserman, S. A.; Minorsky, P. V.; Jackson, "Biology: A global approach:", R. B. Pearson Education Ltd. [2] Conn, E.E; Stumpf, P.K; Bruening, G; Doi, R.H., "Outlines of Biochemistry", John Wiley and Sons. [3] Nelson, D. L.; and Cox, "Principles of Biochemistry", 5thEd., M. M.W.H. Freeman and Company [4] Stent, G. S.; and Calender, "Molecular Genetics", 2nd Ed., W.H. Freeman and company, Distributed by Satish Kumar Jain for CBS Publisher. [5] Prescott. L.M, J.P. Harley and C.A. Klein, "Microbiology", 2nd Ed., Wm, C. Brown Publishers
E-resources and other digital material	

Third Year (VI Semester)

17EI3601 – Process Control

Course Category:	Program Core	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 1 - 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succes	ssful	comp	letior	n of tł	ne cou	ırse, t	he stu	udent	will	be ab	le to:			
outcomes	CO1	Math	emat	ically	mod	el va	rious	physi	cal sy	ystem	s.					
	CO2	Selec	-	propr	riate	cont	roller	s and	d fin	nal c	ontro	l ele	ment	s foi	r var	rious
	CO3															
	CO4															
Contribution of Course		PO PSO PSO PSO 3														
Outcomes towards achievement	CO1	3														1
of Program Outcomes	CO2		3													2
(1 – Low, 2 - Medium, 3 –	CO3		3													2
High	CO4															
Content	UNIT Introd Definit Mathe operat Basic propor Comp UNIT Contr controd Actua Electr Valve UNIT Advan controd	ductio ition, ematic ition. P Cont rtional arison Cont arison Cont ollers, ic mot colling ollers, ic mot col Va sizing Col Va sizing	Elem al mo roces trolle , sir of Pl g Eler Elect Pneu for ac lves: Cont	ents odelin s Iden s Iden ngle (, PD nents rical of matic tuator Slidi	of p ag of p ntifica odes: speed and H s: Sel contro e actures. ing st Strate or cor	egies	s con d, ga - Step asic oating ontrol erated and I , Elec ontrol : Cas Interr	ntrol, s and o, frec contr mod contr Electr tro-p valv	Cha l ther quenc col ac tegral les. roller conic o oneum es, Ro cont odel c	racter mal s cy and ctions and s, Pn contro natic s otatin trol, contro	ristics syster l puls s - (l den euma ollers actuat ag sha Feed ol, Mo	forv forv bdel p	physiervo ing. cterisve co ontrol Hydra htrol	control control control control	system regula of on l mc Hydra actua s, Con rol, F ontro	ns - itory -off, odes, aulic tors, ntrol Ratio 1.

	method of tuning, Cohen-Coon method of tuning.
	UNIT – IV Applications: pH control, Mass transfer operations - Mathematical modeling and control of distillation column, Evaporation, Drying.
Text books and Reference books	 Text Book: [T1] Donald P. Eckman, "Automatic process control", Wiley India Pvt. Ltd. (UNIT I & II) [T2] Donald R. Coughanowr, "Process Systems Analysis and Control", 2nd Ed., Mc Graw- Hill International edition. (UNIT III) [T3] Shinskey.F.G, "Process Control Systems - Application, Design and Tuning", 3rd Ed., Mc Graw-hill International edition. (UNIT IV) Reference Books: [R1] D Patranabis, "Principles of Process Control" 2nd Ed., TMH, 2007. [R2] Stephanopoulos G, "Chemical Process Control", 3rd Ed, PHI, 1994
E-resources and other digital material	 www.freevideolectures.com /Course/3126/Process-Control-and-Instrumentation www.nptel.ac.in/courses/103105064/

17EI3602 – Computer Control of Processes

Course Category:	Program Core	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Control systems, Digital signal	Continuous Evaluation:	30
	processing	Semester end Evaluation:	70
		Total Marks:	100

Course	I Inc :		a a c	1		r - C	41a a -		41a -	4	4	1.	h 1a 4			
outcomes	Upon				-								Die to	:		
	CO1	-				-					omat					
	CO2				1						lomai					
	CO3		Analyze the time response and stability of computer control system using pulse transfer function													
	CO4	Det	Determine the appropriate digital control algorithm for industrial processes													
	CO5															
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
Outcomes towards achievement	CO1															
of Program Outcomes	CO2	1														1
(1 – Low,2 - Medium, 3 –	CO3		3			3										3
High	CO4	3				3										3
	CO5	2				2										2
Course Content	UNIT Introd system compu- digital Mathe model domai Highe UNIT Analy Mathe transfe in Z- o	ducti n, Fu uters l cor emating, n - r ord - II vsis ematiorms doma	nction in printrol ical Pulse First er syst of 1 cal 1 , Ope in, Ju	Mod trans orde stems Discr represen loo	eling eling afer fur r and ete sentat	diagra ustrie of inction seco Time ion	am o s - E Discr ons, M ond o s Sys	f a co Data Pete S Iathen rder j stems	ompu logge Syste matic proce s usi er an	ter c ers, S ms: al m sses ing d ze	ontro Superv Intrododel witho Pulse ro o	l syst visory ductic for p ut an e Tr rder	on to or to or oces d wit ansfe hold,	Applia trol a mat ses i h pur er F , Mo	cation ind d hema n diso re do uncti odifieo	tical crete elay, ons: d Z

Design of Digital Control Algorithms : General expression for digital control algorithm for set point changes, Dead beat algorithm, Dahlin's algorithm, Ringing effect, Kalman's algorithm, Design of digital control algorithm for load changes,

	Digital PID algorithms-position and velocity forms, Selection of sampling time. UNIT- IV Intelligent Controllers: Introduction, Model based controllers - Adaptive controller, Artificial intelligence AI) based systems, Expert control system, Introduction to fuzzy control, Fuzzy control system, Artificial neural networks - Introduction, Neural controllers and neuro fuzzy control system
Text books and Reference books	Text Book: [T1]Pradeep B.Deshpande and Raymond H Ash, "Elements of Computer Process Control with Advanced Applications", 2 nd Ed., Instrument Society of America.,1981[Unit-I,II & III] [T2]Krishna Kant, "Computer-based Industrial Control", 2 nd Ed., PHI, Delhi, 2010. [Unit-IV]
	Reference Books: [R1] C.D. Johnson, "Process Control Instrumentation Technology", 4 th Ed., Prentice Hall Inc, 2000 [R2] M.Gopal, "Digital Control and State Variable Methods", 3 rd Ed., TMH, New Delhi, 2009
E-resources and other digital material	1. <u>http://nptel.ac.in/courses/112103174/4</u> 2. <u>http://nptel.ac.in/courses/112103174/3</u>

17EI4603/A – Fiber Optic Sensors

Course Category:	Program Elective I	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Engineering physics, Electronic	Continuous Evaluation:	30
	devices and circuits	Semester end Evaluation:	70
		Total Marks:	100

Course						6				_						
outcomes	Upon successful completion of the course, the student will be able to:															
outcomes	CO1	 Demonstrate the basic concepts of fiber optic sensors Select suitable wavelength modulated fiber optic sensors to measure physical 														
	CO2		ect su amete		e wav	eleng	th mo	odula	ted fi	ber o	ptic s	ensor	s to n	neasu	re phy	/sical
	CO3					erfero para			d free	luenc	y mo	dulate	ed fib	er op	tic se	nsors
	CO4				·	*			ors fo	or var	ious a	applic	ation	S		
Contribution		PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
of Course		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
Outcomes towards	CO1	3														
achievement of Program Outcomes	CO2		2													
(1 – Low, 2 -	CO3		3													
Medium, 3 – High	CO4	1														
	Optic optica Issues Basic angle Optica UNIT Wave	l fib in op Fibe and al fib	er se ptical e r Op Num ers fo	ensor, fiber otics: erical or sen	Clas sens Intro Ape sors,	ssifica ors. ductio rture Fiber	on, La (NA) selec	Moc ight p), Fib ction	lulatio propag er ch for se	on so gatior aracte nsors	heme in an ar eristic	es, Fi n opti es, Ty	elds cal fi pes c	of ar ber, A of opt	oplica Accep ical fi	tions, tance ibers,
	sensor sensor						umidi	ty se	nsor,	Gluc	ose s	ensor	, pH	senso	or, Ox	ygen
	UNIT Interfeinterfeinterfeisenson	feron erom stic s	netrio eters	magr	netic	field/	electr	ic cu	rrent	sense	or, El	ectric	field	l/volta	age se	ensor,
	UNIT Frequ	iency											fect,	Ram	ian e	ffect,

Doppler effect based sensors, Raman scattering based sensors.

	Applications: Displacement sensors, Flow measurement, Acoustic sensor, Detection of oil in water, Liquid level sensor, Hydrocarbons detection in water, Oxy-haemoglobin concentration measurements.
Text books	Text Book:
and	[T1] B.D. Gupta, "Fiber Optic Sensors Principles and Applications", 1 st Ed., New
Reference	India publishing agency, 2006. (UNIT I,II,III & IV)
books	
	Reference Books:
	[R1] Eric Udd, William B. Spillman, Jr., "Fiber Optic Sensors: An Introduction
	for Engineers and Scientists", 2 nd Ed., John Wiley & Sons, 2011
E-resources	1. <u>https://nptel.ac.in/courses/114106046/46</u>
and other	
digital	
material	

17EI4603/B - VLSI Design

Course Category:	Program Elective I	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Electronic devices and circuits,	Continuous Evaluation:	30
	Digital circuits and systems	Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	Upon successful completion of the course, the student will be able to:														
outcomes	CO1	Unc	dersta	nd th	e diff	erent	fabri	catior	n metl	hods	of inte	egrate	d circ	uits		
	CO2	Ana	alyze	basic	elect	rical	prope	rties	of M	OSFE	T					
	CO3		ply the design rules for MOS and BiCMOS circuits													
	CO4	Out	atline the concepts of MOS circuits													
Contribution		PO														
of Course		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
Outcomes towards	CO1		2													
achievement of Program Outcomes	CO2		3													
(1 – Low, 2 -	CO3	2														
Medium, 3 – High	CO4	3														
Course Content	UNIT IC Fa Basic produ Comp UNIT	bric MO ction ariso	S trai proc	nsisto ess, 1	ors, Ei MOS	nhanc and	emer CMC	nt and S fat	l dep pricat	letion ion p	mod roces	les of	transi	stor a	action	i, IC

Basic Electrical Properties of MOS and BiCMOS Circuits: Ids versus Vds relationships, Aspects of MOS transistor threshold voltage, MOS transistor trans, Output conductance and figure of merit. The pass transistor, NMOS inverter, Pull-up to pull-down ratio for NMOS inverter driven by another NMOS inverter. Alternative forms of pull-up, The CMOS Inverter, MOS transistor circuit model, BiCMOS inverter, Latch-up in CMOS circuits and BiCMOS latch-up susceptibility.

UNIT- III

MOS and BiCMOS Circuit Design Processes: MOS layers, Stick diagrams, Design rules and layout, General observations on the design rules, 2µm Double metal, Double poly, CMOS/BiCMOS rules, 1.2µm Double Metal, Double Poly CMOS rules, Layout Diagrams of NAND and NOR gates and CMOS inverter, Symbolic diagrams - Translation to mask form.

UNIT- IV

Basic Circuit Concepts: Sheet resistance, Sheet resistance concept applied to MOS transistors and inverters, Area capacitance of layers, Standard unit of capacitance, The delay unit, Inverter delays, Propagation delays, Wiring capacitances, Fan-in and fan-out characteristics, Choice of layers, Transistor switches, Realization of gates

	using NMOS, PMOS and CMOS technologies.
	Scaling of MOS Circuits: Scaling models, Scaling factors for device parameters, Limits due to sub threshold currents, current density limits on logic levels and supply voltage due to noise.
Text books	Text Book:
and	[T1] Kamran Eshraghian, Douglasand A. Pucknell and Sholeh Eshraghian, "Essentials
Reference	of VLSI Circuits and Systems", 1 st Ed., Prentice-Hall of India Private Limited, 2005.
books	(Unit I. II, III, IV)
	[T2] Wayne Wolf, "Modern VLSI Design", 4 th Ed., Pearson Education. (UNIT I, II,
	[T3] Neil H. E. Weste and David Money Harris,"CMOSVLSI Design", 4 th Ed.,Pearson Education. (UNIT I, II, III & IV)
	Reference Books:
	[R1] A.Albert Raj and T.Latha, "VLSI Design", PHI Learning Private Limited, 2010.
	[R2] A.Shanthi and A.Kavita, "VLSI Design", 1 st Ed., New Age International
	Private Limited,2006
E-resources	1. <u>http://nptel.iitg.ernet.in</u>
and other	
digital	
material	

17EI4603/C – Robotics and Control

Course Category:	Program Elective I	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succ	essfu	l com	pletio	on of	the co	ourse,	the s	studer	nt will	l be a	ble to	:		
outcomes	CO1															
	CO2											manij	pulato	ors.		
	CO3			rious												
Contribution	CO4		2	suitab	r	1	1	1		1	1	DO	DO			
of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
Outcomes towards	CO1															
achievement of Program Outcomes	CO2	3														3
(1 – Low, 2 - Medium, 3 –	CO3		2													2
High	CO4	2														2
Content	UNIT Introd Robot Requi Robot UNIT Robot Coord Transf of rota Direct and je notatie transf Inverss model arm in UNIT Contr and c schem motor manip	ducti ana red l actu f- II t Kin linat forma ation t Kin oints, on. orma kin bints, on. orma kin t Col nes, I fol of losec nes, I , Pa	tomy DOF ators ators e ma ation matr nema kind tion nema utior e kind f Ma f Ma f loo Lineat rtitio	 d, Ma in a i	anipu man sors a s, M ectors ic mo c ro ix, C Man nique cs. ators ntrol ond o D an	lators ipulat nd vi lappi s, Ho Mec odelin elatio ase s ipulat es, Cl s: Blo syste rder S d Pl	, Lir cor, A sion. ng a moge hanic ng of nship study cor w osed ock da cor, N SISO ID co	al str the be - 3I ork s form iagran Aanip mode ontro	Types and Trans trans trans tween DOF space solut m of pulato el of a l sch	s of wrist sform sform e and pulat n ac artice, Sol ion, (mani r con a man nemes	joint conf nation nation nation notat or, D djacen ulatec vabili Case pulate ntrol nipula s. Fo	s, Da igura ns: mat ions, enav nt l arn ty of study or co probl tor jo orce	egrees tion, Coord rices, Desc it Ha inks, h kin f invo - 3D ntrol lem, pint, N contr	s of End dinate Fund riptio rtenb Ma emati erse DOF a syste Linea Mode ol of	freed effec effec e fra damen erg (anipul ic mo kinen urticul m, C ar con l of a f rot	lom, tors, tors, mes, ntals links DH) lator odel, natic lated

	UNIT- IV Applications of Robots: Industrial applications: Material handling - Material transfer applications, Machine loading and unloading application, Picking and placing, Palletizing and depalletizing, Processing applications - Welding assembly applications, Peg in hole assembly, Inspection applications, An overview of non industrial applications, Work place design considerations for safety, Safety sensors and safety monitoring.
Text books and Reference books	 Text Book: [T1] R.K.Mittal&, I.J.Nagarath, "Robotics and Control", Tata McGraw Hill Pvt. Ltd, 15th Ed., 2010 [T2] S.R.Deb, "Robotics Technology and Flexible Automation", Tata McGraw Hill Pvt. Ltd., 2002 Reference Books: [R1] R.D.Klafter, T.A.Chimielewski& M. Negin, "Robotic Engineering - An IntegratedApproach", Prentice Hall of India, New Delhi, 1994 [R2] P.J.McKerrow, "Introduction to Robotics", Addison Wesley, USA, 1991
E-resources and other digital material	1. <u>http://nptel.ac.in/courses/112103174/4</u> 2. <u>http://nptel.ac.in/courses/112103174/3</u>

т

17EI4603/D – Industrial Communication Networks

Course Category:	Program Elective I	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succe	essful	l com	pletio	on of	the co	ourse,	the s	tuder	nt will	be a	ble to	:		
outcomes	CO1	Exp	lain va	arious	indus	trial n	etwor	ks and	l refer	ence r	networ	k mo	dels.			
	CO2	Use	Use HART communication protocol in process automation.													
	CO3	Outl	ine th	e Fou	ndatic	n Fiel	dbus a	archite	ecture.							
	CO4	Sele	ct app	ropria	ate PR	OFIB	US pr	otocol	s in p	rocess	autor	nation	l .			
Contribution		PO	РО	РО	PO	PO	РО	РО	РО	PO	РО	РО	РО	PSO	PSO	PSO
of Course		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
Outcomes towards	CO1															
achievement of Program Outcomes	CO2	2														2
(1 – Low, 2 -	CO3		3													2
Medium, 3 – High	CO4		2													2
	Data Trans: Introd Netwo TCP/I UNIT Netwo I/O & Highy protoc Comm UNIT Found data 1 fieldb Found	missi luctio ork to P ref ' – II orks field vay col, nunic ' – II datio types us, I latior	on in on to opolo erence in Pu leve Addu HAR ation I n Fie Physic Fiel	npairi net gy, 1 se mo roces ls, Co ressa T e mod eld B chitec cal I dbus,	ments work Netwo del. s Auto ontrol ble Hencod es, H us: I cture, Layer , Redu	, Dat s, D ork co toma level Remo ing ART ntrod H1 , Da undan	tion: , Ento te Tr and netwo uction benefita limit icy.	and t comm nents Intro erpris ransd wave orks, n, De fits, H hk la	oandv nunica , Cla ductiv e/Ma lucer eform HAR finitio HSE yer,	vidth ation ssific on, I/ nager (HA , H T cor on an bene: Appl	relati stan ation O bu ment I ART): ART nmun d feat fits, 0 icatio	onshi dards of n s netv level. : In add iicatio tures, OSI : on La	p. and etwor works trodu ressin on lay Four mode ayer,	org ks, C , Net ction ng, <i>A</i> ers. ndatio 1 of Tech	anizat OSI m worki to H Arbitra n field found inolog	ions, odel, ng at ART ttion, l bus ation y in

	Characteristics, Communication profile of PROFIBUS - DP, Physical layer, Data link layer, DDLM and user interface, PROFIBUS - PA characteristics, Redundancy, PROFIsafe, PROFIdrive, PROFInet, Foundation Fieldbus and PROFIBUS a comparison
Text books	Text Book:
and	[T1] S. Sunit Kumar "Fieldbus and Networking in Process Automation" CRC Press,
Reference	Taylor and Francis Group, 1 st Ed., 2014
books	 [T2] S.Mackay, E.Wrijut, D.Reynders and J.Park, "Practical Industrial Data Networks Design, Installation and Troubleshooting", Newnes Publication, Elsevier, 1st Ed., 2004 Reference Books: [R1] S. Mackay, J. Park and E. Wright, "Practical Data Communication for Instrumentation and Control", Newnes Elsevier, 2002 [R2]R. Bowden, 'HART application Guide', HART Communication Foundation, 1999
E-resources	1. <u>https://www.youtube.com/watch?v=DgAwOJMN2N0</u>
and other	2. <u>http://nptel.iitg.ernet.in/Elec_Engg/IIT</u>
digital	3. <u>http://www.nptel.ac.in/courses/106105081</u>
material	

17EI4604/A – Renewable Energy

Course Category:	Program Elective II	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succes	ssful	comp	letior	n of tł	ne cou	ırse, t	he stu	udent	will	be ab	le to:			
outcomes	CO1	Desc	ribe t	he ro	le of I	Renev	wable	ener	gy so	urces	on fu	iture	energ	y den	nand.	
	CO2	Illust	rate s	solar j	powe	r gene	eratio	n and	phot	ovolta	aics.					
	CO3															
	CO4		Elucidate the role of tidal and geothermal energy resources in power generation.													
Contribution of Course	PO PO<														PSO 3	
Outcomes towards achievement	CO1						3	3								
of Program Outcomes	CO2	3					3	3								
(1 – Low, 2 - Medium, 3 –	CO3	2					2	2								
High	CO4						2	2								
	Renew and cl UNIT Solar Insola focus, Photo capaci UNIT Wind a turb perfor Enviro UNIT Tidal Wave Ocean	imatic F-II Pow tion, S Dish/ ovoltai ity and F-III Ener onmen F-IV Energ , Tidal	er: Solar Engin Engin ics: P l proc gy: In Turbi e, Ele ital in gy: l and	ection Solar resoune sys Photov luction ntrod ne ty ctrica mpact	n. pow urce, (stem, voltai on, Ap uction ypes al asp ts, Ap n then	er, E Conce Point c bas oplica n, Wi and pects oplica	ics, I tions. nd cl terms and g tions.	y bal ing S s, Sol Perfor harac s, Co grid in	ance olar H ar po manc teristi ntroll ntegra	of t Power nd. ce, Do ics an ling a ation,	he e : Pov esign d res and o Sma	arth, ver to cons ource optim ll wi	Eartl ower, iderat s, Po izing nd, C	h-Sur Line tions, wer t win Offsho	mot or Li Insta ransfe d tur	tion, near alled er to bine vind,

Text books	Text Book:
and	[T1] Volker Quaschning, "Understanding Renewable Energy Systems", Earthscan,
Reference	2005.
books	 [T2] Vaughn Nelson, "Introduction to Renewable Energy", CRC Press, 2011. [T3] Robert Ehrlich, Harold A. Geller, "Renewable Energy: A First Course" 2nd Ed., CRC Press Taylor & Francis Group, 2018.
	Reference Books: [R1] John Twidell and Tony Weir, "Renewable Energy Resources" 3 rd Ed., Routledge, 2015. [R2] Dieter Seifried and Walter Witzel, "Renewable energy: the facts", Earthscan, 2010.
E-resources and other digital	1. <u>https://nptel.ac.in/courses/108105058/</u>
material	

17EI4604/B – Industrial Electronics

Course Category:	Program Elective II	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Basics of Electrical Engineering,	Continuous Evaluation:	30
	Electronic Devices and Circuits	Semester end Evaluation:	70
		Total Marks:	100

0																
Course outcomes	Upon	succe	ssful	comp	letior	n of th	ne cou	irse, t	he stu	udent	will	be ab	le to:			
outcomes	CO1	Unde devic	erstan ces	d the	prin	ciples	s and	char	acter	istics	of d	iffere	nt po	ower	electr	onic
	CO2	Analyze the operation of SCR converters, Inverters and chopper circuits.														
	CO3		Outline the operation of DC amplifiers and voltage regulated power supplies for industrial applications													
	CO4															
Contribution		РО	РО	РО	РО	РО	РО	PO	РО	РО	РО	РО	РО	PSO	PSO	PSO
of Course		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
Outcomes towards	CO1	3													2	
achievement															2	
of Program Outcomes	CO2			3												
(1 – Low, 2-	CO3	2													2	
Medium, 3 – High	CO4		2												2	
Content	UNIT Thyri charac metho Mode GATT UNIT Thyri conve Thyri Mc M chopp UNIT Ampl a DC Princi Mode	stors: cteristic ds, SC rn se f, DIA f- II stor (rters, f stor I lurray er, Ch f- III ifiers amp ple, I	ics, S CR co mi co Convo Bridg Invert Bedf toppet and I lifier, OC vo	Switch mmu ondu d TRI erters e con ters a ford I r conf Regu , Cho oltage	hing tation ctor IAC c s: Sir verte and (nvert figura lated opper e reg	chara tech Powe charac ngle p rs. Chop er, Pi tions Powe stab	er sujilized	stics s. ectron ics. conv Sing le of pplie	and nic E erters step s: DC amp	gate Device s: Ha hase i down	chara es: A lf wa nverta n cho olifier	ve co ers, M pper, , Diff gulate	stics, netric onvert Ac M Princ Ferent ed po	SCR al SC ters, I turray ciple ial an	CR, F Full v f Inve of sto aplific	a on RCT, wave erter, epup er as blies:

	UNIT- IV Industrial Applications: Industrial timing circuits, Electric welding methods and types, Induction and dielectric heating: Principle, Theory and applications, Amplidyne servo mechanism, Ultrasonic generators and applications. Speed control of induction motor and Super synchronous motor drives.											
Text books and Reference books	 Text Book: [T1] G.K.Mithal and Dr.Maneesh Gupta, "Industrial and Power Electronics," Khanna Publications, 9th Ed., 2007 Reference Books: [R1] M.Ramamurthy, "Thyristors and their applications", East-West Press, 2nd Ed.,1998 [R2] M.H.Rashid, Power Electronics Devices, Circuits and Application, Prentice Hall of India, 2003 [R2] P.S.Bimbra, "Power Electronics," Khanna Publications, 4th Ed., 2010 											
E-resources and other digital material	 www.nptel.ac.in/downloads/108105066/ http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-334- powernelectronics-spring-2007/lecture-notes/ http://www.nptelvideos.in/2012/11/power-electronics.html http://onlinevideolecture.com/?course_id=510 											

17EI4604/C - Process Modeling and Simulation

Course Category:	Program Elective II	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Process Control	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	success	ful co	mplet	ion of	the co	ourse,	the stu	ıdent	will be	e able to	0:				
outcomes	4703	Deter	mine	nonlin	lear an	d line	ar mo	dels fo	or a gi	ven pr	ocess.					
	CO2	Mode	Iodel PID controller for a given process with suitable tuning method.													
	CO3	-	nalyse closed loop performance of Internal Model Controller (IMC) for various rocesses.													
	CO4	Desci	escribe the basic concepts of SISO Model predictive controller (MPC).													
Contribution		PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
of Course		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
Outcomes towards	CO1	3														3
achievement of Program Outcomes	CO2	2				2										2
(1 – Low, 2 -	CO3		3			3										3
Medium, 3 – High	CO4															
Course																

Content

Introduction to Process Modeling: Definitions, Model representation, Types of modeling equations, Classification of mathematical models, Process models and dynamic behaviour, Reasons for modeling, Material balances, Material and energy balances, Form of dynamic models, Linearization of nonlinear models, Dynamic behaviour, Stability of linear state space models, Empirical models.

UNIT – II

UNIT – I

PID Controller Tuning and Enhancements: Introduction, PID controller forms, Closed-loop oscillation based tuning, Tuning rules for first-order + dead time processes, Direct synthesis for minimum-phase and non-minimum phase processes, Antireset windup, Autotuning techniques.

UNIT – III

Internal Model Control: Introduction to model based control, Practical open-loop controller design, Generalization of the open-loop control design procedure, Model uncertainty and disturbances, The Internal Model Control (IMC) structure, The IMC design procedure, Effect of model uncertainty and disturbances, Improved disturbance rejection design, The equivalent feedback form to IMC, The IMC based PID control design procedure.

	UNIT – IV Model Predictive Control: Block diagram of Model Predictive Control (MPC), Basic concept of MPC, Least squares and absolute values objective functions, Finite step response and finite impulse response models, Steps involved in implementing Dynamic Matrix Control (DMC), Effect of tuning parameters.
Text books and Reference books	 Text Books [T1] B.Wayne Bequette, Process Control - Modeling, Design and Simulation, Prentice Hall International Series in the Physical and Chemical Engineering Sciences, 1st Ed., 2003. [T2] Amiya K.Jana, Chemical Process Modeling and Computer Simulation, PHI, 2ndEd., 2011. Reference Book [R1] B. Wayne Bequette, Process Dynamics -Modeling, Analysis, and Simulation, Prentice Hall International Series in the Physical and Chemical Engineering Sciences, 1st Ed., 1998.
E-resources and other digital material	 [1] https://nptel.ac.in/courses/103103037/module4/lec7/3.html [2] https://nptel.ac.in/courses/103101003/26 [3] <u>https://nptel.ac.in/courses/103103037/24</u>

17EI4604/D – Biomedical Signal Processing

Course Category:	Program Elective II	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succes	ssful	comp	letior	n of tł	ne cou	ırse, t	he stu	ıdent	will	be abl	le to:			
outcomes	CO1	Outli	ne bas	ic sig	nal pro	ocessi	ng tecl	hnique	es suit	able f	or var	ious bi	iologica	al sign	als.	
	CO2	Use t	he rele	evantı	mathe	matica	al mod	lels fo	r noise	e canc	ellatio	on and	compr	ession	•	
	CO3 Categorize the cardiac anomalies.															
	CO4	Outlin	Dutline the neurological signal processing methods.													
Contribution of Course Outcomes		РО 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
towards achievement	CO1		3													
of Program Outcomes	CO2	3				3										
(1 – Low, 2 - Medium, 3 –	CO3		3			3										
High	CO4		3			3										
Course Content	biome	ductio dical s l Con dical s dical s l Ave l avers l avers l ing u Comp thm, lation,	signa versi signa ragin age, S Noise sing sing Huffr	ls, Ot on: S ls, Sig g: Ba Softw Can a sine ion T nan	pjectiv imple gnal c asics o are fo ncelli wave	ves ar e sign conve of sign or sign ng: e moo iques g, D	nd diff nal co rsion gnal a nal av Princ del, O s: Tu: pata r	ficult nvers circu verag eragi ipal ther a rning educt	ies in ion s its. ing, S ng, L noise poin ion	biom ystem Signa imita can ation t algo algori	edica as, Co l aven tions cellen s of a prithm	I ana onverse caging of sig consig daptiv n, AZ , The	lysis. sion re g as a mal av del, 6 ve filte ZTEC e Fou:	equire digita eragii 0Hz ering. algori rier t	ment l filte ng. Adaj ithm, ransf	s for er, A otive Fan orm,

	 UNIT III Cardiological Signal Processing: Basic electrocardiography, ECG data acquisition, ECG lead systems, ECG parameters and their estimation, ECG QRS detection techniques, Arrhythmia analysis monitor, Long term continuous ECG recording. UNIT IV Neurological Signal Processing: The brain and its potentials, The electrophysiological origin of brain waves, The EEG signal and its characteristics, EEG analysis, Linear prediction theory, Auto-Regressive (AR) method. Analysis of sleep EEG: Data acquisition and classification of sleep EEG, Markova model and Markova chains.
Text books and Reference books	 Text Book: [T1] Rangaraj M. Rangayyan, "Biomedical Signal Analysis A Case Study Approach", John Wiley & Sons 2002. [T2] Willis J. Tompkins, "Biomedical Digital Signal Processing", Prentice Hall of India 2004. [T3] D C Reddy, "Biomedical Signal Processing Principles and Techniques", Tata McGraw-Hill Publishing Co. Ltd, 2005.
	 Reference Books: [R1] Akay M, "Biomedical Signal Processing", Academic: Press 1994. [R2] Cohen.A, "Biomedical Signal Processing" Vol. I, CRC Press, 1986. [R3] A.V.Oppenheim & R.W.Shafer, "Discrete-time Signal Processing" Prentice Hall, Englewood Cliffs, NJ, 1989.
E-resources and other digital material	1. <u>https://onlinecourses.nptel.ac.in/noc19_ee23//Biomedical Signal Processing</u>

17EI2605/A – Virtual Instrumentation

Course Category:	Open Elective IV	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Revie instru instru VI P: Creat	Use va Outlin PO 1 F- I Ew of V ument,	virtu	he de is fun e con PO 3	velop nction figuri PO 4 2 3	paleting of PO 5 3 3 3 3 3	e of vi ttes to data PO 6	rtual deve	instru elop a	iment VI	using	g grap	PO 12	ent PSO 1 3 2 3 3	PSO 2	PSO 3 3 3 3 3
CO2 CO3CO3CO4Contribution of CourseOutcomes towardstowards achievement of Program OutcomesCO1achievement of Program OutcomesCO2(L - Low, M - Medium, H - HighCO3CO4Course ContentCourse instru instru instru CreatVI P Creat	Illustr Use value Outlin PO 1 F- I Few of Value	virtu	he de is fun e con PO 3	velop nction figuri PO 4 2 3	paleting of PO 5 3 3 3 3 3	e of vi ttes to data PO 6	rtual deve acqu PO	instru elop a isitior PO	Iment VI n card PO	using s for PO	g grap meas PO	PO 12	ent PSO 1 3 2 3 3	PSO 2	PSO 3 3 3 3 3
CO4Contribution of CourseOutcomes towardstowards achievement of Program OutcomesCO1(L - Low, M OutcomesCO2(L - Low, M - Medium, H - HighCO3Course ContentUNIT Revia instru- instru- instru- instru-VI P Creat	Outlin PO 1	Virtua Grag	e con PO 3	Figuri PO 4 2 3	PO 5 3 3 3 3	F data PO 6	acqu PO	isition PO	n card PO	РО	РО	PO 12	PSO 1 3 2 3 3	2	³ 3 3 3 3
Contribution of CourseCO1Outcomes towards achievement of Program OutcomesCO2(L - Low, M - Medium, H - HighCO3Course ContentCO4Course ContentUNIT Revio instru- instru- instru- instru-VI P Creat	PO 1 F- I ew of V ument,	PO 2 Virtu	PO 3	PO 4 2 2 3	PO 5 3 3 3 3 3	PO 6	PO	РО	РО	РО	РО	PO 12	PSO 1 3 2 3 3	2	³ 3 3 3 3
of CourseOutcomestowardsachievementof ProgramOutcomes(L - Low, M- Medium, H- HighCO4CourseContentUNITReviainstruitinstruitVI PCreat	Γ-I ew of V ument,	2 Virtu Gra	3 al In	4 2 3	5 3 3 3 3 3	6						12	1 3 2 3 3	2	³ 3 3 3 3
Outcomes towards achievement of Program OutcomesCO1(L - Low, M - Medium, H - HighCO3Course ContentCO4Course ContentUNIT Revio instru- instru- instru- instru- instru-	Γ- I ew of V ument,	/irtu Gra	al In	2 3	3 3 3 3			8	9				2 3 3		3 3 3
towards achievement of Program OutcomesCO1(L - Low, M - Medium, H - HighCO3Course ContentCO4Course ContentUNIT Revia instru- instru- instru- Creat	ew of V iment,	Grap		3	3 3 3								2 3 3		3 3 3
achievement of Program OutcomesCO2(L - Low, M - Medium, H - HighCO3Course ContentCO4Course ContentUNIT Revia instru instru instruVI P Creat	ew of V iment,	Grap		3	3								3		3
of Program OutcomesCO2(L - Low, M - Medium, H - HighCO3Course ContentCO4Course ContentUNIT Revia instru- instru- instru- instru- instru- instru-	ew of V iment,	Grap		3	3								3		3
- Medium, H - High CO4 Course Content UNIT Revia instru instru VI P Creat	ew of V iment,	Grap			3								3	a vii	3
 High CO4 Course Content UNIT Revie instruiti	ew of V iment,	Grap		Istrui										a vi	
Content UNIT Revie instrui instrui VI P: Creat	ew of V iment,	Grap		istrui					•					a vi	rual
UNIT Mode Arra dimen Creat handl UNIT Plotti graph Seque	 UNIT- I Review of Virtual Instrumentation: Block diagram and architecture of a virtual instrument, Graphical system design model, Data-flow techniques, Virtual instrument and traditional instrument. VI Programming Techniques: Introduction to Lab VIEW, Software environment, Creating and saving VI, Controls and indicators, Data types, Strings, For loops, While loops, Local variables and global variables UNIT – II Modular Programming: Creating Sub VI's, Creating a standalone application. Arrays and Clusters: Introduction, Creating one dimensional array, Creating two dimensional array, Array functions, Auto indexing, Matrix operations with arrays, Creating clusters, Cluster operations, Conversion between arrays and clusters, Error handling. UNIT – III Plotting Data and Structures: Introduction, Types of wave forms, Wave form graphs, Wave form charts, Wave form data type, XY graphs, Case structures, Sequence structures, Formula nodes, Math script node. File I/O: Basics of file input/ output, Choosing a file format, File I/O VI's. 													, Vin ironm for lo tion. ating th arr ers, E ave f	two ays, crror

	fundamentals, Signal conditioning, DAQ hardware configuration, DAQ hardware, DAQ assistant, Channels and task configuration, Components of computer based measurement system
Text books	Text Book:
and	[T1] Jovitha Jerome, "Virtual Instrumentation using LabVIEW", 1 st Ed., PHI, 2013
Reference	
books	Reference Books: [R1] Sanjay Gupta, Joseph John, "Virtual Instrumentation using LabVIEW", 1 st Ed., Tata McGraw-Hill, 2005. [R2] Gary Johnson, Richard Jennings, "LabVIEW Graphical Programming", Tata McGraw-Hill, 2006
E-resources and other digital material	1. <u>http://www.ni.com</u>

17EI2605/B – Intelligent Instrumentation Principles and Application

Course Category:	Open Elective IV	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	Upon successful completion of the course, the student will be able to:														
outcomes	CO1	Sun	nmari	ze the	e clas	sifica	tion a	and cl	narac	teristi	cs of	sense	ors			
	CO2						nciple									
	CO3													ls to		rs
<u> </u>	CO4													proces		1
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
Outcomes towards	CO1	2										2				
achievement of Program Outcomes	CO2		3											2		
(1 – Low,	CO3														2	
2- Medium, 3– High	CO4	2	2 2 2											2		
Content	CO422UNIT- IIntroduction to Intelligent Instrumentation: Introduction, Classical sensors and transducers - Classification, Self generating transducers, Variable parameter transducers, Radioactive transducer, Semiconductor sensors, Array-based sensors, Biosensors, Sensor performance characteristics - Static characteristics, Dynamic characteristics, Input-Output impedances.UNIT- IIIntelligent Sensors: Classification, Smart sensors, Cogent sensors, Soft or virtual sensors, Self-adaptive sensors, Self-validating sensors.Sensors with Artificial Intelligence: Introduction, Multidimensional intelligent sensors, AI for prognostic instrumentation, Fuzzy logic based sensorsUNIT- III Linearization and Calibration: Analog linearization of positive coefficient resistive sensors, Linearization of negative coefficient resistive sensors, ANN- based linearization. Sensor calibration - Conventional calibration circuits, Multiplying DAC calibration.UNIT- IV Intelligent Sensor Standards and Protocols: Introduction, IEEE 1451 standard, Network topologies, CEBUS communication protocol for smart home, Plug-n-play smart sensor protocols.													neter sors, amic rtual gent cient NN- cuits, ADC		

	Case Studies: Tea fermentation process, Self adaptive pressure sensor system, Soft sensor for water treatment process, Oxygen sensor in industry and environment monitoring.
Text books	Text Book:
and	[T1] Manabendra Bhuyan, "Intelligent Instrumentation Principles and
Reference	Applications", CRC Press.
books	
	Reference Books:
	[R1] Barney G.C.V., "Intelligent Instrumentation", Prentice Hall of India Pvt. Ltd.,
	New Delhi, 1988
	[R2] John G. Webster, Halit Eren, "Measurement, Instrumentation, and Sensors
	Handbook: Electromagnetic, Optical, Radiation, Chemical, and Biomedical
	Measurement", 2 nd Ed
	[R3]KrysztofIniewski, "Smart Sensor for Industrial Applications", 1 st Ed., CRC
	Press
E-resources	
and other	
digital	
material	

17TP1606 – Quantitative Aptitude

Course Category:	Institutional Core	Credits:	1
Course Type:	Learning by doing	Lecture - Tutorial - Practice:	1 - 0- 0
Prerequisites:		Continuous Evaluation:	100
		Semester end Evaluation:	0
		Total Marks:	100

Course	Upon	succ	essful	l com	pletic	on of	the co	ourse,	the s	tuder	nt will	be a	ble to	:		
outcomes	CO1	Solv	ve va	rious	basic	math	emat	ics pr	obler	ns by	follo	wing	diffe	rent n	netho	ds
	CO2				-			zing ve pro			umpt	ion i	n pro	blem	solv	ving;
	CO3		ifiden hema	2	solve skills		-	ather eir pro		-	roble as we		and perso:	utiliz nal lif		hese
	CO4				mariz and fo		1	ent in	forma	ation	in qua	antita	tive f	orms	inclu	ding
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
Outcomes towards achievement	CO1	2														
of Program Outcomes	CO2		2													
(1 – Low, 2 - Medium, 3 –	CO3	3 2														
High	CO4	CO4 2 2														
Course Content	UNIT-I Numerical Ability I: Number system, HCF & LCM, Average, Simplification, Problems on numbers.														tion,	
	Numerical Ability II: Ratio &proportion, Partnership, Percentages, Profit &loss.													ss.		
	UNIT- II Arithmetical Ability I: Problems on ages, Time & work, Pipes & cistern, Chain rule.													hain		
	Arith on trai		cal A	bility	7 II: 7	Гime	& dis	stance	e, Pro	blem	s on t	oats	& ste	ams,	Prob	ems
	UNIT- III Arithmetical Ability III: Allegation, Simple interest and compound interest, Races & games of skills, Calendar and clock.													rest,		
	Logic	al Al	oility	Peri	mutat	ions a	and co	ombir	nation	and	proba	bility	<i>.</i>			
	UNIT Mens		on: (Geom	etry,	Areas	s, Vol	umes								
	Data 1	Inter	preta	ation	: Tab	ulatic	on, Ba	ir graj	phs, F	Pie ch	arts, I	Line §	graph	s		

Text books	Text Book:
and	[T1] R. S. Aggarwal "Quantitative Aptitude", Revised Ed., S Chand publication,
Reference	2017
books	Reference Books:
E-resources and other digital material	1. www.Indiabix.com 2. www.freshersworld.com

17EI3651 – Process Control Lab

Course Category:	Program Core	Credits:	1.5
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0- 3
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succe	ssful	comp	letior	n of tł	ne cou	ırse, t	he stu	udent	will	be ab	le to:			
outcomes	CO1	loops.														
	CO2	loops.														ocess
	CO3	processes.														
Contribution of Course		PO PO<														
Outcomes towards achievement	CO1	3 1 2 2 1 3 3 3 2 2 1 3														
of Program Outcomes	CO2													3		
(1 – Low, 2 - Medium, 3 – High Course	CO3	CO3 3 1 2 2 1 3														
Content	 List of Experiments Characteristics of Chromel–Alumel thermocouple and temperature transmitter Characteristics of PID controller in temperature process station. Characteristics of level transmitter and I/P converter. Characteristics of ON/OFF controller in level process station. Characteristics of flow transmitter and control valve. Characteristics of PI controller in flow process station. Characteristics of pressure transmitter and I/P converter. Comparison of P, PI & PID control modes in pressure process station. Characteristics of cascade control. Characteristics of flow transmitter. Characteristics of flow control. Characteristics of flow control. Characteristics of flow control. Characteristics of flow control. Characteristics of PI control modes in pressure process station. Characteristics of ratio control. Characteristics of pressure transmitter. Characteristics of PID control modes in pressure process station. 															
Text books and Reference books	[T1] F [T2] I [T3] 1	 Text Book: [T1] Process control lab manual. [T2] Donald P. Eckman, "Automatic Process Control', Wiley India Pvt. Ltd. [T3] Donald R. Coughanowr, "Process Systems Analysis and Control, 2nd Ed., McGraw-Hill international edition 														
	Refer	ence l	Books	5:												

E-resources	1. www.freevideolectures.com /Course/3126/Process-Control-and-
and other	Instrumentation
digital	2. <u>www.nptel.ac.in/courses/103105064</u>
material	

17EI3652 – Virtual Instrumentation Lab

Course Category:	Program Core	Credits:	1.5
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0- 3
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon successful completion of the course, the student will be able to:															
outcomes	CO1															
	CO2															
	CO3															
	CO4	Make use of data acquisition device to acquire the measurement data from real world into PC.														
Contribution		PO	PO P													
of Course		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
Outcomes towards	CO1					3				2	2	1				3
achievement of Program Outcomes	CO2				2	3				2	2	1		1		3
(1 - Low, 2 - 1)	CO3				2	3				2	2	1		1		3
Medium, 3 – High	CO4				2	3				2	2	1		2		3
Course Content	 List of Experiments Programs on controls and indicators Programs on arithmetic operations Programs on Boolean operations Programs on sub VI's Programs on repetition and loops Programs on arrays Programs on matrices Programs on clusters Programs on data plotting Programs on structures Programs on strings, file I/O Temperature acquisition using 3-wire RTD. Programs using NI myDAQ. 															
Text books and Reference books	 Text Book: [T1] Jovitha Jerome, "Virtual Instrumentation using LabVIEW", 1st Ed., PHI, 2013 Reference Books: [R1] Sanjay Gupta, Joseph John, "Virtual Instrumentation using LabVIEW", 1st Ed., TataMcGraw-Hill, 2005 [R2] Gary Johnson, Richard Jennings, "LabVIEW Graphical Programming", Tata McGraw-Hill, 2006 															

E-resources	1. <u>http://www.ni.com</u>
and other	
digital	
material	

17EI5653 – Engineering Project for Community Services

Course Category:	Program Core	Credits:	2
Course Type:	Practical	Lecture - Tutorial - Practice:	0 - 1 - 2
Prerequisites:		Continuous Evaluation:	100
		Semester end Evaluation:	0
		Total Marks:	100

Course outcomes	Upon	succe	ssful	com	pletic	on of	the c	ourse	, the	stude	ent wi	ill be	able	to:		
outcomes	CO1	CO1 Demonstrate a through and systematic understanding of societal problems contemporary issues											and			
	CO2	Deve	evelop interest towards research oriented field through literature exploration													
	CO3		hibit competency in suggesting optimum solution by detail analysis of the blem													
	CO4					ve in ssues						n& p	resent	tation	skill	s in
Contributio		РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PS	PS	PS
n of Course		1	2	3	4	5	6	7	8	9	10	11	12	01	O2	03
Outcomes towards the achievemen	CO1						3	3								3
t of Program	CO2											2				2
Outcomes	CO3						2									2
(1– Low, 2– Medium, 3 – High)	CO4									2	2		2			2

Fourth Year (VII Semester)

17EI3701 – Industrial Automation

Course Category:	Program Core	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 1 - 0
Prerequisites:		Continuous Evaluation:	30
-		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succes	ssful	comp	letior	n of th	ne cou	ırse, t	he stu	udent	will	be ab	le to:			
outcomes	CO1	D1 Apply the concepts of programmable logic controller in automation.														
	CO2	,					-	-	*							
	CO3	Illust								ě						
~ ~ ~	CO4		mariz		* *	1	1	1	1					lustri	es.	1
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
Outcomes		1	2	5	4	5	0	/	0	7	10	11	12	1	2	1
towards	CO1	2														1
achievement																1
of Program Outcomes	CO2			3		3										1
(1 – Low, 2 - Madium - 3	CO3															1
Medium, 3– High	CO4		2													1
	UNIT Introd archite Overv Princi hardw Specia - Elec UNIT Progra timers Math proces UNIT Distri Gener - Field LCU approa equipti interfa	ductio ecture view o ples o are - al I/O troma troma and instru sses, S - III buted alized d compared archit aches, ment	of Pro of op I/O modu gnetic ing on g lan count count tructu distr munic ecture Con confi	ogran eratic section les, H erelation of P guag ers, I s, PL ure of htrol ibute cation es, L trol gurat	nmal on, Pl on ad Progra ys, Sv PLC: es, R Progra C bas F cont Syste d cont n, I/O CU poutpu ions,	ble L LC v dress ammi witche Bas: elay t am co sed pi rol sy ems (trol s sub s proces t con Ope	ogic ersus ing, ng de es, Se ics of ype i ontrol roces stem DCS ysten system system system figur rator	Cont com Discr vice, nsors of Pl nstru instru instru s con): Ev n arch n. Loo erface ations inter	roller puter ete L Fund , Out LC J ction, ructio trol -	rs(PL , PLO /O m lamen put de progra , Bran ns, D Data on, R ure, F ontrol ues - perato requi	C): 1 C siz odule tals c evices amminch in oata r acqu cesult functi l Unit Ove r Int ireme	Defin e and es, A of log s. ng - nstruc nanip uisitic ing s onal t (LC rview erface	ition, l app nalog ic, Fid - Pro- tions, ulatic on sys ystem comp U), Fid of se e - In	Parts licati I/O eld I/o ogram , Prog on ins stem, n arch onent unctio securi nstall	s of I ons, mod O dev o dev structi Type nitectu ts of I on blo ty de ation	PLC, PLC ules, vices AN, ning ons, es of ures, DCS ocks, sign and

	UNIT – IV Applications of DCS: Application of DCS in thermal power plants, Iron and steel making process - Integrated control of a steel plant, Cock ovens plant control, Blast furnace control, Bio-technology plant control, Cement plants, Pulp and paper process control, DCS in pulp and paper plants, Oil and gas fields - Onshore oil and gas field automation, Offshore oil and gas field automation
Text books and Reference books	 Text Book: [T1] Frank D.Petruzella, "Programmable Logic Controllers", 2nd Ed, Glencoe McGraw Hill [T2] Michael P. Lucas, "Distributed Control Systems-Their Evaluation and Design", Van Nostrand Reinhold Company Inc.1986. [T3] DobrivojePopovic and Vijay P.Bhatkar, "Distributed Computer Control", CRC Taylor &Fransis group.1990 Reference Books: [R1]B R Mehtha, Y J Reddy, "Industrial Process Automation Systems", ButterworthHeinmann imprint of Elsevier, 2015
E-resources and other digital material	 <u>http://ee.sharif.edu/~industrialcontrol/LADDER_LOGIC_Tutorial.pdf</u> <u>https://www.elprocus.com/distributed-control-system-features-and-elements/</u>

17EI4702/A – Power Plant Instrumentation

Course Category:	Program Elective III	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Process Control	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succe	ssful	comp	letior	n of th	ne cou	ırse, t	he st	udent	will	be ab	le to:			
outcomes	CO1	Unde	Inderstand the operation and safety measures in thermal power plants Select suitable measuring techniques for pollution impurity and turbine													
	CO2		elect suitable measuring techniques for pollution, impurity and turbine arameters													
	CO3	powe	elect suitable control techniques for water, air fuel circuits and turbines in ower plant													
	CO4	Dete	etermine boiler efficiency in thermal power plants													
Contribution of Course		РО 1	PO 2	РО 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
Outcomes towards	CO1	3												3		2
achievement of Program Outcomes	CO2	3												3		2
(1 – Low, 2 -	CO3		2											3		1
Medium, 3 – High	CO4	2 1 1														
Content	UNIT Overv Comp power Layou Instru circula impur	view of arison blan t of ty ument ation,	t, Oby pical ation Cont	arious jectiv therr and rols	s conves of nal po Con in wa	ventio instr ower trol i ater c	onal p rumer plants n Wa vircuit	ower ntatio , Pip , Pip	plan n and ing an C ircu	ts, Cla d con nd ins uit: W	assifi trol i strum ater	cation in the entati circui	n of in ermal on di it, Bo	nstrur pow agran	nents er pla n eed w	in a ants, vater
	UNIT Instru Comb contro flue g Infrard Chrom UNIT Power Stoich Boiler Maint	ument ustion bl, Fur gas, M ed flu natogr - III r Plan tiomet effic	n air, mace Aeasu ue ga aphy, nt M ric at ciency	Flue draft reme as ar Poll anag ir rec	gases cont nt of nalyze ution emen juiren Calcu	, Was rol, A cart ers, S moni t: In nent, ilatio	ste ga Analy oon d Smok toring trodue Exce n of	ises, (tical lioxid e de g instr ction, ss ai boil	Contr meas le in tector rumer , Mas r req er et	rols ir uremo flue r, Du nts. ster c uirem fficiel	n air i ent - gas, ust n ontro nent, ncy,	fuel c Oxyg Com nonite I, Co Produ Type	eircuit gen n nbust or, F ombus ucts of	t - Concession ibles fuel a stion of contract	ombus remen analy analy Proce mbus ntena	stion nt in yzer, zers, ess - tion, unce,

	 instruments, Electrical safety, Explosion hazards, Interlocks for boiler control, Application of DCS in power plants UNIT – IV Turbine Monitoring and Control: Introduction, Classification, Principle parts of steam turbines, Turbine steam inlet system, Turbine measurements - Process parameters, Mechanical parameters, Electrical parameters, Turbine control system - Safety control systems, Lubrication for turbo alternator - Lubrication system, Controls in lubrication system, Turbo Alternator cooling system
Text books and Reference books	 Text Book: [T1] K. Krishnaswamy& M. PonniBala, "Power Plant Instrumentation" PHI Learning Private Limited, 1st Ed., Delhi-110092 Reference Books: [R1] P.K. Nag, 'Power Plant Engineering', Tata McGraw Hill, 2001 [R2] S.M. Elonka and A.L. Kohal, 'Standard Boiler Operations', Tata McGraw Hill, New Delhi,1994 [R3] Sam G. Dukelow, 'The Control of Boilers', Instrument Society of America, 1991
E-resources and other digital material	 <u>http://www.instrumentationguide.com/article/boilerlevelcontrol.htm</u> <u>https://www.wisegeek.com/what-is-hydroelectric-power.htm</u> <u>https://www.brighthub.com/environment/renewable-energy/articles/7728.aspx</u>

17EI4702/B – Industrial Internet of Things

Course Category:	Program Elective III	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Industrial Communication	Continuous Evaluation:	30
	Networks, Embedded Systems	Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	Jpon successful completion of the course, the student will be able to:														
outcomes	CO1	Classify the industry environments and scenarios covered by IIOT														
	CO2															
	CO3		Model the Industrial Internet Systems by selecting suitable middleware platforms and WAN technologies													
	CO4	4 Analyze how IIOT is deployed in Industry 4.0														
Contribution of Course		PO 1														
Outcomes towards achievement	CO1	3														
of Program Outcomes	CO2	2 3														
(1 – Low, 2 - Medium, 3 –	CO3	03 3														
High	CO4	04 2 .														
Course Content	UNIT Introd IOT a Enviro Under The in Use indust UNIT Indus in the protoc Key mobil Smart artific UNIT IOT Functi	ducti and onme rstan dust -Case rial i -II trial cols, cols, c	IIOT ents an iding rial p es - H ntern Data etory, SCAI C Te Net e's, ' itellig I erenc	Sim nd sco the roces Health et, Re a Flo Mea DA, H chno work Thecl ence,	ilariti enario Indu ss, Th care etail w an asure listor logies fu loud Aug	es an e CII e CII e, Oil d De ments ian, E s: Cy nction and menta	nd di vered I Pro VI pyr and vices: and ERP a vber nality fog, ed rea	ifferer by II ocess ramid Gas i Tecl the nd M phys Vi Big dlity, 1	nces, OT. and , The indus hnica actu ES. ical rtuali data 3D Pi rial	Devi Devi FIIOT try, S l requator system zation and s cinting	Ana ces: C data mart nirem chain ms, C analy g net a	llytics Techa a flow offic ents, a, Co Wirel Netwo tics,	s and nical v. Ind e, Lo The I ontroll ess t ork M2M	AI, Requ ustria gistic IOT ers, echno virtu I lear	Indu irema il Inte s and data : Indus ology aliza ming amew	istry ents, ernet I the flow strial , IP tion, and

	management.
	Designing Industrial Internet Systems: The concept of the IIOT, The proximity network, WSN edge node, Legacy industrial protocols, Modern communication protocols, Wireless communication technologies, Proximity network communication protocols, Industrial gateways.
	UNIT – IV Middleware IIOT platforms, IIOT WAN technologies and protocols, Securing the industrial internet, Introduction to Industry 4.0, Main characteristics of Industry 4.0, Industry 4.0 design principles, Building blocks of Industry 4.0, Industry 4.0 reference architecture, Smart factories, Real-world Smart factories.
Text books and Reference books	 Text Book: [T1] Alasdair Gilchrist "Industry 4.0: The Industrial Internet of Things", 1st Ed., Apress, 2016. [T2] CiacomoVeneri, Antonio Capasso, "Hands on Industrial Internet of Things", 1st Ed., Packt Publishing Ltd., 2018 Reference Books: [R1]UlrichSendler, "The Internet of Things: Industry 4.0 unleashed",1st Ed., Springer, 2016. [R2] Sabina Jeschke, Christian Brecher "Industrial Internet of Things: Cyber unsufficiency and the sector.
E-resources and other digital material	manufacturing systems", 1 st Ed., Springer, 2017 1. https://blog.seebo.com/ 2. https://medium.com/the-industry-4-0-blog 3. https://www.ibm.com/blogs/internet-of-things/tag/industry-4-0/ 4. https://www.uilabs.org/innovation-platforms/manufacturing/

17EI4702/C – Wireless Sensor Networks

Course Category:	Program Elective III	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succ	essfu	l com	pletic	on of	the co	ourse,	, the s	tuden	nt will	l be a	ble to:			
outcomes	CO1	Unc	lersta	nd th	e bas	ic cor	ncepts	s of w	vireles	s sen	sor no	etwor	ks			
	CO2												etwor			
	CO3												user r	equir	emen	t.
	CO4						· · ·	1	alizati		1				1	1
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
Outcomes towards achievement	CO1									-	10					
of Program Outcomes	CO2		2													
(1 – Low, 2 - Medium, 3 –	CO3	2														
High	CO4		3													
Content	UNIT Overv mecha techno netwo UNIT Senso Energ enviro and fig UNIT Netwo layer netwo manag protoc UNIT Infras netwo Locali Senso challe	view unism ologic rk a rks. - II r No gures - III orkir and rks - IV struc rks izatio r N	ns, U es for pplic ode A onsum nts, N s of m ngSer trans - Low nt - Geog ture by on and etwo	Archi ations Archi nptio Netwo nerit, o nerit, o	e con eless s, Co itectu n of ork ar Gatev : Wir r des ty cy ng at ic rou ablish ering. fices, flatfo	strain sensc ollabo ures: f sen chite vay c eless ign c cle p nd ac uting, Time Sense rms	Sing sor net orative Sing nsor cture- oncep chan consic rotoc ldress Ener t: T syr or tas and	nd ch work e pro- le-no node - Sen ots. nel an lerati- ols a sing, gy - e Copole chronking a Too	nallen s, Ad ocessi de ar es, (sor no nd co ons, nd w Assig efficie	ges ovanta ng a: chiteo Dpera etwor mmu: MAC akeup gnmer ent roo contro on, i ontrol nsor	of se ges o nd K cture ting k sce nicati Prot o con nt of uting. ol, C Local l. node	nsor of sen cey d - Ha syste narios on fu cocols cepts MAC Cluste izatic harc	netwo sor ne lefiniti ardwar ems a s. Opt ndame s for v . Add C addi ering on an lware,	entals entals wirele ress a - Hi d po	Emer s, Se of se npon- execu- tion g , Phy ss se and n . Rou erarclosition	ging nsor nsor ents. ition goals sical nsor ame iting hical ning,

Text books and Reference books	 Text Book: [T1] Feng Zhao & Leonidas J. Guibas, "Wireless Sensor Networks" An Information Processing Approach, Elsevier, 2007. [T2] Holger Karl & Andreas Willig, " Protocols And Architectures for Wireless Sensor Networks", John Wiley, 2005 Reference Books: [R1] KazemSohraby, Daniel Minoli, &TaiebZnati, "Wireless Sensor Networks-Technology, Protocols, And Applications", John Wiley, 2007 [R2] V.Gagrigungor, Gerhard P. Hancke "Industrial Wireless Sensor Networks", CRC Press, 2013
E-resources and other digital material	1. https://nptel.ac.in/courses/106/105/106105160/ 2. http://computerscienceppt.blogspot.com/2010/08/introduction-to-wireless-sensor.html

17EI4702/D – Drives and Control for Industrial Automation

Course Category:	Program Elective III	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Control Systems, Process Control	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succ	essfu	l com	pletic	on of	the co	ourse,	the s	studer	nt will	l be a	ble to	:		
outcomes	CO1	App	ly the	conce	epts of	hydra	aulic a	nd pn	eumat	tic driv	ves in	servo	contro	ol appl	icatio	ns
	CO2		ly the		cepts	of ele	ectric	and p	piezoe	electric	e driv	es in	indus	trial a	utom	ation
	CO3	Use	the pr	rogran	nming	stand	ards f	or serv	vo con	ntrol sy	ystem	s in in	dustria	al auto	matio	n
	CO4	Illus	strate t	the dig	gital co	ommu	nicati	on pro	tocols	s used	to con	ntrol s	ervo d	rives		
Contribution		PO	РО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
of Course		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
Outcomes towards achievement	CO1	3												3		
of Program Outcomes	CO2	3												3		
(1 – Low, 2 -	CO3		2													2
Medium, 3– High	CO4	2	2 2 2													
	Overv of serv hydrau Comp UNIT Electu Power actuat Mecha disper UNIT Contr Nonlin Feedb Notch Progra Functi	vo co Hy ulic a onen '- II ric an r elec ors anica sing '- III rol S near ack filta ammi ional	ontrol drau and p ts of nd P ctroni and l linl syste dynau contr er, In ing s Char	- Me lic a neum fluidi iezoe cs, S piezo kages em n in mics, rol, F mpler tanda art(SI	asure nd P natic of c driv lectri ensor electri for Serv Distu eed f menta urds - FC),	ment neun drive, /es sy c dri s, Co ric ac piez ro Dr urband forwa tion Inst	Actu natic Fun stem stem ves: onfigu cuato oelec vives: ces, S rd co - Di ructio	ation Driv dame: , Basi Over ring ors, N tric c Servo Servo ompen gital on Li	, Pov ves: ntals c hyc view an el vo co contr nsator cont st(IL	of el ectric nearit s, Exa ontrol col str r, Sta rol,), Stu	odera view, vdraul c circ ectric driv cy of ample chal uctur ites f Analo	tion, Con lic an uits. c driv e app piez e of a lenge es - T eedba og Co	Contr figura d pne es, E blicati zoelec applic s - S Frajec ack v ontrol	col. ation eumat lectri- on, S tric cation Syster tory g vith col, IE0 T), S	of so ic dri c mot olid s actuat - M n des genera observ C6111	ervo ves, tors, state tors, licro sign, ator, vers, 31-3 ntial

	UNIT- IV Digital Communication Protocols: Evolution field buses - Distributed control systems, Issues of proprietary protocols, Field bus protocol stack, Common field buses - CANopen, Profibus, Foundation field bus, Firewire, Sercos, Ethernet, Field buses in hydraulic /pneumatic drives, Field buses in electric drives
Text books and Reference books	 Text Book: [T1] Tan Kok Kiong and Andi Sudjana Putra, "Drives and Control for Industrial Automation", 1st Ed., AIC, Springer-Verlag London Limited, 2011 Reference Books: [R1] Teresa Orlowska Kowalska, Frede Blaabjerg, "Advanced and Intelligent Control in Power Electronics and Drives", 1st Ed., Studies in Computational Intelligence, Springer International Publishing Switzerland 2014.
E-resources and other digital material	 <u>https://nptel.ac.in/courses/108105062/</u> <u>https://nptel.ac.in/courses/108102046/</u>

17EI4703/A – Fundamentals of Petrochemical Engineering

Course Category:	Program Elective IV	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Process Control	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succ	essful	l com	pletio	on of	the co	ourse,	the s	studer	nt will	l be a	ble to	:		
outcomes	CO1	Exp	lain t	he va	rious	phas	es in	crude	oil p	proces	sing	at pet	roleu	m ind	ustry	
	CO2									m refi					J	
	CO3	Der	nonst	rate v	variou	is che	mica	ls pro	duce	d by p	oetrol	eum i	ndust	ry.		
	CO4		Analyse the various control techniques in crude oil and petroleum processing.													
Contribution		PO	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO	PO 12	PSO 1	PSO 2	PSO 3
of Course Outcomes towards achievement	CO1	1	2	3	4	5	0		8	9	10	11	12	1	2	
of Program Outcomes	CO2	3														
(1 – Low, 2 -	CO3	2														
Medium, 3 – High	CO4		2													
Content	UNIT Introd Origin survey process Furnad UNIT Proce of cru ethani re-dist finishi Cokin UNIT Chem cracki polyet tereph UNIT Instru Contro system	ducti ducti ducti ducti ducti $ductiducti ducti ductiducti ducti ductiducti ducti ductiducti ducti ductiducti ducti ducti ducti ducti ductiducti ducti ducti ducti ductiducti ductiductiducti ductiductiducti ductiductiductiductiductiducti ductiductiductiductiducti ductiductiductiducti ductiductiductiducti ductiducti ductiductiducti ductiductiducti ductiduc$	nydro mote crude els, L g Ope oil, I Mero on, K Cataly f from onven ne, I tte, Te ops,	carbo sensi oil a ubric eratio Distill xing Geros ytic p m Pe rsion Linea ereph n an Proce	ons, E ing m analys ant o ons ir lation and o ene h oroces etrole proor r low thalic	xplor ethod sis, I ils, V n a P and causti ydroc ses for ses for vdroc ses for vdroc	etrolo strij c wa desulf or lub Prod u s for nsity , Ethy I in and	techn atigray stic f ity ind eum l opping sh, L ouriza be oil uct: selo poly /lene Petro instru	nique phy, l uels, dex. Refin , Sta iquifi tion, base Defin ected rethyl glyco	s - M Resou Auto hery: biliza ied po Diese stock hitions petri lene, bl, Pol nical tation	Crudation, etrole el hycatorica s of roche Poly lystyr Indu	e oil Ami um g lrode: ufact petro mical propy ene.	ric m tion, els, A receiv ne al as sp sulfur ure, H chem s - /lene, Distr	ethod Oil p Aviati ving, osorp litter, izatic Hydro icals, High Pol	l, Seis roduction fu Desa tion, Nap on, H ocrack Nap n der yethy hardw	smic tion aels, lting De- htha ydro ing, htha nsity lene

	Reflux drum level control, Top plate temperature, Draw plate temperature, Furnace control
Text books and Reference books	Text Book:[T1] Uttam Ray Chaudhuri, "Petroleum and Petrochemical Engineering", Taylor &FrancisGroup.2011. (UNIT I, II, III & IV)Reference Books:[R1]GaryJ.H.,HandwerkG.E.,"PetroleumRefining:TechnologyTaylor & Francis,2005
E-resources and other digital material	1. <u>https://nptel.ac.in/courses/103/102/103102022/</u>

17EI4703/B – Database Management Systems

Course Category:	Program Elective IV	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	Upon successful completion of the course, the student will be able to:														
outcomes	CO1	Demo	nstrat	e the s	schem	a usin	g DBl	MS.								
	CO2	Apply	form	al and	Infor	mal q	lery f	or vari	ious a	pplica	tions					
	CO3	Desig	n nori	nalize	d data	abases										
	CO4	Illustr	ate tra	ansacti	ion pr	ocessi	ng, co	ncurre	ency c	control	l and s	securit	y issu	es.		
Contribution		РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO	РО	PSO	PSO	PSO
of Course		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
Outcomes	CO1	3														
towards achievement	001															
of Program Outcomes	CO2	3														
	~ ~ ~ ~			3												
(1 – Low, 2 -	CO3			5												
Medium, 3 – High	CO4	204 3														
Course Content	Descri with d Introd Attrib the EF Relati relation design UNIT Relati Divisi SQL: SQL one Aggree conne	view o ibing a latabas ductio utes an Mod ional ional ional on, Ex Querie sted cuerie sted cuerie ctivity owing	and s ses. n to nd en el. Mode iforci oducti Alge ies A s; UI queric oper 's - NUL	Data Data atity s el: In ng int on to bra: es of NION es, C rators AND L val	g data base let; R trodu tegrit view Selec algeb Const , INT Correl ; NU , OR lues; C	a in a Desi elation (ction y con y con y; De ction ora qu raint TERS ated LL v and Comp	DBM gn: onship to th strain stroy: and eries; s: Fo ECT Nest alues NO lexint	MS, S Datab os and he rel ts; Qu ing / A projec ; Expr rm of and I ed Q - Co F, Im tegrity	ation ation ueryin Alteri etion, ressiv EXCE Queric ompa ipact y con	desig tions al mo ng rel ing ta Set ze pov ic SQ EPT; es, S rison on S strair	of a D n and hip so odel; lation bles a opera wer of Nesta SQL usin SQL nts in	DBMS I ER et; Ac Integ al dat and vi ations f alge iery - ed Qu Cons SQL.	diag diag dditio grity c a; Lo iews. s, Ren bra an bra an eries nparis [LL v tructs	pple v rams; nal fe constr gical namin d cal mples - Int son o values	vho v Enti eature raint o data l ng, Jo culus s of b roduc operat , Log ter jo	vork ties, s of over base bins, asic tion tors; fical bins,

	redundancy, Decompositions, Problem related to decomposition; Functional dependencies; Reasoning about FDs; Normal forms - First, Second, Third Normal forms, BCNF; Properties of decomposition - Lossless join decomposition, Dependency preserving decomposition; Schema refinement in data base design; Multi valued dependencies - Forth Normal form.
	UNIT- IV Overview of Transaction Management: ACID Properties; Transactions and Schedules; Concurrent execution of transaction; Lock based concurrency control; Performance locking; Transaction support in SQL.
	Concurrency Control: Introduction to lock management; Lock Conversions; Dealing with dead locks; Specialized locking techniques; Concurrency without locking.
	Security and Authorization: Introduction to database security; Access control; Discretionary access control - Grant and revoke on views and integrity constraints; Mandatory access control - Multilevel relations and Polyinstantiation
Text books and Reference books	 Text Book: [T1] K. Raghurama Krishnan, Johannes Gehrke, "Database Management Systems", 3rd Ed., TATA McGraw-Hill, 2003. [T2] Gauravvaish," Getting Started with NoSQL" (Kindle Ed.,), 1st Ed., 2007.
	 Reference Books: [R1] C.J.Date, "Introduction to Database Systems", 8th Ed., Pearson Education, 2004. [R2] Rob & Coronel, "Data base Systems design, Implementation, and Management", 8th Ed., 2007.
	 [R3] Elmasri Navrate, "Data base Management System",3rd Ed., Pearson Education, 2005.
E-resources and other digital material	 <u>https://www.youtube.com/watch?v=1057YmExS-I</u> <u>https://www.youtube.com/watch?v=TlbJk78TqYY</u> <u>https://www.youtube.com/watch?v=yPu6qV5byu4</u> <u>https://www.youtube.com/watch?v=EUzsy3W4I0g</u> <u>https://www.youtube.com/watch?v=ShjrtAQmIVg</u>

17EI4703/C – Intelligent Systems and Control

Course Category:	Program Elective IV	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succes	ssful	comp	letior	n of tł	ne cou	ırse, t	the stu	udent	will	be ab	le to:			
outcomes	CO1	Appl	y fuz	zy log	gic fo	r sim	ple co	ontrol	appl	icatio	ns.					
	CO2		*				•			tion a		ontrol	appli	icatio	ns.	
	CO3	Com														
	CO4			-	1	1			1	1		1		echni	ques.	1
Contribution of Course		РО 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
Outcomes		1	2	5	+	5	0	/	0	2	10	11	12	1		3
towards	CO1	3	3												5	
achievement															3	
of Program	CO2	3														3
Outcomes																
(1 – Low, 2 -	CO3															
(1 - Low, 2 - Medium, 3 - Me																
High	CO4	2 2 2														
Content	UNIT Fuzzy MFs, Fuzzy Examicontro UNIT Neura Activa neural netwo UNIT Neuro Coope fuzzy UNIT Evolu Genet algori intelli	Logi Opera If-7 ples, oller. - II al Ne ation f netw rks fo - III o Fuz erative syster - IV tionan ic ope thms	ttions Then Fuzzy tworl Tunction vorks r conting zy Sy neur ns, Ad ry Con- rators - Ge	on f rule y sys ks a ons, l , Ne rol. vstem co-fuz daptiv	TuzzySuzzyss, Fstem,nd ANetwoSuralns: Inting:formAlgo	sets, Fuzzif Fuz Appli ork au syste atrodu ystem uro-fu Intro ance orithn	Ling icatio zy n catio rchite ems, iction s, Co uzzy s oducti meas n (G2	uistic n, I nodell ns: cture, Syste , Cor ncurr syster on, T ures o A) ar	e vari Defuz ling, Introd , Leas em i em i em n, Fu ermin of ev ad Di	ables zifica Fuzz ductio rning dentif ation neuro- zzy n holog olutio	and tion, y co on, A in ne ficatio of ne fuzzy euron	hedg Infe ontrol Artific eural on an eural y syst is	es, F erence, Des tial r netwo nd co and tems, ution	uzzy e mo sign neuro orks, ontrol fuzzy Hybi ary co s, Evo	relati echan of fu n mo Recur l, Ne syst rid ne	ting, nary
Text books	Text]		1 0 1	1.	1		- 4 . 4 . 1	L-1: C	7		1 T				•	C C
and		Nazmı	II Sid	dique	e and	Hojj	at Ad	leli, C	Comp	utatic	onal I	ntelli	gence	e -Syı	nergie	es of

Reference	Fuzzy Logic, Neural Networks and Evolutionary Computing, Wiley, 1 st Ed., 2013.
books	[T2] Andries P.Engelbrecht, Computational Intelligence-An introduction, Wiley, 2 nd
	Ed., 2007
	Reference Books:
	[R1] Robert E. King, Computational Intelligence in Control Engineering, Marcel
	Dekker Inc., 1 st Ed., 1999.
	[R2] Witold Pedrycz, Computational Intelligence-An introduction, CRC Press, 1 st
	Ed., 1997
E-resources	1. https://nptel.ac.in/courses/108/104/108104049/
and other	2. <u>http://uni-obuda.hu/users/fuller.robert/nfs.html</u>
digital	3. <u>https://nptel.ac.in/courses/127/105/127105006/</u>
material	

17EI4703/D – Digital Image Processing

Course Category:	Program Elective IV	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succes	ssful	comp	letior	n of th	ne cou	ırse, t	he stu	ıdent	will	be ab	le to:			
outcomes	CO1	Expl	ain th	e fun	dame	ntals	of dig	gital i	mage	proc	essin	g				
	CO2	Appl							<u> </u>	· ·		<u> </u>	iency	doma	ains	
	CO3	Anal														
	CO4		Analyze the performance of compression techniques and object recognition methods.													
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
Outcomes towards achievement	CO1															
of Program Outcomes	CO2	2				1										1
(1 – Low, 2 -	CO3		3			1										1
Medium, 3 – High	CO4		3 1 1 1													
	Digita Comp sensin betwe Color proces UNIT Image Histog of spa Image Smoo Homo UNIT Image the pr domai mean Wave	onents g and en pix Imag ssing. - II e Enh gram p tial fil e Enha thing morph - III e Rest esence n filte square	s of a l acc els. ge Pr nance proces tering ancer freq nic fil corati e of r ring, e erro	ement ssing, g, Sm nent uency tering ion: I noise Linea r (Wi	age p ion, ing: t in Enha oothi in Fr do g. Image only, ar pos ener)	roces Image Color Spat ancen ng sp reque main e deg Spat sition filter	sing i e san func fial I nent u atial fi ncy I filte radat ial fil -invai ing, C	syster npling lamer Doma Silters Doma ers, S ion/re itering riant of Consti	m, El g and ntals, in: in: , Sha in: Ir Sharp estora g, Per degra rained	emen d qua Colo Basic metic rpeni ntrodu eening tion p riodic datio d leas	ts of antiza r mod g gra and ng sp action g fre proce nois ns, In t squa	visua ation, dels, y lev logica atial f a to the e red ares f	l per- Basi Pseud /el tr al ope filters //e Fou cy d odel, uction // filter ilterir	ception ception ic reliant do contransformation contraction contra	on, In lation lor in ormati ns, Ba ransfe n fil oratio freque Minir	nage ship nage ons, usics orm, ters, n in ency num

	transforms in one dimension, Fast wavelet transform, Wavelet transforms in two dimensions.
	UNIT- IV Image Compression: Fundamentals, Image compression models, Error free compression, Lossless predictive, Lossy compression.
	Image Segmentation: Detection of discontinuities, Edge linking and boundary detection, Thresholding, Region based segmentation.
	Representation and Description: Representation, Boundary descriptors, Regional descriptors.
Text books and Reference	Text Book: [T1] Gonzalez and Woods," Digital Image Processing", 2 nd Ed., Pearson Education, 2002.
books	Reference Books: [R1] Anil K. Jain, "Fundamentals of Digital Image Processing", 3 rd Ed., Pearson Education, 2003. [R2] William K Pratt, "Digital Image Processing", 4 th Ed., A Wiley-Interscience Publication, 2007
E-resources and other digital material	1. <u>http://www.imageprocessingplace.com/</u>

17EI4704/A – Instrumentation and Control in Paper Industries

Course Category:	Program Elective V	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Transducers, Electronic	Continuous Evaluation:	30
	Measurements and	Semester end Evaluation:	70
	Instrumentation, Process Control	Total Marks:	100

Course outcomes	Upon	succes	ssful	comp	letior	n of th	ne cou	ırse, t	he stu	ıdent	will l	be abl	le to:			
outcomes	CO1	Expl	xplain the pre-processing stages of raw material in paper making process													
	CO2		elect suitable sensors used in wet and dry end instrumentation and quality easurement of paper making industry													
	CO3		ntify the paper quality and appropriate control strategies for thick and thin ck system													
	CO4	Anal	alyze the role of computers in pulp and paper industries													
Contribution		PO	PO	PO	РО	РО	РО	PO	РО	РО	РО	РО	РО	PSO	PSO	PSO
of Course		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
Outcomes towards	CO1															
achievement of Program Outcomes	CO2	3												3		
(1 – Low, 2 -	CO3	2												2		
Medium, 3 – High	CO4	4 2 2 2 2														
Course																

Content UNIT- I

Papermaking Process: Process fundamentals, Raw materials, Pulping and preparation, Screening, Bleaching, Cooking, Chemical addition, Papermaking machine, Drying section, Calenders, Drive, Finishing, Other-after treatment processes, Coating, Elementary properties of liquids - Hydrostatics, Liquids in motion. Properties of paper making - Physical, electrical, optical and chemical properties.

UNIT- II

Wet and Dry End Instrumentation: Overview of basic sensors used in wet and dry end measurements, Measurement of pH and ORP, Primary viscosity measurement devices, Continuous consistency measuring devices, Liquid density and specific gravity measurement, Granular and wood chip moisture measurements, Paper moisture measurements - Electrical, Energy absorption. Freeness measurement, Grammage or basis weight measurement, Thickness measuring systems - Contacting and non-contacting types, Digester

UNIT- III

Quality Measurement: Paper quality measurements - Brightness, Color, Gloss, Opacity, Ash, Modulus.

Thick and Thin Stock Systems Control: Introduction, Simple thick stock system, Breakers and beaters, Thick stock flow control, Basic thin stock system, Cleaners, Screens, The flow box and its controls, Refiner control instrumentation.

	 UNIT- IV Computers in the Pulp Mill: Batch digesters, Continuous digesters - Vertical type, Inclined type, Bleach plant. Computers in the Paper Mill: Stock preparation - Refiners, Stock proportioning, Stock Blending. Paper machine - Rush/drag, Basis weight and moisture, Speed change, Coordinated control
Text books and	Text Book: [T1] Robert J.McGill, "Measurement and Control in Papermaking", Adam Hilger
Reference	Limited, Bristol, 1 st Ed., 1980.
books	 [T2] John R.Lavigne, "An Introduction to Paper Industry Instrumentation", Miller Freeman Publications, California, 1st Ed., 1985. [T3] John R.Lavigne, "Instrumentation Applications for the Pulp and Paper Industry", Miller Freeman Publications, California, 1st Ed., 1990 Reference Books: [R1] Benjamin C. Kuo, "Automatic Control Systems", 7th Ed., PHI, 2001. [R2] James P.Casey, Pulp Paper Chemistry and Chemical Technology, John wiley& sons, New york, 1981. [R3] Sankarnarayanan P.E, "Pulp Paper Industry–Technology & Instrumentation", Kothari's Deskbook, 1995
E-resources and other digital material	 <u>http://www.nptelvideos.com/control_systems/</u> <u>https://www.wateronline.com/doc/instrumentation-for-the-pulp-paper%20industry0002</u>

17EI4704/B – Computer Networks

Course Category:	Program Elective V	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Outcomes CO1 Demonstrate different reference models CO2 Demonstrate data link layer protocols CO3 CO3 Analyze routing issues in network design CO4 Illustrate the underlying protocols in transport and application layer. Contribution of Course Outcomes PO	Course	Upon	succes	ssful	comp	letior	n of tł	ne cou	ırse, t	he stu	udent	will	be ab	le to:				
CO3 Analyze routing issues in network design CO4 Illustrate the underlying protocols in transport and application layer. Contribution Of Course Outcomes towards achievement of Program Outcomes PO PO <th c<="" th=""><th>outcomes</th><th>CO1</th><th>Dem</th><th>onstra</th><th>ate di</th><th>fferei</th><th>nt refe</th><th>erence</th><th>e mod</th><th>lels</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th>	<th>outcomes</th> <th>CO1</th> <th>Dem</th> <th>onstra</th> <th>ate di</th> <th>fferei</th> <th>nt refe</th> <th>erence</th> <th>e mod</th> <th>lels</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	outcomes	CO1	Dem	onstra	ate di	fferei	nt refe	erence	e mod	lels							
		CO2	Dem	onstra	ate da	ıta lin	k lay	er pro	tocol	S								
Contribution of Course Outcomes towards achievement of Program Outcomes towards achievement of Program OutcomesPO 1PO 2PO 3PO 4PO 5PO 6PO 7PO 8PO 																		
of Course Outcomes towards achievement of Program Outcomes 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 C01 2 2 2 2 2 2 2 achievement of Program Outcomes CO2 3 2 2 2 3 3 C02 3 2 2 2 2 2 3 3 (1 - Low, 2- Medium, 3 - High CO3 2 2 2 2 2 2 Course Content UNIT- I Introduction: Uses of computer networks, Network hardware, LANS, MANS, WANS, Network software. Reference models: The OSI reference model. Physical Layer: Guided transmission media: Magnetic media, Twisted pair, Coaxial cable, Fibre optics. 10 1 1 2 UNIT- II Data Link Layer: Data link layer design issues, Error detection and correction, Elementary data link protocols, Sliding window protocols. Medium Access Control Sub Layer: The channel allocation problem, Multiple access protocols, ETHERNET. UNIT-III Network Layer: Network layer design issues, Routing algorithms: Shortest path, Flooding, DVR, Link state routing algorithm, Congestion control algorithms. Quality of Service: Techniques for achieving good quality of service, IP protocol, IP addresses, Internet control prot		CO4																
Course towards achievement of Program Outcomes CO1 2 Image: CO2 3 Image: CO2 1 1 2 <th2< th=""> 2 2 2</th2<>																		
towards achievement of Program Outcomes CO1 2 Image: Constant of Program Co2 3 Image: Constant of Program Co3 2 Image: Constant of Program Co4 2 Image: Constant of Program Program 2 Image: Constant of Program Program 2 Image: Constant of Program Program 2 Course Content UNIT- I Introduction: Uses of computer networks, Network hardware, LANS, MANS, WANS, Network software. Reference models: The OSI reference model. TCP/IP reference model, The comparison of the OSI and TCP/IP reference model. Physical Layer: Guided transmission media: Magnetic media, Twisted pair, Coaxial cable, Fibre optics. UNIT- II Data Link Layer: Data link layer design issues, Error detection and correction, Elementary data link protocols, Sliding window protocols. Medium Access Control Sub Layer: The channel allocation problem, Multiple access protocols, ETHERNET. UNIT-III Network Layer: Network tayer design issues, Routing algorithms: Shortest pa			1	2	3	4	5	0	/	8	9	10	11	12	1	2		
achievement of Program Outcomes CO2 3 Image: Cost of the second se		CO1	2														Z	
of Program Outcomes CO2 3 Image: Cost of the second																		
(1 - Low, 2 - Medium, 3 - High CO3 2 Image: Cost of the second sec	of Program	CO2	3														3	
High CO4 2 2 Course Content UNIT-I Introduction: Uses of computer networks, Network hardware, LANs, MANs, WANs, Network software. Reference models: The OSI reference model, TCP/IP reference model, The comparison of the OSI and TCP/IP reference models. Physical Layer: Guided transmission media: Magnetic media, Twisted pair, Coaxial cable, Fibre optics. UNIT-II Data Link Layer: Data link layer design issues, Error detection and correction, Elementary data link protocols, Sliding window protocols. Medium Access Control Sub Layer: The channel allocation problem, Multiple access protocols, ETHERNET. UNIT-III Network Layer: Network layer design issues, Routing algorithms: Shortest path, Flooding, DVR, Link state routing algorithm, Congestion control algorithms. Quality of Service: Techniques for achieving good quality of service, IP protocol, IP addresses, Internet control protocols. UNIT-IV UNIT-IV Transport Layer: The transport service, Elements of transport protocols, Internet	(1 – Low, 2 -	CO3		2 2 2											2			
ContentUNIT- I Introduction: Uses of computer networks, Network hardware, LANs, MANs, WANs, Network software. Reference models: The OSI reference model, TCP/IP reference model, The comparison of the OSI and TCP/IP reference models. Physical Layer: Guided transmission media: Magnetic media, Twisted pair, Coaxial cable, Fibre optics.UNIT- II Data Link Layer: Data link layer design issues, Error detection and correction, Elementary data link protocols, Sliding window protocols.Medium Access Control Sub Layer: The channel allocation problem, Multiple access protocols, ETHERNET.UNIT-III Network Layer: Network layer design issues, Routing algorithms: Shortest path, Flooding, DVR, Link state routing algorithm, Congestion control algorithms. Quality of Service: Techniques for achieving good quality of service, IP protocol, IP addresses, Internet control protocols.UNIT-IV 	,	CO4	2	2 2 2														
Application Layer: The Domain Name System (DNS), and E-Mail		Intro WAN refere Layer Fibre UNIT Data Eleme Media access UNIT Netwo Flood Qualit IP ado UNIT Trans transp Appli	ductio s, Net nce main optics - II Link entary um A s proto -III ork La ing, I cy of S lresses -IV sport 1 ort pro-	work odel, led tr Laye data l ccess cols, cols, ayer: DVR, Servic s, Inte Laye	soft The oransmin er: I link p Con ETH Net Lind ee: T ernet of r: T ls TC	ware. comp ission Data 1 protoc trol ERN twork k sta contro he tra P and	Refe arison n med ink la ols, S Sub ET. te ro iques ol pro	ayer of the dia: No ayer o	e moo ne OS Aagne design g win r: Th agn is algo chiev s.	dels: I and etic n n issu dow p ne ch sues, prithn ing g	The I TCP nedia ues, E protoci annel Rout n, Co good o ents o	OSI 1 /IP re, Twi Error cols. alloo ting a onges qualit	efere feren sted detec catior lgorit tion y of s	tion a n prob thms: contr servic	model odels Coax and c blem, blem, rol al ce, IP	l, TC . Physial ca ial ca orrect Mul ftest p gorith proto	P/IP sical able, tion, tiple path, nms. pcol,	
	Text books	Text	DOOK:															

and Reference books	 [T1] Andrew S Tanenbaum, "Computer Network", 4th Ed., Pearson Education / PHI Reference Books: [R1] Kurose and Ross, "Computer Networks - A Top-down Approach Featuring the Internet", Pearson Education. [R2] Behrouz.A.Forouzan, "Data Communications and Networking". 4th Ed., Tata McGraw Hill.
E-resources and other digital material	1. <u>https://nptel.ac.in/courses/106/105/106105183/</u>

17EI4704/C- Sensor Signal Conditioning

Course Category:	Program Elective V	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succ	essful	l com	pletic	on of	the co	ourse,	, the s	studer	nt will	l be a	ble to	:		
outcomes	CO1	Desi	ign the	e sign	al con	dition	ing ci	cuits	for res	sistive	senso	ors				
	CO2	Sele	ct suit	table s	signal	condi	tioning	g circı	uits fo	r react	ance	variati	on ser	isors		
	CO3												self-ge			
	CO4	Exp syste		ne ope	eration	ı of r	esonai	nt and	semi	condu	ictor s	sensor	s with	com	munic	ation
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
Outcomes towards achievement	CO1			2												
of Program Outcomes	CO2		3													
(1 – Low, 2 - Medium, 3 –	CO3	2														
High	CO4															
Content	Signal resistan measur UNIT- Signal sensors Specific conver UNIT- Signal Chopp	 UNIT- I Signal Conditioning for Resistive Sensors: Overview of resistive sensors, Measurement of resistance, Voltage dividers, Wheatstone bridge: Balance measurements, Deflection measurements, Differential and instrumentation amplifiers, Interference, Problems UNIT- II Signal Conditioning for Reactance Variation Sensors: Overview of reactance variation sensors, Problems and alternatives, AC bridges, Carrier amplifiers and coherent detection, Specific signal conditioners for capacitive sensors, Resolver to Digital and Digital to resolver converters, Problems UNIT- III Signal Conditioning for Self-Generating Sensors: Overview of self-generating sensors, Chopper and low drift amplifiers, Electrometer and Transimpedance amplifiers, Charge 												ction ation ction, olver sors,		
	 amplifiers, Noise in amplifiers, Noise and drift in resistors, Problems UNIT- IV Resonant Sensors and Other Sensing Methods: Sensors based on quartz resonators, SAW sensors, Vibrating wire strain gauges, Digital flow meters, Sensors Based on Semiconductor Junctions, Sensors Based on MOSFET Transistors, Charge-Coupled and CMOS Image Sensors, Communication system for sensors 											uctor				
Text books and Reference books	Text B [T1] R Jo	lomar		as Are 2 Sons	•		n G W	Vebste	r, "Se	ensor a	and Si	gnal (Condit	ioning	g", 2 nd	Ed.,

	Reference Book:
	[R1] Daniel H Sheingold "Transducers Interfacing Handbook", 1st Ed., Analog Devices, Inc., USA, 1980
E-resources	
and other	1. https://nptel.ac.in/courses/108105064/22
digital	2. https://nptel.ac.in/courses/112105232/27
material	

17EI4704/D- Machine Learning

Course Category:	Program Elective V	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succes	ssful	comp	letior	n of th	ne cou	ırse, t	he stu	ıdent	will	be ab	le to:			
outcomes	CO1	Use v	variou	ıs cla	ssifie	rs for	data	classi	ificati	ion						
	CO2	Appl	y dec	ision	trees	to cla	assific	cation	prob	lems						
	CO3	Outli														
	CO4	Illust		1	1		1	1	1	I	n & r	egres	1	nodel	S	1
Contribution		РО 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
of Course Outcomes		1	2	3	4	5	0	/	0	9	10	11	12	1	2	5
towards																
achievement																
of Program Outcomes	CO2	2														
(1 – Low, 2- Medium, 3 –	CO3		3													
High	CO4															
Course Content	UNIT Introd learnin Binar Class Bayes Gibbs UNIT Beyor Unsup Conce Beyor Tree learnin UNIT Linea algorif from l	ductio ng app y Cla probal sian an algori - II nd Bi bervise ept le nd con mode ng as v - III r mode thm fo inear of	olicati ossific oility ad Co thm, arnir od and arnir juncti ls: I variar dels: or lin classi	ons. estim estim ompu Naïv Clas d desc ng: T ive co Decisi nce re The near c fiers,	a and nation tation e Bay ssific criptiv The h oncep on t ducti- least classifi Goin	I Rel mal I ves cla ation ve lea ypoth ts. rees, on -squa fiers, ag bey	ated Learn assific : Ha rning nesis Rank res m Supp yond l	Task ing: fer ndling space cing nethoo ort v inear	ss: C Bayes g mo e, Pa and d, Th rector ity wi	lassif s theo ore th ths th proba e per mac ith ke	icatic orem, nan t hroug ibility rceptr hines rnel i	on, So Baye wo o h the esti- con: A , Ob netho	coring es opt classe e hyp imatio A her tainin ods.	g and imal s, Re oothes on tro uristic	rank classi egress sis sp ees, ' ees, '	king, afier, sion, bace, Tree ning lities

	neighbours classification UNIT- IV Artificial Neural Networks: Introduction, Neural network representation, Appropriate problems for neural network learning, Multilayer networks, Back propagation algorithm
Text books and Reference books	 Text Book: [T1] Peter Flach "Machine Learning: The Art and Science of Algorithms that Make Sense of Data", Cambridge University Press, 2012 [T2] Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education Reference Books: [R1] EthemAlpaydin, Introduction to Machine Learning, 2nd Ed., MIT press
E-resources and other digital material	 <u>https://www.youtube.com/playlist?list=PLYihddLF-</u> <u>CgYuWNL55Wg8ALkm6u8U7gps</u> <u>http://www.cs.cmu.edu/~tom/10701_sp11/lectures.shtml</u>

17HS1705 – Engineering Economics and Finance

Course Category:	Institutional Core	Credits:	2
Course Type:	Theory	Lecture - Tutorial - Practice:	2 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succe	ssful	comp	letior	n of th	ne cou	ırse, t	he stu	ıdent	will	be ab	le to:			
outcomes	CO1		rstand	1				,								
	CO2		rstand				-		-	-		8				
	CO3		ire kno			-					inctior	IS				
	CO4		erstan native				nods u	ised i	n calo	culati	ng de	preci	ation	and e	evalua	ting
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
Outcomes towards achievement	CO1	2										2				
of Program Outcomes	CO2	2				3						2				
(1 – Low, 2 - Medium, 3 –	CO3	2										2				
High	CO4	2				3						2				
	Forms stock c Manag manag UNIT Introd Margin utility. Deman Demar inelast Supply functio UNIT Huma manag	sompar gemen ement - II uction hal uti nd sch ic dem y Ana on. - III an R gemer	ny, Co nt: Intro , Mode n to I lity an nalysis edule nand, T llysis: esour nt and	-opera oducti ern pri Econo d tota and c ypes o Supp	nciple mics: l utilit eory of leman of elas ly sch	ociety manages of n Intro ty, La of den d curr sticity. hedule	and p gemen nanage oductio w of o mand: ve, Sh and nt: N	ublic t, Fun ement on to dimini Dem ift in supply	sector actions basic ishing hand t dema y curv ing a	e ecor marg functionand, H ve, Fa	anage nomic inal u on, F Elastic actors	ment, conc tility, actors ity of influe ence	Princi epts, Law influ dema encing betw	Utility of equ encing and: I supp	of scien y anal ii mar g den Elastic ly, Su perso	ntific lysis: ginal nand, and upply nnel

	 Marketing Management: Concept of selling and marketing – Differences, functions of marketing, Product life cycle, Concept of advertising, Sales promotion, Types of distribution channels, Marketing research, Break-even analysis. Unit – IV Financial Management: Functions of financial management, Time value of money with cash flow diagrams, Concept of simple and compound interest. Depreciation: Causes of depreciation, Factors influencing depreciation, Common methods of depreciation: Straight line method, Declining balance method, Sum of year's digits method – Problems. Economic Alternatives: Methods of evaluating Alternatives under present worth method, Future worth method, Annual equivalent method – Problems
Text books and Reference books	 Text Book: [T1] M. Mahajan, "Industrial Engineering and Production Management", 2nd Ed., Dhanpat Rai Publications [T2] Mart and Telsang" Industrial & Business Management" S.Chand publications Reference Books: [R1] R. Paneerselvam, "Production and Operations Management" PHI [R2] Philip Kotler, Gary Armstrong, "Principles of Marketing", Pearson Prentice Hall, New Delhi,2012 [R3] IM Pandey, "Financial Management", 11th Ed., Vikas Publications [R4] B.B.Mahapatro, "Human Resource Management", New Age International, 2011
E-resources and other digital material	1.https://www.toppr.com/guides/fundamentals-of-economics-and-management/supply/supply-function/ 2.https://keydifferences.com/difference-between-personnel-management-and-human-resource-management.html 3. https://productlifecyclestages.com/

17EI3751 – Industrial Automation Lab

Course Category:	Program Core	Credits:	1.5
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0- 3
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succ	essful	l com	pletic	on of	the co	ourse,	the s	tuder	nt will	be a	ble to	:		
outcomes	CO1		2	LC p	\mathcal{C}	ımmi	ng m	ethod	ls to	contr	ol ba	asic p	proces	ss va	riable	es in
	CO2					n of d	liffere	ent ind	dustri	al pro	oto tv	pe pro	ocess	es		
	CO3		Demonstrate the basic programming of DCS through Experion PKS server													
	CO4		apply DCS programming methods to control multi tank and cascade rocesses													
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
Outcomes towards achievement	CO1				3	3				2	2	1				3
of Program Outcomes	CO2				3	3				2	2	1				3
	CO3				3	3				2	2	1				3
(1 – Low, 2 - Medium, 3 – High)	CO4	3	3 3 2 2 1												3	
Course																
Content		List of Experiments														
	1.	1. Level control using PLC														
	2.	Pres	sure	contro	ol usi	ng PI	LC									
	3.	Tem	perat	ture c	ontro	l usin	g PL	С								
	4.	Mot	or sp	eed c	ontro	l usin	g PL	2								
	5.	Auto	omati	on of	mate	erial h	andli	ng sy	stem	using	, PLC					
	6.	Elev	ator	contro	ol usi	ng PI	LC									
	7.	Batc	h pro	ocess	reacto	or coi	ntrol ı	ısing	PLC							
	8.	Auto	omati	on of	bottl	e filli	ng Sy	stem	using	g PLC						
	9.	Auto	omati	c dril	ling s	syster	n usir	ng PL	С							
						-		-	chine	using	PLC	l				
				-			-			-		S C2	00			
			-				•			•		serve				

	13.Level control of single tank liquid system using DCS
	14. Level control of multi tank liquid system using DCS
	15. Implementation of cascade control in liquid system using DCS
Text books	Text Book:
E-resources	

Note: Minimum of 10 experiments must be carried out to complete the course

17EI3752 – Advanced Instrumentation Lab

Course Category:	Program Core	Credits:	1.5
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0- 3
Prerequisites:		Continuous Evaluation:	30
-		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	Upon successful completion of the course, the student will be able to:														
outcomes	CO1	Use	NI-Co	ompa	ct DA	Q an	d NI-	myD	AQ h	ardwa	are fo	r mea	asurei	ments		
	CO2		d vari ors an			0	circ	uits v	with 1	NI-m	yRIO	hard	lware	usin	g vai	rious
	CO3		lyze o													
	CO4		nduct experiment with individual or team using LabVIEW and hardware record the observations.													
Contribution of Course		РО 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
Outcomes towards achievement	CO1	3				3										3
of Program Outcomes	CO2				3	3										3
(1 – Low, 2-	CO3				3	3						1				3
Medium, 3 – High	CO4				3	3				2	2	1				3
Course Content		et of Experiments periments based on NI-COMPACT DAQ and NI-myDAQ hardware														
	1.	Data	Logg	ing o	f RTI	D base	ed ter	npera	ature d	lata a	cquis	ition				
	2.	Desi	gn of o	data a	acquis	sition	to me	easur	e vibr	ation	para	neter	S			
	3.	Stud	ying e	arthq	uakes	s with	the r	nyQu	iake N	M mi	ni Sys	stem	for N	I myI	DAQ	
	4.	Stud	ying f	light	dynai	nics	with t	he m	уVTC	DL NI	mini	Syst	em fo	or NI	myD	AQ
	5.	Stud	y of d	igital	filter	s witł	the	myD	SP NI	mini	Syste	em fo	r NI	myD	AQ	
	Exper	iment	s base	d on n	nyRIC	C										
	1.	Interf	acing	of DC	moto	r/ rota	ry enc	oder								
	2.	Inter	facing	g of pl	hoto i	interr	upter,									
	3.	Inter	facing	g of H	all ef	fect s	ensor	•								
	4.	Inter	facing	g of se	ervo r	notor										
	5.	Inter	facing	g of H	-brid	ge / g	eared	mot	or							
	6.	Inter	facing	g of a	ccelei	romet	er									

	7. Interfacing of gyroscope
	8. Interfacing of compass
	9. Interfacing of webcam
	10. Interfacing of GPS receiver
Text books	Text Book:
E-resources	

Note: Minimum of 10 experiments must be carried out to complete the course

17EI5753 – Mini Project

Course Category:	Program Core	Credits:	2
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0- 4
Prerequisites:		Continuous Evaluation:	30
_		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon successful completion of the course, the student will be able to:													to:		
outcomes	CO1														1	
	CO2	Illustrate the concepts of various methods, techniques, algorithms and tools used to address the feasible solution of a problem, identified in EPICS														
	CO3	Exhibit competency in suggesting optimum solution by detail analysis of the problem														
	CO4	Demonstrate effective interpersonal, communication & presentation skills														
Contributio		РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PS	PS	PS
n of Course		1	2	3	4	5	6	7	8	9	10	11	12	01	O2	O3
Outcomes towards the	CO1									3		3				
achievemen t of Program	CO2	2					2			2						2
Outcomes	CO3		2				2		2	2						2
(1– Low, 2– Medium, 3 – High)	CO4									3	3		3			3

17EI6754/A- Internship

Course Category:	Program Core	Credits:	2
Course Type:	Lab	Lecture - Tutorial - Practice:	
Prerequisites:		Continuous Evaluation:	
		Semester end Evaluation:	
		Total Marks:	

CO1	Demonstrate the application of knowledge and skill sets acquired from the course and
	workplace in the assigned job function/s
CO2	Develop and enhance operational, customer service and other life-long knowledge and
	skills in a real world work environment.
CO3	Exhibit critical thinking and problem solving skills by analysing underlying issue/s to
	challenges
CO4	Communicate and collaborate effectively and appropriately with different
	professionals in the work environment through written and oral means
CO5	Exhibit professional ethics by displaying positive disposition during internship

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3														2
CO2											3				3
CO3		3				2	2								2
CO4										3					3
CO5								2							2

17EI6754/B – Industry Offered Course

17EI6754/C – Global Professional Certification

Fourth Year (VIII Semester)

17EI4801/A – Measurement and Control in Food Processing

Course Category:	Program Elective VI	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Sensors and Transducers	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succes	ssful	comp	letior	n of th	ne cou	ırse, t	he stu	ıdent	will	be ab	le to:			
outcomes	CO1	Eluci	date fo	ood pr	ocess	in foc	d proc	essing	g indu	stries.	•					
	CO2	Select a suitable measuring technique for quality control in food processing														
	CO3															
CO4 Illustrate the role of computers in monitoring and control.										11.00			•			
	CO5	-	mpare various food processing industries with different measuring and ntrol techniques											and		
Contribution of Course		РО 1	PO 2	РО 3	РО 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
Outcomes towards achievement	CO1															
of Program Outcomes	CO2	3														
(1 – Low, 2- Medium, 3 –	CO3	2														
High	CO4	1														
	CO5		2													
Course Content	UNIT Introe produce Moist quality technit Humi food, UNIT Temp conve Food flow r Turbid image	ductio ct, Foo y of que, N dity i Conve - II yor, F Flow neterin dity a ity, L	od pro footer food Aoistu n the ention re M ood te ng and and G ight s	nt Ma , Mi are re e Foo al typ leasu empe: ering: d Gra Color scatte	ng pl easur crow lease od Pr be and reme ring r . Tur vime · of ring	nases emenave durin ocess d Elec ent in nonit bine t tric for Food type	in inc nt in absor g dry sing 1 ctrical n Fo oring flow 1 ceder : A 1	Iustrie Food ption ing o Envir type od I , Prec meter meter basic	es - S I Pro f food of hu Proce vision c, Pos rs. turb	ugar, cessin thod, d. ent: umidi ssing temp itive idity	Blac ng: R Rad Role ty me : Te eratu displ mete	k tea ole o lio fi of hu ters mpera re me acema	and So f mois requen umidit ature easurer ent flo	oft dri sture of cy in y in of of for ment. w me s and	nks. conter mpeda qualit pod co eter, S	nt in ance y of on a Solid s of

	Viscosity of Liquid Foods: Definition, Newtonian and non Newtonian food flow, Rotating cylinder viscometer.
	$\mathbf{P}^{\mathbf{H}}$ Values of Food: $\mathbf{P}^{\mathbf{H}}$ scale, $\mathbf{P}^{\mathbf{H}}$ electrodes and potential, Ion sensitive field effect transistor $\mathbf{P}^{\mathbf{H}}$ sensors.
	UNIT-III Brix of Food: Brix standards, Refractometers - Refraction angle refractometer, Critical angle refractometer.
	Food Enzymes: Importance of food enzyme detection, Enzyme sensors - Principle of operation, Calibration and sensor materials, Semiconductor enzyme sensor.
	Flavor Measurement: Sources of flavor in food,Electronic Nose - Basic electronic nose, Sensor types and signal processing.
	Particle Size Detection: Introduction, Off line methods, On line techniques
	UNIT- IV Controllers and Indicators: Introduction, Temperature control in food dehydration and drying, Electronic Controllers, Atmosphere control in food preservation, Timers and indicators in food processing, Food sorting and grading control.
	Computer Based Monitoring and Control: Introduction, Importance of monitoring and control with computers, Hardware features of a data acquisition and control computer, Examples of computer based measurement and control in food processing.
Text books and Reference books	Text Book: [T1] ManabendraBhuyan "Measurement and Control in Food Processing", Taylor & Francis Group, 2007.
	Reference Books: [R1] Erika Kress Rogers and Christopher J. B. Brimelow, "Instrumentation and sensors for the food Industry", 2 nd Ed., Woodhead Publishing Limited, 2001
E-resources and other digital material	1. <u>https://nptel.ac.in/courses/126105011/</u>

17EI4801/B – Biomedical Instrumentation

Course Category:	Program Elective VI	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succ	essfu	l com	pletio	on of	the co	ourse,	the s	tuder	nt will	l be a	ble to	:		
Sate Onico	CO1					1 fou al fiel		ons	of b	iologi	ical	syste	ms a	nd b	oioele	ctric
	CO2	Ana	alyze	electi	rical a	and no	on-ele	ectrica	al par	amete	er in t	he hu	ıman	body		
	CO3	Illu	strate	the c	once	pts of	medi	ical as	ssistir	ng an	d ther	apy e	equip	nent		
	CO4		Outline various clinical instruments and image modalities applicable in medical field													
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
Outcomes towards	CO1	3												2		
achievement of Program Outcomes	CO2		3											2		
(1 – Low, 2 - Medium, 3 –	CO3	3														
High	CO4	2														
Course Content	UNIT Introdinstru: Physi Nervo Restin Chara potent Bio-el nerve potent UNIT Electri Vavefi pressu UNIT Assist Anest	ducti ment ologi ous sy ng P cteris tial. lectri to m tials. '- II rical odes. orms ure, C	syste ical S ystem oten stics o ic Po nuscle and , EC s, Ele Cardia	em, Pr Syster , Mus tial & of res tentis func G, E ectrica ic out	noblem ms o scular & Ao ting p als: 1 etion, n Elo EG, al sa put, H	ms en f the syste ction potent Bio-e Tran ectric EMC fety Heart	e Bod em, R Pote tial, A lectric smiss cal P d Lea in m sound	tered ly: B espira ential Action c pote ion o caram id sy edica 1	in me asic atory Cor pote ential f imp eter stems l env	easuri featu syste ntial , Ele ulse Acq and vironr	ng a l res o m. s: Ro conce ctro from uisiti reco nent.	living f car esting ept, P physi nerve on a ording Mea	syste diova g pote ropag ology e to n g me asurer	em. scula ential ation of r nuscle Meas thods nent	r sys cond of ac nerve e, Evo urem , Typ of b	tem, cept, ction and oked ent: bical lood

	Diathermy, Audiometers, ICCU patient monitoring system
	UNIT- IV Instruments in Clinical Laboratory: Pulmonary function measurements, Blood gas analyzers, pH of blood, Measurement of blood pCO2, pO2, Finger-tip oxymeter, Blood cell counters,
	Imaging Modalities in Bio-Medical Field: Use of X-Rays in medicine, X-ray machine, CT scan, MRI scans, PET, SPECT, Ultrasonography
Text books and Reference books	Text Book: [T1] Leslie Cromwell, Fred. J, Weibell and Erich A. Pleiffer, "Biomedical Instrumentation and Measurements", 2 nd Ed., Prentice Hall of India, 2004 [T2] R.S.Kandpur. "Handbook of Biomedical Instrumentation", 2 nd Ed., Tata McGraw Hill, 2011
	Reference Books: [R1] Webster, "Medical Instrumentation Application & Design", John Wiley & Sons [R2] Dr M. Arumugam, "Biomedical Instrumentation", 2 nd Ed., Anuradha publications, 2009
E-resources and other digital material	1. <u>http://www.eeeuniversity.com/2013/08/ei2311-biomedical-instrumentation.html</u>

17EI4801/C – System Identification

Course Category:	Program Elective VI	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Engineering Mathematics, Control	Continuous Evaluation:	30
	Systems, Process Control	Semester end Evaluation:	70
	5	Total Marks:	100

Outcomes CO1 Illustrate various system identification methods. CO2 Infer various parameter estimation methods for system modeling. CO3 Demonstrate the convergence and consistency of the designed mode CO4 Apply recursive estimation methods for model validation Contribution of Course PO	PSO PSO 3
CO3 Demonstrate the convergence and consistency of the designed modeCO4Apply recursive estimation methods for model validationContributionPO	PSO PSO
CO4Apply recursive estimation methods for model validationContribution of CoursePO <th>PSO PSO</th>	PSO PSO
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
of Course 1 2 3 4 5 6 7 8 9 10 11 12 1 Outcomes towards achievement CO1 2 - <th></th>	
Outcomes CO1 2 Image: Construction of the second se	
towards CO1 2 achievement CO2 3	
of Program CO2 3	
(1 – Low, 2 – CO3 –	
High CO4 2	
 Introduction: Dynamic Systems, Models, An archetypical problem - ARX and the linear least squares method, System identification procedure, M LTI systems - Linear models and sets of linear models, Transfer function State- space models, Linear time-varying models, Models with nonlin Nonlinear state-space models. UNIT- II Parameter Estimation Methods: Guiding principles behind parameter estimation, A statistical framework for parameter estimation and the m likelihood method, Correlating prediction errors with past data, Instruvariable methods UNIT- III Convergence and Consistency: Introduction, Conditions on the d Prediction-Error approach, Consistency and identifiability, Linear time-i models - A frequency domain description of the limit model, The co approach UNIT- IV Recursive Estimation Methods: Introduction, The recursive least algorithm, The recursive IV method, Recursive prediction-error in Recursive pseudolinear regressions, The choice of updating step, Implement 	lodels of a models, nearities, stimation t-squares naximum umental- data set, invariant prrelation t-squares methods,
Text books Text Book:	

and	[T1] Lennart Jung, "System Identification: Theory for the User", 2 nd Ed.,
Reference	Prentice-Hall, 2010
books	[T2] Karel J. Keesman, "System Identification, An introduction", Springer, 2011
	Reference Books: [R1] Arun K. Tangirala, "Principles of System Identification: Theory and Practice", CRC Press, 2014 [R2]TorstenSoderstrom, PetreStoica, "System Identification", Prentice Hall International (UK) Ltd., 1989 [R3] Landan ID, "System Identification and Control Design", Prentice Hall, 2003
E-resources and other digital material	https://nptel.ac.in/courses/103106078/

17EI4801/D – Real World Instrumentation with Python

Course Category:	Program Elective VI	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succes	ssful	comp	letior	n of th	ne cou	ırse, t	he stu	ıdent	will	be abl	le to:			
outcomes	CO1	Unde	erstan	d the	basic	conc	epts o	of Py	thon 1	langu	age					
	CO2	Imple	Implement an instrument system using Python concepts													
	CO3		nplement control systems using Python simulators													
	CO4		ustrate various data I/O interfaces for real world applications													
Contribution of Course		PO 1	PO 2	PO 3	PO A	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO	PO 12	PSO 1	PSO 2	PSO 3
Outcomes		1	1 2 3 4 5 6 7 8 9 10 11 12 1 2 3											5		
towards	CO1															
achievement																
of Program Outcomes	CO2	2				2										
(1 – Low, 2 - Medium,	CO3	2				2										
3 - High	CO4	2														
Content	and en Statem a pyth Debug UNIT Proje requir handli System UNIT Build simula Plottin UNIT Instru	Python nviron nents, ion pro ggers - II ct De ement ing, In ms in I - III ing an ator, D ng crea - IV iment cols, P data I	ment Strin ogran finiti s, De plem Pytho nd U Data I ating ation ythor /O, B	, Obj gs, P n, Bas on: ssigni nentat n. (Sing /O sin your Dat n inte Blocki	ects i rogra sic in Defin ng th ion, (Simu mulat own s ca I/(rface ng ve	in pyr m org put a ing t e sof Code ulator or, So simul D: D supp ersus	thon, ganiza nd ou the p tware revie revie rs: V erial t ators, pata I ort pa nonb	Data ation, tput, roject , Fur ws, U What cermin Simu /O in ackag	type: Impo Hints t, Renction Jser d is sin nal er ulation nterfa	s in porting s and quire al te ocum mulat n scop ce so pata L	ments sting, ion, pe, Ti oftwar (O: A	n, Ex ules, Pytho s, Tra Test ion, I Using Displa me an re, Ir cquir	aceabi cases mplem g pythe ying s nd effo nterfac ing an	ons, C ng and elopm lity, C , Test nentin on to imula ort e for d wri	Deraid runn d runn eent to Captu ting e g Con crea tion o mats ting o	tors, ning pols, wring error ntrol te a lata, and lata,
Text books	Text]	Book:														
and			nes, "	Real	Wor	ld In	strum	entati	ion w	vith F	ythor	n"II	Ed., O	'Reill	у Ме	edia.

Reference books	2010. [T2] Mark. Lutz, "Learning Python" V Ed., O'Reilly Media. 2013
	Reference Books: [R1] E.Balaguruswamy, "Introduction to Computing and Problem Solving Using Python", I st Ed., Mc Graw Hill, Jul 2017 [R2] SheetalTaneja, Naveen Kumar, "Python Programming: A modular approach", I st Ed., Pearson Education, Sep 2017
E-resources and other digital material	1. <u>https://nptel.ac.in/courses/106/106/106106145/</u>

17EI2802/A – Automation in Manufacturing (MOOCS)

Course Category:	Open Elective V	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	100
-		Semester end Evaluation:	00
		Total Marks:	100

Course outcomes	Upon	succe	ssful	comp	letior	n of tł	ne cou	arse, t	the stu	udent	will l	be ab	le to:			
outcomes	CO1	Expl	ain th	e con	cepts	of au	itoma	tion i	n ma	nufac	turing	ind	ustries.			
	CO2		tify v nated			abrica or ma		-	-	its ai	nd se	nsors	s requi	ired i	n ty	pical
	CO3		Apply the concepts of electric drives and select suitable drive in manufacturing applications.													
	CO4	Analyze the basic Elements & amp; interpolators of CNC technolog manufacturing.											nolog	y in		
Contribution of Course		РО 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
Outcomes towards achievement	CO1															
of Program Outcomes	CO2		2											2		
(1 – Low,	CO3			2										2		
2 - Medium, 3 – High)	CO4	2												2		
Course Content	CO422UNIT- IIntroduction to Automation in Manufacturing: Definition of automation in manufacturing, production system, manufacturing system, product lifecycle: importance of automation (L1). Mechatronics, disciplines of mechatronics, mechatronics for replacement of mechanics: wrist watch, mechatronics-based system (L2). Definition of a system, example of a system, a mechanical spring, mechatronics based automated system, building blocks of mechatronics-based system, development of an equivalent mechatronics-based system (L3).UNIT- IIFabrication process in Manufacturing: Overview of fabrication, casting, Forming, Joining, Machining, Additive Manufacturing (L9).															

Sensors used in Manufacturing: Measurement system, Sensors and transducers, Potentiometer sensors (L10). Displacement. Position and Proximity sensors, Strain gauge-based sensors, capacitive elements, Linear variable differential transducer (LVDT), eddy current based sensor, inductive proximity switch (L11). Optical encoder, Electric connection-based switches, pneumatic sensors, Hall effect-based sensors (L12)

UNIT- III

	 Electric Drives in manufacturing process: Application of electric drives in automation (L19). Direct current (DC) motor, alternating current (AC) motor, working principle, construction and application (L20), Types of industrial automation, mechanisms, machines (L22) UNIT- IV CNC technology in manufacturing: Flexible manufacturing system, CNC technology in manufacturing, vertical milling process: an example (L4). CNC machine tools, adaptive control technology, based machine tools, automated storage and retrieval system, industrial conveyors, Industrial robots (L5). CNC machines and interpolation (L37).
Text books and Reference books	 Text Book: [T1] E. Sathish, Anup Goel, A. Jacob Moses, Dr. Subhash L. Gadhave, Vinayak V. Gaikwad, "Automation in Manufacturing", Technical Publications [T2] Anup Goel, Dr. Subhash, L. Gadhave, A. Jacob Moses, "Automation in Manufacturing", Technical Publications Reference Books: [R1] SIA Experts, "Automation in Manufacturing", 1st Ed., SIA Publishers & Distributors Pvt Ltd, 2018 [R2]Beno Benhabib, "Manufacturing Design, Production, Automation, and Integration", 2003
E-resources and other digital material	

17EI2802/B - MOOCS

Course Category:	Open Elective V	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	100
		Semester end Evaluation:	00
		Total Marks:	100

17EI5851 – Major Project

Course Category:	Program Core	Credits:	9
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 5- 8
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succe	essful	com	pletic	on of	the c	ourse	, the	stude	ent wi	ill be	able	to:		
outcomes	CO1	Desi	ign tig	shtly i	ntegra	ated p	roject	plans	using	g appr	opriat	e tool	S			
	CO2		Illustrate proficiency in the use modern methodologies, multidisciplinary skill set and knowledge in while working on the project													
	CO3	Dem	Demonstrate effective execution process that result in successful projects													
	CO4	Dem	Demonstrate effective interpersonal, communication & presentation skills													
Contributio		РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PS	PS	PS
n of Course		1	2	3	4	5	6	7	8	9	10	11	12	01	O2	03
Outcomes	001			3												2
towards the	CO1															
achievemen						2	2	2		2						3
t of	CO2					2	2	2		2						5
Program																
Outcomes	CO3				2	2				2			2			2
(1– Low, 2– Medium, 3 – High)	CO4									3	3		3			3