VELAGAPUDI RAMAKRISHNA SIDDHARTHA ENGINEERING COLLEGE SCHEME OF INSTRUCTION FOR FOUR YEAR UG

PROGRAMME [VR20] GROUP A (CSE, ECE, EIE,IT)

SEMESTER I

CONTACT HOURS:26

S. No	Course Code	Course Category	Course Name	L	Т	P	Credits
1.	20BS1101	Basic Science	cience Matrices and Differential Calculus		0	0	3
2.	20BS1102A 20BS1102B	Basic Science	Engineering Physics (ECE/EIE) Applied Physics (CSE/IT)	3	0	0	3
3.	20ES1103	Engineering Science	Programming for Problem Solving	3	0	0	3
4.	20ES1104	Engineering Science	Basics of Electrical Engineering	3	0	0	3
5.	20HS1105	Humanities and Social Science	Technical English and Communication Skills	2	0	0	2
6.	20BS1151A	Basic Science	Engineering Physics Laboratory		0	3	1.5
7.	20ES1152	Engineering Science	Programming for Problem Solving Laboratory		0	3	1.5
8.	20HS1153	Humanities and Social Science	Technical English and Communication Skills Laboratory		0	3	1.5
9.	20ES1154	Engineering Science	Computing and Peripherals Laboratory		0	2	1
10.	20MC1106	Mandatory Course	Technology and Society		0	0	-
	Total		15	0	11	19.5	
11.	20MC1107	Mandatory Course	Induction Program				-

Category	Credits
Basic Science Courses	3+3+1.5=7.5
Engineering Science Courses	3+3+1.5+1=8.5
Humanities and Social Science Courses	2+1.5=3.5
Mandatory Courses	0
TOTAL CREDITS	19.5

SEMESTER II

S.No	Course Code	Course Category	Course Name	L	Т	P	Credits
1.	20BS2101	Basic Science	Laplace Transforms and Integral Calculus	3	0	0	3
2.	20BS2102	Basic Science	Engineering Chemistry	3	0	0	3
3.	20ES2103A 20ES2103B	Engineering Science	Object Oriented Programming using Python (CSE/ECE/IT) Python Programming (EIE)	3	0	0	3
4.	20ES2104A 20ES2104B 20ES2104C	Engineering Science	Basic Electronics Engineering (CSE/IT) Circuit Analysis(ECE) Network Theory(EIE)	3	0	0	3
5.	20ES2105	Engineering Science	ence Engineering Graphics		0	4	3
6.	20BS2151B	Basic Science	Engineering Chemistry Laboratory	0	0	3	1.5
7.	20ES2152A 20ES2152B	Engineering Science	Object Oriented Programming using Python Lab (CSE/ECE/IT) Python Programming lab(EIE)	0	0	3	1.5
8.	20ES2153	Engineering Science	Engineering Workshop	0	0	3	1.5
9.	20MC2106	Mandatory Course	Professional Ethics and Practice	1	0	0	-
	1	I	Total	14	0	13	19.5

Category	Credits
Basic Science Courses	3+3+1.5=7.5
Engineering Science Courses	3+3+3+1.5+1.5=12
Humanities and Social Science Courses	0
Mandatory Courses	0
TOTAL CREDITS	19.5

VELAGAPUDI RAMAKRISHNA SIDDHARTHA ENGINEERING COLLEGE SCHEME OF INSTRUCTION FOR FOUR YEAR UG

PROGRAMME [VR20] GROUP B (CE, EEE, ME)

SEMESTER I

CONTACT HOURS:27

S.No	Course Code	Course Category	Course Name	L	T	P	Credits
1.	20BS1101	Basic Science	Matrices and Differential Calculus	3	0	0	3
2.	20BS1102	Basic Science	Engineering Chemistry	3	0	0	3
3.	20ES1103	Engineering Science	Programming for Problem Solving	3	0	0	3
4.	20ES1104A		Introduction to Civil Engineering (CE)				
	20ES1104B	Engineering Science	Mechanics for Engineers (EEE)	3	0	0	3
	20ES1104C		Engineering Mechanics– I(ME)				
5.	20ES1105	Engineering Science	Engineering Graphics	1	0	4	3
6.	20BS1151B	Basic Science	Engineering Chemistry Laboratory	0	0	3	1.5
7.	20ES1152	Engineering Science	Programming for Problem Solving Laboratory	0	0	3	1.5
8.	20ES1153	Engineering Science	Engineering Workshop	0	0	3	1.5
9.	20MC1106	Mandatory Course	Technology and Society	1	0	0	-
			Total	14	0	13	19.5
10.	20MC1107	Mandatory Course	Induction Program				-

Category	Credits
Basic Science Courses	3 +3 +1.5 =7.5
Engineering Science Courses	3+3+3+1.5+1.5=12
Humanities and Social Science Courses	0
Mandatory Courses	0
TOTAL CREDITS	19.5

SEMESTER II

S. No	Course Code	CourseCategory	Course Name	L	T	P	Credits
1.	20BS2101	Basic Science	Laplace Transforms and Integral Calculus	3	0	0 3	
2.	20BS2102A 20BS2102B	Basic Science	Engineering Physics (EEE) Physics for Engineers (CE/ME)		0	0	3
3.	20ES2103B	Engineering Science	Python Programming	3	0	0	3
4.	20ES2104D 20ES2104E 20ES2104F	Engineering Science	Engineering Mechanics (CE) Network Analysis (EEE) Engineering Mechanics –II(ME)		0	0	3
5.	20HS2105	Humanities and Social Science	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0	2	
6.	20BS2151A	Basic Science Course	Engineering Physics Laboratory	0	0	3	1.5
7.	20ES2152B	Engineering Science	Python Programming Laboratory	0	0	3	1.5
8.	20HS2153	Humanities and Social Science	Technical English and Communication Skills Laboratory	0	0	3	1.5
9	20ES2154	Engineering Science	Computing and Peripherals Laboratory	0	0 0 2 1		
10.	20MC2106	Mandatory Course	Professional Ethics and Practice	1	0	0	-
			Total	15	0	11	19.5

Category	Credits
Basic Science Courses	3+3+1.5=7.5
Engineering Science Courses	3+3+1.5+1=8.5
Humanities and Social Sciences	2+1.5=3.5
Mandatory Courses	0
TOTAL CREDITS	19.5

SEMESTER III

CONTACT HOURS:30

S.No	Course Code	CourseCategory	Course Name	L	T	P	Credits
1.	20BS3101A	Basic Science	Mechanics of Solids	3	0	0	3
2.	20ES3102A	Engineering Science	Engineering Geology	2	0	2	3
3.	20CE3303	Program Core	Surveying and Geomatics	3	0	0	3
4.	20CE3304	Program Core	Fluid Mechanics	3	0	0	3
5.	20CE3305	Program Core	Concrete Technology	2	0	2	3
6.	20ES3151A	Engineering Science Lab	Design Thinking and Civil Engineering Workshop	0	0	3	1.5
7.	20CE3352	Program CoreLab1	SurveyingLab-1	0	0	3	1.5
8.	20CE3353	Program CoreLab2	Computer Aided Civil Engineering Drawing	0	0	3	1.5
9.	20TP3106	SoftSkills-1	Logic and Reasoning	0	0	2	1
10.	20MC3107B	Mandatory Course(AICTE suggested)	Indian Constitution(CE)	2	0	0	-
			Total	15	0	15	20.5

Category	Credits
Basic Science Courses	3
Engineering Science Courses	4.5
Program Core Courses	12
Skill oriented courses	1
Mandatory Courses	0
TOTAL CREDITS	20.5

SEMESTER IV

S.No	Course Code	Course Category	Course Name	L	T	P	Credits
1.	20BS4101	Basic Science	Probability and Statistics for Engineers	3	0	0	3
2.	20CE4302	Program Core	Structural Analysis	3	0	0	3
3.	20CE4303	Program Core	Geotechnical Engineering	3	0	0	3
4.	20CE4304	Program Core	Hydraulics and Hydraulic Machines	3	0	0	3
5.	20HS4105	Humanities and Social Sciences	Universal Human Values	3	0	0	3
6.	20CE4351	ProgramCoreLab1	Strength of Materials Lab	0	0	3	1.5
7.	20CE4352	ProgramCoreLab2	Fluid Mechanics and Hydraulic Machinery Lab	0	0	3	1.5
8.	20CE4353	ProgramCoreLab3	Geotechnical Engineering Laboratory	0	0	3	1.5
9.	20TP4106	SoftSkills-2	English for Professionals	0	0	2	1
10	20CE4607	Skill Oriented Course - 1	Autodesk Revit and Excel for Engineers	1	0	2	2
11	20MC4108A	Mandatory Course(AICTE suggested)	Environmental Studies(CE)	2	0	0	-
	Total					13	22.5
	Summe	er Internship 6 weeks (Manda	atory) during summer vacation (EPIC	S)		·
Hon	Honors / Minor Courses (the hours distribution can be 4-0-0, 3-0-2 or 3-1-0 also) 4						4

Category	Credits
Basic Science Courses	3
Program Core Courses	13.5
Engineering Science Courses	0
Skill Oriented courses	3
Humanities and Social Science courses	3
Mandatory Courses	0
TOTAL CREDITS	22.5

SEMESTER V

CONTACT HOURS:34

6.31	Course	G G .	G V	_	Т	ъ	Credit	
S.No	Code	Course Category	Course Name	L		P	s	
1	20CE5301	Program Core	Water Resources Engineering	3	0	0	3	
2	20CE5302	Program Core	Environmental Engineering	3	0	0	3	
3	20CE5303	Program Core (Group B)	Design of Concrete Structures	2	0	0	2	
4	20CE5404	ProgramElective1		3	0	0	3	
5	20CE5205	Open Elective/Job oriented elective-1	A) Geospatial Technologies B) Building Services Engineering	2	0	2	3	
6	20CE5351	Program Core Lab1	Computer Applications in Civil Engineering Lab 1	0	0	3	1.5	
7	20CE5352	ProgramCoreLab2	Environmental Engineering Lab	0	0	3	1.5	
8	20CE5353	Program Core (Group B)	Advanced Surveying Lab	0	0	3	1.5	
9	20TP5106	Soft Skills –3	Personality Development	0	0	2	1	
10	20CE5354	Internship/Project(6weeks)	EPICS/Internship	0	0	3	1.5	
11	20CE5607	Skill Oriented course -2	Building Information Modeling (BIM)	1	0	2	2	
12	20MC5108 B	Mandatory Course (AICTE suggested)	Innovation, IPR & Entrepreneurship (GroupB)	2	0	0	-	
			Total	16	0	18	23	
Н	onors/Minor (Courses (the hours distribution can be	4-0-0, 3-0-2 or 3-1-0 also)	4	0	0	4	
Catego			Credits					
	Program Core Courses (Group B)		12.5					
Humanities and Social Sciences (Group B)		0						
	m Elective Cours	ses	3					
Open Elective Courses			3					
	priented courses		3					
	hip/Project tory Course		1.5					
	LCREDITS		23					
1017	LCIUDIII							

SEMESTER VI

S. No	Course Code	Course Category	Course Name	L	Т	P	Credits
1	20CE6301	Program Core	Design of Steel Structures	3	0	0	3
2	20CE6302	Program Core	Transportation Engineering	3	0	0	3
3	20HS6103	Humanities and Social Sciences	Engineering Economics and Management	2	0	0	2
4	20CE6404	ProgramElective2		3	0	0	3
5	20CE6205	Open Elective /Job oriented elective-2	A) Green Buildings and Sustainability B) Advanced Construction Materials C) Quality Control and Quality Assurance	3	0	0	3
6	20CE6351	ProgramCoreLab1	Transportation Engineering Lab	0	0	3	1.5
7	20CE6352	ProgramCoreLab2	Computer Applications in CivilEngineeringLab-2	0	0	3	1.5
8	20HS6153	Humanities & Social Science	English and Communication Skills Lab	0	0	2	1
9	20TP6106	Soft Skills-4	Quantitative Aptitude	0	0	2	1
10	20CE6554	Internship/ Project	Mini Project-I	0	0	2	1
11	20MC6107 B	Mandatory Course (AICTE suggested)	Biology for Engineers / Foreign Languages (German/French)/ Law for Engineers/Sanskrit Bhasa/ Yoga & Meditation/ Psychology	2	0	0	0
			Total	16	0	12	20

Industrial/ResearchInternshipsixweeks(Mandatory)duringsummery	vacati	on		
Honors/Minor Courses (the hours distribution can be 4-0-0, 3-0-2 or 3-1-0 also)	4	0	0	4

Category	Credits
Program Core Courses (Group B)	9
Humanities and Social Sciences (Group B)	3
Program Elective Courses	3
Open Elective Courses	3
Skill Oriented courses	1
Mandatory Course	0
Internship/Project	1
TOTALCREDITS	20

SEMESTER VII

CONTACT HOURS:29

S.No	Course Code	Course Category	Course Name	L	Т	P	Credits
1.	20CE7301	Program Core	Estimation and Costing	3	0	0	3
2.	20CE7402	Program Elective 3		3	0	0	3
3.	20CE7403	Program Elective 4		3	0	0	3
4.	20CE7404	Program Elective 5		3	0	0	3
5.	20CE7205	Open Elective / Job Oriented Elective - 3		2	0	2	3
6.	20CE7206	Open Elective / Job Oriented Elective - 4		2	0	2	3
7.	20CE7607	Advanced Skill Course	Computer Aided Construction Management	1	0	2	2
8.	20CE7551	Internship / Project	Mini Project - II	0	0	3	1.5
9.	20CE7552	Internship / Project	Industrial / Research Internship	0	0	3	1.5
			Total	17	0	12	23

Note: Open Elective Courses 3 and 4 are self – learning. Students may opt from any MOOCS platform. They have to submit the certificate before the last instruction day of VII Semester.

Category	Credits
Program Core	3
Program Electives	9
Open Electives	6
Skill Oriented Courses	2
Internship / Project	3
TOTAL CREDITS	23

SEMESTER VIII

CONTACT HOURS:24

S.No	Course Code	Course Category	Course Name	L	Т	P	Credits
1.	20CE8551	Internship / Project	Major Project and Internships (6 Months)	0	0	24	12
			Total	0	0	24	12

^{**} The student should undergo internship and simultaneously he/she should work on a project with well-defined objectives. At the end of the semester the student should submit an internship completion certificate and a project report.

CREDITDISTRIBUTION-Year Wise

GroupA(CSE,ECE,EIE,IT)

Year	Semester I	Semester II	Total Credits
I	19.5	19.5	39
II	20.5	22.5 [82]	43
III	20.5	22.5[125]	43
IV	23	12	35
		Total	160

GroupB(CE,EEE,ME)

Year	Semester I	Semester II	Total Credits
I	19.5	19.5	39
II	20.5	22.5[82]	43
III	23	20[125]	43
IV	23	12	35
		Total	160

Non-Credit Courses				
	(1) Induction Program			
	(2) Technology and Society			
Mandatory Courses(7)	(3) Professional Ethics and practice			
	(4) Environmental Studies			
	(5) Indian Constitution			
	(6) Biology for Engineers			
	(7) Innovation, IPR and Entrepreneurship			
	(1) Co-curricular participation			
Mandatany Student Practice Courses (2)	(2) NCC/NSS/Games and Sports/Art and			
Mandatory Student Practice Courses (2)	Cultural / Professional Society activities			
	/Industry training certificate.			

Contact Hours:

	GRO	OUPA	GROUPB			
	ODD Semester	EVEN Semester	Semester ODD Semester EVEN Se			
1stYear	26	27	27	26		
2ndYear	28	31	30	31		
3rdYear	33	30	34	28		
4 th year	29	24	29	24		

CREDITDISTRIBUTION-Category Wise

Category	Suggested AICTE	Suggested APSCHE	VR17	VR 20
Humanities and Social Sciences (HSMC),including Management	12	10.5	12	9.5
Basic Sciences (BSC) including Mathematics, Physics, Chemistry,	25	21	24	21
Engineering Sciences (ESC), including Materials, Workshop, Drawing, Basics of Electrical/ Electronics /Mechanical/Computer Engineering, Instrumentation	24	24	20	25
Professional Subjects-Core (PCC), relevant to the chosen specialization / branch	48	51	58	50
Professional Subjects-Electives (PEC), relevant to the chosen specialization / branch	18	15	17	15
Open Electives (OEC), from other technical and / or emerging subject areas	18	12	14	12
Project Work, Seminar, Internship in Industry or elsewhere (PROJ)	15	16.5	16	17.5
Mandatory Courses (MC) Induction Program, Technology and Society, Professional Ethics, Environmental Studies, Indian Constitution, Biology for Engineers, Innovation, IPR & Entrepreneurship Student Practice Courses	Non- Credit	Non- Credit	Non- Credit	Non - Cred t
Skill Oriented /Soft Skill Courses(SC)		10	04	10
Total Credits	160	160	165	160

CREDITDISTRIBUTION-Category wise and Semester wise

	BS	ES	HS	PC	PE	OE	SC/SO	PROJ	Total
Sem-1	7.5	8.5/12	3.5/0	0	0	0	0	0	19.5
Sem-2	7.5	12/8.5	0/3.5	0	0	0	0	0	19.5
Sem-3	3	4.5	0	12	0	0	1	0	20.5
Sem-4	3	0	3	13.5	0	0	3	0	22.5
Sem-5	0	0	3/0	9/12.5	3	3	3	1.5	22.5/23
Sem-6	0	0	0/3	12.5/9	3	3	1	1	20.5/20
Sem-7	0	0	0	3	9	6	2	3	23
Sem-8	0	0	0	0	0	0	0	12	12
Total	21	25	9.5	50	15	12	10	17.5	160

LIST OF OPEN ELECTIVES:

SEMESTER-V

20CE5205:Open Elective/Joborientedelective-1

- A) Geospatial Technologies
- B) Building Services Engineering

SEMESTER-VI

20CE6205:Open Elective/Job oriented elective-2

- A) Green Buildings and Sustainability
- B) Advanced Construction Materials
- C) Quality Control and Quality Assurance

SEMESTER-VII

20CE7205: Open Elective /Job oriented elective

-3 20CE7206:Open

Elective/Joborientedelective-4

Note: Open Elective Courses 3 and 4 are self-learning. Students may opt from any MOOCs platform. They have to submit the certificate before the last instruction day of VII semester.

PROGRAM ELECTIVES:

SEMESTER V (P.E-I)

S.No	Course Code	Course	Subject L		T	P	Credits
1	20CE5404/A	ProgramElective-1	Advanced structural analysis	3	0	0	3
2	20CE5404/B	ProgramElective-1	Town planning & Architecture	3	0	0	3
3	20CE5404/C	ProgramElective-1	Air pollution and Control	3	0	0	3
4	20CE5404/D	ProgramElective-1	Environmental Geotechnology	3	0	0	3
5	20CE5404/E	ProgramElective-1	Forensics in Civil Engineering	3	0	0	3

SEMESTERVI(P.E-II)

S.No	Course Code	Course	Subject		T	P	Credits
1	20CE6404/A	ProgramElective-2	structures		0	0	3
2	20CE6404/B	ProgramElective-2	Foundation Engineering	3	0	0	3
3	20CE6404/C	ProgramElective-2	Advanced Environmental Engineering	3	0	0	3
4	20CE6404/D	ProgramElective-2	Railway and Tunnel Engineering	3	0	0	3
5	20CE6404/E	ProgramElective-2	Irrigation Structures	3	0	0	3

SEMESTERVII(P.E-III)

S.No	Course Code	Course	Subject	L	T	P	Credits
1	20CE7402/A	ProgramElective-3	Earthquake Resistant Design	3	0	0	3
2	20CE7402/B	ProgramElective-3	Solid Waste Management	3	0	0	3
3	20CE7402/C	ProgramElective-3	Ground Improvement Techniques	3	0	0	3
4	20CE7402/D	ProgramElective-3	Pavement design and Construction	3	0	0	3
5	20CE7402/E	ProgramElective-3	Open channel flow & River Engineering	3	0	0	3
6	20CE7402/F	ProgramElective-3	Analysis and Design of High Rise Building	3	0	0	3

SEMESTERVII (P.E-IV)

S.No	Course Code	Course	Subject	L	T	P	Credits
1	20CE7403/A	ProgramElective-4	Prefab Structures	3	0	0	3
2	20CE7403/B	ProgramElective-4	Construction Equipment and Automation	3	0	0	3
3	20CE7403/C	ProgramElective-4	Groundwater Hydrology	3	0	0	3
4	20CE7403/D	ProgramElective-4	Instrumentation and Sensor Technology in Civil Engineering	3	0	0	3
5	20CE7403/E	ProgramElective-4	Airport and Harbour Planning	3	0	0	3
6	20CE7403/F	ProgramElective-4	Design and Drafting using REVIT	3	0	0	3

SEMESTER VII- (PE-V)

S.No	Course Code	Course	Subject	L	T	P	Credits
1	20CE7404/A	ProgramElective-5	Design of Prestressed Concrete	3	0	0	3
2	20CE7404/B	ProgramElective-5	Repair and Rehabilitation of Structures	3	0	0	3
3	20CE7404/C	ProgramElective-5	Disaster Preparedness & Planning Management	3	0	0	3
4	20CE7404/D	ProgramElective-5	Urban Transport Planning	3	0	0	3
5	20CE7404/E	ProgramElective-5	Rural Water Supply and Sanitation	3	0	0	3
6	20CE7404/F	ProgramElective-5	Analysis and Design of Industrial Structures	3	0	0	3

S.No	Specialization		P	rogram Electiv	ves .	
		Elective1	Elective2	Elective3	Elective4	Elective5
1	Structural	Advanced	Advanced	Earthquake	Prefab	Design of
	Engineering	Structural	Design of	Resistant	Structures	Prestressed
		Analysis	Concrete	Design		Concrete
			Structures			
2	Geotechnical	Environmental	Foundation	Ground		
	Engineering	Geotechnology	Engineering	Improvement		
				Techniques		
3	Environmental	Air pollution	Advanced	Solid Waste		Rural Water
	Engineering	and Control	Environmental	Management		Supply and
			Engineering			Sanitation
4	Transportation		Railway and	Pavement	Airport and	Urban
	Engineering		Tunnel	Design and	Harbour	Transport
			Engineering	Construction	Planning	Planning
5	Hydrology		Irrigation	Open channel	Ground water	
	&Water		Structures	flow &	Hydrology	
	Resources			River		
	Engineering			Engineering		
6	Industry			Analysis and	Design and	Analysis
	Oriented			Design of	Drafting	and Design
	Courses			High Rise	using REVIT	of
				Buildings using		Industrial Structures
				ETABS and		using
				Foundation		STAAD
				design using		Pro
				SAFE for		
				Seismic		
				Loads		
7	Miscellaneous	Town planning			Construction	Repair and
		& Architecture			Equipment and Automation	Rehabilitation
	_					of Structures
8		Forensics in			Instrumentation	Disaster
		Civil			and Sensor	Preparedness &
		Engineering			Technology in	Planning Management
					Civil	Management
					Engineering	1

LIST OF COURSES OFFERED UNDER MINORS

Note:

- 1. Student can opt any 4 subjects from the list given below.
- 2. Compulsory MOOC/NPTEL Courses for 04 credits (02 courses@ 2 credits each OR a specialization with total 16weeks duration) in addition to the list given below.

S.No	Course Code	COURSE NAME	L	T	P	Credits
FOURTH	SEMESTER					
1	20CEM4701	Introduction to Civil Engineering – Concepts and Materials	3	1	0	4
FIFTH SE	MESTER					
2	20CEM5702	Methodology for Civil Engineering Construction	3	1	0	4
	20CEM5711	SELF LEARNING				2
SIXTH SE	EMESTER					
3	20CEM6703A	System Design for Sustainability	3	1	0	4
4	20CEM6703B	Ecology & Environment	3	1	0	4
SEVENTE	H SEMESTER					
5	20CEM7704A	Infrastructure and Transportation System Planning	3	1	0	4
6	20CEM7704B	Construction Planning and Execution	3	1	0	4

LIST OF COURSES OFFERED UNDER HONORS

- 1. Student can opt any 2 subjects from each of the POOLs given below (i.e, total of 4 subjects).
- 2. Compulsory MOOC/NPTEL Courses for 04 credits (02 courses@ 2 credits each OR a specialization with total 16weeks duration) in addition to the list given below.

S.No	Course Code	COURSE NAME	L	Т	P	Credits
FOURTH	SEMESTER					
1	20CEH4801A	Stability of Structures	3	1	0	4
2	20CEH4804B	Sustainable Construction Methods	3	1	0	4
3	20CEH4801C	Design of Formwork	3	1	0	4
FIFTH SE	MESTER					1
4	20CEH5802A	Engineering Rock Mechanics	3	1	0	4
5	20CEH5801B	Advanced Steel Design	3	1	0	4
6	20CEH5804C	Geospatial Data Processing	3	1	0	4
SIXTH SE	EMESTER					
7	20CEH6803A	Traffic Analysis and Design	3	1	0	4
8	20CEH6803B	Transportation Economics	3	1	0	4
9	20CEH6802C	Advanced Foundation Engineering	3	1	0	4
SEVENTI	 H SEMESTER					
10	20CEH7802A	Geo Synthetics and Reinforced Soil Structures	3	1	0	4
11	20CEH7803B	Intelligent Transportation Systems	3	1	0	4
12	20CEH7804C	Environmental Impact Assessment	3	1	0	4

20BS3101A	MECHANICS OF SOLIDS

Basic Science	Credits:	3
Theory	Lecture - Tutorial - Practice:	3-0-0
Engineering Mechanics	Continuous Evaluation:	30
20ES2104D	Semester end Evaluation:	70
	Total Marks:	100
	Theory Engineering Mechanics	Theory Lecture - Tutorial - Practice: Engineering Mechanics Continuous Evaluation: 20ES2104D Semester end Evaluation:

Course outcom	ies	Upon	successf	ul con	npletic	n of th	ne cou	rse, the	e stude	ent wil	l be able	to:			
		CO1	unders	stand t	he cor	ncepts	of stre	esses, s	trains	and p	rinciples	stresses a	and strains	S.	
		CO2	detern	determine the shear forces and bending moments											
		CO3	determine the bending stresses and deflection at any point subjected to loads.												
		CO4	, , , , , , , , , , , , , , , , , , , ,												
		CO5													
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO11	PO12	PSO 1	PSO2
towards achievement	CO1	3	2	2		3						2		1	3
of Program Outcomes	CO2	3	2	2		3						1		1	3
(1 – Low, 2 – Medium, 3–	CO3	3	2	2		3						1		1	3
High)	CO4	3	2	2		3						1		1	3
	CO5	3	2	2		3						1		1	3
S S V C C		Stress volum compo	SSES A and stra etric stra site bars	nin - H ain – s – Ter	Hooke' Elastic mperat ND B l	s law modure struce str	uli and resses- NG M	d the is Simp	elatio le prol NT	nship blems.	between Concept	them –	strain, Poi Bars of v ipal Stress	arying s	ection –

Text books	UNIT – II FLEXURAL STRESSES Theory of simple bending – Assumptions – Derivation of bending equation - Neutral axis – Determination of bending stresses – Section modulus of across various beam sections. SLOPE AND DEFLECTION Relationship between moment; slope and deflection; Macaulay's method; Moment area method; Use of these methods to calculate slope and deflection for determinant beams–Simple problems; Castigliano's theorem. UNIT – III SHEAR STRESSES AND TORSION Derivation of formula of shear stress– Shear stress distribution across various beam sections - Derivation of torsion equation and its assumptions; Applications of the equation of the hollow and solid circular shafts; Torsional rigidity; Simple problems. STRAIN ENERGY Introduction; Derivation of expressions for elastic strain energy in uni -axial stress; elastic strain energy in pure bending; elastic strain energy for shearing stresses; elastic strain energy of a bar in pure torsion. UNIT – IV COMPOUND STRESSES Introduction; Principle of superposition and its limitation; Stress distribution on various cross sections of members due to eccentric loads; Middle third rule; Core or Kernel of a section. COLUMNS Introduction, Stability of equilibrium; The Euler's formula for columns with different end restraints; Limitations of the Euler's formulas; Generalized Euler buckling – load formulas; [T1] Er.R.K.Rajput, "Strength of Materials(Mechanics of solids)", S.Chand& Company Ltd, New
	Delhi. [T2] S.Ramamrutham& R Narayan, "Strength of Materials", DhanpatRai Publishing Co.(P) Ltd, New Delhi.
Reference books	 [R1] S SBhavikatti, "Structural Analysis", V K Publishers. [R2] S P Timoshenki& D H Young, "Theory of structures". [R3] E P Popov, "Mechanics of materials", Prentice-hall of India Pvt. Ltd., New Delhi.
E-resources and other digital material	http://nptel.ac.in/courses/105105108/

20ES3102A	ENGINEERING GEOLOGY

Course Category:	Engineering Science	Credits:	3
Course Type:	Theory & Practical	Lecture - Tutorial - Practice:	2-0-2
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcon	Upon	Upon successful completion of the course, the student will be able to:													
	CO1	CO1 analyze and classify various minerals and rocks on the basis of their engineering properties													
	CO2	apply quantitative skills and frame work for solving basic engineering geology problems related to geological features and geological hazards													
		СОЗ	understand the importance of geo physical methods making engineering decisions specially site selection of engineering projects.												
		CO4									gful sol nental i		he contex	kt of ma	jor
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO11	PO12	PSO 1	PSO 2
towards achievement	CO1	3													3
of Program Outcomes	CO2	3													3
(1 – Low, 2 - Medium,	CO3	3	3		3										3
3– High)	CO4	3	3		3										3
Course Content GEOLOGICAL MATERIALS 1. Introduction to Engineering geology -Definition, Branches of Geology useful to Engineering: Scope of geological studies in various Civil engineering projects Miner Introduction to mineralogy Mineral Identification by Physical properties . Physical properties of rock forming minerals LAB EXCERCISE-I. Identification of Common Rock forming group of Minerals a. Quartz Group b. Feldspar group c. Mica Group d. Carbonate Group 2. Petrology -Rock cycle Igneous rocks – Formation –Classification and Textures					Miners sical erals										
		2. Pet	rology	-Rock	cycle	e Ign	eous	rocks	– For	matio	n –Clas	sification	and Te	xtures	

Sedimentary rocks – Formation –Classification and Textures, Metamorphic rocks and metamorphism – Formation –Classification and Texture, Engineering concerns of rocks

LAB EXCERSISE- II Identification of common rocks

a) Granite b) Basalt c) Diorite d) Sandston e Shale f) Limestone g) Gneiss h) Schist i) Marble

UNIT-II

EARTH PROCESS

- **1. Introduction:** Weathering, Engineering classification of weatheredrocks: Importance ofweathering in Civil Engineering. **Earth quakes** Causes and effects of earthquakes Earthquake Magnitude and intensity scales. seismic zones of India: **Landslides** Classification -Preventive measures
- **2.Structural geology** Stress –strain behavior of rock, Concept of rock deformation Rock outcrops- Types- strike and Dip **Folds** Types-Effects on construction **Faults**-Types-Effects on construction

LAB EXCERSISE-III- Identification of structural features on Models.

UNIT-III

GEOLOGICAL AND GEOPHYSICAL INVESTIGATION METHODS investigation Methods

- 1. Maps and their interpretation- Topographic Map and Geological Map
- LAB EXCERSISE-IV- Practicing topographic map cross section, Practicing geological maps and cross section
- **2. Geophysical Methods-** Principles of exploration geophysical Methods Electrical Resistivity method- Interpretation, Seismic refraction method- Interpretation

LAB EXCERSISE-V-Electrical Resistivity survey for civil engineering application

UNIT-IV

GEOLOGICAL INVESTIGATIONS FOR MAJOR PROJECTS

- **1. Dams** Site selection for dams, Geological investigation methods for dams: **Reservoirs**-Failure of reservoirs, Reservoir suitable rocks, Reservoir induced seismicity **Tunnels** Site selection for tunnels, Geological investigation methods for Tunnels.
- **2.Environmental geology**—Fundamental concept of environmental geology-Environmental impact on mining construction materials- aggregate waste disposal- sand mining-Impactof environment on the construction of dams, reservoirs, Groundwater contamination-Fluoride problem- Nuclear waste disposal-Health hazards

Text books	 [T1] F.G. Bell, Fundamental of Engineering Geology, BS Publications PVT Ltd, Hyderabad. [T2] Parbin Singh, "Engineering and General Geology", Katson Publication House, 1987. [T3] Principals of Engineering Geology by K.V.G.K. Gokhale – B.S publications [T4] Engineering Geology by N.Chennkesavulu, Mc-Millan, India Ltd. 2005. [T5] Environmental Geology by K.S Valdia, TaTaMcGraHill, NewDelhi
Reference books	 [R1] Krynine and Judd, "Engineering Geology and Geo techniques" McGraw Hill Book Company, 1990. [R2] Legeet, "Geology and Engineering", McGraw Hill Book Company, 1998. [R3] Blyth, "Geology for Engineers", ELBS, 1995. [R4] GoodmanR.F-Introduction to rockmechanics, JohnWiley, Chichestor [R5] S.K Duggal et.al Engineering Geology –McGraw Hill Education [R6] E.A Keller-Environmental Geology- Prientice Hall .N.Jercy
E-resources and other digital material	NPTEL Courses

20CE3303	SURVEYING & GEOMETICS
----------	-----------------------

Course Category:	Programme Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0 - 0
Prerequisites:	Mathematics, Science	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outco	mes	Upon successful completion of the course, the student will be able to:													
	CO1				understand the basic principles of surveying and linear measurements										
	evaluate the reduced levels and plot contours														
	CO3	understand angular measurements and setting out simple curves													
		CO4	eval	uate a	areas a	nd vo	lumes	of va	rious	sectio	ons				
	CO5 understand various modern field equipments														
Contributio n of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	P O 11	PO 12	PSO 1	PSO 2
towards achievemen	CO1	3	2			3				1					
t of Program Outcomes	CO2	3	3	2		3				2	1			2	
(1– Low, 2-	CO3	3	2	2		3				2	1				
Medium, 3 – High)	CO4	3	3	2						1	1			2	
	CO5	3	1			3				1					

Course Content	UNIT – I
	BASICS OF SURVEYING
	Surveying: Definition; Primary divisions; Classification; Principles; Plan and map;
	Scales used for maps and plans; Accuracy; Precision; Sources of errors; Types of errors.
	CHAIN SURVEYING
	Principles of chain surveying; Basic definitions; Different methods; Instruments for
	Chaining and taping; ranging out; Chaining a line on a flat ground; Chaining on an

	uneven or a sloping ground; Chain & Tape corrections.
	UNIT – II LEVELLING Basic definitions; Bench marks; Different methods of leveling; Classification of direct leveling methods; Auto level; Leveling staff; Terms used in levelling; Theory of differential Levelling; Levelling field book; Missing entities; Height of Instrument and rise and fall method; Profile leveling; Cross sectioning; Sources of errors in leveling. CONTOURING Contouring; contour interval; Characteristics of contours; Methods of locating contours; Interpolation and Sketching of contours; Uses of contour maps.
	UNIT – III THEODOLITE SURVEYING Main parts of a vernier theodolite; Basic definitions; Fundamental lines; Temporary adjustments; Measurement of a horizontal angle by repetition and reiteration. Measurement of vertical angle; Errors in theodolite surveying. CIRCULAR CURVES Basic definitions; Designation of a curve; Relationship between radius and degree of
	curve; Elements of a simple curves; setting out of simple curve. UNIT – IV AREAS & VOLUMES Introduction; Area of a tract with straight irregular boundaries; Boundaries with offsets at irregular intervals; Coordinates method; Planimeter: working; Area of cross sections-two level sections only; Volume of a prismoid: Trapezoidal rule; Prismoidal formula; Capacity of a reservoir.
	MODERN FIELD SURVEY SYSTEMS EDM: Principle, Types of EDM instruments; Total Station: Fundamental parameters, Field equipment, Setup, Advantages, Uses; GPS: Functioning, Applications in Civil Engineering.
Text books	[T1] Surveying, Volume-1 by K. R. Arora; Standard Book House. [T2] Advanced Surveying by SatheeshGopi, R. Sathikumar, N. Madhu; Pearson Education
Reference books	[R1] Surveying, Volime-1 by B.C.Punmia; McGraw Hill Education (India) Private Limited
E-resources and other digital material	https://nptel.ac.in/courses/105/107/105107122/

20CE3304	FLUID MECHANICS

Course Category:	Programme Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	20BS1101&20BS2101- Maths	Continuous Evaluation:	30
	20BS2102A - Engineering Physics	Semester end Evaluation:	70
	20ES2104A – Engineering	Total Marks:	100
	Mechanics		

Course Outcomes	Upon	Upon successful completion of the course, the student will be able to:													
	CO1	eval	evaluate the pressure of the flowing fluid.												
	CO2	und	understand the kinematic and dynamic behavior of flow.												
	CO3		apply the principles to measure the flow of fluid through pipes and Orifices/Mouthpieces.												
	CO4	anal	yze th	e flow	throu,	gh pipe	es.								
Contributio n of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
towards achievement	CO1	3	2	3											3
of Program Outcomes	CO2	3	2	3											3
	СОЗ	3	2	3										2	3
(1 – Low, 2 - Medium, 3 – High)	CO4	3	2	3										2	3
Course Content	UNIT PROP Contin	ERTI						-				its of r	neasure	ement;	Fluid
	FLUII Law; A											n all dure on			

	and inclined plane surfaces.
	UNIT II:
	KINEMATICS OF FLUID FLOW: Methods of describing fluid motion; Classification of flow; Steady, unsteady, uniform and non-uniform flows; Laminar and turbulent flows; Three, two and one dimensional flows; Irrotational and rotational flows; Stream line; Path line; Streak line; Continuity equation; Velocity potential and stream function.
	DYNAMICS OF FLUID FLOW: Euler's equation of motion; Bernoulli's equation; Momentum principle; Application of Momentum equation; Force exerted on a pipe bend.
	UNIT III:
	MEASUREMENT OF FLOW THROUGH PIPES: Measurement of flow through Pipes — methods and various devices; Discharge through Venturi meter; Discharge through orifice meter; Measurement of velocity by Pitot tube.
	MEASUREMENT OF FLOW THROUGH ORIFICES: Flow through orifices; Determination of coefficients for an orifice; Flow through small orifice and large rectangular orifice.
	UNIT – IV
	ANALYSIS OF FLOW THROUGH PIPES: Energy losses in pipelines; Darcy – Weishbach equation; Minor losses in pipelines; Pipes in series and parallel.
	LAMINAR FLOW: Relation between shear and Pressure Gradients in Laminar Flow; Reynold's experiment; Critical velocity; Steady laminar flow through a circular pipe – Hagen Poiseuille's Law; Laminar Flow between Parallel Plates – Both plates at rest.
Text books	 [T1] P.N. Modi& S.N. Seth, "Hydraulics & Fluid Mechanics", 18th ed., Standard Book House, New Delhi, 2015. [T2] A.K. Jain, "Fluid Mechanics", 11th ed., Khanna Publishers, New Delhi, 2014.
Reference books	 [R1] R. K. Bansal, "Fluid Mechanics and Hydraulic Machines", 9thet.,Laxmi Publications; New Delhi, 2015. [R2] Rajput R.K., "Fluid Mechanics and Hydraulic Machines", 3rd ed., S.Chand and Company Ltd., New Delhi, 2014. [R3] K. Subramanya, "Theory and Applications of Fluid Mechanics", 3rd ed., Tata McGraw Hill Publishing Company, New Delhi, 2013.
E-resources and other digital material	www.nptel.ac.in/courses/105101082/ www.nptel.ac.in/courses/105103095/

Course Category:	Programme Core	Credits:	3
Course Type:	Theory cum Practice	Lecture - Tutorial - Practice:	2-0-2
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outco	mes	Upon	success	sful co	mple	tion o	f the c	ourse	e, the s	studer	nt will	be ab	le to:		
		CO1		understand the manufacturing process of cement, types of cements and chemical composition of cement. apply properties of the constituent materials in concrete											
		CO2	appl												
		CO3	anal	analyze and Compare the Properties of fresh and hardened concrete.											
		CO4	unde	understand effects of various chemical actions on concrete.											
	CO5	evalı	evaluate various special concretes and concreting methods based on the scenario.												
		CO6	evaluate an appropriate concrete mixdeign using Indian Standard.												
Contributio n of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2
towards achievemen	CO1							2						1	3
t of Program	CO2	1					1	2						1	3
Outcomes	CO3			2										1	3
(1 – Low, 2	CO4				2		1	2						2	2
- Medium, 3 – High)	CO5						2	2						2	2
	CO6	1	3	3	2		3	3	2		1		1	2	2

Course Content

UNIT - I

CEMENT: Introduction to concrete as a structural material, Uses of cement, Chemical Composition of Ordinary Portland Cement, Functions of cement ingredients; Manufacturing process of cement(wet and Dry Processes), Hydration of Cement, Heat of Hydration, Water requirements for hydration, Types of cements --Ordinary, Rapid hardening, low-heat, sulphate resisting, Portland slag, Portland pozzolana, High alumina cement, white cement and colored cement properties and their applications; Storage of cement; Field tests for cement.

LABORATORY TESTS (As per IS Specifications): Fineness of cement, consistency, initial and final setting time, Specific gravity and compressive strength of cement.

AGGREGATES: Classification of Aggregates; Properties of aggregates Grading of Aggregates; IS: 383 requirements for aggregates; Alkali – Aggregate reaction.

LABORATORY TESTS (As per IS Specifications): Sieve analysis, specific gravity, bulk density of both fine and coarse aggregate, bulking of sand.

UNIT - II

WATER: General; Quality of water; Use of sea water; IS: 456 requirements.

MORTAR: Functions of sand in mortar; Classification of mortars; Uses of mortar; Properties of good mortar mix and mortar; Selection of mortar.

ADMIXTURES IN CONCRETE: General; Air-entraining agents; Plasticizers; Accelerators; Retarders; Miscellaneous admixtures for damp proofing and Surface hardening; Introduction to mineral admixtures.

CONCRETE: Definition; Future demand of concrete - advantages of concrete structures; Proportioning of concrete; Water – cement ratio; Properties of Fresh Concrete – Workability, Factors Affecting Workability, Segregation; Bleeding; Yield of Concrete.

LABORATORY TESTS (As per IS Specifications): workability tests on fresh concrete: slump cone, compaction factor.

UNIT - III

MANUFACTURE OF CONCRETE: Batching of concrete; Mixing; Transporting Concrete; Placing concrete; Compaction of concrete; Curing of concrete; Finishing.

HARDENED CONCRETE: General; Gel / space ratio; Gain of strength with age; Maturity concept of concrete; Elastic properties of concrete; Relation between modulus of Elasticity and strength; Factors affecting modulus of elasticity; Creep; Factors affecting creep; Shrinkage; Plastic shrinkage; Mechanism of shrinkage; Factors affecting shrinkage.

LABORATORY TESTS (As per IS Specifications): Compressive strength, Effect of height / diameter ratio on strength and failure patterns, flexural strength, split tensile test, Relation between Compressive and Tensile Strength; Introduction to Non-Destructive Tests(Demo on Rebound Hammer Test, Ultrasonic Pulse Velocity Test).

UNIT - IV

DURABILITY OF CONCRETE: Permeability of concrete; Sulphate attack; Methods of controlling sulphate attack; Durability of concrete in sea water; Corrosion mechanism of reinforcement in concrete, Environmental considerations, concrete durability and sustainability,

	technology for sustainable development. SPECIAL CONCRETES & CONCRETING METHODS: Light weight concrete and No fines concrete; High strength and high performance of concrete; Polymer concrete and Fiber reinforced concrete; Gunite or shotcrete; Ferro cement; Vacuum concrete, Vacuum Dewatered Concrete, Self compacting concrete, Self healing Concrete. CONCRETE MIX DESIGN: Concept of mix design; List of Mix design methods; Indian standard method of mix design (IS10262-2019).
Text books	[T1] Concrete Technology by M. S. Shetty; S. Chand & Company (Pvt.) Ltd., New Delhi. [T2] Properties of Concrete by A. M. Neville; Published by Dorling Kindersley (India) Pvt. Ltd. Licensees of Pearson Education in south Asia, New Delhi.
Reference books	[R1] Concrete Technology by A.R.Santhakumar; Oxford University press,New Delhi [R2] Concrete Technology by M. L. Gambhir; Tata McGraw – Hill Publishing Company Ltd., New Delhi.
E-resources and other digital material	http://nptel.ac.in/courses/105102012

20ES3151A DESIGN THINKING AND CIVIL ENGINEERING WORKS	SHOP
---	------

Course Category:	Engineering Science lab	Credits:	1.5
Course Type:	Practical	Lecture - Tutorial - Practice:	0-0-3
Prerequisites:		Continuous Evaluation:	30
-		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon successful completion of the course, the student will be able to :														
	CO1	analyze complex civil engineering problems innovatively with the use of different construction materials and structural elements.													
	CO2	apply	vario	us pov	ver too	ls for o	constru	ection							
Contributio n of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
Outcomes towards achievement of Program Outcomes	CO1	2	2	2	2	2				2		2	2		2
(1 – Low, 2 - Medium, 3 – High)	CO2	3	2	3	3	1				2		2	2		2

Course Content

1 DESIGN THINKING

a. Introduction to Design Thinking

An insight into Design, origin of Design thinking, Design thinking and its process models, application of Design thinking.

b. Empathize In Design Thinking

Role of Empathy in design thinking, methods and tools of empathy, understanding empathy tools. Explore define phase state users' needs and problems using empathy method.

*Carry out the detailed questionnaire to arrive at the problem of the selected theme. The empathy report shall be prepared based on the response of the stake holders.

c. Prototyping and Testing:

Methods and tools of ideations, prototyping and methods of prototyping, user testing methods, Advantages and disadvantages of user Testing/Validation.

- * For the problem identified, the team needs to give solution through thinking out of the box innovatively to complete the ideation stage of DTL.
- *Once the idea of the solution is ready, detailed design has to be formulated in the Design stage considering the practical feasibility.
- *If the Design of the problem is approved, the team should implement the design and come out with prototype of the system.
- *Conduct thorough testing of all the modules in the prototype developed and carry out integrated testing.

	*Demonstrate the functioning of the prototype along with presentations of the same.
	d. Product Innovation:
	Innovation towards product design Case studies.
	* Prepare a Digital poster indicating all the stages of DTL separately. A Detailed project report also should be submitted covering the difficulties and challenges faced in each stage of DTL. Methods of testing and validation should be clearly defined both in the Digital poster as well as the report.
	e. Ideation, Prototyping And Testing of an Innovative Model Based on the Topics Learnt – (Class may be divided in to groups. some marks may be allotted for the submission of innovation. Better innovations may lead to exhibition in NITs, IITs / patents / may be useful to Atal innovation ranking).
	2. Calculate the length, area, volume, area of a built-up space and a small parcel of land - use digital distance measuring devices and To set horizontal, vertical and angle lines using different types of laser instruments.
	3. (a) To find out the different materials present in the wall using wall scanner. (b) To view the objects using an inspection camera which are not accessible &visible. (c) To set different angles to a ramp or staircase using Inclinometer.
	4. (a) To cut shapes and curves in wood with its narrow blade using Jigsaw. (b) To cut through wood and other soft materials using Saber saw. (c) Polish the concrete using concrete grinder.
	5. Painting – Paint a given surface in this order - putty, primer and painting.
	6. Flooring – Suggest a suitable flooring and install in the given space.
	7. Plumbing – Design pipeline layout for the given plan and utilize proper fittings.
	8. Formwork – Suggest proper formwork for footings, stair case,
	9. Apply basic techniques for masonry and concreting works – different types of brick bonds, plumb, alignment, brick quantity estimation, estimation of material contents for cement mortar and plastering.
Text books	[T1] Building construction by B. C. Punmia -Laxmi Publications, New Delhi [T2] Design thinking for strategic Innovation, IdrisMootee, 2013, John Wiley & Design thinking – The guidebook – Facilitated by the Royal Civil Service Commission, Bhutan
Reference books	 [R1] Design Methods: A Structured Approach for Driving Innovation in Your Organization, Vijay Kumar, First Edition, 2012, Wiley [R2] Human-Centered Design Toolkit: An Open-Source Toolkit to Inspire New Solutions in the Developing World, IDEO, Second Edition, 2011, IDEO.
E- resources and other digital material	

20CE3352	SURVEYING LAB - 1
20CE3332	SURVETING END-1

Course Category:	Programme Core Lab - 1	Credits:	1.5
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0 - 3
Prerequisites:	Mathematics, Science	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcon	ies	Upon s	uccessf	ul con	pletio	n of th	ne cou	rse, the	e stude	ent wil	l be al	ole to:				
		CO1	evaluate distances, areas by using chain survey.													
		CO2	apply principles of compass survey to plot a traverse and determine the bearings.												S.	
	CO3	evaluate the horizontal and vertical angles using the odolite survey.														
	CO4	apply leveling methods to determine the elevations and plot contours.														
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	
towards achievement	CO1	3	2			3				2	1	1			2	
of Program Outcomes	CO2	3	2			3				2	1	1			2	
(1 – Low, 2 - Medium, 3 –	CO3	3	2			3				2	1	1			2	
High)	CO4	3	2			3				2	1	1			2	

Course Content	1. Determine the area of a given parcel of land by using cross staff and chain survey.
	2. Determine the distance between two points with obstacles in between.
	3. Measurement of bearings of an open traverse with prismatic compass and computation of correct included angles.
	4. Measurement of bearings of a closed traverse with prismatic compass and computation of area.
	5. Measurement of horizontal angle by using Repetition method.
	6. Measurement of horizontal angles by using Reiteration method.
	7. Measurement of vertical angles using a Vernier theodolite.
	8. Determination of elevations of various points remote from each other (differential leveling).
	9. Survey and plot the longitudinal and cross sections of a given embankment.
	10. Prepare a contour map of existing ground using an auto level.
Text books	[T1] Surveying, Volume-1 by K. R. Arora; Standard Book House. [T2] Surveying, Volime-1 by B.C.Punmia; McGraw Hill Education (India) Private Limited
Reference books	[R1] Advanced Surveying by SatheeshGopi, R. Sathikumar, N. Madhu; Pearson Education
E-resources and other digital material	

Course Category:	Programme Core Lab-2	Credits:	1.5
Course Type:	Lab	Lecture - Tutorial -	0-0-3
		Practice:	
Prerequisites:	Engineeringgraphics20ES1105	Continuous Evaluation:	30
		Semester end	70
		Evaluation:	100
		Total Marks:	

Course outcomes	Upon s	uccess	sful co	mplet	ion of	the co	ourse,	the st	udent	will b	e able	to:			
	CO1	apply the knowledge of Various measurements and dimensions of a building components													
	CO2	understand principles of planning, principles of architecture and building Bye-laws.													
	CO3	apply the principles of planning to secure building plans as per Building bye- laws													
	CO4	analyze the requirements of user to draw the plan, elevation, sectional view of the building as per principles of planning and NBC													
Contribution of Course Outcomes towards achievement of Program Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
	CO1	1		2											
	CO2	1		2											
(1 – Low, 2-	СОЗ	1		2										2	2
Medium, 3– High)	CO4	1		2										2	
Course Content	Intro Follov		on an	d The	eory	conce		RTA Expla		n Fo	r the		I	1	
	Princip	oles o	f plan	ning	& arc	hitec	ture								
	Buildi	ng by	e-law	's & N	Vation	nal Bu	ıildin	g Coo	le						
	Conve Plan, E		·		-			_							
	Standa	ırd di	mensi	ions c	of Doc	rs, wi	ndow	s and	mea	surem	nents	of dif	ferent	troor	ns

	and various structural components (MANUALDRAWING)
	1Drawing practice of coventional signs and symbols
	2. Drawing practice of Door, window and ventilator (Elevations only with standard measurements
	3. Drawing practice of section of a wall including foundation with specifications
	DESIGN LINE DIAGRAMS AND DRAW PLAN, ELEVATION & SECTION OF THE FOLLOWING:
	4.Residentialbuilding Drawing- Single bedroom, Living room, Kitchen(Load bearing wall structure)
	5. Elevations of various types of Buildings in explanation
	PART-B
	AUTOCAD DRAWING 1. AutoCAD Commands introduction and practice
	DESIGN LINE DIAGRAMS AND PREPARE THE APPROVAL DRAWINGS FOR LOCAL AUTHORITY WITH SET BACKS BY DRAWING PLAN, ELEVATIONSECTIONOFTHEFOLLOWING
	 Single storied Residential Double bedroom building (Load bearing stucture)
	3. Dog legged Stair case
	4. RCC Two storied framed structure building with staircase
	5. Single storied Rural hospital building/school building Plan
Text books	[T1] Building planning, designing and scheduling by Gurucharan Singh and Jagdish Singh. –Standard Publishers-Delhi.
	[T2] Building Drawing by M.G. Shah, C.M. Kale and S.Y.Patki; Tata McGraw Hill Publishing Co.Ltd., New Delhi.
Reference books	 [R1] National Building Code, Bureau of Indian Standards, New Delhi, 2005. [R2] Planning & Designing Buildings by Yashwant S. Sane; Allies Book Stall, Pune [R3] Residential Interior Design: A Guide To Planning Spaces 3rd Edition by Maureen Mitton (Author), Courtney Nystuen (Author)
E- resources and other digital material	www.floorplanner.com

20TP3106	LOGIC & REASONING

Course Category:	Institutional Core	Credits:	1
Course Type:	Learning by Doing	Lecture - Tutorial - Practice:	1 - 0-1
Prerequisites:		Continuous Evaluation:	100
		Semester end Evaluation:	0
		Total Marks:	100

Course outcom	nes	Upon	succes	sful co	mple	tion o	f the c	course	, the s	studer	nt will b	e able to:	:		
		CO1	think reason logically in any critical situation												
		CO2	analyze given information to find correct solution												
		CO3	to rec	to reduce the mistakes in day to day activities in practical life											
		CO4	develop time management skills by approaching different shortcut methods												
		CO5	use mathematical based reasoning to make decisions												
		CO6	apply logical thinking to solve problems and puzzles in qualifying exams for companies and in other competitive exams												
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO11	PO12	PSO 1	PSO 2
towards achievement	CO1						2								
of Program Outcomes	CO2		2												
(1 – Low, 2 - Medium,	CO3								2						
3– High)	CO4									2					
	CO5	2													
	CO6	1													
Course Content		UNIT	'-I			<u>I</u>		<u>I</u>					1	1	
			1. 2.		es Co ing-D										

	3. Blood Relation Blood,4. Puzzles test
	UNIT-II
	 Direction sense test, Logical Venn diagrams, Number test, ranking test, Mathematical operations
	UNIT-III 1. Arithmetical Reasoning, 2. Inserting missing character, 3. Syllogism.
	UNIT-IV 1. Water images, 2. Mirror images, 3. Paper folding, 4. Paper cutting, 5. Embedded Figures, 6. Dot situation, 7. Cubes & Dice
Text books	[T1] R. S. Aggarwal, "Verbal and non-verbal reasoning", Revised Edition, S Chand publication, 2017 ISBN:81-219-0551-6
Reference books	
E-resources and other digital material	

20MC3107B	INDIAN CONSTITUTION
ZUNICSIU/D	INDIAN CONSTITUTION

Course Category:	Mandatory Course	Credits:	
Course Type:	Theory	Lecture - Tutorial - Practice:	2-0-0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcon	ies	Upon	pon successful completion of the course, the student will be able to:													
	CO1	understand the spirit and origin of the fundamental law of the land														
	CO2	understand how fundamental rights can be protected														
	CO3	understand the structure and formation of the Indian Government at center as well as state														
		CO4	understand when and how an emergency can be imposed and its consequenses													
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO11	PO12	PSO 1	PSO2	
towards achievement	CO1						2									
of Program Outcomes	CO2						2									
(1 – Low, 2 - Medium, 3–	CO3						2									
High)	CO4						2									

Course Content

UNIT – I INTRODUCTION TO CONSTITUTION OF INDIA:

[Text Book – 2]

Meaning of the constitution law and constitutionalism, historical perspective of the constitution of India, salient features and characteristics of the constitution of India.

UNIT – II [Text Book – 1 & 2]

FUNDAMENTAL RIGHTS:

Scheme of the fundamental rights, scheme of the fundamental right to equality, scheme of the fundamental right to certain freedoms under article 19, scope of the right to life and personal liberty under article 21.

UNIT – III [Text Book – 1]

NATURE OF THE INDIAN CONSTITUTION:

Federal structure and distribution of legislative and financial powers between the union and

	the states.							
	ARLIAMENTARY FORM OF GOVERNMENT IN INDIA:							
	The constitution powers and status of the President of India, amendment of the constitution powers and procedure, the historical perspectives of the constitutional amendments in India.							
	LOCAL SELF-GOVERNMENT:							
	Constitutional scheme in India.							
	UNIT – IV [Text Book – 1 & 2] EMERGENCY PROVISIONS:							
	National emergency, president rule, financial emergency							
Text books	[T1] Dr.J.C.Johari, "India Government and Politics", Vishal Publications, New Delhi, 2009 [T2] M.V.Pylee, "Introduction to constitution of India", Vishal Publications, New Delhi, 5 th edit 2009.	ion,						
Reference books	[R1] D.D.Basu, "Introduction to the Constitution of India", Lexis Nexis, 2015. [R2] Subhas C. Kashyap, "Our Constitution", National Book Trust India, 2 nd Edition, New Delhi, 2013.							
E-resources and other digital material								

									<u> </u>					3	
Course Category:									Credits:						
Course Type:	The	neory							Lecture-Tutorial-Practice:						-0-0
Prerequisites:								3	0						
						Semester end Evaluation:						0			
									Total	Mark	ks:			1	00
Course	Upon successful completion of the course, the student will be able to:														
Outcomes	CO1	find probabilities using axioms and understand random variables.													
	CO2	estir	estimate Probability density functions.												
	CO3	appl	apply random phenomena of sample to estimate errors												
	CO4	anal	analyze correlation, regression and quality improvement, control charts.												
Contribution of		РО	РО	PO	PO	РО	PO	PΟ	PO	РО	PO1	PO1	PO1	PS	PS
Course		1	2	3	4	5	6	7	8	9	0	1	2	O1	O2
Outcomes	CO1	3	2			1								1	
towards	002	2				1								1	
achievement of	CO2	3	2			1								1	
Program Outcomes	CO3	3	2			1								1	
(3-HIGH,	CO4	2	2			1								1	
2-MEDIUM,	CO4	3	2			1								1	
1-LOW)															
Course Content	UNIT I:														
	 PROBABILITY: Sample Space and events, Probability, The Axioms of probability, Addition rule of probability, Conditional probability, Multiplication rule of probability, Bayes' theorem. PROBABILITY DISTRIBUTIONS: Discrete Random Variable, Expectation, Variance and Standard deviation of discrete random variable, Binomial distribution, Poisson distribution. 														
	UNIT II: PROBABILITY DENSITIES: Continuous Random Variable, Expectation, Variance and														
	Standard deviation of continuous random variable, Normal distribution, Normal approximation to the Binomial distribution.														
	OTHER PROBABILITY DENSITIES - Uniform distribution, Log normal distribution, Gamma distribution, Beta distribution, Weibull distribution.														
	UNIT III: SAMPLING DISTRIBUTIONS: Introduction, Populations and Samples, Sampling distribution of the mean (SD known and SD unknown) – Sampling distribution of the variance.														
	ESTIMATION OF MEAN: Point Estimation, Maximum error of estimate, Interval Estimation.														
	UNIT IV: REGRESSION AND CORRELATION: Types of Correlation, Scatter diagram, Karl Pearson's coefficient of correlation, Rank Correlation, Regression analysis.														

	THE STATISTICAL CONTENT OF QUALITY IMPROVEMENT PROGRAMS: Quality Control- Control Charts for Measurements - Control Charts for Attributes.
Text books	[T1] Probability and Statistics for Engineers ,Eighth edition by Richard A. Johnson Prentice Hall of India.[T2] Probability and statistics by K.Murugesan, P.Guruswamy, AnuRadha Publications.
Reference books	 [R1] Probability & Statistics for Engineers & Scientist by R.E. Walpole, R.H.Myers&S.L.Myers, Sixth Edition, Prentice Hall of India / Pearson Education. [R2] Probability and Statistics, Purna Chandra Biswal, Pearson Education Prentice Hall of India 2007. [R3] Probability and Statistics by T.K.V.Iyengar, B.Krishna Gandhi, S.Ranganatham, M.V.S.S.N.PrasadS.Chand.
E-resources and other digital material	https://onlinecourses.nptel.ac.in/noc22 mg31/preview https://nptel. ac.in/courses/111105041

ſ	20CE4302	STRUCTURAL ANALYSIS

Course Category:	Program Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:	Mechanics of Solids	Continuous Evaluation:	30
	20BS3101A	Semester end Evaluation:	70
		Total Marks:	100

Course outcomes		Upon	Upon successful completion of the course, the student will be able to:												
	CO1	O1 understand, draw and interpret influence line diagrams.													
		CO2	2 apply energy methods for analysis of indeterminate beams and frames.												
		CO3	analyze statically indeterminate structures using force and displacement methods.												
		CO4	evalu	ate m	ultisto	ry fra	mes f	or ver	tical a	ınd ho	orizon	tal loa	ds by	approx	imate methods.
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2
towards achievement	CO1	3				2							2	2	
of Program Outcomes	CO2	3	1			2							2	2	
(1 – Low, 2 - Medium, 3	CO3	3	1			2							2	2	
– High)	CO4	3	1			2							2	2	
Course Conter	: EQU Influe maxin INFL : MUI	UENC JILIBI nce line num an	RIUM e for b d abso E LIN BRES	PRINGE PR	reaction maxim	LES A on; Sh num b STAT NCIP	AND earing endin ICAL LES	ITS A g force g mor LLY E AND	APPLES; Bessenent for the second seco	ICAT Inding Or rol RMI	FION g mom ling lo	ent; C oads.	UCTU alculati UCTU	on of	

	TINITE W
	UNIT – II
	ANALYSIS OF INDETERMINATE STRUCTURES USING ENERGY METHODS : BEAMS Strain Frances Mathed for analysis of continuous because up to true groups
	Strain Energy Method for analysis of continuous beams up to two spans.
	ANALYSIS OF INDETERMINATE STRUCTURES USING ENERGY METHODS:FRAMES Analysis of rigid frames up to first degree of redundancy.
	UNIT – III
	ANALYSIS OF INDETERMINATE STRUCTURES: FORCE METHOD Propped cantilever by consistent deformation method; Fixed beams for different loadings.
	ANALYSIS OF INDETERMINATE STRUCTURES:DISPLACEMENT METHODS Slope deflection method for continuous beam (two span) and portal frames without side sway. Moment distribution method for continuous (two span) and portal frames without side sway.
	UNIT – IV APPROXIMATE METHODS OF ANALYSIS FOR MULTI STORY FRAMES: KANI'S METHOD Introduction and principles of the kani's method; Application of the method to continuous beams; Application of method to the analysis of portal frames without side sway.
	APPROXIMATE METHODS OF ANALYSIS FOR MULTI STORY FRAMES: : ANALYSIS OF LATERAL LOADS Portal method and cantilever method.
Text books	[T1] Analysis of structures by Volume I –17 th Edition by Vazirani&Ratwani & Volume –II
	16 th Edition by Vazirani&Ratwani, Khanna Publications; Delhi,2015.
	[T2] Structural Analysis by S.S. Bhavikatti, Volume-I and II, 4 th Edition, Vikas Publishing house PVT Ltd,2014.
Reference books	[R1] Structural analysis by Hibbeler, 6 th Edition, Pearson India Education Services PvtLtd.2015
	 [R2] Structural Analysis by R. Vaidyanathan Volume-I and II, 3rdEdition, Laxmi Publications (P) Ltd,2012. [R3] Theory of structures by S. Ramamrutham, 9thEdition, DhanapatRai Publications,2014. [R4] Basic Structural Engineering by C.S Reddy, Tata McGraw Hill, ThirdEdition. [R5] Theory of structuresVol–IbyG.S. Panditand S.P. Gupta and R.Gupta by Tata McGraw Hill Ltd., New Delhi.
E-resources and other digital material	Structural Analysis—I - http://nptel.ac.in/courses/105101085 Structural Analysis - I - http://nptel.ac.in/courses/105105166 Structural Analysis - II - http://nptel.ac.in/courses/105101086

20CE4303	GEOTECHNICAL ENGINEERING
----------	--------------------------

Program Core	Credits:	3
Theory	Lecture - Tutorial - Practice:	3-0-0
	Continuous Evaluation:	30
	Semester end Evaluation:	70
	Total Marks:	100
	0	Theory Lecture - Tutorial - Practice: Continuous Evaluation: Semester end Evaluation:

Course outco	mes	Upon	succes	sful co	omple	tion o	of the	cours	e, the	stude	nt wi	ll be a	ole to:		
		CO1	under	nderstand the origin of soil and basic inter-relationships of soil components.									ponents.		
		CO2	apply	the in	ndex p	prope	rties o	of soil	to cla	ssify	the so	oil.			
		CO3	analy	ze the	Soil-	Wate	r Inte	ractio	n.						
C			evaluate compressibility and shear characteristics of soil.												
Contributi on of Course Outcomes		PO 1	PO 2	P O3	P O 4	P O 5	P O 6	P O7	P O8	P 09	P O1 0	PO 11	P O1 2	PSO 1	PSO2
towards achievemen	CO1	3	2												3
t of Program	CO2	3	2		2										3
Outcomes (1 – Low, 2	CO3	3	2		2										3
- Medium, 3 – High)	CO4	3	2		2										3

Course Content

UNIT – I

INTRODUCTION, BASIC DEFINITIONS AND RELATIONS

Scope of Geotechnical Engineering; Origin of Soils; Formation of soils; Types of soils; Transportation of soils; Major soil deposits of India.

Phase diagrams; Volumetric relationships; Weight relationship; Volume-weight relationships; Specific gravity of soils; Three phase diagram in terms of void ratio; Interrelationships;

INDEX PROPERTIES AND SOIL CLASSIFICATION

Introduction; Determination of Water content, Determination of Specific gravity; Mechanical sieve analysis; Sedimentation analysis- Stokes law*; Hydrometer analysis; Limitation of sedimentation analysis; Combined sieve and sedimentation analysis; Particle size distribution curve and its uses; Determination of field density (core cutter and sand replacement method), Relative density.

Plasticity of soils; Consistency limits; Determination of liquid limit by Casagrande method*, Plastic limit* and shrinkage limit*; Uses of consistency limits, Discussion on all Consistency Indices; Indian Standard Soil Classification System.

UNIT - II

SOIL MOISTURE AND PERMEABILITY

Flow of water in soils; Darcy's law; Validity of Darcy's law by Reynolds number*; Determination of coefficient of permeability* by constant head and variable head methods & Indirect methods; Seepage velocity; General expression for laminar flow*; Laminar flow through porous media; Factors affecting permeability; Permeability of stratified soil deposits.

EFFECTIVE STRESS

Effective stress principle; Effective stress in a soil mass under different loading conditions – effect of depth of Water table, Surcharge loading, Capillary water, Artesian Pressures

UNIT - III

SEEPAGE THROUGH SOILS

Seepage pressure; Quick sand conditions; Laplace equations*; Stream and potential functions*; Characteristics of flow net; Uses of flow nets; Seepage through earth dams with horizontal filter*; Uplift pressure; Flow net for anisotropic soils.

COMPACTION OF SOILS

Introduction; Standard proctor test and modified proctor test; Compaction of clayey soil and sand; Factors affecting compaction; Effect of compaction on properties of soils; Field compaction of soils and field compaction control.

UNIT - IV

CONSOLIDATION OF SOILS

Introduction; Initial, Primary and secondary consolidation; Spring analogy for primary consolidation; Terzaghi's theory of consolidation; Solution of basic differential equation*; Consolidation test; Determination of void ratio at various load increments-height of solids and change in void ratio methods; Consolidation test results; Determination of coefficient of consolidation-square root of time and logarithmic time fitting methods; Casagrande's method for determination of pre-consolidation pressure.

SHEAR STRENGTH OF SOILS

Introduction; Mohr – coulomb theory; Different types laboratory of shear strength tests*(Triaxial test Direct shear test; Unconfined compressive strength test; Vane shear test*); Different drainage conditions and their field applicability; Mohr - coulomb failure criterion; Shear characteristic of cohesive and cohesion less soils;

Text books

[T1] Soil Mechanics and Foundation Engineering by K.R. Arora; Standard Publishers & Distributors, NaiSarak, New Delhi.

[T2] Basic and Applied Soil Mechanics by GopalRanjan and A.S.R. Rao; New Age International Ltd., New Delhi.

Reference books	[R1] Soil Mechanics and Foundation Engineering by Dr. B. C. Punmia, Ashok Kumar Jain, Arun Kumar Jain; Laxmi Publications (P) Ltd., New Delhi. [R2] Relevant Indian Standard Code Books.
E-resources and other digital material	Introduction to Soil Mechanics - http://nptel.ac.in/courses/105103097/ Soil Mechanics - http://nptel.ac.in/courses/105101084/

Note:

- 1. In Laboratory tests, only test procedures according to relevant IS codes need to be studied no need of derivations of the formulae used in the tests
- 2.* indicates only methods and / or formulae no derivation of formulae needed.

Course Category:	Programme Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0 - 0
Prerequisites:	20CE 3304 – Fluid Mechanics	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course Outcomes	Upon	succe	essful c	omple	tion of	the co	ourse, t	he stud	lent wi	ll be al	ole to:			Upon successful completion of the course, the student will be able to:													
Outcomes	CO1	eval	evaluate the most economical dimensions of different channel sections. analyze the flow through an open channel.																								
	CO2	anal																									
	CO3	eval	evaluate an equation for a phenomenon using dimensional analysis.																								
	CO4	anal	yze an	d selec	et suita	ble typ	e of tu	rbine /	Pump	•																	
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2												
towards achievement	CO1	3	2	3										3													
of Program Outcomes	CO2	3	2	3											3												
(1– Low, 2 -	CO3	3	2	3											3												
Medium, 3 – High)	CO4	3	2	3										2	3												
Course Content	chann	N CH	Chezy'	s, Ma		s, Baz	in's, ŀ	Kutter's	Equa	tions;	- 1	lassific															

sections - Rectangular, Trapezoidal and Circular channels.

NON-UNIFORM FLOW: Concept of specific energy; Specific energy curves; Critical flow; Critical flow in a rectangular channel; Critical slope; Different slope conditions; Channel transitions.

	UNIT II:
	GRADUALLY VARIED FLOW: Dynamic equation; Types of Surface Profiles; Computation of surface profiles by single step method; Back water Curves and Draw down curves.
	RAPIDLY VARIED FLOW: Hydraulic jump; Elements and characteristics of hydraulic jump; Types of hydraulic jumps; Applications of hydraulic jump; Energy loss in a hydraulic jump.
	UNIT III:
	DIMENSIONAL ANALYSIS AND SIMILITUDE: Dimensional homogeneity; Rayleigh's method; Buckingham – Pi theorem; Geometric, Kinematic and dynamic similarities; Scale effect.
	IMPACT OF JETS: Force exerted by fluid jet on stationary and moving flat plates and curved plates; Force exerted by fluid jet on series of flat vanes; Angular momentum principle; Torque exerted on a wheel with radial curved vanes.
	UNIT – IV
	HYDRAULIC TURBINES: Classification; Impulse; Reaction; Radial, Axial, mixed and tangential flow turbines; Pelton, Francis and Kaplan turbines; Velocity triangles; Head and efficiency; Draft tube theory; Concept of specific speed; Cavitation.
	CENTRIFUGAL PUMPS: Types of pumps, Manometric head; Losses and efficiencies; Working Principle and Work done; Priming; Velocity triangles; Multistage pumps; Specific speed; Cavitation.
Text books	[T1] P.N. Modi& S.N. Seth, "Hydraulics & Fluid Mechanics", 18th ed., Standard Book House,
	New Delhi, 2015. [T2] A.K. Jain, "Fluid Mechanics", 11th ed., Khanna Publishers, New Delhi, 2014.
Reference books	[R1] Jagadhishlal, "Hydraulic Machines",9th ed., Metropoliton Company, New Delhi, 2012. [R2] R. K. Bansal, "Fluid Mechanics and Hydraulic Machines", 9th ed., Laxmi Publications; New Delhi, 2015.
	 [R3] Rajput R.K., "Fluid Mechanics and Hydraulic Machines", 3rd ed., S.Chand and Company Ltd., New Delhi, 2014. [R4] K. Subramanya, "Flow in Open Channels" – 3rd ed., Tata McGraw Hill Publishing Company, New Delhi, 2013.
E-resources	www.nptel.ac.in / courses/ 105103096/
and other digital material	www.nptel.ac.in / courses/ 105106114/

20HS4105	UNIVERSAL HUMAN VALUES 2: UNDERSTANDING
	HARMONY

Course Category:	Humanities and Social Sciences	Credits:	3
Course Type:	Mandatory course (suggested by AICTE)	Lecture - Tutorial - Practice:	2-1-0
Prerequisites:	None. Universal Human Values 1	Continuous Evaluation:	50
	desirable.	Semester end Evaluation:	50
		Total Marks:	100

Course outco	mes	Upon	succes	sful co	mpletio	on of tl	he cou	rse, the	stude	nts wil	l be ablo	e to:			
		CO1	unde		and a	iware	of the	mselve	es and	their	surroun	dings(family	, socie	ty and
	CO2	CO2 handle problems with sustainable solutions, while keeping human relationships an human nature in mind.											ps and		
		СОЗ	exhibit critical ability and become sensitive to their commitment towards their understanding of human values, human relationship and human society.												
		CO4	apply	y what	they h	ave lea	arnt to	their o	wn sel	f in dif	ferent d	ay-to-c	day se	ttings ir	n real
Contributio n of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO 11	PO 12	PSO 1	PSO 2
towards achievemen t of	CO1						1			2					
Program Outcomes (1 – Low, 2 - Medium,	CO2			3											
	CO3						2								
3 – High)	CO4								3				2		
Course Conte	C FO P.	NIT – I: OURSE I OR VALU ART-1: P hat is it?,	UE ED urpose	UCA' and n	FION: notivat	tion fo	r the c	ourse,	recapi	tulatio	n from	UHV-	·I, Sel	f-explo	ration:

PART-2: Right understanding, Relationship and Physical Facility – the basic requirements for

Aspirations.

fulfillment of aspirations of every human being with their correct priority, Understanding Happiness and Prosperity correctly – A critical appraisal of the current scenario, Method to fulfill the above human aspirations: understanding and living in harmony at various levels.

(Practice sessions are to be included to discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and co-existence) rather than as arbitrariness in choice based on liking-disliking).

UNIT – II:

UNDERSTANDING HARMONY IN THE HUMAN BEING – HARMONY IN MYSELF:

PART-1: Understanding human being as a co-existence of the sentient 'I' and the material 'Body'. Understanding the needs of Self ('I') and 'Body' – happiness and physical facility, Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer).

PART-2: Understanding the characteristics and activities of 'I' and harmony in 'I'. Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail, Programs to ensure Sanyam and Health.

(Practice sessions are to be included to discuss the role others have played in making material goods available to me. Identifying from one's own life. Differentiate between prosperity and accumulation. Discuss program for ensuring health vs. dealing with disease).

UNIT – III:

UNDERSTANDING HARMONY IN THE FAMILY AND SOCIETY – HARMONY IN HUMAN-HUMAN RELATIONSHIP:

PART-1: Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfillment to ensure mutual happiness; Trust and Respect as the foundational values of relationship, Understanding the meaning of Trust; Difference between intention and competence, Understanding the meaning of Respect, Difference between respect and differentiation; the other salient values in relationship.

PART-2: Understanding the harmony in the society (society being an extension of family); Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals, Visualizing a universal harmonious order in society—Undivided Society, Universal Order—from family to world family.

(Practice sessions are to be included to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education, etc. Gratitude as a universal value in relationships. Discuss with scenarios. Elicit examples from students' lives).

UNIT - IV:

PART-1:UNDERSTANDING HARMONY IN NATURE & EXISTENCE – WHOLE EXISTENCE AS COEXISTENCE: Understanding the harmony in the Nature, Interconnectedness and mutual fulfillment among the four orders of Nature – recyclability and self-regulation in nature, Understanding Existence as Co-existence of mutually interacting units in all-pervasive space, Holistic perception of harmony at all levels of existence.

PART-2: IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL ETHICS: Natural acceptance of human values, Definitiveness of ethical human conduct, Basis for humanistic education, humanistic constitution and humanistic universal order, Competence in professional ethics: a) ability to utilize the professional competence for augmenting universal human order, b) ability to identify the scope and characteristics of people-friendly and ecofriendly production systems, c) ability to identify and develop appropriate technologies and management patterns for above production systems, Case studies of typical holistic technologies, management models and production systems, Strategy for transition from the present state to Universal Human Order: a) at the level of individual: as socially and ecologically responsible engineers, technologists and managers, b) at the level of society: as mutually enriching institutions and organizations.

(Part-1:Practice sessions are to be included to discuss human being as cause of imbalance in nature (film "Home" can be used), pollution, depletion of resources and role of technology, etc. Part-2: Practice exercises and case studies are to be taken up in practice (tutorial) sessions eg. to discuss the conduct as an

	engineer or scientist, etc.)
Text books	[T1] Human values and professional ethics, R. R. Gaur, R. Sangal and G. P. Bagaria, Excel Books Private Limited, New Delhi (2010).
Reference books	[R1] JeevanVidya: EkParichaya, A. Nagaraj, JeevanVidyaPrakashan, Amarkantak (1999). [R2] Human Values, A. N. Tripathi, New Age International Publishers, New Delhi (2004). [R3] The Story of Stuff: The impact of overconsumption on the planet, our communities, and our health and how we can make it better, Annie Leonard, Free Press, New York (2010). [R4] The story of my experiments with truth: Mahatma Gandhi Autobiography, Mohandas Karamchand Gandhi, B. N. Publishing (2008). [R5] Small is beautiful: A study of economics as if people mattered, E. F. Schumacher, Vintage Books, London (1993). [R6] Slow is beautiful: New Visions of Community, Cecile Andrews, New Society Publishers, Canada (2006). [R7] Economy of Permanence, J. C. Kumarappa, Sarva-Seva-SanghPrakashan, Varanasi (2017). [R8] Bharat Mein Angreji Raj, PanditSunderlal, PrabhathPrakashan, Delhi (2018). [R9] Rediscovering India, Dharampal, Society for Integrated Development of Himilayas (2003). [R10] Hind Swaraj or Indian Home Rule, M. K. Gandhi, Navajivan Publishing House, Ahmedabad (1909). [R11] India Wins Freedom: The Complete Version, MaulanaAbulKalam Azad, Orient Blackswan(1988). [R12] The Life of Vivekananda and the Universal gospel, Romain Rolland, AdvaithaAshrama, India (2010). [R13] Mahatma Gandhi: The Man who become one with the Universal Being, Romain Rolland, Srishti Publishers & Distributors, New Delhi (2002).
E-resources and other digital material	https://www.youtube.com/channel/UCo8MpJB_aaVwB4LWLAx6AhQ https://fdp-si.aicte-india.org/download.php#1

20CE4351	STRENGTH OF MATERIALS LAB

Credits: 1.5

Programme core lab1

Course Category:

	Course	Туре:	Prac	tical							Lect	ure -	Tutor	ial - P	ractice	: 0-0-3
Prerequisites:											: 30					
										S	: 70					
														Total	Marks	: 100
Course outcomes Upon succ				succe	essful co	mple	tion o	f the c	ourse	the s	studer	nt will	be abl	le to:		
		CO1		derstand	•	oroper	ties o	f woo	d, ste	el and	l othe	r build	ing m	aterials	as per IS code	
		CO2	analyse the behaviour in stress-strain, deflection, flexure/bending and to building components							nd torsion, of						
n of	tributio Course comes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2
towa achie t of Prog	ards evemen gram	CO1	3	3		3	1				2	2		1		2
(1 – 1 - Me	Comes Low, 2 Edium, High)	CO2	3	3	3 3		1				2	2		1		2
Cou	rse Con	tent			testing machine 2. Deter shear. 3. Find given material 4. Find conduct 5. Find cantilev 6. Find IZOD test on 1	the Brithe Year beathe im	the ul rinnel' oung's ending oung's am and npact i t testif odulu the m the du	timate s mod g test of s mod d propresista ng ma s of ri codulu	e shear dness ulus con sin ulus coped conce of achine gidity s of r	of the solution of the solutio	given uppor given ever. given	of mile Materited be mater materiting to	d steel kwell's rial (Weam. rial by rial by orsion	rod in s hards food/S conductest or	ness nur Steel/Alu acting be acting Cl	and double anber of the aminum) by ending test on harpy test and ircular shaft.

	 11. Strain gauge application and evaluation of stress. 12. Continuous beam – deflection test 13. Torsion Test on Beams: Torque and angle of twist characteristics, shear stress, modulus of rigidity, energy 14. Deflection Test on Beams: Load deformation characteristics, Young's Modulus, Maxwell's Reciprocal law verification.
Text books	[T1] Strength of Materials by S Ramamrutham& R Narayan; DhanpatRai Publishing Co.(P) Ltd, New Delhi.
Reference books	[R1] Material science and metallurgy for engineers by V D Kodgire and S V Kodgire, Everest publishing house, Pune.
E-resources and other digital material	https://home.iitm.ac.in/kramesh/Strength%20of%20Materials%20Laboratory %20Manual.pdf

20CE4352 FLUID MECHANICS AND HYDRAULIC MACHINES LAB

Course Category:	Programme Core Lab 2	Credits:	1.5
Course Type:	Practical	Lecture - Tutorial - Practice:	0-0-3
Prerequisites:	Fluid Mechanics	Continuous Evaluation:	30
	20CE3304	Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon successful completion of the course, the student will be able to :														
	CO1	eval	uate th	ne flov	v thro	ugh pi	pes ar	nd ope	n cha	nnels					
	CO2	anal	yze th	e perf	orman	ce of	variou	ıs Hyc	lraulic	mach	ines				
Contributio n of Course		PO 1											PS O2		
Outcomes towards achievement of Program Outcomes	CO1	CO1 3 3 3 3 1 2 3 1												3	
(1– Low, 2- Medium, 3– High)	CO2	3	3	3	3					2	3		1		3
Course Content	1. Berna (a) Valid (b) Sign section. 2. Venta (a) Dete (b) Dete (c) Dete (c) Dete (d) Work (d) Charles (d) Anawith Response (e) Anawith Response (e) Charles (e) C	turime termine termine termine termine termine tices & kout the nold's racteriallyse the eynold thes:	eter & ethe content the flow the flow expense the he van de flow expense the fl	Orifoeffice coeffice coeffice coeffice wrate wrate wrate wrate wrate wrate wrate wrate crimen bermination bermination of minotic fining	iceme ient of fficien te of a lie t of flui of di on of	ter f disch t of fluid iquid iquid u id flov scharg flow- and m	along using row by Fige coerate in	for a Vaction g a pip orifice nouth efficie n an o head	Ventur and e using e for spiece f	imeter coeff ng Ver teady for ste Number varie	a conficient ficient aturim flow i ady flow ady flow adv	of eter / n wat ow / u ow ma	g-dive	ty for emeter that the second	r an er.

	b) Sudden contractions c) Sudden expansion. 8. DetermineChezy's and Manning's coefficient for free surface flow in a rough/smooth surfaced rectangular channel. 9. Measurement of force due to impact of jet on Flat/Curved vanes used in Hydropower projects 10. a) Find the overall efficiency of single stage centrifugal pump. b) Study the Performance characteristics of Multistage centrifugal pump i) When pump is in series ii) When pump is in parallel. 11. Study the Performance characteristics for Multistage Submersible pump. 12. Determine the hydraulic efficiency for Impulse turbine(Pelton). 13. Conduct Performance test forReaction turbine (Kaplan / Francis) at constant head and determine efficiency. Demonstration Experiments: 1. Performance studies on Reciprocating pump 2. Performance studies on Gear pump
Text books	 [T1] Fluid Mechanics and Hydraulic machinery laboratory manual by Dr. N.Kumara Swamy, Charrotar Publishing House Pvt. Ltd. [T2] Experiments in fluid mechanics by Dr. Baljeet Kapoor, Khanna Publications. [T3] Hydraulics and fluid mechanics including hydraulic machines by Dr. P.N.Modi and Dr. SM Seth, Standard book house, New Delhi
Reference books	
E-resources and other digital material	www.nptel.ac.in/courses/105103096/ www.nptel.ac.in/courses/105106114/

Program Core Lab 3	Credits:	1.5
Practical	Lecture - Tutorial - Practice:	0-0-3
	Continuous Evaluation:	30
	Semester end Evaluation:	70
	Total Marks:	100
		Practical Lecture - Tutorial - Practice: Continuous Evaluation: Semester end Evaluation:

Course outco	mes	Upon	success	sful co	omple	tion o	f the c	course	the s	studer	nt will	be ab	le to:		
		CO1	evalu	ate In	dex pi	ropert	ies of	soils							
		CO2	CO2 evaluate Engineering properties of soils												
Contributio n of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2
towards achievemen t of Program Outcomes	CO1	3			3					3	3				3
(1 – Low, 2 - Medium, 3 – High)	CO2	3			3					3	3				3
Course Conto	ent	classif divide which will g determ when currice	fication of are use rive us mination subject ulum: I: Clas M SI Fi G	of so two cy ed to c an ap n of <u>E</u> ted to sificat coistur pecific eld D	classife proximate Consider Co	I also The five the mate ering is. The five tent is to find printed to find pr	to de ocus of soil in idea Propere follo	termin of Cyc nto va on th erties owing d on I	ne the cle I is arious e behands of Son is the ndex I	behas the degroup avious il, where list Properation outlier or button	viour leterm os. Th r of s ich gi of ex rties	of soination of class soil. The the experimental at a gi	l. The n of <i>It</i> ification he foot exact ents i	e list of ndex projects of (a) behavioralled	oil required for experiments is operties of soil, oil in to groups Cycle II is the our of the soils I in the course

	 Consistency Limits to find Liquid and Plastic limits Free Swell Index to find swelling of soil 										
	Cycle II: Engineering Properties to determine Soil behaviour										
	 Permeability test to estimate seepage discharge through earth dams/compacted soil in embankments etc. 										
	 Compaction Test to determine compaction characteristics of soil used to ascertain the suitability of soil for road construction/improving the properties of soil in a given plot etc. 										
	• Shear Tests on Soil including Direct Shear Test, Unconfined Compression Test and Unconsolidated Undrained Triaxial Shear Test to determine the shear characteristics of soil which are used in determination of Safe bearing capacity, Stability of soil slopes, Earth retaining walls etc.										
	• Consolidation Test to determine rate and magnitude of soil settlement under loads [Demonstration]										
Text books	[T1] Soil Mechanics and Foundation Engineering by K.R. Arora; Standard Publishers & Distributors, NaiSarak, New Delhi.										
Reference books	[R1] Relevant Indian Standard Code Books										
E-resources and other digital material											

Course Category:	Programme Core	Credits:	1
Course Type:	PRACTICE	Lecture - Tutorial - Practice:	0-0-2
Prerequisites:	20TP1406 English For Professionals	Continuous Evaluation:	100
		Semester end Evaluation:	0
		Total Marks:	100

Course outcom	es	Upon	successf	ul con	pletio	n of th	ne cou	rse, the	e stude	ent wil	l be able	to:				
		CO1	how c	how conversations are made usage of grammar												
		CO2	usage													
		CO3	etique	etiquettes and manners												
		CO4	speak	speaking Skills												
Contribution of Course Outcomes towards achievement		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO11	PO12	PSO 1	PSO2	
	CO1									3	3					
of Program Outcomes	CO2										3					
(1 – Low, 2 - Medium, 3– High)	СОЗ										3					
	CO4									3	3					
Course Content		Introd	ginners, uction									Discussi				

-Importance of spoken English in the placements and Group Discussion

Beginners Conversation

- -Self Introduction-Introducing Self
- -Introducing each other in a team (Pair Activity)

Functional Conversation

- -Seeking Permission from Seniors Teachers and other superiors (Team Activity)
- -Asking Direction-Direction from stranger or from Helpline
- -Making Requests-Requests for borrowing books, applications, or any other help from office staff in college or outside.
- 2. Just a minute:
- -Give a topic and ask the student to talk impromptu.

	-To present the topic in a structured manner.
	UNIT – II
	 3. Structuring and forming sentences Structure of mother tongue and pit falls in translation to English. Formation of sentences in English 4. Errors in Usage Difficulty in right usage of words. Difficulty in Pronunciation-Phonetic differences in mother tongue and English –areas to improve. Idioms and Phrase –Frequently used Idiom and Phrases which help to enhance the quality
	of presentation and make the presentation meaningfulMeaning of frequently used Idioms and Phrases.
	UNIT – III 4. Introduction to different ways of speakingElocution, Debate and Extempore -Principles of Elocution and its challenges practice in sessionPrinciples of Debates and its challenges –practice sessionPrinciples of Extempore - its pitfalls- practice sessions.
	UNIT – IV 5. Etiquette -Need of Etiquette in Social arena -Dining Etiquette -Social Etiquette in conversation -formal and informal gatheringBook a table etc. 6. Versant Test -Mode of versant Test, -Aim of the test and various methods it follows -Practice session.
Text books	
Reference books	[R1] KamaleshSadanand, "A Spoken English", VOL 1&2; Orient BlackSwan, Second Edition, 2014.[R2] "Communicative English"; Pearson; 2010
E-resources and other digital material	

20CE4607	AUTODESK REVIT AND EXCEL FOR ENGINEERS

Course Category:	Skill Oriented Course-1	Credits:	2
Course Type:	Practical	Lecture - Tutorial - Practice:	0-0-3
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outco	Course outcomes		Upon successful completion of the course, the student will be able to:												
		CO1		analyze 3D Structural elements using Autodesk Revit and develop drawings with the necessary details for construction											
		CO2	apply spreadsheet techniques to solve different engineering problems.												
Contributio n of Course Outcomes		PO 1											PO 12	PSO 1	PSO2
towards achievemen t of Program Outcomes	CO1	2	1			2						3		2	1
(1 – Low, 2 - Medium, 3 – High)	CO2	2	2			2						3		2	1
Course Content		3D mod	and Dra te additicing with ting and constrate lel using celling Stoonstratio	wing onal g h Stru mana the S g Auto eel tr	the ogrids acturating Skills odesk uss fi	letails and I al Col Call and I and I arame	s of the evels out very stream of the evel stream o	he fo , fam s, Be views ledge uctur design	llowinily control ams, ,duple reques n control	ng 3I onten walls icatin ired nectinagin	t , floo ngvie to co	ors, fo ws, <i>A</i> onvert	unda Annot Auto	tions ations ocadd 2	D drawing to

	B: Excel for Engineers										
	 Using excel as a engineering tool that helps solve real world problems related to civil engineering. Gain knowledge in excel and visual basics for applications. Create spreadsheets to solve different structural design problems. Utilize excel engineering for optimization and uncertainty analysis. Introduce user forms and user controls for overall project control 										
Text books	 [T1] Auto desk Rivet structures manual. [T2] Exploring Autodesk Revit 2020 for structures, 10thedition, byProf. Sham Tickoo, Purdue University Northwest, USA [T3] MS Excel user manual. 										
Reference books	[R1] Autodesk Revit 2021 Structure Fundamentals by By <u>ASCENT</u> publications Published August 10, 2020, ISBN: 978-1-63057-358-4 ISBN 10: 1630573582										
E-resources and other digital material	https://www.coursera.org/learn/autodesk-revit-for-structural-design-exam-prep										

20MC4108A	ENVIRONMENTAL STUDIES

Course Category:	Mand	atory	y Cou	ırse				Cre	dits:						
Course Type:	Theor	y							ture-		2	-0-0			
Prerequisite s:	Conso make						to	Continuous Evaluation:						40+40+3+17	
								1	nestei luati		d				
		Total Marks:											1	00	
Course	Upon	succ	essfu	ıl con	npleti	on of	the o	course	e, the	stude	nt wi	ll be a	ıble t	o:	
Outcomes	CO1				ous fa				egrad	ation	of na	tural 1	esou	rce,	
	CO2			-				• /	ed fo	r biod	livers	sity(ap	ply)		
	CO3	realize and explore the problems related to environmental pollution and its management(analyze, evaluate)													
	CO4	apply the information and technology to analyze social issues, use acts												cts	
	<u> </u>	P	P	P	P	P	P	P	P	P	P	P	P	PSO	PSO
Contribution of Course Outcomes		О	O 2	O 3	O 4	O 5	O 6	O 7	O 8	O 9	O 10	O 11	O 12	1	2
towards	CO1	1							1					1	
achievement of Program	CO2		1	1							1			1	
Outcomes	CO3				1	1							1	1	
(1-Low,	CO4													1	
Medium-2, 3- High)							1	1	1						
Course	UNIT	Ί		1					1		1	1			
Content	The N	Multi	disci	plina	ry Na	ature	of E	nviro	nmen	tal S	tudie	s Def	initio	n, scop	e and
	impor	tanc	e Ne	ed for	publ	ic aw	arene	ess.							
	NAT														
						ON-R	RENE	EWA]	BLE	RES	OUR	CES:	Nati	ural res	ources
	and as			•		TEC C	T T	,			., .•	1 2		.· ~	n. 1
	` ′									•				ation. T	imber
	extrac			_											
														e and g	ground
	water,			_									-	nems. ntal effe	ects of
	extrac								слр	onal	.оп, с	/11 V 11 O	1111101	ıtaı CIIC	CIS 01
		_		_					roble	ms c	hano	es car	ısed 1	by agric	culture
	(u)r(עטי	KES	OUL	ICE:). W(ли І	oou p	noble	шѕ, С	mang	es cal	iscu I	by agric	Juiture

and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity.

(e)ENERGY RESOURCES: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources.

(f)LAND RESOURCES: Land as a resource, land degradation, man induced landslides, soil erosion and desertification. Role of an individual in conservation of natural resources. Equitable use of resources for sustainable lifestyles.

UNIT II

ECOSYSTEMS

Concept of an ecosystem. Structure and function of an ecosystem. Producers, consumers and decomposers. Energy flow in the ecosystem. Ecological succession. Food chains, food webs and ecological pyramids. Introduction, types, characteristic features, structure and function of the following ecosystem:

- (a) Forest ecosystem (b)Grassland ecosystem (c)Desert ecosystem
- (d)Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

BIODIVERSITY AND ITS CONSERVATION

Introduction, definition: genetic, species and ecosystem diversity. Biogeographically classification of India. Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values. Biodiversity at global, National and local levels. India as a mega-diversity nation. Hot-spots of biodiversity. Threats to biodiversity: habitat loss, poaching of wildlife, manwildlife conflicts. Endangered and endemic species of India. Conservation of biodiversity: in-situ and ex-situ conservation of biodiversity.

UNIT III

ENVIRONMENTAL POLLUTION

Definition, Causes, effects and control measures of (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards

SOLID WASTE MANAGEMENT: Causes, effects and control measures of urban and industrial wastes. Role of an individual in prevention of pollution.

DISASTER MANAGEMENT: Floods, earthquake, cyclone and landslides.

UNIT IV

SOCIAL ISSUES AND THE ENVIRONMENT:

From unsustainable to sustainable development. Urban problems related to energy.

Water conservation, rain water harvesting, watershed management. Resettlement and rehabilitation of people; its problems and concerns.

ENVIRONMENTAL ETHICS Issues and possible solutions. Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Wasteland reclamation. Consumerism and waste products.

ENVIRONMENT PROTECTION ACT

Air (Prevention and Control of Pollution) Act. Water (Prevention and Control of Pollution) Act. Wildlife Protection Act. Forest Conservation Act. Issues

	involved in enforcement of environmental legislation.
	PUBLIC AWARENESS
	Human Population and the Environment, Population growth, variation among
	nations, Population explosion—Family Welfare Programme.
	ENVIRONMENT AND HUMAN HEALTH
	Human rights, Value education, HIV/AIDS, Women and Child Welfare.
	Role of Information Technology in environment and human health.
	FIELD WORK/ CASE STUDIES
	Visit to a local area to document environmental assets—
	river/forest/grassland/hill/ mountain. Visit to a local polluted site—
	Urban/Rural/Industrial/Agricultural. Study of common plants, insects, birds.
	Study of simple ecosystems—pond, river, hill slopes, etc.
Self-Study	Water resources, soil resources, mineral resource: radioactive elements, Threats
	to biodiversity, Solid waste management, Role of Information Technology in
	environment and human health.
Text books	[T1] Erach Bharucha. 2004, Environmental Studies for undergraduate courses,
	University Grants Commission, New Delhi, Bharati Vidyapeeth Institute of
	Environment Education and Research.
Reference	[R1] AnjaneyuluY. Introduction to Environmental sciences, B S Publications
books	PVT Ltd, Hyderabad
	[R2] Anjireddy.M Environmental science & Technology, BS Publications PVT
	Ltd, Hyderabad.
	[R3] Benny Joseph, 2005, Environmental Studies, The Tata McGraw-Hill
	publishing company limited, New Delhi.
	[R4] Principles of Environmental Science. & Engg. P. Venu Gopala Rao, 2006, Prentice-Hall of India Pvt. Ltd., New Delhi.
	[R5] Ecological and Environmental Studies – Santosh Kumar Garg, Rajeswari
	Garg (or) Rajani Garg, 2006, Khanna Publishers, New Delhi.
	[R6] Essentials of Environmental Studies, Kurian Joseph & R Nagendran,
	Pearson Education publishers, 2005.
	[R7] A.K Dee – Environmental Chemistry, New Age India Publications.
	[R8] BharuchaErach- Biodiversity of India, Mapin Publishing Pvt.Ltd
E-resources	https://www.ugc.ac.in/oldpdf/modelcurriculum/env.pdf
and other	1
digital material	

20CEM 4701	INTRODUCTION TO CIVIL ENGINEERING- CONCEPTS AND MATERIALS.

Course Category:	Minor	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 1- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course Outcomes	Upon s	Upon successful completion of the course, the student will be able to:														
	CO1		understand evaluation of civil engineering materials and use of stone as a primary component.													
	CO2	eval	evaluate the quality of bricks and timber.													
	CO3	appl	apply test on cement and understand varieties of concrete.													
	CO4	anal	yze th	ie qual	lity of	steel ar	nd pair	ıts.								
Contributio n of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	
towards achievement	CO1	3						2							3	
of Program Outcomes	CO2	3						2							3	
(1 – Low, 2 -	СОЗ	3						2							3	
Medium, 3 – High)	CO4	3						2							3	
Course Content	UNIT	Γ – I														
Content	INTRO Genera Engine STON Classif	al Intreering ES:	oduct in the	ion to overa	ıll infra	structi	ıral de	velopn	nent of	the co	untry.					

	Tools for blasting; Common building stones ofIndia.
	UNIT – II
	BRICKS: Composition of good brick earth; Qualities of good bricks; Tests for bricks; Classification of bricks; Size and weight of bricks.
	TIMBER: Definition; Structure of a tree; Qualities of good timber; Preservation of timber; Seasoning of timber; Advantages of timber construction; Use of timber.
	UNIT – III
	CEMENT Basic Ingredients; Grades of cement; Properties of cement; Field tests on cement. CONCRETE Definition; properties; Special Concretes-Light weight concrete, High density concrete, Fibre reinforced concrete, Polymer concrete.
	UNIT – IV STEEL General; Manufacture of steel; Uses of steel; Market forms of steel; Properties of mild steel; Properties of hard steel;
	PAINTS, VARNISHES AND DISTEMPERS General; Painting; Varnishing; Distempering; Wall paper; White washing; Colour washing.
Text books	[T1] Engineering Materials by S. C. Rangwala; CharotarPublishing House.[T2] Building construction by B. C. Punmia -Laxmi Publications, New Delhi.
Reference books	[R1]Building construction and construction materials by G.S.Birdie and T.D.Ahuja, Dhanpathrai publishing company, New Delhi.
E-resource and other digital material	http://nptel.ac.in/courses/105102088/

20CEM5702	METHODOLOGY FOR CIVIL ENGINEERING
	CONSTRUCTION

Course Category:	Minor	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3-1-0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes		Upon	succes	sful co	mpletion	on of th	ne cour	rse, the	studen	t will b	e able	to:			
	CO1	evaluate the feasibility of the construction project													
		CO2	apply planning and construction contracts												
		CO3	O3 analyse construction finance and organization structure												
		CO4	evaluate the materials and adopt the quality control procedures												
Contribution of Course Outcomes		PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
towards achievement	CO1	1	1	1							1	2			1
of Program Outcomes	CO2	1	1	1							1	2			1
(1 – Low, 2 - Medium, 3 –	CO3	1	1	1						1	1	2			1
High)	CO4	1		1							1	2			1
Role stages PRO. Introd			of gove in con ECT l uction,	struction FEASI techni	t and con of a BILIT ical an	construction projective REI alysis, sibility	t, the copy of the	onstruc S ial ana	ction te	eam.					various nalysis,

	UNIT – II PLANNING FOR CONSTRUCTION PROJECTS General, steps involved in planning, objectives, principles, advantages of planning, limitations, stages and types of planning, stages of planning by different agencies. CONSTRUCTION CONTRACTS & TENDERS General, contract documents, types of contract, tender notice, types of tenders, tender documents, Earnest money deposit and security deposit.
	UNIT – III CONSTRUCTION FINANCING AND CONTROL Introduction, costs associated with constructed facilities, estimates, effect of scale on construction cost, means of financing, application of financial assistance, cost control. ORGANISING FOR CONSTRUCTION Importance, general principles, types of organization structures, forms of business organizations.
	UNIT – IV MATERIALS MANAGEMENT Importance, Objectives, Costs, functions of material management, uses, stores management, material procurement, maintaining stocks, material handling. QUALITY CONTROL IN CONSTRUCTION Elements of quality, Organisation for quality control, Quality assurance techniques, Documentation, Quality control circles, variation.
Text books	[T1] Dr.S.Seetharaman, "Construction Engineering and Management", 5 th Edition, Umesh Publications, New Delhi,
Reference books	[R1] Kumar Neeraj Jha, "Construction Project Management", 2nd Edition, Pearson Education India, New Delhi, 2015
E-resources and other digital material	

20CEM6703A	SYSTEM DESIGN FOR SUSTAINABILITY
200111070311	SISIEM DESIGN FOR SOSTAM ANDIETT

Course Category:	Minor	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

		Upon	success	sful co	mple	tion o	f the c	ourse	, the s	studer	nt will	be ab	le to:		
		CO1	understand selection of resources with low environmental impact;												
		CO2	apply design of products with low environmental impact;												
		CO3	analyse product-Service System Design for eco-efficiency;												
		CO4	evalı	uate de	esign	for so	cial e	quity	and co	ohesio	on.				
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2
towards achievement	CO1	1		1			2	3					1		2
of Program Outcomes	CO2	1		1			2	3					1		2
(1 – Low, 2 - Medium, 3 –	CO3	1		1			2	3					1		2
High)	CO4	1		1			2	3					1		2
Addr Syste for A DIST			RODU ssing S	Sustain lied to A) Ago TED E	abilit Dist enda. E NER	ribute .GY S	d Ren	ewab E MS	le Ene	ergy;	United	d Natio	ons Su		Service ility Energy

UNIT - II

SUSTAINABLE PRODUCT-SERVICE SYSTEM (S.PSS)

Introduction to S.PSS; Types; Sustainability Benefits; Barriers and Limits

SUSTAINABLE PRODUCT-SERVICE SYSTEM APPLIED TO DISTRIBUTED RENEWABLE ENERGIES

A Win-Win Opportunity; Scenario for S.PSS applied to Distributed Renewable Energy(DRE); S.PSS Applied to DRE: Sustainability Potential Benefits; S.PSS Applied to DRE: Sustainability Potential Benefits

UNIT - III

DESIGN FOR SUSTAINABILITY: AN INTRODUCTION

Evolution of Design for Sustainability; Product Life Cycle Design or Eco-Design; Design for Eco-Efficient Product-Service Systems; Design for Social Equity and Cohesion; Design for Socio-Technical Transitions; State of the Art of Design for Sustainability Human-Centred and Universal Design

SYSTEM DESIGN FOR SUSTAINABLE ENERGY FOR ALL: A NEW ROLE FOR DESIGNERS

System Design for Sustainable Energy for All (SD4SEA); SDSEA Design Criteria, Guidelines and Examples

UNIT - IV

METHOD AND TOOLS FOR SYSTEM DESIGN FOR SUSTAINABLE ENERGY FOR ALL(SD4SEA)

Method for System Design for Sustainable Energy; for All; Sustainability Design Orienting Scenario; (SDOS) on S.PSS&DRE; Sustainable Energy for All Idea Tables and Cards; E.DRE—Estimator for Distributed Renewable Energy; PSS + DRE Innovation Map S.PSS + DRE Design Framework & Cards; The Energy System Map Innovation Diagram for S.PSS&DRE; Concept Description Form for S.PSS and DRE Stakeholder Motivation and Sustainability Table

PRACTICAL EXAMPLES OF APPLICATION OF SDSEA APPROACH/TOOLS AND OTHER METHODS TO ACHIEVE SUSTAINABILITY

Solar Energy Company, Botswana; SMEs for Energy, Uganda; Summary and Considerations; green design; emotionally durable design; cradle to cradle design, biomimicry design; design for base of a pyramid design; design for social innovation

Text books

- [T1] FabrizioCeschin, İdilGaziulusoy, Design for Sustainability A Multi-level Framework from Products to Socio-technical Systems, Taylor and Francis, 2020.
- [T2] Carlo Vezzoli; FabrizioCeschin; Lilac Osanjo; Mugendi K. M'Rithaa; Richie Moalosi; VennyNakazibwe; Jan Carel Diehl, Designing Sustainable Energy for All Sustainable Product-Service System Design Applied to Distributed Renewable Energy; Green Energy and Technology, Springer, 2018.

Reference books	 [R1] Ceschin, F., and Gaziulusoy, I. (2016) Design for Sustainability: An Evolutionary Review, in Lloyd, P. and Bohemia, E. (eds.), Future Focused Thinking - DRS International Conference 2016, 27 - 30 June, Brighton, United Kingdom. [R2] Elisa Bacchetti, Towards sustainable energy for All Designing Sustainable Product-Service System applied to Distributed Renewable Energy, Politecnico di Milano, Milano, Italy 2017
E-resources and other digital material	Quality as Driver for Sustainable Construction—Holistic Quality Model and Assessment.pdf

20CEM6703B	ECOLOGY AND ENVIRONMENT
------------	-------------------------

Course Category:	Minor	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3-1-0
Prerequisites:	20CH1102 - Engineering chemistry 20MC4108B -Environmental studies	Continuous Evaluation:	30
	2017C+100D -Environmental studies	Semester end Evaluation:	70
		Total Marks:	100

Course outcomes		Upon	succes	sful co	mple	tion o	f the c	ourse	, the s	studen	t will b	e able 1	to:		
		CO1	analyze the issues concerned with ecology, environment and sustainability.												
		CO2	evaluate the quantity and quality of water based on the available natural sources.												
		CO3	evaluate the water purification units and components of the distribution systems.												
		CO4	ana	analyse the effect of various attributes of environmental pollution											
Contribution of Course Outcomes		PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO 11	PO12	PSO 1	PSO2
towards achievement	CO1	1						2					2		
of Program Outcomes	CO2	2	3		3		1						1		2
(1 – Low, 2 - Medium, 3 –	CO3	2	1	3			1								3
High))	CO4	1	1	2	1										2
Defini ecolog social SUST			tion, s y, eco securit AINA	scope system y BILIT y — de	& in m - b	nporta alanc	ince, ed eco	need osyste	for p	oublic iman	activitio	ness- e es - foc	NT environments od, shelte	r, econo	omic and

	UNIT – II WATER SUPPLY - QUANTITYOF WATER Sources of water, objectives of water supply systems, Per capita consumption; Types of demands; Fluctuations in demand.
	QUALITY OF WATER
	Impurities in water; routine water analysis - physical, chemical and bacteriological tests; Standards for drinking water; Water borne diseases.
	UNIT – III WATER TREATMENT
	Fundamentals of purification of water; plain sedimentation; coagulation and types of coagulants; sedimentation and coagulation tanks; theory of filtration; slow sand and rapid sand filters; operation; disinfection.
	DISTRIBUTIONSYSTEMS Methods of supply; Layouts, Plumbing-pipes and fittings; Traps; One pipe and Two pipe systems.
	UNIT – IV ENVIRONMENTAL POLLUTION
	Environmental Pollution and their effects. Water pollution, Land pollution, Air pollution, Public Health aspects.
	SOLID WASTE MANAGEMENT
	Solid waste characteristics—basics of on-site handling and collection—separation and processing — Incineration—Composting-Solid waste disposal methods — fundamentals of land filling.
Text books	[T1] Benny Joseph, "Environmental Studies", Tata Mc Graw Hill, 2005 [T2] IgnaciMuthu S, "Ecology and Environment", Eastern Book Corporation, 2007 [T3] Birdie G.S. and Birdie J. S., "Water Supply and Sanitary Engineering", 9 th ed., Dhanpat Rai Publishing Company, New Delhi, 2015.
Reference books	 [R1] Garg S. K., "Environmental Engineering Vol. I& II- Water supply engineering", Khanna Publishers, New Delhi, 2017. [R2] Gurucharan Singh, "Water Supply and Sanitary Engineering", Standard Publishers
	Distributors, Delhi, 2009. [R3] Anjaneyulu Y. "Introduction to Environmental sciences", B S Publications PVT Ltd, Hyderabad 2004.
E-resources and other	https://nptel.ac.in/courses/127106004
digital material	(Ecology and environment by Dr. Abhijit P. Deshpande, IIT Madras).

20CEM7704A INFRASTRUCTURE AND TRANSPORTATION SYSTEM PLANNING

Course Category:	Minor	Credits:	4
Course Type:	Theory	Lecture - Tutorial -Practice:	3 - 1 - 0
Prerequisites:		Continuous Evaluation:	30
•		Semester end Evaluation:	70
		Total Marks:	100

	Upon	succes	sful co	mpleti	ion of	the co	urse, t	he stud	dent w	ill be a	ble to	:				
	CO1	unde	understand different pavement structures													
Course	CO2	unde	understand materials and methods used for construction													
Outcomes	CO3	understand the components of the Railway Track.														
	CO4	analy	analyse geometric features of railway track													
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	
Outcomes towards achievement of	CO1	3						1						3		
Program	CO2	3						1					1	3		
Outcomes	CO3	3												3		
(1 – Low, 2 - Medium, 3 – High)	CO4	3												3		

Course Content

UNIT-I

INTRODUCTION TO ROADWAYS

Different Modes of Transportation, Road development in India during twentieth century, Classification of different types of roads, Highway cross section elements,

PAVEMENTS

Different types of pavements – Cross section, functions of pavement layers, Need for design, importance of drainage

UNIT-II

MATERIALS FOR PAVEMENTS

Materials used in highway construction- soil, fine and coarse aggregate, bituminous binders, cement, water.

CONSTRUCTION OF PAVEMENTS

Construction of flexible pavement, Construction of rigid pavement, Equipment for excavation, equipment for compaction.

	UNIT-III INTRODUCTION TO RAILWAYS Historic development of railways in India, Classification of Indian Railways, Different gauges in Indian Railways COMPONENTS OF RAILWAY TRACK Permanent way cross section and functions, Types of rails, Types of Sleepers, Types of ballast, cross section of ballast, coning of wheels, sleeper density, length of rails.
	UNIT-IV GEOMETRIC FEATURES AND OPERATION Super elevation or cant, cant deficiency, cant excess, negative super elevation concept, types of transition curves, gradient types. POINTS AND CROSSINGS Switches, crossings, working principle of turnout, classification of signals, interlocking.
Text books	 [T1] Sk Khanna, CEG Justo, A Veeraragavan, Highway Engineering, Nem Chand & Bros, 10th Edition, 2018 [T2] Satish Chandra, MM Agarwal, Railway Engineering, Oxford University Press, 2nd Edition 2013
Reference Book	[R1] Saxena, S.C. and Arora. S, Railway Engineering, Dhanpat Rai, NDLS, 2009
E-resources and other digital material	https://nptel.ac.in/courses/105/105/105105107/ https://nptel.ac.in/courses/105/101/105101087/ https://archive.nptel.ac.in/courses/105/107/105107123/

20CEM7704B	CONSTRUCTION PLANNING AND EXECUTION

Course Category:	Minor	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3-1-0
Prerequisites:	-	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes		Upon	success	sful co	omple	tion o	f the c	course	the s	studer	nt will be	e able	to:		
	CO1	evaluate planning process of various construction projects and apply various software in various construction process													
		CO2	CO2 apply scheduling of various construction projects and apply PERT and CPM networking methods.												
		CO3	CO3 apply the various types of construction contracts and understand the elements of quality planning and the implication												
	CO4		yse the			_	•				nd the	various s	safety con	ncepts	
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO 11	PO12	PSO1	PSO2
towards achievement	CO1	2	2	2	2	2				2	2	3	2		2
of Program Outcomes	CO2	2	2	2		2				2	3	3	2		2
	CO3	2	2					2	2	2	2	3			2
(1 – Low, 2 - Medium, 3 – High)	CO4	2	2					2	2	2	2	3			2
Course Conte	ent	planni IT AP	NING involving; PLICA ruction	ed in ATIO proce	NS IN	N COI	NSTR uteriz	RUCT ation	ION in Co	nstruc					Stages of

	UNIT – II SCHEDULING Preparation of construction schedules; Methods of scheduling; Bar charts; Mile stone charts; Controlling; Job layout; Factors affecting job layout; Project work break down. PERT AND CPM Advanced planning and scheduling concepts – Computer applications – Case study. UNIT –III CONSTRUCTION CONTRACTS Indian Contracts Act – Elements of Contracts – Types of Contracts – Features – Suitability – Design of Contract Documents – International Contract Document – Standard Contract Document – Law of Torts QUALITY MANAGEMENT Introduction – Definitions and objectives – Factor influencing construction quality – Responsibilities and authority
	UNIT – IV LEGAL REQUIREMENTS Insurance and Bonding – Laws Governing Sale, Purchase and Use of Urban and Rural Land – Land Revenue Codes – Tax Laws – Income Tax, Sales Tax, Excise and Custom Duties and their Influence on Construction Costs – Legal Requirements for Planning, Local Government Laws for Approval. SAFETY MANAGEMENT Accidents and their Causes – Human Factors in Construction Safety - Costs of Construction Injuries – Occupational and Safety Hazard Assessment – Legal Implications, Owners responsibility and safety – owners responsibility clause.
Text books	[T1].Ming Sun and Rob Howard, "Understanding I.T. in Construction, Spon Press, Taylor and Francis Group, 2004. [T2].Feigenbaum,L., "Construction Scheduling with Primavera Project Planner: Prentice Hall Inc., 2002. [T3].George J.Ritz, "Total Construction Project Management", McGraw-Hill Inc,1994.
Reference books	 [R1] Gajaria G.T., "Laws Relating to Building and Engineering Contracts in India", 4 th Edition, M.M.Tripathi Private Ltd., Bombay, 2000. [R2] Jimmie Hinze, "Construction Contracts", 3 rd Edition, McGraw Hill, 2010. [R3] Joseph T. Bockrath, "Contracts and the Legal Environment for Engineers and Architects", 7 th Edition McGraw Hill, 2010. [R4] Paulson, B.R., "Computer Applications in Construction", Mc Graw Hill, 1995.
E-resources and other digital material	https://nptel.ac.in/courses/105103093 https://nptel.ac.in/courses/105104161

Course Category:	Honors	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3-1-0
Prerequisites:	20CE5404/A – Advanced Structural Analysis.	Continuous Evaluation:	30
	Alialysis.	Semester end Evaluation:	70
		Total Marks:	100

Course outcome	es	Upon	success	ful co	mple	tion o	f the c	ourse	, the s	studen	t will	be abl	e to:		
		CO1	_	analyze the buckling of columns, beam-columns and find critical loads using energy and non-energy methods											
	CO2	analy	analyze the lateral buckling of beams by energy and non-energy methods												
	СОЗ	analyze the buckling of rectangular plates and find critical compressive loads for various boundary conditions													
	CO4	analy	analyze the buckling of axially loaded cylindrical shells												
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
Outcomes towards	CO1	3	2		1	1								3	
achievement of Program Outcomes	CO2	3	2		1	1								3	
	CO3	3	2		1	1								3	
(L-1, M-2, H-3)	CO4	3	2		1	1								3	

UNIT – I

BUCKLING OF COLUMNS

Introduction; Methods of finding critical loads; Critical loads for straight columns with different end conditions and loading; Inelastic buckling of axially loaded columns; Energy methods; Prismatic and non-prismatic columns under discrete and distributed loading.

BEAM COLUMNS

Theory of Beam column – Stability analysis of beam column with different types of loads.

UNIT – II

BEAMS UNDER PURE BENDING

Cantilever and simply supported beams of rectangular and I sections.

	BEAMS UNDER TRANSVERSE LOADING Energy methods; Solution of simple problems.
	UNIT – III
	PLATES SIMPLY SUPPORTED ON ALL EDGES Plates simply supported on all edges and subjected to constant compression in one or two directions.
	PLATES SIMPLY SUPPORTED ALONG TWO OPPOSITE SIDES Plates simply supported along two opposite sides perpendicular to the direction of compression and having various edge conditions along the other two sides.
	UNIT – IV BUCKLING OF AXIALLY COMPRESSED CYLINDRICAL SHELLS Introduction to buckling of axially compressed cylindrical shells, failure of axially compressed cylindrical shells.
	CRITICAL LOAD OF AN AXIALLY LOADED CYLINDER Linear theory of cylindrical shells-donnell equations, critical load of an axially loaded cylinder.
Text books	[T1] Theory of elastic stability by Timoshenko & Gere, McGraw Hill, 1961. [T2] Background to buckling by Allen and Bulson, McGrawHill, 1980.
Reference books	[R1] Elastic stability of structural elements by N.G.R.Iyengar, Macmillan India Ltd., 2007. [R2] Principles of Structural stability theory by AlexandarChajes, 1974.
E-resources and other digital material	https://nptel.ac.in/courses/105105166 https://youtu.be/ZSQ_5lRj5gI https://nptel.ac.in/courses/105108141

20CEH4804B	SUSTAINABLE CONSTRUCTION METHODS
------------	----------------------------------

Course Category:	Honors	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3-1-0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcom	Upon	succes	sful co	mpletion	on of tl	ne coui	se, the	studer	t will b	oe able	to:				
		CO1	apply the green buildings and sustainable design aspects												
		CO2	analyze the water conservation and energy efficiency												
		CO3	evalı	evaluate the sustainable materials and wellbeing of residents											
		CO4	O4 apply principles of green rating systems in construction												
Contribution of Course Outcomes		PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
towards achievement	CO1	1		1				2	1						1
of Program Outcomes	CO2	1		1				2	1						1
(Low – 1, Medium - 2,	CO3	1		1			2	2	1						2
High - 3)	CO4	1		1				2	1						2
Course Conten	t	Green buildi	ODUC buildings AINA buildings	ng, (BLE I ng requ	Global DESIG uiremer	N nts, soi	l erosio	on cont	rol, nat	tural to	pograp	uilding ohy, veg enities	getation	n, heat	island

	UNIT – II
	WATER CONSERVATION Water efficient plumbing fixtures, rain water harvesting, landscape design, management of irrigation system, recycle and reuse of waste water, water quality
	ENERGY EFFICIENCY HCFC free equipment, minimum energy performance, enhance energy performance, alternate water heating systems, on-site renewable energy – common lighting, energy efficiency in common area equipment, integrated energy monitoring system
	UNIT – III
	MATERIALS & RESOURCES Separation of house-hold waste, green procurement policy, local materials, eco friendly wood based materials, alternate construction material, handling of construction & demolition material.
	RESIDENT HEALTH & WELLBEING Minimum day lighting, Ventilation design, no smoking policy, enhanced day lighting, enhanced ventilation design, cross ventilation
	UNIT-IV
	CONSTRUCTION AND OPERATIONS
	Construction, Occupancy & Operations
	GREEN RATING SYSTEMS IGBC, LEED, GRIHA, BEE, benefits of rating systems, procedure to get IGBC certification
Text books	[T1] IGBC Green homes rating system Version 3.0 – A bridged reference guide, September 2019 [T2] Jerry Yudelson, "Green building through Integrated design", Mc Graw Hill, 2009 [T3] Gautham R K, "Green Homes", BSP Books Private Limited, New Delhi, 2009.
Reference books	[R1] "Sustainable building technical manual- Green building design, constructions and operation", Produced by Public Technology Inc., US Green Building Council
E-resources and other digital material	

20CEII 1001 C	DEGLON OF FORMWORK
20CEH4801C	DESIGN OF FORMWORK

Course Category:	Honors	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3-1-0
Prerequisites:		Continuous Evaluation:	
		Semester end Evaluation:	
		Total Marks:	

Course outcomes	Upo	Upon successful completion of the course, the student will be able to:													
	CO1	apply a right material for manufacturing false work and form work specific									vork s	uiting			
	CO2	ana	alyze 1	the pro	essure	of co	ncrete	on fo	rm w	ork					
	CO3	eva	luate	the ac	dequa	ey of o	deckir	g, for	m wo	rk and	l false	work			
	CO4				sequei volve						_		_	uctures	s and
Contributi on of Course		P O 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O 1	PS O 2
Outcomes towards	CO1		1			2	1	1		1	1				2
achieveme nt of	CO2	2	2	1		2								2	
Program Outcomes	CO3	3	3	3			1			1				3	1
(Low – 1, Medium - 2, High – 3)	CO4	1	2			1	2	1		1	1			2	
Course Content	UNIT – I INTRODUCTION Formwork and false work, Temporary work systems, Construction planning and site constraints. MATERIALS OF FORMWORK Materials and construction of the common formwork and false work systems, Special and proprietary forms. UNIT – II FORM WORK Formwork – Design: Concrete pressure on forms, Design of timber and steel forms														

	ANALYSIS OF FORMWORK Loading and moment of formwork.
	UNIT – III DESIGN OF DECKS Types of beam, decking and column formwork, Design of decking
	FALSE WORKS False work design, Effects of wind load, Foundation and soil on false work design.
	UNIT – IV SPECIAL FORMS The use and applications of special forms.
	CONSTRUCTION SEQUENCE AND SAFETY IN USE OF FORMWORK Sequence of construction, Safety use of formwork and false work.
Text books	 [T1] Robert L. Peurifoy and Garold D. Oberiender, "Formwork for Concrete Structures", McGraw-Hill, 1996. [T2] Tudor Dinescu and Constantin Radulescu, "Slip Form Techniques", Abacus Press, Turn Bridge Wells, Kent, 2004.
Reference books	[R1] Austin, C.K., "Formwork for concrete", Cleaver - Hume Press Ltd.,London, 1996[R2] Michael P. Hurst, "Construction Press", London and New York., 2003
E-resources and other digital material	Open web

20CEH5802A ENGINEERING ROCK MECHANICS

Course Category:	Honors	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-1-0
Prerequisites:	20ES3102A - Engineering Geology	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcome	s	Upon	success	sful co	mple	tion o	f the c	ourse	, the s	studer	nt will	be ab	le to:		
		CO1	evaluate rock masses based on classification systems												
		CO2	apply the field and laboratory testing on rocks to asses engineering properties										to assess		
		CO3													
		CO4		evaluate the bearing capacity of foundation on rocks and understand various slope stability methods											
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2
towards achievement of	CO1	3	2	2			3								1
Program Outcomes	CO2	3	2	2			3								1
(Low – 1, Medium - 2,	CO3	3	2	2			3								1
High - 3)	CO4	3	2	2			3								1
Objec			DDUC	rock n	nechar	nics, F	ields o	of app	lication	of ro	ock me	echanic	s. Geo		C KS Classification of
	ROCK Rock (ek Stru	ıcture	Ratir	ng (RS	SR), R	ock M	ass Rat	ing (RMR).	

	UNIT - II LABORATORY TESTS - PHYSICO — MECHANICAL PROPERTIES OF ROCKS Compressive strength, Tensile strength, Direct shear test, Triaxial shear test, Slake durability test, Schmidt rebound hardness test FIELD TESTS - PHYSICO — MECHANICAL PROPERTIES OF ROCKS Uniaxial jacking test- Pressure meter tests Hydraulic fracturing- Flat jack test Stress. Electric resistivity method- Seismic refraction method
	UNIT – III FAILURE CRITERIA FOR ROCK AND ROCK MASSES Mohr-Coulomb Yield Criterion, Hoek-Brown Criterion, STRENGTH AND DEFORMABILITY OF JOINTED ROCK MASS Shear strength of Rock joints, Deformability of Rock joints, Concept of joint compliance
	UNIT - IV FOUNDATION ON ROCKS Estimation of bearing capacity, Settlement in rocks, Pile foundation in rocks. STABILITY OF ROCK SLOPES AND METHODS TO IMPROVE ROCK MASS RESPONSES Modes of failure. Grouting in Rocks, Rock bolting, Rock Anchors.
Text books	 [T1] Goodman-Introduction to Rock mechanics, Willey International (1980). [T2] Ramamurthy, T Engineering in Rocks for slopes, foundations and tunnels, Prenice Hall of India. (2007) [T3] Rock mechanics in engineering practice: Stag and Zienkiewiz, John wiley& sons
Reference books	 [R1] Jaeger, J. C. and Cook, N. G. W. — Fundamentals of Rock Mechanics, Chapman and Hall, London.(1979). [R2] Hoek, E. and Brown, E. T. Underground Excavation in Rock, Institution of Mining and Metallurgy, 1982. [R3] Brady, B. H. G. and Brown, E. T Rock Mechanics for Underground Mining, Chapman & Hall, 1993. [R4] Rock mechanics for engineers: Varma, B.P,Khanna Publishers
E-resources and other digital material	

ADVANCED STEEL DESIGN
A

Course Category:	Honors	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3-1-0
Prerequisites:	Design of Steel Structures	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	
			100

Course outcome	Upon	success	sful co	mple	tion o	f the c	course	the s	studer	nt will	be ab	le to:			
		CO1		analyse safe section for Tension members with lug angle and Built up Compression Members											
		CO2	analyse safe section for Plate girders												
		CO3	analy	analyse for safe section for gantry girders											
		CO4	analy	yse sat	fe sec	tion fo	or ecc	entric	conne	ection	ıs				
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2
towards achievement of	CO1	2		2		3	1						1	3	
Program Outcomes	CO2	2		2		3	1						1	3	
(Low – 1, Medium - 2,	CO3	2		2		3	1						1	3	
High - 3)	CO4	2		2		3	1						1	3	
Course Content		UNI	Г - І			ı	I	ı		ı					
	TENS	SION	MEN	ABE l	RS (I	S800	-200	7)							
	Desig	n of te	ension	n mer	nbers	with	Lug	angl	es wi	th bo	lted a	nd w	elded o	connections.	
		СОМ	PRES	SSIO	N MI	ЕМВ	ERS	(IS8	00-20	007)					
		Desig									neml	oers w	vith L	aced a	nd Battened

	UNIT - II
	INTRODUCTION TO GANTRY GIRDER Introduction, Various loads, Load effects, explanation of how to calculate loads, Calculation of Maximum SF and Maximum BM using influence lines, Deflections
	DESIGN OF GANTRY GIRDER Design of Gantry Girder, Problems on design of gantry girder.
	UNIT - III
	INTRODUCTION TO PLATE GIRDERS
	Introduction to plate girder, Elements eccentric depth, Design of web and flanges, Design of plate girders without stiffeners, Problems
	DESIGN OF PLATE GIRDERS
	Design of plate girders with stiffeners, Design of plate girders with intermediate stiffeners, Problems on plate girders with intermediate stiffeners
	UNIT – IV SEATED CONNECTIONS Introduction to Connections, Unstiffened seated connections-bolted and welded, Stiffened seated connection-bolted and welded BRACKET CONNECTIONS Bracket Connections, type1-bolted and welded, Bracket connection type2-bolted and welded
Text books	[T1] Duggal, S.K., Limit State Design of Steel Structures, McGraw-Hill, NDLS, 2019.[T2] Bhavikatti, S.S., Design of Steel Structures-By Limit State Method as per IS:800-2007, I. K. IBH Pvt. Ltd., NDLS, 2019.
Reference books	 [R1] Subramanian, N., Design of Steel Structures-Limit State Method Oxford University press, HYB, 2018. [R2] Ram, K.S.S., Design of Steel Structures, Pearson Education India, NDLS, 2015. [R3] Chandra, R. and Gehlot, V., Limit State Design of Steel Structures, Scientific Publishers, NDLS, 2010.
E-resources and other digital material	https://nptel.ac.in/courses/105105162 https://nptel.ac.in/courses/105106113

20CEH5804C GEOSPATIAL DATA PROCESSING

Course Category:	Honors	Credits:	4
Course Type:	Theory and practical	Lecture - Tutorial - Practice:	3 - 0- 2
Prerequisites:	NIL	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course Outcomes	Upon successful completion of the course, the student will be able to:														
	CO1	understand the concepts of Geographical information systems and apply them in various engineering applications.													
	CO2		evaluate appropriate remote sensing data products for mapping, monitoring and management applications. Apply various image processing techniques and their applications. Apply RS and GIS techniques for solving Engineering applications.												
	CO3	appl													
	CO4	appl													
Contributio n of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
towards achievement	CO1	3	2	3		3									3
of Program Outcomes	CO2	3	2	3		3									3
	СОЗ	3	2	3		3								2	
(Low – 1, Medium - 2, High – 3)	CO4	3	2	3		3								2	
Course Content		GRAP onents ted co tions,	of ordina Geo r	GIS, 'ate sys	Types stem, N cing, I	of Da Maps a: Data str	ata, condition of the c	ordina les, Ty	te sys	Maps	and sc	•	coordir	•	

Raster and vector data models, Digitization, Data editing, Errors and corrections, data presentation and generation of thematic maps, spatial database management systems, Data representation, Data storage, Entity relationship models.

Practise

- 1. Introduction to Arc GIS and Georeferencing, projections and re-projections
- 2. Creating a shape file, clip and attribute data manipulation.

UNIT-II

INTRODUCTION TO REMOTE SENSING

Introduction, Data and Information, Remote sensing data collection, Remote sensing advantages & Limitations, Remote Sensing process. Electromagnetic Spectrum, Energy interactions with atmosphere and with earth surface features (soil, water, and vegetation), Resolution, image registration and elements of visual interpretation techniques.

DATA ACQUISITION AND PLATFORMS

Indian Satellites and Sensors characteristics, Remote Sensing Platforms, Sensors and Properties of Digital Data, Data Formats: Introduction, platforms-IRS, Landsat, Sentinel, SPOT, CARTOSAT, etc. sensors, sensor resolutions (spatial, spectral, radiometric and temporal), Optical, Thermal and Microwave, signal to noise ratio, LiDAR data acquisition and processing.

Practise

3.DataDigitization (Draw, edit, delete and update)

UNIT-III

IMAGE CLASSIFICATION TECHNIQUES

Supervised Classification, Unsupervised classification, ANN and SVM classification techniques

SPECTRAL INDICES

Vegetation indices, water related indices, Digital elevation model, Digital terrain model, Triangulated irregular networks.

Practise

- 4. Data Analysis Overlay, Buffer
- 5. Generation of DEM and DTM using raster data.

UNIT-IV

APPLICATIONS IN SCIENCE DOMAIN

Applications of Remote sensing in various Engineering and Science domains such as Agriculture, Forest, Soil, Geology

APPLICATIONS IN ENGINEERING DOMAIN

LU/LC, Water Resources, Urban, Disaster Management, etc.

	Practise 6. Assignment on Application of Geospatial techniques in Civil Engineering.								
Text books	 [T1] Photogrammetry, GIS & Remote Sensing, SSManugula, VeerannaBommakanti, Educreation Publishing, 2018 [T2] Text Book of Remote Sensing and Geographical Information Systems, M. Anji Reddy, BS Publications/BSP Books, 4th edition, 2012 								
Reference books	[R1] Remote Sensing and Image Interpretation, Lillesand, T.M, R.W. Kiefer and J.W. Chipman, Wiley India Pvt. Ltd., New Delhi,7th Edition 2015 [R2] Remote Sensing and GIS, BasudeBhatta, Oxford UniversityPress,2nd Edition, 2011								
E-resources and other digital material	https://nptel.ac.in/courses/105/103/105103193/ https://nptel.ac.in/courses/105/101/105101206/ https://nptel.ac.in/courses/105/107/105107206/								

20CEH6803A	TRAFFIC ANALYSIS AND DESIGN
EUC LIIUUUSII	

Course Category:	Honors	Credits:	4
Course Type:	Program Elective	Lecture - Tutorial - Practice:	3-1-0
Prerequisites:	20CE6302	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upor	Upon successful completion of the course, the student will be able to:														
	CO 1	unde	erstan	d traff	ic en	gine	ering	studies	, analy	se the	data and	l prese	nt the re	esults.		
	CO 2		evaluate traffic and road facilities, and intersection control measures for smooth traffic movement.													
	CO 3	anal	analyse appropriate traffic control and management measures.													
	CO 4		apply the principles of queuing theory to analyse delay at signalized and unsignalized intersections.													
Contributio n of Course Outcomes towards		PO 1	PO 2	PO 3	P O 4	P O 5	PO 6	PO7	PO8	PO9	PO1 0	PO 11	PO1 2	PSO 1	PSO2	
achievemen t of Program	CO 1	3	2	1	3	1	1			1						
Outcomes	CO 2	3	3							1				3		
(Low – 1, Medium - 2, High – 3)	CO 3	3			2	2	3			1					3	
	CO 4	3	3							1					3	
Course Content	TRA San	UNIT – I TRAFFIC ENGINEERING STUDIES AND ANALYSIS Sampling in Traffic Studies, Adequacy of Sample Size; Objectives, Methods of Study, Equipment.														

Data Collection, Analysis and Interpretation

Case Studies of (a) Speed (b) Speed and Delay (c) Volume (d) Origin and Destination (e) Parking (f) Accident & other Studies

UNIT - II

DESIGN OF TRAFFIC ENGINEERING FACILITIES

Control of Traffic Movements through Time Sharing and Space Sharing Concepts.

Design of Islands

Design of Channelising Islands, T, Y, Skewed, Staggered, Roundabout, Mini-roundabout and other forms of AT-Grade Crossings including provision for safe crossing of Pedestrians and Cyclists; Grade Separated Intersections, their Warrants and Design Features; Bus Stop Location and Bus Bay Design

UNIT - III

TRAFFIC REGULATION AND MANAGEMENT

Traffic Signs, Markings and Signals; Principles of Signal Design, Webster's method of Signal Design, Redesign of Existing Signals including Case Studies; Signal System and Coordination.

TRAFFIC MANAGEMENT MEASURES

Speed, vehicle, parking, enforcement regulations, mixed traffic regulation, various management techniques .

UNIT - IV

TRAFFIC STREAM MODELS

Fundamental Equation of Traffic Flow, Speed-Flow-Concentration Relationships, Normalised Relationship, Fluid Flow Analogy Approach, Shock Wave Theory, Platoon Diffusion and Boltzman Like Behaviour of Traffic Flow, Car-Following Theory, Linear and Non-Linear Car-Following Models, Acceleration Noise.

QUEUING ANALYSIS

Fundamentals of Queuing Theory, Demand Service Characteristics, Deterministic Queuing Models, Stochastic Queuing Models, Multiple Service Channels, Models of Delay at Intersections and Pedestrian Crossings.

Text books [T1] Kadiyali, L.R., Traffic Engineering and Transport Planning, Khanna publishers, 2011. [T2] The Institute of Transportation Engineers, Traffic Engineering Handbook, 7th edn, 2016. Reference books [R1] IRC-SP41: Guidelines for the Design of At-Grade Intersections in Rural & Urban Areas [R2] Pignataro, L., Traffic Engineering – Theory & Practice, John Wiley, 1973. [R3] Salter, R J., Highway Traffic Analysis and Design, ELBS, 1996 Nil Reference

20CEH6803B	TRANSPORTATION ECONOMICS

Course Category:	Honors	Credits:	4
Course Type:	Program Elective	Lecture - Tutorial - Practice:	3-1-0
Prerequisites:	20CE6302	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outco	mes	Upon successful completion of the course, the student will be able to:														
	CO1	apply the economic principles and estimating the various cost components in transportation														
CO2				apply the possible project alternatives for the economic analysis and applying the appropriate economic analysis method												
		CO3	anal	analyze Demand and Supply modelling												
		CO4	und	understand Knowledge on Regulation and Policy making of Economic Evaluation												
Contribution of Course Outcomes		PO 1	PO 2	PO3	PO 4	PO 5	PO 6	PO7	PO8	PO9	PO10	PO 11	PO12	PSO1	PSO2	
towards achievement of Program Outcomes	CO1	3	3	1		1				1		1		3	3	
M -	CO2	3	3	1	1	3				1		1				
	CO3	3	1	1	3											
	CO4	3							3	1		1			3	

UNIT – I

TRANSPORT COSTS AND BENEFITS

Principles of economic analysis, Fixed and variable cost, cost of improvement, maintenance cost, cost estimating methods, accounting for inflation, external costs.

CONSEQUENCES OF TRANSPORT PROJECTS, ROAD USER CONSEQUENCES

Reduced vehicle operation costs, value of travel time savings, value of increased comfort and convenience, cost of accident reduction, reduction in maintenance cost, non-user consequences – travel time.

	UNIT – II
	ECONOMIC ANALYSIS METHODS
	Generation and screening of project Alternatives
	DIFFERENT METHODS OF ECONOMIC ANALYSIS annual cost and benefit ratio methods, discounted cash flow methods, shadow pricing techniques, determination of IRR and NPV, examples of economic analysis, application economic theory in traffic assignment problem.
	UNIT – III TRANSPORT DEMAND The Basic Framework- measuring the demand in a spatial and temporal setting. Traditional Four-Stage Demand Model; modern approaches to modelling demand and practical issues in demand estimation.
	TRANSPORT SUPPLY
	The nature of output in transport, output and costs, economies of size, density and scope, empirical estimation of transport cost functions- the approaches and illustrations.
	UNIT – IV REGULATION AND POLICY Theory of Regulation, Deregulation and Privatisation in Transport. Approaches to privatisation of transport infrastructure and services and a competition policy for transport. Evolution of transport policy in India with focus on case studies regarding different modes. EVOLUTION OF POLICY Evolution of transport policy in India with focus on case studies regarding different modes.
Text books	[T1] McCarthy, P. S., Transportation Economics, Massachusetts: Blackwell Publishers. 2001 [T2] Winfrey R, Highway Economic Analysis, International Textbook Company, 1969.
Reference books	 [R1] Kenneth J. Button, Transport Economics, Elgar, 2010 [R2] David A. Hensher, Ann M. Brewer, Transport: An Economics and Management Perspective, Oxford University Press, 2001. [R3] Emile Quinet, Roger Vickerman, Principles of Transport Economics, Edward Elgar Pub, 2005 [R4] Road User Cost Study, Central Road Research Institute [R5] Dickey J.W, Project Appraisal for Developing Countries, John Wiley, 1984
E-resources and other digital material	https://www.civil.iitb.ac.in/~dhingra

Course Category:	Honors	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3-1-0
Prerequisites:	20CE6404/B Foundation Engineering	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcor	mes	Upon	succe	essful c	omple	etion (of the	course	, the st	udent v	vill be al	ble to:				
		CO1	apply various bearing capacity determination techniques and													
	CO2		nalysis for determination of bearing capacity and settlement of shallow oundation													
		СОЗ	eval	evaluate safe capacity of pile foundation for all types of loads												
		CO4	analyze section for stability of well foundation / caisson.													
Contribution of Course Outcomes		PO 1	PO 2	PO3	PO 4	PO 5	PO 6	PO7	PO8	PO9	PO10	PO 11	PO12	PSO1	PSO2	
towards achievement	CO1	3	1	1									2		2	
of Program Outcomes	CO2	3	1	1									2		2	
(Low – 1, Medium - 2, High – 3)	CO3	3	1	1									2		2	
	CO4	3	1	1									2		2	

UNIT – I

BEARING CAPACITY OF SHALLOW FOUNDATIONS

Vesic method, IS Code method; Effect of Water Table; Footings with Eccentric or Inclined Loads, Footings on Layered Soils.

ESTIMATION OF BEARING CAPACITY BASED ON FIELD TESTS

Bearing Pressure using SPT& CPT,

UNIT – II

CONCEPT OF SETTLEMENT CLASSIC THEORIES

Immediate Settlement, Consolidation Settlement; Secondary Compression Settlement.

SETTLEMENT ESTIMATION - EMPIRICAL METHODS

Settlement of foundations on Sands-Schmertmann

	UNIT – III PILES IN COMPRESSION Static capacity of piles, Point Bearing Resistance with SPT and CPT; Ultimate Capacity of Pile Groups in Compression, Settlement; Pile Load Test; Negative Skin Friction. SPECIAL PILES AND SETTLEMENTS OF PILE Laterally Loaded Piles -Ultimate Lateral Resistance; Batter Piles; Under Reamed Piles; Mini and Micro Piles, Pullout & Lateral Load; Efficiency; Settlements of Pile Groups;
	UNIT – IV WELL FOUNDATIONS Open wells; Design of pier foundations and well foundations; Lateral stability of well foundations; R.C.C. designs of wells PNEUMATIC CAISSONS Introduction to Pneumatic Caissons, construction of piers;
Text books	[T1] Das, B. M. Principles of Foundation Engineering 5th Edition Nelson Engineering, 2004. [T2] Coduto, D,P. Foundation Design Principles and Practices, 2nd edition, Pearson, Indianedition, 2012. Phi Learning, 2008. [T3] Bowles, J. E. Foundation Analysis & Design 5th Edition McGraw-Hill Companies, Inc,.1996. [T4]Poulos, H. G. & Davis, E. H. Pile Foundation Analysis and Design, John Wiley & Sons Inc, 2008.
Reference books	 [R1] Reese, L. C. & Van Impe, W. F. Single Piles and Pile Groups under Lateral Loading -Taylor &Francis Group (Jan 2000) [R2] Rowe, R. K. Geotechnical & Geo-environmental Engineering Hand Book -Springer ,2001. [R3] Tomlinson, M. J. Foundation Design and Construction, PHI , 2003.
E-resources and other digital material	nptel.ac.in/courses/105107120 nptel.ac.in/courses/105101083

20CEH7802A	GEOSYNTHETICS AND REINFORCED SOIL STRUCTURES

Course Category:	Honors	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3-1-0
Prerequisites:	Geotechnical Engineering	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcor	nes	Upon successful completion of the course, the student will be able to:														
CO1			21 analyze the properties of geo synthetics													
CO2			understand functions and applications of geo synthetics													
		CO3	eval	uate a t	ypica	l secti	on for	the co	nstruct	ion of 1	reinforce	ed earth	walls			
		CO4	eval	uate rei	inforc	ed ear	th slo	pes and	d found	lations						
Contribution of Course																
Outcomes towards achievement	CO1	PO 1	PO 2	PO3	PO 4	PO 5	PO 6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
of Program Outcomes	CO2	3	3	3		3								3	3	
(Low– 1, Medium - 2,	CO3	3	3	3		3								3	3	
High – 3)	CO4	3	3	3		3								3	3	

UNIT – I

GEOSYNTHETICS

Introduction to Geosynthetics-Types of geosynthetics- Functions of Geosynthetics-Applications of Geosynthetics- Strength of reinforced soils

MANUFACTURING OF GEOSYNTHETICS

Manufacture of geotextiles- Manufacture of geogrids- Manufacture of geomembranes- Manufacture of geocomposites

UNIT - II

PROPERTIES OF GEOSYNTHETICS

Physical properties-Mechanical Properties-Hydraulic Properties-Endurance Properties-Degradation properties

	TESTING OF GEOSYNTHETICS Need for testing of Geosynthetics-Testing of geogrids-Testing of geomembranes-Testing of GCLs
	UNIT – III EXTERNAL STABILITY ANALYSIS OF REINFORCED SOIL WALLS Different Types of Soil Retaining Structures-Construction Aspects of Geosynthetic Reinforced Soil Retaining Walls-External Stability Analysis of Reinforced Soil Retaining Walls INTERNAL STABILITY ANALYSIS OF REINFORCED SOIL WALLS Internal Stability Analysis of Reinforced Soil Walls- Testing requirements for Reinforced Soil Retaining Walls- Design of Gabions.
	UNIT – IV STABILITY ANALYSIS OF REINFORCED SOIL EMBANKMENTS Stability analysis of reinforced soil Embankments resting on soft foundation soils-Stability analysis of reinforced soil slopes- Reinforced soil for supporting shallow foundations-Natural geosynthetics and their applications. GEOSYNTHETICS FOR LANDFILLS
	Geosynthetics for construction of municipal waste landfills-Geosynthetics for construction of hazardous waste landfills
Text books	 [T1] Koerner, R.M. "Designing with Geosynthetics", Prentice Hall, Eaglewood cliffs, NJ, 2005. [T2] Sanjay Kumar Shukla, Jian-Hua Yin, Taylor, "Fundamentals of Geosynthetics Engineering" & Francis, Milton Park, Abingdon, UK, 2010. [T3] Saran, S. "Reinforced Soil and Its Engineering Applications", I.K. International Pvt Ltd, New Delhi, 2005.
Reference books	[R1] Venkatappa Rao, G. and Suryanarayana Raju, GVS. "Engineering with Geosynthetics", Tata McGraw Hill Publishing Company Limited – New Delhi, 2008. [R2] Koerner, R.M. and Welsh, J. P. "Construction and Geotechnical Engineering using Synthetic Fabrics" by. John Willey and Sons, New York, 1993.
E-resources and other digital material	https://nptel.ac.in/courses/105/101/105101143/[J. N. Mandal, Geosynthetics Engineering]

20CEH7803B	INTELLIGENT TRANSPORTATION SYSTEMS

Course Category:	Honors	Credits:	4
Course Type:	Theory	Lecture - Tutorial -Practice:	3 - 1 - 0
Prerequisites:	Transportation Engineering	Continuous Evaluation:	30
_		Semester end Evaluation:	70
		Total Marks:	100

	Upon s	Upon successful completion of the course, the student will be able to:													
	CO1	evaluate the need and basics of ITS and data collection techniques													
Course	CO2	apply ITS for different functional areas													
Outcomes	CO3	apply	ITS f	or diffe	erent u	ser nee	eds and	l servi	es						
	CO4	unde	understand the significance of ITS in developed and developing countries												
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
Outcomes towards achievement of	CO1	2		2		2									2
Program	CO2	2				2									2
Outcomes	CO3	2	2			2									2
(Low – 1, Medium - 2, High – 3)	CO4	2	2			2							2		2

UNIT-I

INTRODUCTION TO ITS

Definition of ITS, ITS Objectives, Historical Background, Benefits of ITS - ITS Data collection techniques – Detectors, Automatic Vehicle Location (AVL), Automatic Vehicle Identification (AVI), Geographic Information Systems (GIS), video data collection.

TELECOMMUNICATIONS IN ITS

Importance of telecommunications in the ITS system, Information Management, Traffic Management Centres (TMC). Vehicle – Road side communication – Vehicle Positioning System

UNIT-II

ITS FUNCTIONAL AREAS

Advanced Traffic Management Systems (ATMS), Advanced Traveler Information Systems (ATIS), Commercial Vehicle Operations (CVO),

ITS FUNCTIONAL AREAS IN TRANSPORTATION SYSTEM

Advanced Vehicle Control Systems (AVCS), Advanced Public Transportation Systems (APTS), Advanced Rural Transportation Systems (ARTS).

	UNIT-III ITS USER NEEDS Travel and Traffic management, Public Transportation Management, Electronic Payment, ITS User Services Commercial Vehicle Operations, Emergency Management, Advanced Vehicle safety systems, Information Management.
	UNIT-IV AUTOMATED HIGHWAY SYSTEMS Automated highway system - Vehicles in Platoons — Integration of Automated Highway Systems.
	ITS PROGRAMS IN THE WORLD Overview of ITS implementations in developed countries, ITS in developing countries.
Text books	[T1] Ghosh. S, T. Lee, T.S Lee. "Intelligent Transportation Systems: New Principles and Architectures", 1 st ed, CRC Press, Boca Raton, 2000. [T2] Sussman. J, "Perspective on Intelligent Transport System ITS", 1 st ed, Artech House Publishers, Boston 2005.
Reference Book	[R1] M.A. Chowdhury, & A. Sadek, "Fundamentals of Intelligent Transportation Systems Planning", 1st ed, Artech House Publishers, Boston, 2003. [R2] J. Miles, K. Chen, C.J.C Miles, "ITS Hand Book 2000: Recommendations for World Road Association (PIARC)" 1st ed, Artech House Publishers, Boston, 1999
E-resources and other digital material	https://www.civil.iitb.ac.in/~vmtom/nptel/591_ITS_1/web/web.html https://coeut.iitm.ac.in/ITS_synthesis.pdf [https://ocw.mit.edu/courses/civil-and-environmental-engineering/1-212j-an-introduction-to-intelligent-transportation-systems-spring-2005/lecture-notes/

20CEH7804C	ENVIRONMENTAL IMPACT ASSESSMENT

Course Category:	Honours	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 1- 0
Prerequisites:	17MC4108B – Environmental studies	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course Outcomes	Upon s	Upon successful completion of the course, the student will be able to:													
	CO1 understand the Concept of EIA, EIA methodologies. CO2 analyze the effect on different sources on developmental activities.														
CO3 analyze the effect of development on flora and fauna.															
	CO4	unde	nderstand the different acts and case studies.												
Contributio n of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
Outcomes towards	CO1	3					2						1		2
achievement of Program	CO2	3	2							3					2
Outcomes	CO3	3	2										1		2
(Low – 1, Medium - 2, High – 3)	CO4						2								2
Course Content	INTRO Basic classifi evaluate environ EIA M Criteria method	UNIT I INTRODUCTION TO ENVIRONMENTAL IMPACT ASSESSMENT Basic concept-Salient Features of EIA, EIA Procedure – Analytical functions of EIA – classification and prediction of impacts -Elements of EIA - Factors affecting EIA – Impact evaluation and analysis - Preparation of environmental base map - Classification of environmental parameters. EIA METHODOLOGIES Criteria for the selection of EIA Methodology – EIA methods - Adhoc methods, matrix methods, network method - Environmental medium quality index method, overlay methods and cost/benefit analysis.													

	UNIT II ENVIRONMENTAL IMPACT ASSESSMENT ON SOIL AND GROUND WATER Introduction, Prediction and assessment - Soil quality -Methodology for the assessment of soil and groundwater - Delineation of study area - Identification of activities.
	ENVIRONMENTAL IMPACT ASSESSMENT OF SURFACE WATER AND AIR Impact prediction - Assessment of impact significance - Identification and incorporation of mitigation measures - EIA in surface water, air and biological environment: Methodology for the assessment of impacts on surface water environment. Air pollution sources, Air pollution effect - Generalized approach for assessment of air pollution Impact.
	UNIT III ASSESSMENT OF IMPACT ON VEGETATION AND WILDLIFE
	Assessment of impact of developmental activities on vegetation and wildlife - Environmental impact of deforestation - Causes and effects of deforestation.
	ENVIRONMENTAL AUDIT Environmental audit and environmental legislation - Objectives of environmental audit - Types of environmental audit - Audit protocol - Stages of environmental audit - Onsite activities - Evaluation of audit data and preparation of audit report.
	UNIT – IV ENVIRONMENTAL ACTS Post audit activities - The Environmental protection act - The water act - The air act - Wild life act. CASE STUDIES Case studies and preparation of environmental impact assessment statement for various industries.
Text books	 [T1] Anjaneyulu, VallManickam, "Environmental Impact Assessment Methodologies", 2nd Edition, B.S. Publications, 2007. [T2] Glynn. J, and Gary W. Heinke, "Environmental Science and Engineering", PHI, NDLS, 1996.
Reference books	[R1] Barthwal, R. R., "Environmental Impact Assessment", New Age International Publications [R2] Dhameja,S.K., Environmental Engineering and Management, Kataria, NDLS, 2010. [R3] Bhatia,H.S., A Text Book of Environmental Pollution and Control, Galgotia NDLS, 2003.
E-resources and other digital material	https://nptel.ac.in/courses/120/108/120108004/

20CE5301	WATER RESOURCES ENGINEERING

Lecture :Tutorial: Category:	Program Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0 - 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succes	ssful c	omple	etion o	f the c	ourse	, the s	tudent	will b	e able	to:			
	CO1	evalı	uate v	arious	s irriga	ation n	nethod	ds and	Irriga	tion n	nanage	ement	practi	ces in the	field.
	CO2	anal	yze th	e Run-	-off ar	nd esti	mate t	he gro	ound w	ater y	rield.				
	CO3	appl	y the o	design	princ	iples c	of vari	ous Cl	nannel	section	ons.				
	CO4	evalı	uate r	eservo	oir cap	acity a	and su	mmar	ize va	rious 1	types	of hyd	raulic	structure	S
Contribution		РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO1	PSO2
of Course		1	2	3	4	5	6	7	8	9	10	11	12		
Outcomes	G 0.4														
towards achievement	CO1	3													
of Program Outcomes	CO2	3		2	2									2	
	СОЗ	3		2	2									3	
(1 – Low, 2 - Medium, 3 – High)	CO4	3		3		2								3	

UNIT - I

IRRIGATION: WATER APPLICATION METHODS

Definition; Necessity; Benefits of irrigation; Ill-effects of irrigation; Types of irrigation and methods of applying water to crops; Uncontrolled or wild flooding; Free flooding; Contour laterals; Border strip method; Check flooding; Basin flooding; Zig zag method; Furrow

method; Contour Farming; Sub-surface irrigation; Sprinkler Irrigation; Drip irrigation

.WATER REQUIREMENT OF CROPS:

Saturation capacity; Field capacity; Wilting point; Available moisture and readily available moisture; Duty and Delta; Base period; Relation between Duty and Delta; Factors affecting duty; Methods of improving duty; Gross command area; Culturable command area; Culturable cultivated and uncultivated area; Kor depth and Kor period; Standards of irrigation water; Assessment of irrigation water.

UNIT - II

HYDROLOGY:

Introduction to Engineering Hydrology and its applications; Hydrologic cycle; Precipitation types; Rain gauges; Computation of average rain fall over a basin; Run off; Factors affecting run off; Computation of run-off. Hydrograph; definition of Unit hydrograph; Limitations and applications of unit hydrograph, construction of a flood hydrograph resulting from rainfall of unit duration; Application of unit hydrograph to construction of a flood hydrograph resulting from two or more periods of rainfall; Construction of unit hydrograph of different unit duration from a unit hydrograph of some given unit duration. S-hydrograph

WELL IRRIGATION:

Introduction; Aquifer; Aquicludes; Aquifuge; Specific yield; Specific retention; Water table; types of aquifers; Dupit's theory for confined and unconfined aquifers; Constant level pumping test, Recuperation test.

UNIT-III

IRRIGATION CHANNELS - SILT THEORIES & DESIGN PROCEDURE:

Classification; Canal alignment; Silt theories–Kennedy's theory, Lacey's regime theory; Kennedy's method of channel design; Silt supporting capacity according to Kennedy's theory; Use of Garret's diagram in channel design; Lacey's theory applied to channel design; Use of Lacey's regime diagrams; Drawbacks in Kennedy's theory; Defects in Lacey's theory; Comparison of Kennedy's theory and Lacey's theory

WATERLOGGING, CANAL LINING

Water logging, causes, effects and remedial measures. Lining of Irrigation canals, Types of lining; Design of lined canal

UNIT-IV

DAMS IN GENERAL:

Classification; Gravity dams, Arch dams, Buttress dams, Steel dams, Timber dams, Earth dams and rock fill dams; factors governing selection of site for a dam.

RESERVOIR PLANNING:

Selection of site for a reservoir; Zones of storage in a reservoir; Storage capacity and yield; Mass inflow curve and demand curve; Calculation of reservoir capacity for a specified yield

	from the mass inflow curve; Determination of safe yield from a reservoir of a given capacity; Life of reservoir;
Text books	[T1] Irrigation and water power Engineering by Dr. B.C. Punmia& Dr. PandeB.B.Lal; Laxmi Publications Pvt. Ltd., New Delhi., 2006. [T2] Irrigation Engineering and Hydraulic structures by S. K. Garg; Khanna publishers New Delhi, 2006. [T3] Irrigation Engineering and Hydraulic structures by SR Sahasrabudhe, Katson Publishing house.2005
Reference books	[R1] Irrigation, Water Resources & Water Power Engineering by Dr. P.N. Modi; standard Book House, New Delhi.,2006 [R2] Irrigation water power and water resources engineering by K R ARORA, Standard published distributors, New Delhi.,2006. [R3] A text book of hydrology by Dr.P.Jayarami Reddy, published by Laxmi Publications. [R4]Journals in Water resources
E-resources and other digital material	www.nptel.ac.in/couses/105104103

20CE5302	ENVIRONMENTAL ENGINEERING

Course Category:	Programme core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:	20CH1102 - Engineering chemistry 20MC4108B -Environmental studies	Continuous Evaluation:	30
	20101C+100D -Environmental studies	Semester end Evaluation:	70
		Total Marks:	100

Course outcom	es	Upon	succes	sful co	mple	tion o	f the c	ourse	, the s	studen	t will b	e able 1	to:		
		CO1		luate t				er for	water	suppl	y scher	ne with	referenc	e to qua	ntity
		CO2									fication nalysis		er and to	underst	and the
		СОЗ		lerstan			ods of	colle	ction,	conve	eyance,	quality	and estir	nate the	:
		CO4	app	ly app	ropria	ate tre	atmer	nt and	dispo	sal m	ethods o	of sewa	ige.		
Contribution of Course Outcomes		PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO 11	PO12	PSO 1	PSO2
towards achievement	CO1	1											1		1
of Program Outcomes	CO2	3		2	3										1
(1 – Low, 2 - Medium, 3 –	CO3	2	2										1		
High)	CO4	3	2	3	3										3
Course Conten	t	of der	ODU tives mands	of wa ; Fluc OF V	ter su ctuation	ipply ons ii ER	syste 1 dem	ems, l nand;	Per ca Pred	apita (iction	consun	pulatio	; Design	period	; Types

UNIT - II

PURIFICATION OF WATER

Purification of water; Plain sedimentation; coagulation and types of Coagulants; Sedimentation and coagulation tanks; Design aspects; Theory of filtration; Slow sand and rapid sand filters; Construction and Operation; Disinfection methods-chlorination; Miscellaneous treatments-Removal of hardness, De-fluoridation.

DISTRIBUTION SYSTEMS

Methods of supply; Layouts; Distribution reservoirs; Capacity of balancing tank; Methods of analysis of distribution systems; valves. Plumbing-pipes and fittings; Traps; One pipe and Two pipe systems.

UNIT - III

INTRODUCTION TO SANITARY ENGINEERING, QUANTITIES, SEWERS AND SEWER APPURTENANCES

Sanitation; Conservancy and water carriage system; Sewerage systems; Relative merits, Sanitary and storm water sewage; Estimation of their quantities. Sewers-types, design, construction and maintenance; sewer appurtenances-types.

QUALITY OF SEWAGE AND PRIMARY TREATMENT OF SEWAGE

Characteristics of sewage-physical, chemical and biological; decomposition cycles; BOD and COD.

Primary treatment- theoretical concepts of Screens, Grit chamber; Skimming tanks; design aspects of Sedimentation tanks. Septic tank-Design and effluent disposal.

UNIT - IV

SECONDARY TREATMENT OF SEWAGE

Trickling filters and high rate trickling filters at primary level, Principles of action; Recirculation; Operational problems and remedies; Activated sludge process; Principles of action; Methods of aeration; Sludge bulking; Sludge volume index.

SEWAGE DISPOSAL

Methods; Disposal by dilution; Self-purification process; Oxygen sag; Zones of pollution of river; Disposal by irrigation.

Text books

[T1] Duggal K.N., "Elements of public health engineering", S. Chand & Company Ltd., New Delhi, 2014.

[T2] Birdie G.S. and Birdie J. S., "Water Supply and Sanitary Engineering", 9th ed., Dhanpat Rai Publishing Company, New Delhi, 2015.

Reference books

[R1] Garg S. K., "Environmental Engineering Vol. I& II- Water supply engineering", Khanna Publishers, New Delhi, 2017.

[R2] Gurucharan Singh, "Water Supply and Sanitary Engineering", Standard Publishers Distributors, Delhi, 2009.

[R3] CPHEEO and Ministry of Urban Development, "Manual on Water Supply & Treatment", Govt.

	of India, New Delhi,2005.
E-resources and other digital material	www.https://nptel.ac.in/courses/103107084 wwwnptel.ac.in/courses/105105048

20CE5303	DESIGN OF CONCRETE STRUCTURES
20CE3303	DESIGN OF CONCRETE STRUCTURES

Course Category:	Programme Core	Credits:	2
Course Type:	Theory	Lecture - Tutorial - Practice:	2-0-0
Prerequisites:	20CE3305 Concrete Technology	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outco	mes	Upon	success	sful co	mple	tion o	f the c	ourse	, the s	studen	ıts wi	ll be al	ole to:		
		CO1	analy	yze for	r a sec	ction f	for R.O	C. bea	ms						
		CO2	evalı	ıate a	sectio	n for	R.C.	flang	ed bea	ım &I	R.C sl	abs			
		CO3	analy	yze for	r a saf	e sect	ion fo	or R.C	colur	nns					
		CO4	evalı	ıate a	sectio	n for	Footi	ngs							
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2
towards achievement	CO1	2		3		3								3	
of Program Outcomes	CO2	2		3		3								3	
-	CO3	2		3		3								3	
(1 – Low, 2 - Medium, 3 – High)	CO4	2		3		3						ļ		3	
Course Conte	ent	charac	ERAI ng sta eterist State	ndard ics of Meth	conc od (I	rete a	and s	teel, l	Introd n. Ch	duction aract	on to	work	ing st		Strain ethod and ths, Design

	ALL DESIGNS IN LIMIT STATE METHOD: DESIGN OF BEAMS (IS456-2000). Flexural and Shear in R. C. beams; Check for development length. Deflection and cracking. Design of singly reinforced rectangular section, Doubly reinforced rectangular section.
	UNIT – II DESIGN OF FLANGED BEAM (IS456-2000)
	T-Beams introduction, Analysis and Design of singly reinforced flanged sections.
	DESIGN OF SLABS (IS456-2000). One way and Two-way action of slabs, Choosing slab thickness. Design of one way slab. (only simply supported one way slab) Design of restrained and unrestrained Two way slabs as per I.S. code provision (IS456-2000).
	UNIT – III DESIGN OF COLUMNS FOR AXIAL COMPRESSION (IS456-2000). Define short and long columns, estimation of effective length of a column. Code requirements on slenderness limits, minimum eccentricity and reinforcement. Design of short column under axial compression with lateral ties only.
	DESIGN OF COLUMNS FOR COMBINED ACTION (IS456-2000)
	Design of short columns subjected to combined axial load and uniaxial moment
	UNIT – IV CLASSIFICATION OF FOUNDATIONS Different types of shallow foundations and deep foundations. General aspects of footings.
	DESIGN OF ISOLATED FOOTING (IS456-2000) Design and detailing of Isolated Column footings.
Text books	[T1] Shah H.J., "Reinforced Concrete Vol-1", 11th ed., Charotar Publication House, Gujarat, 2016.
	[T2] Jain A.K, "Reinforced Concrete (Limit State Design)", 7th ed Nem Chand & Bros., Roorkee Uttarakhand, 2012.
Reference books	 [R1] Varghese P.C, "Limit state designed of reinforced concrete", 2nd et., Printice Hall of India; New Delhi, 2004. [R2] Arther H.Nilson, "Design of concrete structures", 1st ed., Tata McGraw-Hill Publishing Co. Ltd, New Delhi, 2017.
E-resources and other	www.nptel.ac.in/courses/105105105
digital material	www.nptel.ac.in/courses/105105104

20CE5404/A ADVANCED STRUCTURAL ANALYSIS

Course Category:	Programme Elective-1	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:	20CE4302 – Structural Analysis	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcome	S	Upon	success	ful co	mple	tion o	f the c	ourse	, the s	studer	nt will	be abl	le to:		
		CO1	analy	ze arc	ches a	nd ca	bles								
		CO2	evalu	evaluate statically indeterminate beams using flexibility matrix method evaluate statically indeterminate beams and frames by stiffness matrix method											
		CO3	evalu												
		CO4	apply the basic concepts of plastic analysis and finite element method												
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
towards achievement of Program	CO1	3	3	1										3	
Outcomes	CO2	3	3	1										3	
	CO3	3	3	1										3	
(1 – Low, 2 – Medium, 3 – High)	CO4	2	2	1										3	
		UNIT – I ARCHES													
	Eddy's Theorem; Analysis of three hinged and two hinged Parabolic and Circular arches for Static loads.														
	CABI	LES													
													s;Shape of cables.	f the cable	

	UNIT – II MATRIX METHODS OF ANALYSIS
	Static Indeterminacy; Matrix Methods; Flexibility and Stiffness; Flexibility Matrix; Stiffness Matrix; Relationship between Flexibility and Stiffness Matrix.
	FLEXIBILITY METHOD (FORCE METHOD)
	Analysis of continuous beams and rigid jointed plane frames (Single bay, single storey with vertical legs only) by flexibility method.
	UNIT – III STIFFNESS METHOD (DISPLACEMENT METHOD)
	Notations, Kinematic Indeterminacy, Generating Stiffness Matrices and analysis of continuous beams by Stiffness method.
	STIFFNESS METHOD FOR PORTAL FRAMES
	Analysis of rigid Jointed frames by stiffness method with matrix approach.
	UNIT – IV
	PLASTICANALYSISOFSTRUCTURES
	Idealized stress - strain curve for mild steel; Ultimate load carrying capacity of members carrying axial forces; Moment - Curvature relationship for flexural members; Evaluation of fully plastic moment; Shape factor; Collapse load factor; Upper and lower bound theorems.
	FINITEELEMENTANALYSIS
	Equilibrium Conditions; Strain-displacement relations; Linear Constitutive relations; Principle of Virtual work, Energy Principles; Application to finite element method. Element Strains and Stresses; Element Stiffness matrix. Stiffness matrix formulation for bar element, beam element.
Text books	[T1] Structural Analysis–Amatrix approach by Pandit. G.S&Gupta. S.P, Tata Mc.Graw–Hill Publishing Co.Ltd., New Delhi, 2008. [T2] Basic Structural Analysis by Reddy. C. S, Mc Graw Hill Education,3 rd Edition, 2010. [T3] Finite Element Analysis–Theory and Programming by Krishna Murthy. C.S, Tata Mc Graw Hill Publishing Company Ltd., New Delhi, 2013.
Reference books	 [R1] Analysis of structuresVol.2 by Prof Vazirani. V. N, Ratwani. M. M, Duggal. Sk, 16th Edition, Khanna Publishers, New Delhi, 2016. [R2] Indeterminate Structural Analysis by Wang. C. K, 5th Edn Mc Graw Hill Education, New Delhi, 2014.
E-resources and other digital material	http://onlinecourses.nptel.ac.in/courses/105106050

20CE5404/B	TOWN PLANNING & ARCHITECTURE
ZOCEC IO I/D	10 WINE END WING CONTROLLED

Course Category:	Program elective-1	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:	20CE3353 Programe core Lab-2 Computer aided civil engineering	Continuous Evaluation:	30
	Drawing Drawing	Semester end Evaluation:	70
		Total Marks:	100

Course outcomes		Upon	success	ful co	mplet	tion o	f the c	course	, the s	studer	t will	be abl	e to:		
	CO1	apply	the	princ	iples o	of urb	an des	sign							
		CO2	apply	the to	echnic	ques u	ised in	n Plan	ning (of urb	an inf	rastruc	cture s	systems	
		CO3	analy	analyze the principles of architecture by understanding history											
		CO4	evaluate the concept of sustainable development												
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2
towards achievement of Program	CO1	1				1	1								
Outcomes	CO2	1				1	1							1	
(1 – Low,2- Medium, 3 –	CO3	1				1	1								
High)	CO4	1				1	1							1	
C d sp		develo	pts and pment spatial spaces	d theo and tr ll qual	anspo	rtatio ınd Se	n; His ense o	storica f Plac	al and e; Ele	mode ment	ern ex	amples	s of un uilt en	ban des	sustainable sign; Public ent – urban e planning;

CITY PLANNING

Evolution of cities; principles of city planning; planning regulations, Development controls – FAR, densities and building byelaws; sustainable development

UNIT - II

TECHNIQUES OF PLANNING

Planning survey techniques; preparation of development plans; site planning principles and design; application of G.I.S and remote sensing techniques in urban and regional planning

CONCEPTS OF CITY MASTER PLANNING AND SATELLITE TOWNS

Definition importance, features, various phases in the preparation of a Master plan and Satellite towns, advantages, Examples -Hyderabad master plan and Noida satellite town

UNIT - III

HISTORY OF ARCHITECTURE

Indian - Indus valley, Vedic, Buddhist, Indo-Aryan, Dravidian and

Mughal periods: European – Egyptian, Greek, Roman, medieval and renaissance periods construction and Architectural styles; vernacular and traditional architecture. Principles of Architecture

ENVIRONMENTAL STUDIES IN BUILDING SCIENCE

Components of Ecosystem; ecological principles concerning environment; energy efficient building design; thermal comfort; solar architecture; principles of lighting and styles for illumination; basic principles of architectural acoustics

UNIT - IV

LANDSCAPE DESIGN:

Principles of landscape design and site planning; history of landscape styles; landscape elements and materials

URBAN INFRASTRUCTURE, SERVICES AND AMENITIES

Green building rating system-GRIHA and LEED

Basic understanding of sustainable Development, green infrastructure; urban rainwater harvesting; power supply and communication systems – guidelines

Text books

[T1] Brown, P. "Indian Architecture (Buddhist and Hindu period)", Taraporevala, CSTM, 2015.

[T2] Bandopadhyay, A." Text book of Town Planning", Books and Allied, HRH, 2000

Reference books	 [R1] Evans.M, "Housing, Climate & Comfort, Architectural", LN, UK, 1980. [R2] Grover,S. "The Architecture of India (Buddhist and Hindu period)", Vikas, NDLS, 2017. [R3] Gurucharan Singh and Jagadish Singh," Building planning designing and scheduling" Standard publishers distributors, Delhi 2011
E-resources and other digital material	https://nptel.ac.in/courses/124/105/124105001/ https://nptel.ac.in/courses/124/105/124105004/ www.european-science.com

20CE5404/C AIRPOLLUTION AND CONTROL	20CE5404/C	AIRPOLLUTION AND CONTROL
---------------------------------------	------------	--------------------------

Course Category:	ProgrammeElective-1	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:	NIL	Continuous Evaluation:	30 70
		Semester end Evaluation:	100
		Total Marks:	

Course outcomes	Upon su	icces	sful	con	npleti	on o	f the	cours	e, the	stude	nt will	be able	e to :			
	CO1		evaluate various types of air pollution and their effects													
	CO2	!	apply the dispersion phenomenon of air pollutants with regard to meteorological parameters												regard to	
	CO3		ana	analyze the samples, pollutants from chimney stacks and ambient atmosphere												
	CO4	-	apply as necessary, various types of equipment to control air pollution													
Contribution of Course Outcomes towards achievement of Program Outcomes $(1 - Low, 2 - Medium, 3 - High)$		P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2	
	CO1	3													3	
	CO2	3													3	
	CO3	3	3		1						1				3	
	CO4	3		3	1											
Course Content	UNIT – I INTRODUCTION TO AIR POLLUTION AND EFFECTS OF AIR POLLUTION Composition of air, Air pollution-definition, Prominent air pollution disasters episodes, Sources of air pollution-Stationary and mobile sources and Effects of air pollutants on human health; Effects on plants and economic effects. CLASSIFICATION OF AIR POLLUTANTS Classification-Natural Contaminants; Particulate Matter Aerosols and Gaseous pollutants; Primary and secondary pollutants.															

UNIT - II METEOROLOGY AND AIR POLLUTION Meteorological factors influencing dispersion of air pollutants-Wind direction and wind speed, Atmospheric stability, temperature inversions, Mixing height, precipitation and humidity. MEASUREMENT OF METEOROLOGICAL PARAMETERS Wind direction recorder, Wind speed recorder, Humidity Measurement, Temperature measurement; Wind Rose; Plume behavior. UNIT - III **STACK SAMPLING:** Stack sampler; Sampling Procedure-Sampling point - size - Isokinetic Conditionssampling of Particulate matter and Gases. **AMBIENT AIR SAMPLING:** Sampling methods- Sedimentation, filtration, impingement methods, electrostatic precipitation and thermal precipitation. Sampling suspended particulates by highvolume sampler. Sampling SO2and NOxand Carbon Monoxide gases. -Indian standard methods of analysis of SO2 and NO_x gases Air Quality and Emission standards. UNIT - IV METHODS OF CONTROLLING AIR POLLUTION: Different means of control of effluent discharges into the atmosphere. Control of Particulate matter by equipment - Settling chamber, inertial separators- fabric filters-wet scrubbers- Electrostatic Precipitators. **CONTROL OF GASEOUS POLLUTANTS:** Controlling methods of Gaseous Emissions- combustion, adsorption, absorption, closed collections and recovery systems – Control of SO₂ and NOx gases Text books [T1] Air Pollution and Control by Rao, M.N and Rao, H.N. Tata McGraw Hill, New Delhi, [T2] Environmental Engineering and Management, (2ndEdition) by Suresh, l., Kartarai S.K. & Sons, 2005. [R1] An Introduction to Air pollution by Trivedi, R.K., B.S. Publications, 2005. Reference [R2] Air pollution by Wark and Warner, Addison-Wesley Publications, 1998. books http://nptel.ac.in/courses/webcourse-contents/IIT-delhi/Environmental%20Air%20Pollution/ E-resources and other digital material

20CE5404/D	ENVIRONMENTAL GEOTECHNOLOGY

Course Category:	ProgrammeElective-1	Credits:	3
Course Type:	Theory	Lecture-Tutorial-Practice:	3-0-0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcome	Upon	success	sful co	mple	tion o	f the o	course	the	studer	nt will	be ab	le to:			
	CO1	apply the principles of environmental geotechnology													
	CO2	apply the concepts in evolving various components of waste containment facility													
	CO3	evaluate containment areas and remediate them.													
	CO4	anal	yze g	eotec	hnica	ıl re-ı	ise of	was	te						
Contribution of Course Outcomes towards achievement		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2
	CO1	3						3							3
of Program Outcomes	CO2	3		3			3								3
(1 – Low, 2 - Medium, 3 – High)	CO3	3			3	1									
	CO4	3				1		1							3
Course Conten	nt	Intro- conta SOU Wast	DAM duction aminates RCES	on; Stion; Standards ANI harac	Scope Types D CH teriza	e of s of control of the control of	f Enontan ACT E	nviron ninan ERIS nviro	nmen ts; In STIC nmer	tal npact S OF ntal	Geot of su WA con	eehno bsurf STES cerns	ology; ace co wi	ontami	rces of

	UNIT-II
	SOIL-WATER INTERACTION
	Soil mineralogy characterization and its significance in determining soil behavior; Soil-water interaction and concepts of double layer; Forces of interaction between soil particles. CONTAMINANT TRANSPORT
	Soil-water-contaminant interactions and its implications; Factors effecting retention and transport of contaminants
	UNIT-III
	CONTAMINATED SITE ASSESSMENT
	Need for contaminated its characterization, Characterization methods— Electromagnetic resistivity; Ground penetrating radar; Electro chemical and electro-optical sensing methods
	CONTAINMENT FACILITY Concept and principles of waste containment; Site selection criteria for containment facility; Different components of waste containment system; Design of waste containment facilities
	UNIT-IV
	CONTAMINATED SITE REMEDIATION Remediation methods for subsurface contamination; Selection and planning of remediation methods, bio-remediation, incineration, soil washing, electrokinetics, soil heating.
	RECYCLING AND REUSE Geotechnical reuse of waste materials; Waste characteristics for soil replacement; Waste materials suitable for geotechnical construction
Text books	 [T1] Sharma, H.D. and Reddy, K.R., GeoenvironmentalEngineering, JohnWiley.NY, USA, 2004. [T2] Gulhati, S.K. and Datta M., Geotechnical Engineering, Mc Graw Hill India, New Delhi, 2005.
Reference books	 [R1] Rowe, R.KGeotechnical and Geo environmental Engineering Handbook, Kluwer Academic, AM, Netherland, 2001. [R2]Reddy,L.N.andInyang,H.I GeoenvironmentalEngineering:PrinciplesandApplications,CRCPress,FL, USA2000. [R3]Mohamed,A.M.O.andAntia,H.E.,GeoenvironmentalEngineering,Elsevier, AM,Netherlands,1998.
E-resources and other digital material	https://nptel.ac.in/courses/105102160/ https://nptel.ac.in/courses/105103025/

20CE5404/E FORENSICS IN CIVILENGINEERING
--

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:	20CE4303- Geotechnical engineering	Continuous Evaluation:	30
	20CE4304- Hydraulics and Hydraulic	Semester end Evaluation:	70
	Wachines	Total Marks:	100

Course outcor	nes	Upon	succes	sful c	omple	etion o	of the	cours	e, the	stude	nt wil	ll be al	ole to:		
		CO1	apply forensic engineering to demonstrate structural and geotechnical failures												chnical
		CO2	understand reinforced concrete Structures and steel structure failures through case studies												
		CO3	eva	evaluate different geotechnical failures through case studies											
		CO4		ılyze lures	reaso	ns fo	r geo	-envi	ronm	ental	and	fluid a	and hy	/drauli	2
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2
towards achievement of Program	CO1	2	1	2			1								2
Outcomes	CO2	2	1	2			1								2
- Medium,3 - High)	СОЗ	2	1	2			1								2
	CO4	2	1	2			1								2
Course Conte	INT Defi litiga abou	ation, it failu RENS	of a Impoure, D	Forestant Pata c	legal ollect CTU	term tion, l	is, Ca Hiera INV	uses rchy	of fa of for	ilure, rensio	, Preli e inve	mina stigat	ry info	e, Civil rmation	

	masonry tests, Metal tests, Wood tests, Weld tests, water and air penetration tests, Heat loss tests.
	UNIT – II REINFORCED CONCRETE STRUCTURES CASE STUDIES The Pentagon Attack, Skyline Plaza in Bailey's Crossroads.
	STEEL STRUCTURES CASE STUDIES Pittsburgh Convention Center Expansion Joint Failure, Minneapolis I - 35W Bridge Collapse.
	UNIT – III FORENSIC GEOTECHNICAL INVESTIGATION Test Pits, Bore hole logs, In-place strength tests, Instrumentation, Dimensional Measurements, Seismic tests.
	CASE STUDIES Vaiont Dam Reservoir Slope Stability Failure, Leaning tower of Pisa.
	UNIT – IV GEO-ENVIRONMENTAL CASE STUDIES Love Canal, Valley of the Drums, Saskatchewan Water Treatment Failure
	FLUID MECHANICS AND HYDRAULICS CASE STUDIES Johnstown Flood, Malpasset Dam, New Orleans Hurricane Katrina Levee Failures.
Text books	 [T1] Robert, W. D., Forensic Geotechnical and Foundation Engineering, Second Edition, McGraw-Hill, NY, US, 2011. [T2] Delatte, N. J., Beyond Failure –Forensic case studies for Civil Engineers, ASCE, US, 2009.
Reference books	 [R1] Kenneth, L. C., Forensic Engineering, CRC Press, 2ndEdition, NY, US, 2000 [R2] Rao,V.V.S.andBabu,G.L.S.,ForensicGeotechnicalEngineering,Develo pments in Geotechnical Engineering series, Springer, SG, 2016. [R3] Paul, A.B., Pamalee, A. B., Norbert, J. D. and Kevin, M. P., Failure case studiesin civil Engineering-Structures, Foundations andGeoenvironment,2ndEdition, ASCE, Virginia, US,2013
E-resources and other digital material	NIL

20CE5205/A	GEOSPATIAL TECHNOLOGIES

Course Category:	Open Elective	Credits:	3
Course Type:	Theory cum Practical	Lecture - Tutorial - Practice:	2 - 0 - 2
Prerequisites:	Nil	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon si	ıccess	ful co	mpleti	ion of	the co	ourse,	the stu	ıdent	will be	e able	to			
	apply the recent advances GIS technology in various fields of Engineering.														
		CO2	evaluate the opportunities and available methods for integrating GIS in various engineering applications.												in
		CO3	appl	apply cartography technique using GIS.											
		CO4	anal	ysis of	f vecto	or map	s by d	ligitiza	ation.						
Contribution		PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PS	PS
of Course Outcomes towards		1	2	3	4	5	6	7	8	9	10	11	12	O1	O2
achievement of Program	CO1		1		3	3							1	3	
Outcomes		1		3	3							1	3		
(1 – Low, 2 – Medium, 3 –		1		3	3							1	3		
High)	CO4		3				3								3

Course Content

UNIT I

INTRODUCTION TO GIS

Introduction to GIS, History of GIS, Early developments in GIS, Applications of GIS

MAP AND MAP SCALES

Introduction to Maps, History of Maps, Map Scales, Types of Maps, Map and Globe

Practices:

- 1.Introduction to GIS-Getting familiar with ARCGIS/QGIS interface-Concept of plugin in ARCGIS/QGIS
- 2.Geo-referencing in ARCGIS/QGIS Concept of Geographic and Projection coordinate system.

UNIT II

GEOREFERENCING AND PROJECTION

Understanding Earth ,Coordinate System, Map Projection, Transformation, Geo referencing

SPATIAL DATABASE MANAGEMENT SYSTEMS

Introduction, Data Storage, Database Structure Models, Database Management system, Entity Relationship.

Practices:

- **3.**Point, Line Features Extraction in ARCGIS/QGIS -Vectorisation- Shape file Creation for simple Vector data
- **4.**Manipulation of attribute data-Polygonize- Topology checker, Labelling data and Preparation of Map, Layout

UNIT III

DATA MODELS AND DATA STRUCTURES

Introduction, GIS Data Model, Vector Data Structure, Raster Data structure, Geo database and metadata.

SPATIAL DATA INPUT AND EDITING

Primary Data, Secondary Data, Data Editing, Data types – Spatial and Non Spatial(attribute) data.

Practices:

- 5. Application of Processing Tools-Vector Analysis-Interpolation
- 6. Application of Processing Tools-Network Analysis
- 7. Demonstration on Data management Tools, Geometry Tools and Analysis Tools.

	UNIT IV
	MODELLING IN GIS:
	Introduction to Web GIS, Digital Terrain Modelling, Digital Elevation Modelling, Triangular Irregular Network.
	APPLICATIONS OF GIS:
	Multidisciplinary applications of GIS.
	Practices: 8.Introduction to Google Earth Interface-Extracting coordinates of an area 9.Digitisation of Transportation Network and Water bodies in QGIS 10.Extraction of contour lines and DEM from Google Earth
Text books	[T1] Anji Reddy M.,Remote Sensing & Geographical Information Systems by,BPS Publications-Hyderabad,4thedition 2011.[T2] BasudebBhatta., Remote Sensing & GIS, Oxford University Press, New Delhi,2011
Reference books	[R1] Lillyand TM ., Kiefer R W., Remote sensing and Image interpretation; John Willeyand sons.7th edition, 2015 [R2] ChandraAM ., Ghosh S K Remote sensing and Geographical information System; Narosa Publishing House, Second Edition New Delhi,2015
E-resources and other digital material	https://nptel.ac.in/courses/105/102/105102015

1	Λ		T 4	2	^	m
	U	\mathbf{C}	כעו	Z	כנו	/ K

BUILDING SERVICES ENGINEERING

Course Category:	Open Elective-IV	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	2-0-2
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcom	nes	Upon	succes	sful co	mple	tion o	f the c	ourse	, the s	studer	t will	be abl	le to:		
		CO1	eval	evaluate the types, basic planning and specifications of buildings.											
		CO2	appl	apply ventilation and thermal insulation in structures apply the plumbing and electrical fixtures in structures											
		CO3	appl												
		CO4		yze the				for fire	e prev	ention	n and	fightin	ıg and	termite	;
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2
towards achievement of Program	CO1	3						2							2
Outcomes	CO2	1						2							2
(1 – Low, 2 - Medium, 3	CO3	1				1	1	2							2
– High)	CO4	1				1	1	2		2	2				2
Course Conter	nt	UNI	IT–I		<u> </u>	l .	I	I	I	l .	l .	l		I	1
	Types Diffe	- 1	ucture esofb	s: Loa uildin	ad bea gs:Re	ring v sident	ial,Pu	ıblic, <i>A</i>	Assem	bly,H	lospita	ls,Inst	res, itutiona porspace		

BASIC BUILDING PLANNING AND ELEMENTS: Factors effecting the Selection of Site for residential building; Space requirement— Establishing areas for different units - Grouping, Circulation, Orientation, Aspect and prospect, Privacy, Elegance and economy; Basic building elements: Stair cases, doors and windows -Guidelinesforstaircaseplanning; Guidelinesforselectingdoorsandwindows.
UNIT-II
VENTILATION AND AIR CONDITIONING: Ventilation: Necessity of Ventilation, Functional Requirements; Types of ventilation: Natural Ventilation, Artificial Ventilation; Air Conditioning—Systems of Air Conditioning, Essentials of Air Conditioning systems, Protection against fire to becaused by Air Conditioning systems.
THERMAL INSULATION: Heat transfer: Thermal Insulating Materials; Thermal Insulation Methods; Insulation of Walls, Roofs, Doors & Windows.
UNIT-III
PLUMBING SERVICES: Types of plumbing; Plumbing fittings and accessories; Water Meters; Drainage – Sanitary Fittings: Bath tubs, wash basins, sinks, flushing cisterns, water closets; Principles governing design of building drainage; Guidelines for laying of Gas supply systems.
ELECTRICAL INSTALLATION IN BUILDINGS: Electrical Considerations for Office Buildings, School Buildings & Residential Buildings; Lighting, Fannage, Electrical Installation for Air Conditioning/ Heating, Reception and distribution of main supply; Method of internal wiring; Earthing; Lightening arrestors.
UNIT-IV FIRE SAFETY: Causes of fire in buildings; Planning considerations for fire resistance: Non-combustible materials in construction, fire escapes, Special features required for physically handicapped and elderly people; Heat and smoke detectors, Fire alarm system, snorkel ladder, Fire fighting pump; Dry risers and wet risers, Automatic sprinklers.

ANTI-TERMITE TREATMENT:

Pre construction treatment, Post construction treatment; Construction of anti termite groove in buildings for termite prevention.

Text books

[T1] Building
ConstructionbyB.C.Punmia; Ashok Kumar Jain; Arun Kumar Jain, 2005; Laxmi Publications, New Delhi
[T2] Building Construction by Janardhan Jha; S.K. Sinha; 2007; Jain Book Agency, New Delhi.

Reference books	 [R1] National Building Code, 2015 [R2] Building Construction by P.C. Varghese, 2005, PHI Publications, New Delhi [R3] Building Services Engineering by David V.Chatterton, Sixth Edition, 2013, Routledge Publications.
E-resources and other digital material	https://nptel.ac.in/courses/105102176/

20CE5351 COMPUTER APPLICATIONS IN CIVIL ENGINEERING LAB-1

Course Category:	Programme Core – Lab -1	Credits:	1.5
Course Type:	Practical	Lecture - Tutorial - Practice:	0-0-3
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes		Upon successful completion of the course, the students will be able to:													
	col evaluate cross sectional/ reinforcement required and prepare structural drawings for various structural elements by using AUTOCAD														
		CO2 apply Microsoft Excel/Mat Lab to execute design problems													
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2
towards achievement of Program	CO1	2	1			2						3		2	1
Outcomes		2	2			2						3		2	1
(1 – Low, 2 - Medium, 3 – High)	CO2														
Course Content	PART-A: AUTOCAD Design and Drawing the reinforcement details of the following RCC Structural elements / steel structural elements.														
		2. 3. 4. 5.	Detain Detain Roof Doglin Two Two	iled st Floor egged way s	tudy r Sys l stair slabs	of str tem (rcase (Sim	uctur Cont ply s	al dra inuou uppor	wing s) w	gs of ith fla slabs	RCC anged	Build bear ers he	ling ns ld dov)

	7. 5.R.C.C Beam - Column joint8. Isolated and Combined footing
	PART - B:PROGRAMMING
	Students are required to write & execute the programs using Microsoft Excel language 1. Design of singly reinforced beam for flexure by LSM. 2. Design of doubly reinforced beam for flexure by LSM. 3. Design of R.C.C column of rectangular section for axial load by LSM.
Text books	 [T1] Venu gopal. K, "Engineering Drawing and Graphics and AUTOCAD", 1sted., New Age International Publishers, 2001. [T2] Anand R.K. "Computer Application in Civil Engineering", 1st ed., Vayu education of india, New Delhi, 2013. [T3]Dr. Ritu Agarwal &Khushbu Naruka Dr. Hari Singh Parihar, "Computer Application in Civil Engineering", 1st ed., Neelkanth Publishers, 2012.
Reference books	[R1] Jeya poovan. T, "Engineering Graphics using AUTOCAD",1 st ed., Vikas Publishing House Pvt. Ltd., 2000.
E-resources and other digital material	NIL

Course Category:	Programme core – Lab2	Credits:	1.5
Course Type:	Lab	Lecture - Tutorial - Practice:	0-0-3
Prerequisites:	20BS1151B Engineering chemistry lab	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course Upon successful completion of the course, the student will be able to:															
outcomes		CO1	CO1 analyze the various parameters and understand their significance and application.												
		CO2	cO2 evaluate the suitability of water for various applications by knowing water quality standards.												
Contribution of Course Outcomes		PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PSO 2
towards achievement of Program Outcomes	CO1	1			3		1			1			1		2
(1 – Low, 2 - Medium, 3 – High)	CO2	1			3		1						1		2
Course Conten	 Dete Dete Dete Dete Dete Dete 	ermina ermina ermina ermina ermina	tion o tion o tion o tion o	f total f alkali f acidit f sulph f turbic	suspendinity of variety of variety of variety of ditty of	of water sontent	er samp sample. in a giv r sampl	solved ble. ven wa	solids	mple.	er samp				

	8. Determination of chloride concentration of water sample.
	9. Determination of optimum dose of coagulant.
	10. Determination of dissolved oxygen of water sample.
	11. Determination of biochemical oxygen demand (BOD) of waste water.
	12. Determination of chemical oxygen demand (COD) of waste water.
	13. Determination of chlorine demand and residual chlorine.
Text books	[T1] Garg S. K., "Environmental Engineering Vol. I- water supply engineering", 18th ed., Khanna Publishers, New Delhi, 2004.
Reference books	[R1] CPHEEO and Ministry of Urban Development, "Manual on Water Supply & Treatment", Govt. of India, New Delhi,2005. [R2] APHA, AWWA, and WEF, "Standard Methods for the Examination of Water and Wastewater. Standard Methods", Washington DC, 2012.
E-resources and other digital material	https://nptel.ac.in/courses/105104102

20CE5353	3
----------	---

ADVANCED SURVEYING LAB

Course Category:	Programme Core	Credits:	1.5
Course Type:	Lab	Lecture - Tutorial - Practice:	0-0-3
Prerequisites:	20CE3303 Surveying & Geomatics, 20CE3352 Surveying Lab	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcor	nes	Upon	success	sful co	mpleti	on of t	he cour	se, the	stude	nt will	be ab	ole to:			
		CO1		apply the surveying principles for setting boundaries, computing area and elevation using a total station										l elevation	
		CO2	apply setting out for buildings and curves using various instruments evaluate the contours for any given area												
		CO3													
		CO4	apply	y adva	ınced i	nstrum	ents fo	r surve	eying						
Contributio n of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
towards achievement	CO1	2				3					1			1	2
of Program Outcomes	CO2	2				3									2
(1– Low, 2 - Medium, 3 –	CO3	2		2		3					1			1	2
High)	CO4	2				3					1				2
Course Conte		Statio Set ou Set ou	n. it a bu	ilding	using c using t		nd tape tion.				rmine	the ar	ea using	Total	

	5. Set out a simple circular curve using chain, tape and theodolite.
	6. Set out a simple circular curve using a total station.
	7. Determine the elevation of a remote object.
	8. Plot the contour map for a given area using total station.
	9. Determine the area of a given tract of land using DGPS.
	10. Set out a building using DGPS.
	11. Demonstration of Unmanned Aerial Vehicle (UAV).
Text books	[T1] Duggal S K, "Surveying Volume-1", 2nd ed., Tata Mc Graw Hill Publishing Company
	Limited, New Delhi, 2004. [T2] Dr. Arora K R, "Surveying Volume-2", 15 th ed., Standard Book House, New Delhi, 2018
Reference books	[R1] Satheesh Gopi, Sathi Kumar R, Madhu N, "Advanced Surveying", 2 nd ed., Pearson, 2017
E-resources and	https://nptel.ac.in/courses/105107158
other digital material	

20TP5106	PERSONALITY DEVELOPMENT

Course Category:	Institutional Core	Credits:	1
Course Type:	PRACTICE	Lecture - Tutorial - Practice:	0-0-2
Prerequisites:		Continuous Evaluation:	100
		Semester end Evaluation:	0
		Total Marks:	100

Course outcor	nes	Upon	succes	sful co	mpletion	on of t	he cour	se, the	stude	nt will	l be ab	ole to:			
		CO1	anal	analyze the corporate etiquette.											
		CO2													
		CO3													
		CO4	appl	y the	core co	mpeter	ncies to	succe	ed in	profes	ssiona	l and p	erson	al life	
Contributio n of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
towards achievement	CO1								2		3				1
of Program Outcomes	CO2									2	3				1
(1 – Low, 2 - Medium, 3 –	CO3										3				1
High)	CO4									2	3				1
Course Conte	UNIT	I													
		ntroduc	ction, S		g Youn	_			y Aziı	m Prei	mji (L	istenii	ng Activi	ty), Self-	

	COMMUNICATION SKILLS
	Verbal Communication, Non Verbal Communication (Body Language)
	UNIT II
	SELF-MANAGEMENT SKILLS
	Anger Management, Stress Management, Time Management, Six Thinking Hats, Team Building, Leadership Qualities
	ETIQUETTE
	Social Etiquette, Business Etiquette, Telephone Etiquette, Dining Etiquette
	UNIT III
	STANDARD OPERATION METHODS
	Note Making, Note Taking, Minutes Preparation, Email& Letter Writing
	VERBAL ABILITY
	Synonyms, Antonyms, One Word Substitutes-Correction of Sentences-Analogies, Spotting Errors, Sentence Completion, Course of Action-Sentences Assumptions, Sentence Arguments, Reading Comprehension, Practice work
	UNIT – IV
	CAREER-ORIENTED SKILLS
	Group Discussion, Mock Group Discussions
	INTERVIEW SKILLS Resume Preparation, Interview Skills, Mock Interviews
Text books	[T1] Barun K. Mitra, Personality Development and Soft Skills, Oxford University Press, 2011.
	[T2] Dhanavel, S.P. English and Soft Skills, Orient Blackswan, 2010.
Reference books	 [R1] R.S.Aggarwal, A Modern Approach to Verbal & Non-Verbal Reasoning, S.Chand& Company Ltd., 2018. [R2] Raman, Meenakshi& Sharma, Sangeeta, Technical Communication Principles and Practice, Oxford University Press, 2011.
E-resources and other digital material	www.indiabix.com www.freshersworld.com

20CE5354	ENGINEERING PROJECT IN COMMUNITY SERVICES (EPICS)

Course Category:	Project work/ Internship	Credits:	1.5
Course Type:	Practical	Lecture - Tutorial - Practice:	0 - 0 - 3
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	Upon successful completion of the course, the student will be able to:															
	CO1		evaluate the societal problem from the villages or towns or local communities with well defined objectives.														
	CO2		analyze and solve the problems by applying modern tools and materials for appropriate solution.														
	CO3	apply	apply team work, communication and presentation skills														
	CO4		evaluate the context of the problem and prepare a technical report as per the specified guidelines														
Contribution		РО	РО	РО	PO	PO	РО	PO	PO	PO	PO	PO	PO	PSO	PSO		
of Course Outcomes		1	2	3	4	5	6	7	8	9	10	11	12	1	2		
towards achievement of Program	CO1	2			2	2	3	3	2	3	3				1		
Outcomes	CO2	2			2	2	3	3	2	3	3				1		
(L – Low(1), M – Medium(2),	CO3	2			2	2	3	3	2	3	3				1		
H - High(3)	CO4	2			2	2	3	3	2	3	3				1		

Course Content

Engineering Project In Community Services (EPICS):

- > Students will go to the society (villages/ towns/ local communities/ hospitals/schools/recreation clubs etc,) to identify the problem and study the relevant articles or journal papers to come up with viable alternative solutions.
- > The work will be carried out during summer vacation after IV semester and submitted the work at the end of the V semester.
- > The student is encouraged to work on real world problems that will lead to the creation of innovative model building.

20CE5607	BUILDING INFORMATION MODELING (BIM)
2 00 2 5007	DOILDING IN COMMITTION MODELLING (DIM)

Course Category:	Skill Oriented Course -2	Credits:	2
Course Type:	Lab	Lecture - Tutorial - Practice:	1-0-2
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon s	Upon successful completion of the course, the students will be able to:													
	CO1		their MEP o		_		nodel	the st	ructui	e wit	h Arch	nitectu	ral, Str	uctural	
CO2 apply the drawing					softw	are o	comm	ands	to cr	eate	indus	try sta	ındard	archit	ectural
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PS O2
towards achievement of	CO1			2		3				3	3	3		2	
Program Outcomes (1 – Low, 2 - Medium, 3 – High)	CO2			2		3				3	3	3		2	

Course Content	 Modelling of Architectural Components for a structure using Revit Architecture. Modelling of Structural Components for a structure using Revit Structures. Modelling of MEP systems using Revit MEP. Generating the walkthrough for the structure. Detailing and creation of Drawings for a structure as per IS Code. Extraction of Bill of Materials from a Model. Extraction of Bill of Quantities from a Model. Preparing a schedule for construction of the structure with model. Architectural Rendering, interference checking, and modeling of energy consumption.
Text books	 [T1] Auto desk Rivet structures manual. [T2] Exploring Autodesk Revit 2020 for structures, 10th edition, by Prof. Sham Tickoo, Purdue University Northwest, USA. [T3] Commercial Design using Autodesk Revit Architecture 2015, Daniel John Stine, SDC Publications ISBN #: 978-1-58503-512-0
Reference books	[R1] Autodesk Revit 2021 Structure Fundamentals by By ASCENT publications Published August 10, 2020, ISBN: 978-1-63057-358-4 ISBN 10: 1630573582
E-resources and other digital material	https://www.coursera.org/learn/autodesk-revit-for-structural-design-exam-prep

20MC5108B INNOVATION, IPR AND ENTREPRENEURSHIP	
--	--

Course Category:	Mandatory Course	Credits:	0
Course Type:	Theory	Lecture - Tutorial - Practice:	2-0-0
Prerequisites:		Continuous Evaluation:	100
		Total Marks:	100

		Upon	Upon successful completion of the course, the student will be able to												
	understanding the concept of innovation and its importance in organizations.														
		CO2	apply innovation management strategy in new product development.												
		CO3	under	stand	ling th	ne Int	ellect	ual P	roper	ty Rig	ghts and	d the key	y legal a	spects	
		CO4	analy	ze the	e cond	cept o	f entr	eprer	neursl	nip an	d skills	\$			
Contributio n of Course Out comes		PO 1	PO2	P O3	P O4	P O5	P O6	P O7	P O8	P O9	PO 10	P O 11	P O1 2	PS O1	PS O2
towards	CO1		1						2	2		2			
achievemen	CO2		2						1	2		2			
t of Program	CO3		2						2	3		3			
Outcomes (1-Low, 2- Medium, 3 - High)	CO4		1						3	2		2			
Course Content UNIT – I INNOVATION MANAGEMENT Definition of Innovation - Need for Innovation - Types of Innovation (Product Process and Organization) - Sources of Innovation - Technology Adoption - Barriers to Innovation UNIT – II INNOVATION: NEW PRODUCT DEVELOPMENT Meaning and Classification of New Product - Role of Innovation in New Product Development - Key Factors in New Product Development Strategy - Organizational								arriers oduct							

	UNIT – III INTELLECTUAL PROPERTY RIGHTS (IPRs) Definition of IPRs - Need for IPRs - Kinds of Intellectual Property Rights: Patents, Copy rights, Trade Marks, Trade Secret, Design, Geographical Indications - Legal Aspects of IPRs - IPRs in India
	UNIT – IV ENTREPRENEURSHIP Concept and Nature of Entrepreneurship - Need for Entrepreneurship – Types of Entrepreneurship - Entrepreneurship - Entrepreneurship - Environment for Entrepreneurship
Text Books	 [T1] Paul Trott, Innovation Management and New Product Development, Pearson Education Limited, UK, 2017. [T2] Nithyananda, K V., Intellectual Property Rights: Protection and Management, Cengage Learning India Private Limited, 2019. [T3] Dr.S S Khanka, Entrepreneurial Development, S Chand, New Delhi, 2020.
Reference Books	 [R1] Managing innovation: Integrating Technological, Market and Organizational Change, Joe Tidd, John Besant, 2018. [R2] Neeraj, P., &Khusdeep, D, Intellectual Property Rights. PHI learning PrivateLimited, India, 2019. [R3] Vasant Desai, The Dynamics of Entrepreneurial Development and Management, Himalaya Publishing House, India, 2022.
E-resources and other digital material	https://edisciplinas.usp.br/pluginfile.php/5553082/mod_folder/content/0/Trott%20-%202017%20-%20%20roz%20Innovation-Management-and-New-Product-Development.pdf?forcedownload=1

20CE6301	DESIGN OF STEEL STRUCTURES

Course Category:	Programme Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	
		Total Marks:	70
			100

Course outcomes		Upon successful completion of the course, the student will be able to:													
	CO1	analy	analyze the adequacy of bolted& welded connections												
				analyze the adequacy of bolted & welded connections in tension and compression members.											
		СОЗ	evalı	evaluate the adequacy of laterally supported and unsupported steel beams											
	CO4			evaluate the adequacy of steel column bases											
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2
Outcomes towards	CO1	2		3		3	1							3	
achievement of Program	CO2	2		3		3	1							3	
Outcomes	CO3	2		3		3	1							3	
(1 – Low, 2 - Medium, 3 – High)	CO4	2		3		3	1							3	

Course Content

UNIT – I GENERAL

Fundamental Concepts of limit state design of structures, Different types of rolled steel sections available to be used in steel structures. Stress – Strain relationship for mild steel.

SIMPLE CONNECTIONS (IS800-2007)

Bolted connections: Types of joints, Behaviour of bolted joints, Design strength of ordinary black bolts, Simple connections. Design of bolted joints subjected to axial load. Welded Connections: Advantages of welding, Types and properties of welds, Types of joints, weld specifications, Design of welded joints subjected to axial load.

UNIT - II

TENSION MEMBERS (IS800-2007)

Types of tension members, slenderness ratio, displacement of tension members, behaviour of tension members, modes of failure, factors affectingstrength of tension members, design of tension members with bolted and welded connections.

	COMPRESSION MEMBERS (IS800-2007) Possible failure modes, behaviour of compression members, Effective length, radius of gyration and slenderness of compression members, Allowable stresses in compression, Design of axially loaded compression Members with bolted and welded connections.
	UNIT – III BEAMS- LATERALLY SUPPORTED (IS800-2007) Introduction; classification of sections; Lateral stability of beams; web buckling; Web crippling. Design of laterally supported beams. BEAMS- LATERALLY UNSUPPORTED (IS800-2007) Design of laterally unsupported beams.
	UNIT – IV COLUMN BASE (IS800-2007) Introduction to column bases and types of column bases. Allowable stress in Bearing. SLAB BASE Design of slab base with bolted and welded connections.
Text books	 [T1] Subramanian, N. Design of steel structures - Oxford university press, NDLS., 2018. [T2] Duggal S K, Limit state design of steel structures - McGraw Hill (I) Pvt Ltd., 2017. [T3] Ramchandra and Gehlot V, Limit State Design of steel structures - Scientific Publishers (I).,2012.
Reference books	 [R1] Sai Ram K. S, Design of steel structures - Pearson Education India., 2020. [R2] Bhavikatti S.S, Design of steel structures by Limit State Method as per IS: 800-2007 –IK IPHPvt. Ltd., NDLS-2019.
E-resources and other digital material	https://nptel.ac.in/courses/105105162. https://nptel.ac.in/courses/105106112.

Course Category:	Programme Core	Credits:	3
Course Type:	Theory and Practice	Lecture - Tutorial - Practice:	3 - 0 - 0
Prerequisites:	NIL	Internal Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes		Upon	Jpon successful completion of the course, the student will be able to												
CO1				analyze the best alternative route for highways											
	appl	y the s	studies	s to re	gulate	traffi	c cont	rol an	d man	ageme	ent				
		CO3	eval	uate g	eomet	rics a	nd pav	emen	t crust	-					
		CO4	anal	yze th	e Con	structi	on an	d Mai	ntenar	nce of	Highv	vays			
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
Outcomes towards	CO1	3		3											
achievement of Program	CO2				3		1								3
Outcomes	CO3	3		3										3	
(1 - Low, 2 - Medium, 3 - High)	CO4			3		3		1							
Course	UNIT	' I	•	•	•	-	•	•	•	•	•	•			

Course UN Content HIG

HIGHWAY NETWORK PLANNING AND ALIGNMENT

Different Modes of Transportation, Road Classification, Road Patterns, 20 Year Road Development plans. Highway Alignment: Requirements, factors controlling, Engineering Surveys.

HIGHWAY GEOMETRIC DESIGN

Geometric Design: Highway Cross Section Elements Sight Distance Stopping Sight Distance, Overtaking Sight Distance, Intermediate Sight Distance, Design of Horizontal Alignment- Super elevation, transition curves, extra widening, Design of Vertical Alignment-Grades and Grade Compensation.

UNIT II

TRAFFIC STUDIES

Introduction, Road User Characteristics, Vehicle Characteristics, Traffic Volume Studies

	objectives, methods, presentation of data(no numerical), Speed Studies, Methods and presentation of data, various methods of speed and delay studies, Traffic Flow Characteristics, Traffic Capacity and concept of Level of Service. DESIGN OF TRAFFIC CONTROL DEVICES Traffic Operations-Traffic Regulation, Traffic Control Devices- types of Signs, types of traffic signals, types of traffic signal system, design of traffic signal by Webster's method.
	UNIT III DESIGN OF FLEXIBLE PAVEMENTS Types of Pavement Structures, Design Factors, Design of Flexible Pavements- IRC Method DESIGN OF RIGID PAVEMENT Design of Rigid Pavement- Wheel Load stresses, Temperature Stresses, Frictional Stresses.
	UNITIV HIGHWAY CONSTRUCTION Construction Steps of Embankment, earth roads, Granular Sub Base (GSB), Wet Mix Macadam (WMM), Dense Bituminous Macadam (DBM), Bituminous Concrete (BC) as per MORTH. HIGHWAY MAINTENANCE Pavement failures, causes, failures in flexible pavement, failures in rigid pavements, maintenance of Bituminous pavements and concrete pavements.
Text books	 [T1] Khanna, S. K., Justo, C. E. G., Veeraragavan, A." Highway Engineering Revised 10th Edition Nem Chand Bros. Roorkee 2017. [T2] Kadyali, L. R. "Principles and Practices of Highway Engineering", Khanna Publishers, New Delhi, 2004.
Reference books	[R1]Principles of Transportation Engineering by ParthaChakraborthy&Animesh Das; PHI Learning Pvt. Ltd.; New Delhi, Second edition 2017 [R2] Ministry of Road Transport and Highways- Specifications for Roads and Bridge Works, Fifth Revision, IRC, New Delhi, India-2013 [R3] IRC 37:2012- Guidelines for the design of flexible pavements (Third Revision) [R4] IRC58-2015 Guidelines for the Design of Plain Jointed Rigid Pavements for Highway
E-resources and other digital material	https://nptel.ac.in/downloads/105101087/ https://nptel.ac.in/courses/105105107/

20HS6103	ENGINEERING ECONOMICS AND MANAGEMENT

Course Category:	Humanities and Social Sciences	Credits:	2
Course Type:	Theory	Lecture - Tutorial - Practice:	2 - 0 - 0
Prerequisites:	NIL	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	success	sful con	npletior	of the	course	, the stu	ıdent w	ill be a	ble to:					
outcomes	CO1	under	stand tl	ne princ	iples of	fecono	mics, ii	ncome a	and goo	ds and	service	tax.			
	CO2	apply	apply the concepts of management and demand forecasting.												
	CO3	evalu	evaluate time value of money and various forms of decision making.												
	CO4	apply	apply the concept of financial importance in projects and budgeting process.												
Contribution of Course		PO 1	PO 2	PO3	PO 4	PO 5	PO 6	PO7	PO8	PO9	PO1 0	PO 11	PO1 2	PSO 1	PSO 2
Outcomes towards	CO1	2					1		2						2
achievement of Program	CO2	3	1	2		2				1					2
Outcomes	CO3	2	2			2	2		2				2		2
(1 – Low, 2 - Medium, 3 – High)	CO4	3	2	2		2				1	1	2	2		2

Course Content

UNIT – I

ECONOMICS

Introduction to Engineering Economics, Theory of Demand, Elasticity of Demand, Supply and Law of Supply, Indifference Curves, Budget Line.

MANAGERIAL ECONOMICS, MONEY, NATIONAL INCOME, GOODS AND SERVICE TAX

Introduction to Managerial Economics, Scope of Managerial Economics, Techniques of Managerial Economics, Applications of Managerial Economics, Money, National Income, Goods and Services Tax.

UNIT - II

CONCEPTS IN MANAGEMENT & HUMAN RESOURCE MANAGEMENT

Characteristics of Management, Scope of Management, Functions of Management, Levels of Management, Skills of Management, Managerial Roles, Administration and Management, Human Resource Management, Human Resource Planning, Recruitment and Selection.

DEMAND FORECASTING

Introduction to Demand forecasting, Forecasting Horizons, Steps to Forecasting, Forecasting Methods, Seasonal Adjustments, Forecasting Performance Measures, Break-Even Analysis.

	UNIT – III TIME VALUE OF MONEY Introduction to time value of money, Simple Interest, Compound Interest, Present Worth Analysis, Future Worth Analysis, Annual Cash Flow Analysis, Rate of Return Analysis, Normal and Effective Interest Rate, Perpetual Payment. DECISION MAKING Types of Decision-Making Environments, Decision Tree Analysis, Multiple Criteria Decision Making.
	UNIT – IV FINANCIAL STATEMENT & FINANCIAL RATIOS Financial Analysis, Financial Statement, Trading Account, Profit and Loss Account, Balance Sheet Requirements, Distinction between Profit and Loss Account and Balance Sheet. CAPITAL BUDGETING Capital Financing and Allocation Functions, Sources of Capital Funds, Capital Asset Pricing Model, Weighted Average Cost of Capital, Leasing Decisions, Capital Allocation.
Text books	 [T1] Pravin Kumar, "Engineering Economy and Management", 1st ed., Willey India, New Delhi, 2012. [T2] R. Pannerselvam, "Engineering Economics", 13th ed., PHI Learning Pvt. Ltd., New Delhi, 2012. [T3] M. Mahajan, "Industrial Engineering and Production Management" 2nd ed., Dhanpat Rai Publications.
Reference books	 [R1] Philip Kotler & Gary Armstrong "Principles of Marketing", Pearson Prentice Hall, New Delhi,2012 Edition. [R2] IM Pandey, "Financial Management" 11th ed., Vikas Publications. [R3] B.B Mahapatro, "Human Resource Management", New Age International publishers, 2011.
E-resources and other digital material	https://www.toppr.com/guides/fundamentals-of-economics-andmanagement/supply/supply-function/ https://keydifferences.com/difference-between-personnel-management-and-humanresource-management.html http://productlifecyclestages.com/ https://speechfoodie.com/cash-flow-diagrams/

20CE6404/A	ADVANCED DESIGN OF CONCRETE STRUCTURES

Course Category:	Programme Elective -II	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:	20CE5303 Design of Concrete	Continuous Evaluation:	30
	Structures	Semester end Evaluation:	70
		Total Marks:	100

Course outcomes		Upon successful completion of the course, the students will be able to:													
		CO1	evaluate sectional details for staircase and flat slab.												
		CO2	analyse foundations and retaining walls for safety.												
		CO3	evaluate safe section for water tanks												
		CO4	analyze for safe composite structures.												
Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2
	CO1	3		2		1								3	
	CO2	3		2		1								3	
	CO3	3		2		1								3	
	CO4	3		2		1								3	

Course Content

UNIT – I

DESIGN OF STAIRCASE

Types; Design and detailing of reinforced concrete doglegged staircase.

DESIGN OF FLAT SLABS

Design of Flat Slab: Direct design method – Distribution of moments in column strips and middle strip-moment and shear transfer from slabs to columns – Shear in Flat slabs-Check for one way and two-way shears, Limitations of Direct design method, Introduction to Equivalent frame method.

UNIT - II

DESIGN OF FOUNDATIONS

Structural Design of Pile Foundations: Types of piles, Load carrying capacity of piles, Structural design of RC piles, Design of pile cap for 2, Reinforcement detailing.

DESIGN OF RETAINING WALLS

Introduction – Types of retaining walls –Active and passive earth pressure- Design principles of cantilever retaining walls with horizontal back fill –With sloping back fill. Reinforcement detailing.

	UNIT – III DESIGN OF RECTANGULAR WATER TANKS Rectangular Water Tanks: Introduction – General design requirements according to Indian standard code of practice – Design of on ground water tanks Design of overhead water tanks- Reinforcement detailing. DESIGN OF CIRCULAR WATER TANKS Introduction – General design requirements according to Indian standard code of practice – Joints in water tanks – Circular tank with flexible joint between floor and wall – Circular tank with rigid joint between floor and wall.
	UNIT – IV DESIGN OF COMPOSITE STRUCURES Introduction – Design principles – Composite action of components- Equivalent section – prefabricated steel and in-situ concrete – composite members DESIGN OF SHEAR CONNECTORS Shear connectors – channel connectors - Spiral connectors - Composite beams and bridge deck
Text books	 [T1] Ramamrutham. S and Narayanan. P, "Design of Reinforced concrete structures", Dhanapat Rai Publishing Co. (P) Ltd., NDLS, 2010 [T2] Punmia, B.C, "Limit state design of Reinforced concrete", Laxmi Publications, NDLS, 2007. [T3] Punmia, B.C, "Reinforced concrete structure design", Laxmi Publications, NDLS, 2010 [T4] Sinha SN, "Reinforced Concrete Design" McGraw Hill, Third edition, 2017
Reference books	 [R1] Shah, V.L. and Karve, S.R., Limit State theory & Design of reinforced concrete Structures, Pune, 2003 [R2] Elliot. K, Precast Concrete Structures, Elsevier, CH, 2002. [R3] Multi-Storey Precast Concrete Framed Structures, Kim S. Elliott, Colin Jolly, Wiley-Blackwell publications, second edition-2013, Wiley-Blackwell. [R4] IS 456:2000- Code of Practice for Plain and Reinforced Concrete [R5] SP16 – Design aids of IS 456:2000 [R6] IS 13920 (1993) Ductile Designing of Reinforced Concrete Structures subjected to Seismic Forces.
E-resources and other digital material	www.nptel.ac.in/courses/105105105 www.nptel.ac.in/courses/105105104

20CE6404/B	FOUNDATION ENGINEERING
------------	------------------------

Course Category:	Program Elective -II	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:		Continuous Evaluation:	30
_	20CE4303 - Geotechnical	Semester end Evaluation:	70
	Engineering	Total Marks:	100

Course outcomes		Upon	succe	ssful o	compl	etion o	of the	cours	e, the	stude	nt wil	l be ab	ole to		
		CO1		evaluate sub soil properties through geotechnical investigations; understand distribution of stresses below footing level due to geostatic loads.											
	CO2	anal	analyse the earth pressures behind retaining walls and analyse soil slopes												
		CO3	eva	evaluate the capacity of shallow foundations and estimate settlements											
		CO4	analyze the capacity of various types of deep foundations.												
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2
Outcomes towards	CO1	3	3	2	3								2	2	
achievement of Program	CO2	3	3	2	3								2	2	
Outcomes (1 – Low, 2 - Medium, 3 – High)	CO3	2	2	2	2								2		1
	CO4	3	3	2	3								2		1
	UNIT		I INIX	/ FCT	 GAT	IONS	! A NIF	 C A N	/DI I	NC					

Planning of sub-surface exploration program; Methods of exploration; Soil sampling and samplers; Bore hole logging; In-situ tests – Standard penetration test, Static cone penetration test, Dynamic cone penetration test and Vane shear tests.

STRESSES DUE TO APPLIED LOADS

Course Content

Vertical and horizontal stresses due to concentrated loads; Boussinesq and Westergaard solutions; Isobars; Influence diagram; Newmark's influence charts; Contact pressure distribution.

UNIT - II

LATERAL EARTH PRESSURE & RETAINING WALLS

Different types of lateral earth pressure; Rankine's and Coulomb's earth pressure theories; Graphical methods; Types of retaining walls; Proportioning of retaining walls.

	STABILITY OF SLOPES Soil slopes, Types of slope failures; Various factors affecting the stability of slopes; Method of slices; Friction Circle method and Taylor's stability charts; Methods of improving stability of slopes. UNIT – III BEARING CAPACITY OF SHALLOW FOUNDATION Terzaghi's bearing capacity theory; nature of shear failures; effect of water table on bearing capacity; eccentric load and Bearing capacity from insitutests viz., Plate load test. SETTLEMENTANALYSIS Settlement of foundations; Immediate and consolidation settlements; Allowable settlement.
	 UNIT – IV PILE FOUNDATIONS Necessity of pile foundation; Classification of piles; Load carrying capacity of single pile from static, Pile capacity from in-situtests viz., Pile load test; Pile group and its efficiency; Settlement of pile foundation; Negative skin friction. WELLFOUNDATION Different shapes of wells; Individual components of well; Forces acting on well foundation, Terzaghi's Concept of design of well foundation; Measures for rectification of tilts and shifts.
Text Books	[T1] Basic and Applied Soil Mechanics, Gopal Ranjanand Rao A.S.R, 8 th Edition, 2018, New Age International (P) Limited Publishers, New Delhi [T2] Soil Mechanics and Foundation Engineering,. Arora K.R, 2011, Standard Publishers and Distributors, NewDelhi.
Reference Books	 [R1] Advanced Foundation Engineering, Murthy V.N.S., 2018, CBS Publishers and Distributors, New Delhi. [R2] Foundation Analysis and Design, Bowles J. E.,4thEdition,1996,McGraw–Hill International Editions, [R3] Relevant Indian Standard Code Books.
E-resources and other digital material	nptel.ac.in/courses/105107120 nptel.ac.in/courses/105101083

Course Category:	Program Elective-II	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:	20CE5302 - Environmental	Continuous Evaluation:	30
	Engineering	Semester end Evaluation:	70
		Total Marks:	100

Course outcomes		Upon	success	ful co	mplet	tion of	f the c	ourse	, the s	studen	t will	be abl	e to:		
	CO1		evaluate the protection of water bodies against contamination on disposal of waste water.												
	CO2		apply new concepts of waste water treatment and choose a selection of low cost treatment units.												
	CO3	evalu	evaluate suitable treatment process for selected industrial effluents.												
	CO4	analyze the effects of air pollutants and acquaint devices to Control particulate matter, Levels of and effects of Noise Pollution.													
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2
Outcomes towards	CO1	3		1									1		
achievement of Program	CO2	3		3											2
Outcomes	CO3	3		2											3
(1 – Low, 2 - Medium, 3 – High)	CO4	1											1		

UNIT – I

STREAM SANITATION

Introduction; Characteristics of the treatment plant effluents; Pattern of pollution and self purification in a stream; Dissolved oxygen balance in streams; Oxygen Sag Curve Impact of pollutants on stream waters and usage of stream waters with reference to flora and fauna.

DESIGN OF LOW COST WASTE WATER TREATMENT SYSTEMS

Introduction, Biological kinetics of waste water, Stabilization ponds, Aerated lagoons, Oxidation ditch, Extended aeration process.

UNIT - II

INDUSTRIAL WASTE WATER TREATMENT: SUGAR PLANT and DAIRY INDUSTRY

Introduction, Characteristics and treatment of industrial effluents, Difference between Industrial & Domestic wastewater.

Quantity of liquid waste; Characteristics of liquid waste, Processing and Manufacturing Units, Methods of its treatment and disposal.

	PULP AND PAPER INDUSTRY Quantity of liquid waste, Characteristics of liquid waste, Manufacturing Units, Methods of its treatment and disposal.
	UNIT – III NEW CONCEPTS IN BIOLOGICAL WASTE TREATMENT: Introduction; Nitrogen removal by biological nitrification and de-nitrification; Phosphate removal from the activated sludge process; Rotating disc biological contactor; An–aerobic filters; U-tube aeration systems. AIRPOLLUTION and EFFECTSOFAIR POLLUTION: Definition, Stationary and mobile sources, Primary and secondary pollutants, Natural contaminants, Particulate matter, Aerosols, Gases. Effects of air pollutants on human health, Effects on plants and economic effects.
	 UNIT – IV METEOROLOGY AND CONTROL OF AIR POLLUTION BY EQUIPMENT: Atmospheric stability and temperature in versions; Mixing height; Wind direction and speed; Wind direction recorder; Wind speed recorder; Humidity measurement; Temperature measurement; Plume behavior. Objectives; Types of collection equipment; Settling chambers; Inertial separators; Cyclones; Filters; Electrostatic precipitators; Scrubbers. NOISE POLLUTION: Introduction; Levels of noise; Noise rating systems; Measures of noise; Sources of noise and their noise levels; Acceptance of noise levels; Effects of noise; Control of noise.
Text books	[T1] AirPollutionandControlbyRao,M.NandRao,H.N.,TataMcGrawHill,NewDelhi,2007 [T2] EnvironmentalEngineeringandManagement,(2ndEdition)bySuresh,l.Kartarai S.K. &Sons, 2005.
Reference books	[R1] An Introduction to Air pollutionbyTrivedi,R.K.,B.S.Publications,2005. [R2] Air pollution by Warkand Warner, Addison-Wesley Publications, 1998.
E-resources and other digital material	http://nptel.ac.in/courses/webcourse-contents/IIT-delhi/Environmental%20Air%20Pollution/

20CE6404/D	RAILWAY AND TUNNEL ENGINEERING
------------	--------------------------------

Course Category:	Program Elective -II	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:	Nil	Continuous Evaluation:	30
-		Semester end Evaluation:	70
		Total Marks:	100

Course outco	Durse outcomes Upon successful completion of the course, the student will be able to:														
		CO1	evaluate the components of the railway track												
	CO2	analy	analyze the geometric section of railway track and control movement of locomotive												
		CO3	analy	analyze the stages in tunnel construction											
		CO4	understand tunnelling methods												
Contributio n of Course		PO 1	PO 2	PO3	PO 4	PO 5	PO 6	PO 7	PO8	PO 9	PO 10	PO 11	PO1 2	PSO 1	PSO2
Outcomes towards	CO1	3				2									3
achievemen t of	CO2	3	3	3		3								3	
Program Outcomes	CO3	3				3									2
(1 – Low, 2 - Medium, 3 – High)	CO4	3		2		2									3

UNIT - I

INTRODUCTION TO RAILWAYS

Introduction to Railways, Comparison of railway and highways transportation; Classification of Indian Railways, Gauges in Railway Track, Permanent way-Cross section and functions

COMPONENTS OF RAILWAY TRACK

Rails – Types, Coning of Wheels, Rail failures, Creep of Rails, Rail Joints-Types, Sleepers -Types, Types of Ballast materials, Specifications of Indian Railways, Ballast Profile, Formation; Specifications of Formation

UNIT - II

GEOMETRIC DESIGN OF RAILWAY TRACK

Geometric Design Necessity; Gradients – types, Gradient Compensation; Super elevation- definition, expression for super elevation; Cant deficiency and cant excess; Negative Super elevation concept, Numerical on Negative super elevation

	POINTS AND CROSSINGS & SIGNALLING Types of crossing, Turnouts components and its working principle, Classification of signals, Classification of stations and yards
	UNIT – III GENERAL ASPECTS OF TUNNELLING Definition of Tunnel and Open cut, Comparison of by passing alternatives, advantages and disadvantages of tunnel, classification of tunnels, shapes of tunnel, problems in tunneling STAGES IN TUNNEL CONSTRUCTION Investigations at tunnel site, setting out of tunnel, excavation, safety precautions in tunneling
	UNIT – IV TUNNELLING METHODS Methods of tunneling – for soft soil and rock
	TUNNEL LINING Objectives, materials for lining, sequence of lining
Text books	[T1] Saxena, S.C. and Arora. S, "Railway Engineering", Dhanpat Rai Publications, NDLS, 2009.[T2] Srinivasan, R "Harbour Dock and Tunnel Engineering", 29th ed., Charotar Publishing House Pvt Ltd, Anand, 2018.
Reference books	[R1] Agarwal.MM, Satish Chandra, "Railway Engineering", 2nd ed., Oxford University Press; New Delhi, 2013.
E-resources and other digital material	https://archive.nptel.ac.in/courses/105/107/105107123/

20CE6404/E	IRRIGATION STRUCTURES
Zoceo io i/E	IMMONITON STRUCTURES

Course Category:	Programme Elective-II	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0 - 0
Prerequisites:	Water Resources Engineering	Continuous Evaluation:	30
_		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon s	Jpon successful completion of the course, the student will be able to:													
	CO1	analy	analyze the basics of diversion head works and canal regulation												
	CO2	o2 apply the design principles of various cross drainage works													
	CO3 evaluate various types of dams and principles of Aurthur cotton technology														
	CO4	evalu	iate va	arious	types o	of spil	l ways	•							
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PSO 2
towards achievement of	CO1									3				2	
Program Outcomes	CO2	3	3	3		2								2	
(1 - Low, 2 -	CO3	3	3	3		2								3	3
Medium, 3 – High)	CO4														2

UNIT – I

DIVERSION HEAD WORKS:

Component parts of a Diversion Head works. Types of weirs, causes of failures of weirs and their remedies. – Bligh's Creep Theory, & Khosla's Theory. Canal falls; Necessity location and classification of falls. Silt control at head works.

CANAL REGULATION WORK

Canal regulators; Off-take alignment; Head regulators and cross-Regulators; Canal escape.

UNIT – II

CROSS DRAINAGE WORKS:

Introduction; Types of cross - drainage works; Selection of suitable type of cross - drainage work; Classification of Aqueducts and Syphon Aqueducts; Selection of a suitable type.

COTTONS TECHNOLOGIES

Introduction to Aurthur cotton technologies for present day needs, modern substitutes for Aurthur cottons materials, introduction to design of Krishna anicut, introduction to design of Godavari anicut

	UNIT – III
	STABILITY ANALYSIS OF GRAVITY DAMS:
	Introduction; Forces acting on a gravity dam; modes of failure and stability analysis of gravity dams.
	DESIGN OF GRAVITY DAMS Elementary profile of a gravity dam; Practical profile of a gravity dam; Limiting height of a gravity dam; High and low gravity dams; Galleries; Joints; Keys and water seals.
	UNIT – IV EARTH DAMS:
	Introduction; Types of earth dams; Causes of failure of earth dams; Criteria for safe design of earth dams; Section of an earth dam; Seepage control measures.
	CDILL WAVE.
	SPILLWAYS: Introduction; Types of spillways; Profile of ogee spillway; Energy dissipation below spillways for relative positions of jump height curve and tail water curve; Stilling basins; Types and description only.
Text books	[T1] Irrigation and Water Power Engineering by Punmia B.C &Pande B.B. Lal; Laxmi Publications pvt. Ltd., New Delhi. 2006. [T2] Water Power Engineering by Dandekar M.M and Sharma K.K; Vikas Publishing House Pvt. Ltd., New Delhi.,2006. [T3] Irrigation Engineering and Hydraulic Structures by SahasraBudhe S.R.,Katson Publishing House, Ludhiana. 2000. [T4] Sir Arthur Cottons Technologies for todaysanicuts, dams, aqueducts, bridges, barrages, kissing reservoirs., by Lakshmana Rao G, Prasad KSR
Reference Books:	 [R1] Irrigation Engineering and Hydraulic Structure by Garg SK; Khanna Publishers, Delhi.,2006 [R2] Irrigation, Water Resources and Waterpower Engineering by Modi PN; Standard Book House, New Delhi. 2006. [R3] Journals in Water Resources Methods of Numerical Analysis, Sastry SS, PHI, 2005.
E-resources and other digital material	www.nptel.ac.in/courses/105105110

20CE6205/A	GREEN BUILDINGS AND SUSTAINABILITY	

Course Category:	Open Elective / Job Oriented Elective-II	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:	Science, Environmental Science	Continuous Evaluation:	30
_		Semester end Evaluation:	70
		Total Marks:	100

		Upon successful completion of the course, the student will be able to:													
		CO1	CO1 understand Green building & sustainable design concepts												
		CO2		evaluate sustainable materials and factors influencing the design of green buildings analyze construction process and maintenance of green buildings											
		CO3	anal												
		CO4	appl	y the r	equire	nents (of IGB	C cert	ificatio	on.					
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
towards	CO1	1		1			1	3	2					1	
achievement of Program	CO2	1		1			1	3	2						2
Outcomes	CO3	1		1			1	3	2						2
(1 – Low, 2 - Medium, 3 – High)	CO4	1		1			1	3	2						2
Course Content	ligh) Course										water,				

	UNIT – II
	SITE & WATER ISSUES site analysis and design, site development and layout, watershed protection, drainage of concentrated Runoff, water efficiency and conservation, rain water harvesting, water reclamation SUSTAINABLE MATERIALS Reduce / Reuse / Recycle, Natural Sources, concrete, masonry, metals, wood and plastic, finishes
	UNIT – III PASSIVE SOLAR DESIGN Passive solar design, Day lighting, Building envelope, Renewable energy INDOOR ENVIRONMENTAL QUALITY
	Significance, design principle, ventilation control, occupant activity control, significance of acoustics.
	UNIT – IV CONSTRUCTION PROCESS AND MAINTENANCE OF GREEN BUILDING Environmental construction guidelines, building operations and maintenance
	INDIAN GREEN BUILDING COUNCIL Introduction to IGBC green homes, Benefits of IGBC, IGBC green home rating system, introduction to USGBC, LEED rating system, procedure to get IGBC certification
Text books	 [T1] "Sustainable building technical manual- Green building design, constructions and operation", Produced by Public Technology Inc., US Green Building Council. [T2] Gautham R K, "Green Homes", BSP Books Private Limited, New Delhi, 2009. [T3] IGBC Green homes rating system Version 3.0 – A bridged reference guide, September 2019
Reference books	[R1] "Green Building A Basic Guide to Building and Remodeling Sustainably", Tree Hugger Consulting [R2] "Green Building Guide – Design Techniques, Construction Practices & Materials for Affordable housing", Published by Rural Community Assistance Corporation (RCAC)
E-resources and other digital material	https://onlinecourses.nptel.ac.in/noc19_ce40/

ADVANCED CONSTRUCTION MATERIALS

Course Category:	Open Elective-II	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outco	Upon	success	sful co	mplet	tion o	f the c	ourse	the s	studer	t will	have a	an abil	lity to:		
		CO1		evaluate different types of modern materials, Paints, Enamels and Varnishes that are used in construction.											
		CO2		analyze the importance of special concretes and glass materials used in Building Construction.											
		СОЗ		understand the classification and usage of materials like plastics, bitumen and sound absorbent materials											
		CO4	evaluate building material like gypsum and various adhesives.												
Contributio n of Course Outcomes towards		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2
achievemen t of	CO1	1	1				2								2
Program Outcomes	CO2	1	1				2								2
(1 – Low, 2 - Medium,	CO3	1	1				2								2
3 – High)	CO4	1	1				2								2
		TINITE													

Course Content

UNIT-I MODERNMATERIALS:

Ceramics, Sealants for joints, fibre glass reinforced plastic, refract ories-composite materials, Geosynthetics.

PAINTS, ENAMELSAND VARNISHES:

Introduction,rubberpaints,plasticemulsionpaints,plasticpaints,enamelpaints,texturep aints,varnish,wax polish.

	UNIT-II
	SPECIAL CONCRETES: Light Weight concrete, High density concrete, Fiber reinforced concrete, polymer concrete.
	GLASS: Composition, classification, properties and types of glass.
	UNIT-III
	PLASTICS, BITUMEN: Composition, polymerization, Classification of plastics, biodegradable plastic, Grades of Bitumen.
	SOUND ABSORBENT MATERIALS: Porous materials, porous-cum-elastic materials, perforated materials, Baffle materials.
	UNIT-IV
	GYPSUM: Introduction, plaster of Paris, gypsum wall plasters, gypsum plaster boards, Non-load bearing Gypsum partition blocks.
	MISCELLANEOUS MATERIALS: Adhesives-advantages and disadvantages, properties, types of Adhesives; Different types of Building faced cladding materials; heat insulating materials; water proofing materials.
Text books	 [T1] Engineering Materials by Rangwala S.C; Charotar Publishing House, 33rd Edn 2017. [T2] Building materials by Duggal SK; New Age International publishers, 3rd Edn, 2009.
Reference books	[R1] BuildingmaterialsbyP.CVarghese;PHILearning,2 nd Edn2005.
E-resources and other digital material	www:http://nptel.ac.in/courses/105102088/

Course Category:	Open Elective-II	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcor	Upon	Upon successful completion of the course, the student will be able to:													
	CO1	unde	understand meaning of quality, TQM and Quality Circles												
	CO2	appl	pply quality monitoring procedures												
		СОЗ	appl	oply statistical QC techniques and quality assurance techniques											
	CO4	anal	nalyze bad quality of work and contents of quality manual												
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
Outcomes towards	CO1	3													3
achievement of Program Outcomes (1 – Low, 2 - Medium, 3– High)	CO2														3
	CO3	3	3			3							3		3
	CO4	3	3												3

UNIT – I

QUALITY MANAGEMENT

Introduction – Definitions and objectives – Factors influencing construction quality – Responsibilities and authority – Quality Management , TQM Concept

QUALITY SYSTEMS

Introduction - Quality system - ISO 9000 family of standards — Quality related training - Implementing a Quality system - case study of Third party Certification. Quality circles.

UNIT - II

QUALITY PLANNING

Quality Policy, Consumers feedback &satisfaction, Ergonomics, Discussion on IS code on sampling, sampling plans, acceptance criteria, quality inspection.

QUALITY PROCEDURES

Develop, schedule and implement procedures. The Three-Phase Control

	System: Preparatory Phase, Initial Phase and Follow-up Phase. Notify appropriate personnel of time, date and agenda.
	UNIT – III QUALITY CONTROL Definition, Objectives, Regulatory agencies, statically tolerances, Taguchi concept, Statistical methods: Mean, variance, standard deviation, coefficient correlation, coefficient regression, control charts, Numerical on the above concepts, Contractor Quality Control, Quality Control Personnel, Safety considerations and Activity Hazard Analyses (AHAs).
	QUALITY ASSURANCE Quality Characteristics of QA process. Methods used in QA, Non functional testing, Factors influencing construction quality, Quality Assurance Personnel and their role, Quality Management Record Keeping, The Contractor Quality Control Report,
	UNIT – IV QUALITY IMPROVEMENT TECHNIQUES Definition, objectives, quality appraisal, techniques of quality assurance, Quality manual, specification for few construction items/ construction techniques. FORENSIC ANALYSIS FOR BAD QUALITY
	Pareto analysis, cause effect diagram and its application in construction industry and day to day life.
Text Books	 [T1] Juran Frank, J.M. and Gryna, F.M. "Quality Planning and Analysis", McGraw Hill,2001 [T2] ThomsPyzdec; Rozeer W. Berger, "Quality Engineering Hand Book", TATA MC GRAW- HILL, New Delhi, 1995. [T3] Statistical Quality Control 7th Edition, Eugene L Grant, McGraw-Hill Series, 1980.
Reference Books	 [R1] Dale Besterfield, Carl Besterfield-Michner, Glan Besterfield, MaryBesterfield-Sacre, 2nd edition, Total Quality Management, Printice Hall, 1999. [R2] ShridharaBhat, "Total Quality Management- Cases", Himalaya Publihing House, Mumbai, 2009.
E-resources and other digital material	http://nptel.ac.in/courses/

20CE6351	TRANSPORTATION ENGINEERING LABORATORY

Course Category:	Program Core Laboratory	Credits:	1.5
Course Type:	Laboratory	Lecture - Tutorial - Practice:	0-0-3
Prerequisites:	Nil	Continuous Evaluation:	30
_		Semester end Evaluation:	70
		Total Marks:	100

Course outcon	Upor	Upon successful completion of the course, the student will be able to:													
	CO 1	analy	analyze the suitability of aggregates and bitumen in pavement construction.												
		CO 2	unde	rstand	the i	mport	ance	of traf	fic stu	ıdies	at mic	l block	section	on	
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO7	PO8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
Outcomes towards achievement of Program	CO 1	2		3	3			2		3	3				3
Outcomes (1 – Low, 2 - Medium, 3 – High)	CO 2	2		3	3			2		3	3				3
Course Content A. TESTS ON AGGREGATES:						,									

- 1. Determine the strength of aggregate and discuss the suitability in pavement construction.
- 2. Determine the toughness of aggregate and discuss the suitability in pavement construction.
- 3. Determine the hardness of aggregate and discuss the suitability in pavement construction.
- 4. Determine the flakiness and elongation index of aggregate and discuss the suitability in pavement construction.
- 5. Perform gradation of aggregate, analyze and discuss its importance in pavement layers
- 6. Determine the Specific gravity Test of aggregate and discuss its application in pavement layers

B. TESTS ON BITUMINOUS MATERIALS:

- 1. Determine the grade of bitumen using different methods (penetration test and viscosity test)
- 2. Perform different tests on bitumen and discuss the suitability of bitumen in flexible pavement construction.

C.TESTS ON SOIL

1. Determine the CBR of soil.

E-resources and other digital material	https://www.iitk.ac.in/ce/test/IS-codes/is.2386.4.1963.pdf https://www.iitk.ac.in/ce/test/IS-codes/is.2386.1.1963.pdf https://www.iitk.ac.in/ce/test/IS-codes/is.2386.3.1963.pdf https://www.iitk.ac.in/ce/test/IS-codes/is.2386.3.1963.pdf https://www.iitk.ac.in/ce/test/IS-codes/is.1201-1220.1978.pdf https://ia803004.us.archive.org/5/items/gov.in.is.2720.16.1987/is.2720.16.1987.pdf
Reference books	[R1] Ministry of Road Transport and Highways- Specifications for Roads and Bridge Works, Fifth Revision, IRC, New Delhi, India-2013
Text books	[T1] Khanna, S. K., C. E. G. Justo, A.Veeraragavan" Highway Engineering Revised 10th Edition Nem Chand Bros .Roorkee 2017.
	 D. TEST ON BITUMINOUS MIXES 1. Analyze and determine the optimum Binder content for construction of flexible pavement construction – (demo) E. TRAFFIC VOLUME STUDIES 1. Traffic volume study at mid block section 2. Traffic volume study at intersection 3. Speed study
	2. Plate bearing test – (demo)

20CE6352	COMPUTER APPLICATIONS IN CIVIL ENGINEERING LAB-2
20CE0332	

Course Category:	Programme Core -Lab-2	Credits:	1.5
Course Type:	Practical	Lecture - Tutorial - Practice:	0-0-3
Prerequisites:	20CE3503 Design of Concrete	Continuous Evaluation:	30
	Structures	Semester end Evaluation:	70
		Total Marks:	100

Course outco	Upon successful completion of the course, the students will be able to:														
		CO1	analysis for cross section and requirement of reinforcements of various structural elements by using STAAD.Pro/ ETABS.												
		CO2	CO2 analyse for rates and quantities and prepare rate analysis for various works in construction of a building using Spread Sheets												
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2
Outcomes towards achievement	CO1	2		2	1	3		2		2	1			3	1
of Program Outcomes (1 – Low, 2 - Medium, 3 – High)	CO2	3		1	2	1		2		1	2			1	3
Analysis of the following concrete & steel structural elements of the following concrete & steel structural elements of the following concrete & steel structural elements of the ETABS Software. 1. Design of continuous beam; 2. Design of plane fram 3. Design of space frame. 4. Design of G+4 Residential building: Creating mode Assigning Loads and Load Combinations 5. Design of G+4 Residential building: Preparation of 6. Design of G+4 Residential building: Preparation of 7. Design of Roof Truss PART – B 1. Estimate & Working out rates using spread sheets for single story building. 2. Demonstration of software's ETABS, CYPE							ame odel fr of deta of De	om thail dra	ne give nwing Docum	n drawing, ents					
Text books [T1] Sarma T.S, "Staad Pro V8i for Beginners 1st Edition Delhi, 2014. [T2] Sarma. T.S., "Design of R C C Buildings using Staad", 1st ed., Educreation Publishing, New Delhi, 2017.						•									
References															
e-Resources															

20HS	6153	ENG	LISH AND COMMUNICATION SKILLS	LAB
Course Category:	HS		Credits:	1
Course Type:	Lab		Lecture - Tutorial - Practice:	0-0-2
Prerequisites:			Continuous Evaluation:	30
			Semester end Evaluation:	70
			Total Marks:	100

Course outcomes		Upon	Upon successful completion of the course, the student will be able to:												
		CO1		evaluate elements of listening and spoken skills complemented by the abilities of argumentation and skills of public speaking											
CC			apply the nuances of requisite Advanced Reading Skills and higher order written communication required for administrative and corporate compilations												
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2
Outcomes towards	CO1						1		1	2	3	2	2		
achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)	CO2				1		1			2	3	2	1		

TED TALKS (Advanced Listening Skills)

Listening involving 5R Method

ELEVATOR PITCH (Advanced Listening Skills): Pitches for technical audience and administrators- exposure through soft components and illustrations

INTERPERSONAL COMMUNICATION (Advanced Spoken Communication Skills)

Individual and Group - Pyramid discussion- Conceptual framework and practice

DYNAMICS OF TECHNICAL AND PROFESSIONAL PRESENTATIONS(Advanced Spoken Communication Skills)

Illustrations and Practice including paralinguistic elements

EFFECTIVE READING(Advanced Reading and interpretation skills)

SQ3R Method, ERRQ Method and SPE Method with textual practice

LOGICAL READING(Advanced Reading and interpretation skills)

Syllogisms -illustrations and practice

ADVANCED COMPILATION AND DRAFTING SKILLS(Advanced Writing and other professional communication skills)

Minuets, Résumé& Video profile, Review and case writing

	LIFE SKILLS FOR WORK PLACE COMMUNICATION(Advanced Writing and other professional communication skills) Sensitivity towards gender and diversity in communication- Multi-genre Activity
Text books	 [T1] LokeshMehra, Sanjiva Dubey, S. P. Singh (Ed.) "Corporate Employability skills", 1st edition, CEGR, New Delhi, 2016 [T2] Brent C. Oberg.C., Interpersonal Communication, 1st Impression, Jaico Publishing, Mumbai, 2005 [T3] Eclectic materials offered by the Department of English
Reference books	 [R1] Chauhan, Gajendra Singh, SmithaKashiramka, "Technical Communication", Cengage, Delhi, 1st Impression, 2018 [R2] Quintanilla Kelly M, Shan T Wahl, "Business and Professional Communication: Keys for Workplace Excellence", SAGE, New Delhi, 2nd Impression 2012 [R3] Selinkar, Larry et al, English for Academic and Technical Purposes, I edition, Newbury House Publishers, 1981. [R4] John Langan, College Writing Skills, McGraw Hill, IX Edition, 2014 [R5] Martin Cutts, Oxford Guide to Plain English, 7th Impression, OUP, 2011
E-resources and other digital material	www.britishcouncil.org/learning-english-gateway.

20TP1606	QUANTITATIVE APTITUDE

Course Category:	Soft Skill Core	Credits:	1
Course Type:	Learning by Doing	Lecture - Tutorial -	0 - 0 - 2
		Practice:	
Prerequisites:		Continuous Evaluation:	100
		Semester end Evaluation:	0
		Total Marks:	100

Course outco	Course outcomes			Upon successful completion of the course, the student will be able to											
	CO1	appl	apply various Basic Mathematics problems by following different methods												
	CO2		apply shortcut methods to solve problems and follow strategies in minimizing time consumption in problem solving												
	C				analyze any mathematical problems and utilize these mathematical skills both in their professional as well as personal life.										
	CO4		evaluation information in quantitative forms including table, graphs and formulas												
Contributio n of Course Outcomes		PO 1	PO 2	P O 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
towards achieveme	CO1	2							3	3	3				
nt of Program Outcomes (1 – Low, 2	CO2		2						3	3	3				
	CO3	2							3	3	3				
- Medium, 3 - High)	CO4				2				3	3	3				

Course Content	UNIT I NUMERICAL ABILITY I Number system, HCF & LCM, Average, Simplification, Problems on numbers NUMERICAL ABILITY II Ratio & Proportion, Partnership, Percentages, Profit & Loss
	UNIT II ARITHMETICAL ABILITY I Problems on ages, Time & Work, Pipes & Cistern, Chain Rule. ARITHMETICAL ABILITY II Time & Distance, Problems on boats & Steams, Problems on Trains

	UNIT III ARITHMETICAL ABILITY III Allegation, Simple interest and compound interest, Races & Games of skills, Calendar and Clock, LOGICAL ABILITY Permutations and Combination, and Probability.
	UNIT IV MENSURATION Geometry, Areas, Volumes, DATA INTERPRETATION Tabulation, Bar graphs, Pie charts, line graphs
Text books	[T1] R. S. Aggarwal "Quantitative Aptitude", Revised., S Chand publication, New Delhi, 2017, ISBN:8121924987
Reference books	
E-resources and other digital material	

20MC6107B	BIOLOGY FOR ENGINEERS
-----------	-----------------------

Course Category:	Mandatory Core	Credits:	
Course Type:	Theory	Lecture - Tutorial -	2-0-0
		Practice:	
Prerequisites:		Continuous Evaluation:	100
		Semester end Evaluation:	0
		Total Marks:	100

Course outcomes		upon s	upon successful completion of the course, the student will be able to:												
			eval	evaluate the fundamental principles and methods of engineering											
		CO2	anal	analyse the functions of different types in bio-molecules											
C				apply mechanisms underlying the working of molecular biological process including enzyme catalysis, metabolic pathways, gene expression											
	CO4		analyze biological processes using Excel, MATLAB and other computational tools												
Contributio n of Course Outcomes		PO 1	PO 2	P O 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
towards achieveme	CO1	2	3				3	3		3	3				
nt of Program Outcomes	CO2		3				3	3		3	3				
	CO3		2		3		3	3		3	3				
(1 – Low, 2 - Medium, 3 – High)	CO4		1		2	3	3	3		3	3				

UNIT - I

INTRODUCTION AND CLASSIFICATION OF LIVING ORGANISMS

Fundamental differences between science and engineering by drawing a comparison between eye and camera, Bird flying and aircraft. Biology as an independent scientific discipline. Discuss how biological observations of 18th century that lead to major discoveries. Examples from Brownian motion and the origin of thermodynamics by referring to the original observation of Robert Brown and Julius Mayor.

CLASSIFICATION

Classification of living organisms based on (a) Cellularity- Unicellular or multicellular (b) Ultrastructure- prokaryotes or eukaryotes. (c) Energy and Carbon utilization —Autotrophs, heterotrophs, lithotrophs (d) Ammonia excretion — aminotelic, uricotelic, ureotelic (e) Habitat-acquatic, terrestrial (e) Molecular taxonomy- three major kingdoms of life.

UNIT – II

BIOMOLECULES

Biomolecules: Structures of sugars (Glucose and Fructose), starch and cellulose. Nucleotides and DNA/RNA. Amino acids and lipids. Proteins- structure and functions- as enzymes, transporters, receptors and structural elements.

ENZYMES

Enzyme classification. Mechanism of enzyme action.

Enzyme kinetics and kinetic parameters

UNIT – III GENETICS

"Genetics is to biology what Newton's laws are to Physical Sciences" Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Concepts of recessiveness and dominance. Gene interaction, Epistasis. Meiosis and Mitosis be taught as a part of genetics. Emphasis to be give not to the mechanics of cell division nor the phases but how genetic material passes from parent to offspring.

INFORMATION TRANSFER

DNA as a genetic material. Hierarchy of DNA structure- from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Define gene in terms of complementation and recombination.

UNIT - IV

METABOLISM

Exothermic and endothermic versus endergonic and exergonic reactions. Concept of Keq and its relation to standard free energy. ATP as an energy currency. Breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) and synthesis of glucose from CO2 and H2O (photosynthesis). Energy yielding and energy consuming reactions.

MICROBIOLOGY

Concept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Growth kinetics. Ecological aspects of single celled organisms. Microscopy.

Text books	[T1] Biology: A global approach: Campbell, N.A.; Reece, J.B.;Urry, Lisa; Cain,M,L.; Wasserman, S.A.; Minorsky, P.V.; Jackson, R.B. Pearason Education Ltd [T2] Outlines of Biochemistry, Conn, E.E; Stumpf, P.K; Bruening, G; Doi, R.H., John Wiley and Sons
Reference books	[R1] Principles of Biochemistry (V Edition), By Nelson, D.L.; and Cox, M.M.W.H. Freeman and Company [R2] Molecular Genetics (Second Edition), Stent, G.S.; and Calender, R.W.H. Freeman and Company, Distributed by Satish Kumar Jain for CBS publisher Microbiology. [R3] Prescott, L.M J.P. Harley and C.A.Klein 1995. 2 nd edition Wm, C.Brown publishers
E-resources and other digital material	International Standard Book Number-13: 978-1-4398-9402-6 (eBook - PDF)