VELAGAPUDI RAMAKRISHNASIDDHARTHA ENGINEERING COLLEGE DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING SCHEME OF INSTRUCTION FOR FOUR YEAR UG PROGRAMME VR20

Syllabus for Ist- VIIIth Semesters

Effective from 2020-21

VELAGAPUDI RAMAKRISHNASIDDHARTHA ENGINEERING COLLEGE <u>ELECTRONICS & INSTRUMENTATION ENGINEERING</u>

Vision

- To impart excellent education to provide globally competent Electronics and Instrumentation Engineers.
- To establish Centre of Excellence and Research in Electronics and Instrumentation Engineering and allied fields.

Mission

- To prepare competent Electronics and Instrumentation Engineers who can pursue professional career and/or higher studies.
- To promote excellence in teaching with academically good ambiance that allows the learners to be socially responsible with professional ethics.

Program Educational Objectives(PEOs)

In alignment with the vision and mission of the department, the EIE graduates are expected to attain the PEOs listed below

- 1. Graduates excel in academic and professional career in Electronics and Instrumentation enabled industries or software industries or be an entrepreneur in the domain area.
- 2. Graduates pursue higher education in the core or allied areas of electronics and instrumentation engineering and actively contribute to academic/R&D activities.
- 3. Graduates exhibit professional and ethical attitudes having all-round personality to work in multidisciplinary allied areas to be of use to the society

Velagapudi Ramakrishna Siddhartha Engineering College <u>ELECTRONICS & INSTRUMENTATION ENGINEERING</u>

Program Outcomes

- 1. An ability to apply knowledge of mathematics, science and engineering fundamentals appropriate to the discipline.
- 2. An ability to identify, formulate and solve problems by applying the principles of electronic instrumentation and control systems.
- 3. An ability to design and implement instrumentation and control systems to meet desired needs with appropriate consideration for public health and safety, environment, society, economics and sustainability.
- 4. An ability to design and conduct experiments as well as to analyse and interpret data.
- 5. An ability to use the techniques, skills and modern engineering tools necessary for his engineering practice.
- 6. The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental and societal context.
- 7. Knowledge of contemporary issues.
- 8. An understanding of professional, ethical, legal and social issues and consequent responsibility relevant to professional engineering practice.
- 9. An ability to function on multidisciplinary teams.
- 10. An ability to communicate effectively with a range of audience in his professional engineering practice.
- 11. An ability to use engineering and management principles to one's own work, as a member and leader in a team to manage projects
- 12. A recognition of the need for and an ability to engage in lifelong learning

Program Specific Outcomes

PSO1: Use basic engineering principles, concepts of measurement and sensor selection applicable to an industrial process.

PSO2: Apply basic knowledge related to devices and circuits for designing electronic systems to solve engineering problems.

PSO3: Demonstrate proficiency in the use of software and hardware required in industrial automation systems

Velagapudi Ramakrishna Siddhartha Engineering College ELECTRONICS & INSTRUMENTATION ENGINEERING

Scheme of Instructions for Four Year B.Tech Programme-VR20

SEMESTER I

S. No	Course Code	Course	Subject	L	Τ	Р	Credits
1.	20BS1101	Basic Science Course	Matrices and Differential Calculus	3	0	0	3
2.	20BS1102	Basic Science Course	Engineering Physics	3	0	0	3
3.	20ES1103	Engineering Science Course	Programming for Problem Solving	3	0	0	3
4.	20ES1104	Engineering Science Course	Basics of Electrical Engineering	3	0	0	3
5.	20HS1105	Humanities and Social Science	Technical English and Communication Skills	2	0	0	2
6.	20BS1151	Basic Science Course	Engineering Physics Laboratory	0	0	3	1.5
7.	20ES1152	Engineering Science Course	Programming for Problem Solving Laboratory	0	0	3	1.5
8.	20HS1153	Humanities and Social Science	Technical English and Communication SkillsLaboratory	0	0	3	1.5
9.	20ES1154	Engineering Science Course	Computing and Peripherals Laboratory	0	0	2	1
10.	20MC1106	Mandatory Course	Technology and Society	1	0	0	-
	Total			15	0	11	19.5
11.	20MC1107	Mandatory Course	Induction Program				-

Category	Credits
Basic Science Courses	7.5
Engineering Science Courses	8.5
Humanities and Social Science	3.5
Mandatory Courses	0
TOTAL CREDITS	19.5

SEMESTER II

S.No	Course Code	Course	Subject	L	Τ	P	Credits
1.	20BS2101	Basic Science Course	Laplace Transforms and Integral Calculus	3	0	0	3
2.	20BS2102	Basic Science Course	Engineering Chemistry	3	0	0	3
3.	20ES2103	Engineering Science Course	Object Oriented Programming using Python	3	0	0	3
4.	20ES2104C	Engineering Science Course	Network Theory	3	0	0	3
5.	20ES2105	Engineering Science Course	Engineering Graphics	1	0	4	3
6.	20BS2151	Basic Science Course	Engineering Chemistry Laboratory	0	0	3	1.5
7.	20ES2152	Engineering Science Course	Object Oriented Programming using Python Laboratory	0	0	3	1.5
8.	20ES2153	Engineering Science Course	Engineering Workshop	0	0	3	1.5
9.	20MC2106	Mandatory Course	Professional Ethics and Practice	1	0	0	-
Total				14	0	13	19.5

Category	Credits
Basic Science Courses	7.5
Engineering Science Courses	12
Mandatory Courses	0
TOTAL CREDITS	19.5

SEMESTER III

S.No	Course Code	Course	Subject	L	Т	Р	Credits
1.	20BS3101	Basic Science	Complex Analysis & Numerical	3	0	0	3
			Methods				
2.	20ES3102	Engineering	Electronic Devices and Circuits	3	0	0	3
		Science					
3.	20EI3303	Program Core	Digital Circuits and Systems	3	0	0	3
4.	20EI3304	Program Core	Sensors and Transducers	3	0	0	3
5.	20EI3305	Program Core	Electrical and Electronic	3	0	0	3
			Measurements				
6.	20ES3151	Engineering	Electronic Circuits Lab	0	0	3	1.5
		Science Lab					
7.	20EI3352	Program Core	Digital System Design Lab	0	0	3	1.5
		Lab 1					
8.	20EI3353	ProgramCore	Measurements Lab	0	0	3	1.5
		Lab 2					
9.	20TP3106	Soft Skills – 1	Logic and Reasoning	0	0	2	1
10.	20MC3107A	Mandatory	Environmental Studies	2	0	0	-
		Course					
		(AICTE					
		suggested)					
			Total	17	0	11	20.5

Category	Credits
Basic Science Courses	3
Engineering Science Courses	4.5
Program Core Courses	12
Soft OrientedCourses	1
Mandatory Courses	0
TOTAL CREDITS	20.5

SEMESTER IV

S.No	Course Code	Course	Subject	L	Τ	Р	Credits
1.	20BS4101	Basic Science	Analog Electronic Circuits	3	0	0	3
2.	20EI4302	Program Core	Linear Integrated Circuits and	3	0	0	3
			Applications				
3.	20EI4303	Program Core	Control Systems	3	0	0	3
4.	20EI4304	ProgramCore	Industrial Instrumentation	3	0	0	3
5.	20HS4105	Humanities	Universal Human Values	3	0	0	3
		and Social					
		Sciences					
6.	20EI4351	Program Core	Transducers Lab	0	0	3	1.5
		Lab1					
7.	20EI4352	Program Core	Control Systems Lab	0	0	3	1.5
		Lab 2					
8.	20EI4353	Program Core	LinearIntegrated Circuits Lab	0	0	3	1.5
		Lab 3					
9.	20TP4106	Soft Skills – 2	English for Professionals	0	0	2	1
10.	20EI4607	Skill Oriented	Virtual Instrumentation	0	0	4	2
		Course -1					
11.	20MC4108B	Mandatory	Indian Constitution	2	0	0	-
		Course					
		(AICTE					
		suggested)					
	Total			17	0	15	22.5
	Summer Internship six weeks (Mandatory) during summer vacation (EPICS)						5)
Hono	rs/Minor Cours	es		4	0	0	4
(the h	ours distributio	n can be 4-0-0, .	3-0-2 or 3-1-0 also)				

Category	Credits
Basic Science Courses	3
Program Core Courses	13.5
Engineering Science Courses	0
Skill Oriented Courses	3
Humanities and Social Science Courses	3
Mandatory Courses	0
TOTAL CREDITS	22.5

SEMESTER V

S.No	Course Code	Course	Subject	L	Т	Р	Credits
1	20EI5301	Program Core	Analytical Instrumentation	3	0	0	3
2	20EI5302	Program Core	Process Control	3	0	0	3
3	20HS5103	Humanities and Social Sciences	Engineering Economics and Management	2	0	0	2
4	20EI5404	Program Elective 1		3	0	0	3
5	20EI5205	Open Elective /Job oriented Elective -1		2	0	2	3
6	20EI5351	Program Core Lab 1	Advanced Instrumentation Lab I	0	0	3	1.5
7	20EI5352	Program Core Lab 2	Process Control Lab	0	0	3	1.5
8	20HS5153	Humanities and Social Sciences	English Communication Skills Lab	0	0	2	1
9	20TP5106	Soft Skills – 3	Personality Development	0	0	2	1
10	20EI5354	Internship/Proj ect (6 Weeks)	EPICS/Internship	0	0	3	1.5
11	20EI5607	Skill Oriented Course -2	Digital System Design with FPGA	0	0	4	2
12	20MC5108A	Mandatory Course (AICTE suggested)	Humanities Elective	2	0	0	-
Total	Total			15	0	19	22.5
	Honors/Minor Courses (the hours distribution can be 3-0-2 0r 3-1-0 also)			4	0	0	4

List of Humanities Elective Courses							
20MC5108A1	Foreign Languages	20MC5108A5	Law for Engineers				
	(German/French)						
20MC5108A2 Biology for Engineers		20MC5108A6	Sanskrit Bhasa				
20MC5108A3	Human Rights & Legislative	20MC5108A7	Yoga & Meditation				
	Procedures		-				
20MC5108A4 Philosophy		20MC5108A8	Psychology				

Category	Credits
Program Core Courses	9
Humanities and Social Sciences	3
Program Elective Courses	3
Open Elective Courses	3
Skill Oriented Courses	3
Internship/Project	1.5
Mandatory Course (AICTE)	0
TOTAL CREDITS	22.5

S.No	Course	Program Elective – 1	L	Τ	Р	Credits
	Code					
1.	20EI5404/A	VLSI Design		0	0	3
2.	20EI5404/B	Sensor Signal Conditioning		0	0	3
3.	20EI5404/C	Robotics and Control	3	0	0	3
4.	20EI5404/D	Industrial Electronics	3	0	0	3

S.No	Course	Open Elective – 1	L	Τ	Р	Credits
	Code					
1.	20EI5205/A	Essential Principles of Image Sensors	3	0	0	3
2.	20EI5205/B	Wireless Technologies	3	0	0	3
3.	20EI5205/C	Industry Based Elective	3	0	0	3

SEMESTER VI

S.No	Course Code	Course	Subject	L	Т	Р	Credits
1	20EI6301	Program Core	Microcontrollers and Embedded	3	0	0	3
			Systems				
2	20EI6302	Program Core	Digital Signal Processing	2	1	0	2
3	20EI6303	Program Core	Industrial Automation	3	0	0	3
4	20EI6404	Program		3	0	0	3
		Elective 2					
5	20EI6205	Open Elective		3	0	0	3
		/Job oriented					
		elective-2					
6	20EI6351	Program Core	Microcontrollers and Embedded	0	0	3	1.5
		Lab 1	Systems Lab				
7	20EI6352	Program Core	Industrial Automation Lab	0	0	3	1.5
		Lab 2					
8	20EI6353	Program Core	Advanced Instrumentation Lab II	0	0	3	1.5
		Lab 3					
9	20TP6106	Soft Skills-4	Quantitative Aptitude	0	0	2	1
10	20EI6554	Internship/Proj	Mini Project –I	0	0	2	1
		ect					
11	20MC6107B	Mandatory	Innovation, Incubation & Startup	2	0	0	0
		Course					
		(AICTE					
		suggested)					
			Total	15	0	15	20.5
	Industrial/H	Research Interns	hip six weeks (Mandatory) during su	mme	r vaca	tion	
Hono	rs/Minor Cours	es (the hours dis	tribution can be 4-0-0, 3-0-2 or 3-1-	4	0	0	4
0 also)						

Category	Credits
Program Core Courses	12.5
Humanities and Social Sciences	0
Program Elective Courses	3
Open Elective Courses	3
Skill Oriented Courses	1
Mandatory Course (AICTE)	0
Internship/ Project	1
TOTAL CREDITS	20.5

S.No	Course	Program Elective – 2	L	Τ	Р	Credits
	Code					
1.	20EI6404/A	Biomedical Instrumentation	3	0	0	3
2.	20EI6404/B	Industrial Communication Networks	3	0	0	3
3.	20EI6404/C	Process Modeling and Simulation	3	0	0	3
4.	20EI6404/D	Power Plant Instrumentation	3	0	0	3

S.No	Course Code	Open Elective – 2	L	Τ	P	Credits
1.	20EI6205/A	Artificial Intelligence and Machine Learning in	3	0	0	3
		Healthcare				
2.	20EI6205/B	Safety Instrumentation Systems	3	0	0	3
3.	20EI6205/C	CLAD Certification	3	0	0	3

SEMESTER VII

CONTACT HOURS:29

S.No	Course Code	Course	Subject	L	Т	Р	Credits
1	20EI7301	Program Core	Computer Control of Processes	3	0	0	3
2	20EI7402	Program Elective 3		3	0	0	3
3	20EI7403	Program Elective 4		3	0	0	3
4	20EI7404	Program Elective 5		3	0	0	3
5	20EI7205	Open Elective /Job		2	0	2	3
		Oriented Elective -3					
6	20EI7206	Open Elective /Job		2	0	2	3
		Oriented Elective -4					
7	20EI7607	Skill Advanced	Real Time Operating Systems	0	0	4	2
		Course					
8	20EI7551	Internship/Project	Mini Project – II	0	0	3	1.5
9	20EI7552	Internship/Project	Industrial/Research Internship	0	0	3	1.5
			Total	16	0	14	23
Hono	Honors/Minor Courses						4
(the h	ours distribution	n can be 4-0-0, 3-0-2 0	r 3-1-0 also)				

Note: Open Elective Courses 3 and 4 are self-learning. Students may opt from any MOOCs platform. They have to submit the certificate before the last instruction day of VII semester.

Category	Credits
Program Core	3
Program Electives	9
Open Electives	6
Skill Oriented Courses	2
Internship/Project	3
TOTAL CREDITS	23

S.No	Course	Program Elective – 3	L	Т	Р	Credits
	Code					
1.	20EI7402/A	Instrumentation and Control in Food Processing	3	0	0	3
2.	20EI7402/B	Industrial Internet of Things	3	0	0	3
3.	20EI7402/C	Wireless Sensor Networks	3	0	0	3
4.	20EI7402/D	Drives and Control for Industrial Automation	3	0	0	3

S.No	Course Code	Program Elective – 4	L	Т	Р	Credits
1.	20EI7403/A	Advanced Sensors	3	0	0	3
2.	20EI7403/B	Database Management Systems	3	0	0	3
3.	20EI7403/C	Intelligent Systems and Control	3	0	0	3
4.	20EI7403/D	Digital Image Processing	3	0	0	3

S.No	Course	Program Elective – 5	L	Т	Р	Credits
	Code					
1.	20EI7404/A	Instrumentation and Control in Paper Industries	3	0	0	3
2.	20EI7404/B	Computer Networks	3	0	0	3
3.	20EI7404/C	HMI & SCADA	3	0	0	3
4.	20EI7404/D	Real World Instrumentation with Python	3	0	0	3

S.No	Course Code	Open Elective – 3	L	T	Р	Credits
1.	17EI7205	MOOCS	3	0	0	3
2.	17EI7205/C	Automation in Manufacturing	3	0	0	3

S.No	Course Code	Open Elective – 4	L	Τ	Р	Credits
1.	17EI7206	MOOCS	3	0	0	3
2.	17EI7206/E	Industrial Safety and Environmental Management				

SEMESTER VIII

CONTACT HOURS: 24

S.No	Course Code	Course	Subject	L	Τ	Р	Credits
1	20EI8551	Internship/Project	Major Project & Internship	0	0	24	12
			(6 Months)				
		0	0	24	12		

The student should undergo internship and parallelly he/she should work on a project with well-defined objectives. At the end of the semester the candidate shall submit an internship completion certificate and a project report.

CREDIT DISTRIBUTION

Year	Semester I Credits	Semester II Credits	Total Credits					
Ι	19.5	19.5	39					
II	20.5	22.5[82]	43					
III	22.5	20.5[125]	43					
IV	23	12	35					
	Total	I	160					
	Non-C	Credit Courses						
Mandator	y Courses (7)	 Environmenta Indian Constitution Biology for E 	nd Society Ethics & Human Values Il Studies tution					
Mandatory Studen	t Practice Courses (2)	 (1) Co-curricular participation (2) NCC / NSS / Games and Sports / Art and Cultural / Professional Society activities / Industry training certificate. 						

Contact Hours:

	ODD Semester	EVEN Semester
1st Year	26	27
2nd Year	28	31
3rd Year	33	30
4 th year	29	24

First Year (I Semester)

20BS1101 – Matrices and Differential Calculus

Course Category:	Basic Science	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Fundamentals of Matrices,	Continuous Evaluation:	30
_	Fundamentals of Calculus,	Semester end Evaluation:	70
	Integration, Differentiation	Total Marks:	100

Course	Upon	succe	ssful	com	pletic	on of	the c	ourse	, the	stude	ent w	ill be	able	to:		
outcomes	CO1								s of a							
	CO2	Estir	nate I	Maxin	na anc	l Min	ima o	f Mul	tivaria	able fi	unctio	ns				
	CO3		lve the Linear differential equations with constant coefficients.													
	CO4	Solv	olve the Linear differential equations with variable coefficients													
Contributi		РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PS	PS	PS
on of		1	2	3	4	5	6	7	8	9	10	11	12	01	O2	03
Course																
Outcomes towards	CO1	3	2			1										
achieveme																
nt of	CO2	3	2			1										
Program	02	5	4													
Outcomes	aaa		0			1										
(L - Low,	CO3	3	2			1										
M -																
Medium,	CO4	3	2			1										
H – High																
Course Content		-														
Content	UNIT									-						
	Matric			•			•		-							
	Eigen v			-			-		-			-			-	
	a matr	-	-	-							-				luction	n of
	quadrat	ic for	m to c	canon	ical fo	orm, N	lature	of aq	luadra	tic fo	rm,Co	omple	x mat	rices		
	UNIT	. TT														
	Differe		Cale	ոհոշ․	Fund	ament	al the	orem	s_Ro	11e'c 1	heore	mΙ	aoran	ი e'ი ო	nean v	alue
	theorem												•	0		
	Maclau		-					anu	1 a y 10	1 5 11	COTCH	, с лр	ansi0	115 01	runcti	0115-
	IVIACIAU	1111 5	501105	anu I	ayıol	5 501	105.									
	Applic	ation	Curv	ature	, Radi	us of	curva	ture.								
	Functi	ons o	f Two	o or I	More	Vari	ables	: Tavl	or's t	heore	m for	func	tion c	of two	varia	bles
	Maxim							-								
	multipl	iers														

	 UNIT- III Differential Equations of First Order: Exact differential equations, Equations reducible to exact equations. Applications: Orthogonal trajectories, Newton's law of cooling. Linear Differential Equations of Higher Order: Definitions, OperatorD, Rules for finding the complementary function, Inverse operator, Rules for finding particular integral, Working procedure to solve the equation UNIT- IV Method of variation of parameters, Method of undetermined coefficients, Equations
	reducible to linear equations with constant coefficients: Cauchy's homogeneous linear equation, Legendre's linear equation, Linear dependence of solutions, Simultaneous linear equations with constant coefficients. Application: L-C-RCircuits.
Text books and Reference books	 Text Book: [T1] B.S.Grewal, Higher Engineering Mathematics, 44th Ed., KhannaPublishers,2019. Reference Books: [R1] Erwin Kreyszig, "Advanced Engineering Mathematics", 10th Ed., John Wiley & Sons,2015 [R2] B.V.Ramana, "Higher Engineering Mathematics", 1st Ed., Tata MC Graw Hill, 2007 [R3] N.P.Bali, Dr.Manish Goyal, "A Tex tBook of Engineering Mathematics, 9th Ed., Laxmi Publications, 2014
E- resources and other digital material	 https://www.nptelvideos.com/mathematics/ https://nptel.ac.in/courses/122/104/122104017/ https://nptel.ac.in/courses/111/105/111105035/

20BS1102 – Engineering Physics

Course Category:	Basic Science	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	10+2levelPhysics	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succe	ssful	com	pletio	on of	the c	ourse	e, the	stude	ent wi	ill be	able	to:		
outcomes	CO1		mploy physical laws of electrostatics and compute problems related to atic electric fields													
	CO2	Illus	ustrate the laws of magneto statics and solve various problems volving static magnetic fields													
	CO3		scribe various types of electric and magnetic materials													
	CO4	Und	nderstand the time varying electric and magnetic fields by applying propriate Maxwell's equations													
Contributi on of		PO 1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
Course Outcomes towards	CO1	3	2													
achieveme nt of Program	CO2	3	2													
Outcomes (L – Low, M -	CO3	3														
M - Medium, H – High	CO4	3	1													
Course Content	UNIT Electro distribu Surface equatio Density UNIT Magne Applica flux de potentia Force b	ostations, e charg n for a 7 in ele - II tostat ations ensity- als, Fe betwee	Elec ge, Vo static ectros tics: of A Maxy orce c	tric fl olume electr static f Biot- mper well's lue to	ux de char ic fields Savar e's la equa	ensity ge, El lds (q t's la w- In ttion t netic	,Gaus ectric ualitat aw, 4 finite for sta fields	Ampe line - Fo	nw, Aj ntial, 1 Poten re's currer nagne rce or	pplica Relati tial ar circui nt, Inf tic fio n a ch	tions on be d fiel t lav inite eld, N aarged	of Ga tween d of e v - sheet Magne l parti	Auss la n E an electric Maxw of cu etic ve	aw-Li d V, c dipc vell's rrent, ector	ne ch Maxw ole, Er equa Mag and s	arge, vell's hergy ttion, netic calar

	Types of Electric and Magnetic Materials: Properties of electric materials - Conductors and dielectrics, Convection and conduction currents, Polarization in dielectrics, Dielectric constant and strength, Continuity equation and relaxation time, Poisson's and Laplace's equations, Electro static boundary conditions, Dielectric-Dielectric, Conductor-Dielectric, Conductor-Free space. Types of magnetic materials, Magnetization in materials, Magnetic boundary conditions.
	 UNIT- IV Time Varying Fields and Electro Magnetic Waves: Time Varying Fields: Faraday's law, Transformer and motional electromotive forces, Displacement current, Maxwell's equations in final forms, Time harmonic fields. Electro Magnetic Waves: Wave propagation in lossy dielectrics, Lossless dielectrics, Free space, Good conductors, Poynting theorem
Text books and Reference books	 Text Book: [T1] Resnick, Halliday and Krane, "Physics", 5th Ed., Wiley India Pvt. Ltd, New Delhi, 2016. [T2]Matthew.N.O.Sadiku, "PrinciplesofElectromagnetics", 4thEd., Oxford University Press, New Delhi, 2009 Reference Books: [R1] R.K.Gaurand, S.L.Gupta, "Engineering Physics", 8th Ed., Reprint, Dhanpat Rai Publications Ltd ,NewDelhi, 2013 [R2] W.H.Hayt and J.A.Buck, "Engineering Electromagnetics", 7th Ed., Tata McGrawHill, NewDelhi, 2006 [R3] Joseph. A.Edminister, "Electromagnetics – Theory and problems", 2nd Ed., Schaum's outline series, MCGraw Hill, 1993
E- resources and other digital material	1. <u>http://www.mike-willis.com/Tutorial/PF2.htm</u>

20ES1103 – Programming for Problem Solving

Course Category:	Engineering Science	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	10+2levelPhysics	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succe	ssful	successful completion of the course, the student will be able to:												
outcomes	CO1	Und	ersta	nd th	e diff	ferent	type	s of 1	proble	em so	olving	g app	roach	nes		
	CO2	App	ly the	e selec	ctions	, loop	s, arr	ays ai	nd stri	ing co	oncep	ts in (C to s	olve p	proble	ems.
	CO3	App	ly fur	nction	s and	point	ter co	ncept	s in C	to so	olve p	roble	ms.			
	CO4	Solv	olve problems using num, structures, unions and file handling functions.													
Contributi		РО														
on of		1	2	3	4	5	6	7	8	9	10	11	12	01	O2	O3
Course																
Outcomes towards	CO1	3	1													
achieveme																
nt of	CO2		2	3												
Program				_												
Outcomes	CO3		2	3												
(L - Low, M)	005		2	5												
M - Medium,	CO4		2	3												
H – High	CO4		2	5												
Course	UNIT	- I														
Content	Introd	uction	n to C	Comp	uter -	- Bas	ed Pr	oblen	n Solv	ving:	Requ	ireme	nt of j	proble	em sol	lving
	by con	nputer	s, Pr	oblem	defi	nition	, Use	of e	xamp	les fo	or pro	blem	solvi	ng, S	imila	rities
	betwee	n proł	olems	, Prob	lem s	olving	g strat	egies,	Steps	s invo	lved i	n prol	blem s	solvin	g.	
	Progra	m D	esian	and	Imn	lemen	tatio	n Tee	1166.	Progr	ame	and a	loorit	nme	Ton-C	lown
	design		-		-					-			-		-	
	Implen		-						I OI IC	Jops	Dasi	ic pro	grann	iiiig v	consu	ucts,
	1			U												
	Algori					0		U	0							
	set of r					-					-		-		-	
	find gr					•	,					•			Ŭ	
	prime o		-		-						-			-		
	an inte	-			-								-			
	Evaluat										-					•
	another	-							•		-				•	
	elemen				-		k, Mu	Itiplic	ation	of tw	o ma	trices,	, 10 c	ompu	te to	roots
	of aqua	dratic	equat	ionax	-+bx+	-c=0.										

UNIT- II

Introduction to the C Language: Background of C program, Identifiers, Types, Variables, Constants, Memory layout, Input/Output, Programming examples.

Structure of a C Program: Logical data and operators, Expressions, Precedence and associatively, Evaluating expressions, Type conversion, Statements, Storage class.

Selection: Two-way selection, Multiway selection, More standard functions.

Repetition: Concept of a loop, Loops in C, Loop examples, Recursion, The calculator program.

Arrays: Array concepts in C, Inter function communication, Array applications, Two dimensional arrays, Multi-dimensional arrays

UNIT- III Strings: String concepts, C strings, String Input/output functions, Arrays of strings, String manipulation functions, String – Data conversion.

Functions: Functions in C, User defined functions; Call by value, Call value reference, Inter-Function communication, Standard functions, Sco pe.

Pointers: Introduction to pointer, Pointers for inter-function communications, Pointers to pointers, Compatibility, L value and R value.

Pointer Applications: Arrays and pointers, Pointer arithmetic and arrays, Passing an array to a function, Memory allocations, Functions, Array of pointers.

UNIT- IV

Enumerations: The type definition (Type def), Enumerated types: Declaring an enumerated type, Operations on enumerated types, Enumeration type conversion, Initializing enumerated constants, Anonymous enumeration constants, Input/Output operators.

Structures: Structure type declaration, Initialization, Accessing structures, Operations on structures, Complex structures, Structures and functions, Sending the whole structure, Passing structures through pointers.

Unions: Referencing unions, Initializers, Unions and structures, Internet address, Programming applications.

File Handling: Files, Streams, Standard library input/output functions, Formatting input/output functions and character input/output functions, Command – Linear arguments.

Text Text Book: books and

Reference	[T1]Harsha Priya, R.Ranjeet, "Programming and Problem Solving Through "C"									
books	Language", Firewall media2006									
	[T2] Behrouz.A.Forouzan, Richard.F.Gilberg, "Computer Science A Structured									
	Programming Approach Using C", 3 rd Ed., Cengage Learning									
	Reference Books:									
	[R1] Anil.B.Chaudhuri, "Flow chart and Algorithm Basics: The Art of Programming",									
	Mercury Learning & Information, 2020.									
	[R2] R.G.Dromey, "How to Solve it by Computer", Prentice – Hall International Series in									
	Computer Science, 1982.									
	[R3] Yashwant Kanetkar, "Let us C", 16 th Ed., BPB Publications, 2017.									
	[R4] Kernighan and Ritchie, "The C programming language", The (Ansi C Version), 2 nd									
	Ed., PHI.									
	[R5] Paul.J.Dietel and Harvey.M.Deitel,"C: How to Program", Prentice Hall, 8th Ed.,									
	2021.									
	[R6] K.R.Venugopal, Sundeep.R.Prasad, "Mastering C", 2 nd Ed., McGraw Hill, 2015									
E-	1. <u>https://nptel.ac.in/courses/106/105/106105171/</u>									
resources	2. <u>https://-nptel.ac.in/courses/106/104/106104128/</u>									
and other	3. <u>https://www.coursera.org/learn/c-structured-programming</u>									
digital	4.https://www.udemy.com/-course/advanced-c-programming-course/									
material										

20ES1104 – Basics of Electrical Engineering

Course Category:	Engineering Science	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succe	ssful	com	pletic	on of	the c	ourse	e, the	stude	ent w	ill be	able	to:		
outcomes	CO1	Ana	lyze e	lectric	c circu	iit fur	dame	ntals.								
	CO2	Und	erstan	d the	basic	conce	epts of	f alter	nating	g quar	tities	and n	nagne	tic cir	cuits.	
	CO3	Ana	lyze t	he ba	sic co	ncept	s of e	electri	c mae	chines	5					
	CO4	Und	Understand measuring instruments & solar photo voltaic system concepts													
Contributi		РО	PO	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PS	PS	PS
on of Course		1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
Outcomes	CO1	3	3			2										
towards	001	5	5			2										
achieveme nt of	CO2	3	3													
Program	02	5	C													
Outcomes	CO3	2	1			2										
(L – Low, M -		_	-			_										
Medium,	CO4	2	1													
H – High																
Course Content	UNIT	- T														
Content	Introd		ı to I	Electr	ical I	Engin	eerin	g: Ele	ectric	curre	nt, El	ectroi	motive	e forc	e, Ele	ectric
	power					-		-								
	Electro	magn	etic pl	henon	nenon	and 1	elated	l laws	s, Kirc	chhoff	"s law	s.				
	Netwo	rk A	nalve	sis•]	Netwo	ork s	ource	s- Ia	deal	inder	ender	nt vo	ltage	souu	rce	Ideal
	indepen		-							-			-			
	Source															
	R,L an				-							-				
	depend	ent so	urces	only)	•											
	UNIT	- II														
	Altern		Quar	ntities	: Intro	oducti	on, G	lenera	tion o	of A.C	c volt	ages,	Wave	forms	and	basic
	definiti	ons,	Relati	onshi	p bet	ween	frequ	iency,	spee	ed and	1 nun	nber	of po	les, R	loot 1	nean
	square		-	-				-			voltag	ges, F	orm f	factor	and	peak
	factor,	Phaso	r repr	esenta	ation of	of alte	rnatir	ng qua	ntitie	S						

	 Magnetic Circuits: Introduction, Magnetic circuits, Magnetic field strength (H), Magnetomotive force, Permeability, Reluctance, Analogy between electric and magnetic circuits, Magnetic potential drop, Magnetic circuit computations, Self and mutual inductance, Energy in linear magnetic systems (Derivation for pure inductor). UNIT- III DC Machines: Introduction, Construction of DC machines, Armature windings, Generation of DC voltage and Torque production in a DC machine, Operation of a DC machine as a generator, Operation of DC machine as a motor. Induction Motors: Introduction, Constructional features of three phase induction motors,
	Principle of operation of three-phase induction motor - Slip and rotor frequency, Voltage and current equations and Equivalent circuit of an induction motor.
	UNIT-IV Measuring Instruments: Introduction, Classification of instruments, Operating principles, Essential features of measuring instruments, Ammeters and voltmeters, Measurement of power.
	Solar Photo Voltaic Systems: Solar cell fundamentals, Characteristics, Classification, module, Panel and array construction, Maximizing the solar PV output and load matching, Maximum power point tracker basic algorithm and flow chart, PV system components, Solar PV systems and solar PV applications
Text books and Reference books	Text Book: [T1]T.K.Nagasarkar and M.S.Sukhja, "Basic Electric Engineering", 2 nd Ed., Oxford University Press2011 Reference Books:
	[R1] B.H.Khan, "Non-Conventional Energy Resources", 2 nd Ed., Mc.Graw Hill Education Pvt Ltd.,New Delhi,2013.
	[R2] Ashfaq Hussain, Haroon Ashfaq, "Fundamentals of Electric Engineering", 4 th Ed., DhanpatRai&Co,2014.
	[R3] I.J.Nagarathand Kothari, "Theoy and Problems of Basic Electric Engineering",2 nd Ed., PHI Pvt. Ltd., 2016.
E- resources and other digital material	1. <u>https://nptel.ac.in/courses/108/108/108108076/</u>

20HS1105 – Technical English and Communication Skills

Course Category:	Humanities and Social Science	Credits:	2
Course Type:	Theory	Lecture - Tutorial - Practice:	2 - 0- 0
Prerequisites:	Basic understanding of the	Continuous Evaluation:	30
	language skills viz	Semester end Evaluation:	70
	Listening, Speaking, Reading and Writing, including Sentence construction	Total Marks:	100

Course outcomes	Upon	succe	ssful	com	pletic	on of	the co	ourse	, the	stude	ent wi	ill be	able	to:		
outcomes	CO1	Dev	elop a	dmini	istrati	ve and	l prof	essior	nal con	mpila	tions	with f	elicity	y of ex	xpress	sion
	CO2	Dem	onstr	ate pr	oficie	ncy ir	adva	nced	readir	ng and	l conte	ext or	ientec	l writi	ng	
	CO3	auth		use o					glish en aca							r
	CO4	Exec	cute ta	asks ir	ı tech	nical	comm	unica	tion v	vith co	ompet	ence				
Contributi		Execute tasks in technical communication with competencePOPOPOPOPOPOPOPOPOPSPSPS														
on of		1														
Course Outcomes towards	CO1						2				3					
achieveme nt of Program	CO2						2			2	3					
Outcomes (L – Low, M -	CO3						2			2	3					
Medium, H – High	CO4										3					
Course Content	UNIT Profess special Parage Effecti with gu UNIT Readin Analyt	sional sional refere caph a ve W hided a - II ng Con	Lett ence to and E riting and se mpre	ers: E o bloc ssay ' g Pra emi-co hensie	Busine Ek forr Writi ctice: ontrol	mat ar ng: L Appr led co d Dis	nd mo inker opria mpila cours	dified s, Des teness tions e Dev	l blocl script s, Bre incluc zelopr	k form ive an vity, ding th nent \$	nat n d Ar Clarit he use Skills	alytic y, Co of id	cal wi ogency iomat	i th Ill / and ic exp	ustra cohe: pressio	tions rence ons.

	thinking – Thinking process and language development.
	Effective Reading Strategies: Skimming, Scanning, Eye span, Fixation, Taming regression, Issues and challenges of vocalization and sub-vocalization.
	Context-Oriented Dialogue/Argument Writing: Extending invitation, Reciprocation, Acceptance, Concurrence, disagreeing without being Disagreeable-Discourse/Dialogue, Development and identification of inconsistencies in pre-prepared dialogues
	UNIT- III Vocabulary and Functional English Vocabulary for Competitive Examinations: (A list of 500 high frequency words) Synonyms, Antonyms, Matching homonyms, Homophones and nearer words along with root words
	Verbal Analogies: (Single Unit) – Synonym relation, Antonym relation, Object- Operator relation, Object - Obstacle/Obstruction relation, Sequence relation, Place – Monument relation, Science – Area of activity relation, Profession – Tool relation, Gender relation, Diminutive relation, etc.
	Functional Grammar: With special reference to tense, Concord, Articles, Pronoun referent, Prepositions, Use of Gerund, Parallelism etc (A representative collection of 100 sentences).
	UNIT- IV Technical Communication Skills: Technical Proposal Writing: Characteristics, Proposal, Superstructure, Checklist, Formal proposal
	Technical Vocabulary: Basic explanations and description
	Technical Report Writing: Informational reports and feasibility report-Types, Components, Style and formats
Text books and Reference books	Text Book:[T1] Martin Cutts, "Oxford Guide to Plain English", 7th Impression, Oxford UniversityPress,2011[T2] M.Ashraf Rizvi, "Effective Technical Communication", Tata McGraw-Hill, NewDelhi, 2005.[T3] John Langan, "College Writing Skills", 9th Ed., McGrawHill,2014
	[T4] Eclectic Learning Materials Offered by the Department Reference Books:

	[R1] Erwin Kreyszig, Randolph Quirk, "Use of English Longman", 1st Ed., 2004.
	[R2] Thomson.A.J and A.V, Martinet, "Practical English Grammar", 3rd Ed., Oxford
	University Press,2001.
	[R3] V.Sethi and P.V.Dhamija, "A Course in Phonetics and Spoken English", 2 nd Ed.,
	PHI, 2006
Е-	1. Learn English British Council
resources	2. <u>www.natcorp.ox.ac.uk/Wkshops/Materials/specialising.xml?ID=onlin</u>
and other	3. <u>www.uni-marburg.de/de/sprachenzentrum</u>
digital	
material	

20BS1151 – Engineering Physics Laboratory

Course Category:	Basic Science	Credits:	1.5
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0- 3
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succe	essful	com	pletio	on of	the c	ourse	e, the	stude	ent w	ill be	able	to:		
outcomes	CO1	Test	optic	al cor	npone	ents us	sing p	rincip	les of	inter	ferenc	e and	diffra	action	of lig	ht
	CO2		spec erimer		eter,	travel	ling 1	nicro	scope	and	func	tion	gener	ator i	n var	ious
	CO4		ermine surem		V-I c	harac	teristi	cs of	photo	ocells	and	appre	ciate	the a	ccurac	y in
Contributi on of		PO 1	PO 2	РО 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
Course Outcomes towards	CO1				1											
achieveme nt of Program	CO2				1											
Outcomes (L – Low, M -	CO3	2			1											
Medium, H – High	CO4				1											
Course Content	 Vai We Sol Sol AC B - 	ure of R circ riation dge m ar cel Sono H cu ll effection fraction siona	f meri uit - S uit - S	it of a Study nagne l - Moeterm $r - Vonit - Efall costing -lulumudy o$	of re of re tic fie easure inatic erific Oetern effici - Mea – Mea of V-I	sonan eld ald ement on of l ation nination ent m surem easure chara	ce ong th of thi Fill fa of vit on of easure nent of ment of ment	ckness ctor prating hyster ement f wave of rigi	ss of a g laws resis le elengt idity r Detern	foil s oss h nodul minat	us			ular c	oil	
Text books and Reference	Text I [T1] M			n Rao	, "En	gineer	ing P	hysics	s Lab	Manu	al", 1	st Ed.,	, Scite	ech Pu	blicati	ions,

books	2015
	[T2] Ramarao Sri, Choudary Nityanand and Prasad Daruka, "Lab Manual of Engineering
	Physics", 5 th Ed., ExcellBooks,2010
Е-	1. <u>www.physicsclassroom.com/The-Laboratory</u>
resources	2. <u>http://facstaff.cbu.edu/~jvarrian/physlabs.html</u>
and other	3. https://vlab.amrita.edu/?sub=1&brch=201∼=366&cnt=1
digital material	4. https://vlab.amrita.edu/?sub=1&brch=195∼=840&cnt=1
material	5. https://vlab.amrita.edu/?sub=1&brch=195∼=840&cnt=1

20ES1152 – Programming for Problem Solving Laboratory

Course Category:	Engineering Science	Credits:	1.5
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0- 3
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succe	ssful	com	pletic	on of	the co	ourse	, the	stude	ent wi	ill be	able	to:		
	CO1	-	emen uage.	t the	use	of p	ogran	nming	g con	struct	s in	a str	uctura	l pro	gram	ming
	CO2			selec	tions,	loops	, arra	ys and	l strin	g con	cepts	in C t	o solv	e pro	blems	5.
	CO3			ctions						Ŭ				•		
	CO4		-	blems												
Contributi on of		РО 1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
Course Outcomes towards	CO1	1		3												
achieveme nt of Program	CO2		1	3												
Outcomes (L – Low, M -	CO3		1	3												
Medium, H – High	CO4		1	3												
H – Hign Course Content	b) c) Week – a) b)	1:Int The Use and i Writ state 2:Dat Use prog Use Prog	roduc struct identi nitial e sin ments taTyp void, rams. variou rams	etiontoure of fiers, ization nple oesand integ us printo per	C pro data n to w C pr IVari ral an nitive form	ogram types, rrite si ogram ableI nd flo	with form imple ns us Declar ating types ematic	a sam at spe c pro- sing ration point for pe	ecifier grams prepro	rs, con ocesso types hing d	nstant or co s in c	mmar liffere nt ma	nds a ent sco thema	nd si enaric ttical o	imple os to opera	I/O write

a)	Write Programs using the IfElse selection statements
b)	Use nested IfElse statement to solve problems that need multi-level selection
	making decisions. Write programs that use SwitchCase and ElseIf multiway statements to select
	one out of several options
Week-	-4: Looping Constructs and Their Applications
a)	To have a clear idea on loop initialization, validation and updation
b)	Write programs using the While, For or DoWhile loops
c)	To understand the logic and adopt best looping construct for different kinds of problems
d)	Design and develop programs based on iterative loops using While, Do While, For, Nested For
Week-	-5: Unconditional Control Transfer Statements
a)	Write programs using of (break and continue) unconditional control transfer statements
b)	Use the Go To statement to transfer the control from one part to another part of a program and the use of return statement to end the execution of a called function
Week-	-6: Arrays and Their Applications
a)	To utilize one dimensional and multi-dimensional arrays to solve problems that use set(s) of similar type input data
b)	To write programs that performs multiple classical operations like searching,
	sorting, up dation or deletion on array elements.
Week-	-7: Strings, String I/O and Manipulation Functions
a)	To write programs that work on read, write and manipulate fixed length and variable- length strings and/or arrays of strings
b)	To write programs that use predefined string i/o functions
c)	To write programs that use string manipulation functions from the string library
Week-	-8: Concepts of User Defined Functions
a)	Design and develop programs depending on functions both user defined and standard library functions in c with different approaches.
b)	To write a program using more than one function with or without parameters and function return type
Week-	-9: Pointers and Their Applications
a)	Programs on declaration of pointers and their usage in c.
b)	Programs to relate between arrays and pointers and use them efficiently in a program

	c) To pass pointers as an argument to a function and use it efficiently in a program.
	d) To write programs using static and dynamic memory allocation.
	Week-10: Structure, Union and Enumeration
	a) Programs to define, declare and access structure and union variables
	b) Design and develop programs to work with pointers to access data within a
	structure
	c) Programs to pass structure as an argument to a function
	d) To write c programs using enumeration data types, an easiest way of mapping
	symbolic names to integer values.
	Week–11: File Handling Operations
	a) Programs to open and close text and binary files using file i/o commands.
	b) Write programs to perform read and write operations using the formatting I/O and
	character I/O functions.
	c) Apply file positioning, status and system commands based on a problem
	requirement
	Week-12: Command Line Arguments
	a) To use command line arguments to pass inputs in a single line while executing a
	program through the dos command promptor linux terminal.
	b) To use ATOI function to convert a default string value argument to an integer
	value inside the main function in a program.
	c) To use ATOF function to convert a default string value argument to a float value
	inside the main function in a program
Text	Text Book:
books and	
Reference	[T1] Behrouz. A. Forouzan and, Richard.F. Gilberg, "Computer Science a Structured
books	Programming Approach Using C", 3 rd Ed., Cengage Learning.
	Reference Books:
	[R1] Anil B.Chaudhuri, "Flowchart and Algorithm Basics: The Art of Programming",
	Mercury Learning & Information, 2020.
	[R2] R.G.Dromey, "How to Solve it by Computer", Prentice-Hall International Series in
	Computer Science, 1982.
	[R3] Yashwant Kanetkar, "Let Us C", 16 th Ed., BPB Publications,2017.
	[R4] Kernighan and Ritchie, "The C Programming Language", The (Ansi C Version), 2 nd
	Ed., PHI.
	[R5] Paul. J.Dietel and Harvey.M.Deitel,"C: How to Program", 8th Ed., Prentice Hall,
	2021.
	[R6] K.R.Venugopal, Sundeep.R.Prasad, "Mastering C", 2 nd Ed., Mc Graw Hill, 2015.
F	1 Commentes Orignes and E. '. N. D. H. O. L'. The L
E-	1. Computer Science and Engineering -Noc: Problem Solving Through
resources	Programming in C

and other	https://nptel.ac.in/courses/106/105/106105171/						
digital	2. Computer Science and Engineering - Noc: Introduction to Programming						
material	in C						
	https://-nptel.ac.in/courses/106/104/106104128/						
	3. C For Everyone: Structured Programming						
	https://www.coursera.org/learn/c-structured-programming						
	4. Advanced C Programming Course Tim Academy – Jason Fedin.						
	https://www.udemy.com/-course/advanced-c-programming-course/						

20MC1106 – Technology and Society

Course Category:	Mandatory	Credits:	_
Course Type:	Theory	Lecture - Tutorial - Practice:	1 - 0- 0
Prerequisites:		Continuous Evaluation:	100
		Semester end Evaluation:	-
		Total Marks:	100

Course outcomes	Upon successful completion of the course, the student will be able to:															
outcomes	CO1	Understand the origins of technology and its role in the history of human progress.														
	CO2	Kno	Know the industrial revolution and its impact on society													
	CO3	Inter	Interpret the developments in various fields of technology till twentieth century.													
	CO4	Distinguish the impacts of technology on the environment and achievements of great scientists.														
Contributi on of		PO 1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
Course Outcomes towards achieveme	CO1	3							1							
nt of Program	CO2	3				2		1								
Outcomes (L – Low, M -	CO3	3							1							
Medium, H – High	CO4	3				2		1								
Course Content	 UNIT-I Introduction: Origins of technology, The agriculture revolution, Technological contributions of ancient civilizations- Mesopotamians, Egyptians, Greeks, Romans, Indians and Chinese. UNIT-II Industrial Revolution: The social and political background, The technical background, Steam: The power behind the industrial revolution, The revolution in textile industry, The impact of industrial revolution on society UNIT-III The Flowering of Modern Technology: Manufacturing technologies, Prime movers, Internal combustion engines, Production of metals and alloys, The birth of electrical technology, Twentieth century: The flowering of modern technology like information technology and biotechnology and its implications on society. 															

	UNIT- IV Technology, Science and Society : Impact of technology on society, The impacts of technology on the environment, Sustainable development.
	Achievements of Famous Scientists: (World): Einestein, Newton, Faraday, Graham Bell, Edison, S. Hawking (India):CVRaman, S.Chandrasekhar, Aryabhatta, Homi.J.Bhabha, VikramSarabhai, APJAbdul Kalam, S.Ramanujan, M.Visweswarayya
Text books and Reference books	Text Book: [T1] Dr.R.V.G Menon, "TechnologyandSociety", PearsonEducation, 2011. Reference Books: [R1] Quan-Haase, A, "Technology and Society: Inequality, Power and Social Networks", Oxford University Press, 2013
E- resources and other digital material	

20MC1107 – Induction Program

Course Category:	Mandatory	Credits:	_
Course Type:	Theory	Lecture - Tutorial - Practice:	
Prerequisites:		Continuous Evaluation:	
_		Semester end Evaluation:	
		Total Marks:	

First Year (II Semester)

20BS2101 – Laplace Transforms and Integral Calculus

Course Category:	Basic Science	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Vectors, Integration, Curve	Continuous Evaluation:	30
	Tracing	Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon successful completion of the course, the student will be able to:															
outcomes	CO1	Solv	Solve the linear differential equations using Laplace Transforms.													
	CO2	Eval														
	CO3	Eval														
	CO4															
Contributi on of Course		PO 1														
Outcomes towards achieveme																
nt of Program	CO2	3	2			1										
Outcomes (L – Low, M -	CO3	3	2			1										
Medium, H – High	CO4	3	2			1										
Course Content	UNIT Laplac of eler functio division inverse Applic transfor UNIT Integra polar co Applic	e Tra nenta: ns, T n by '' trans: ations rms. - II al Cal pordir	ry fu ransfe t', Inv form, s: Ev s: Ev	nction orms /erse t Conv /aluat : Dou Triple	ns, Pr of de ransfe olutio ion c uble in e integ	ropert erivat orms on the of int ntegra grals,	ies o ives, – Met orem, tegrals ls, Ch	f Laj Trans hod o Unit s, Sc nange ge of y	olace of part step a olving of or variab	trans s of ial fra nd un diffe der of iles.	forms integrations it imp erenti	, Tra rals, s, Oth oulse f al eq gration	nnsfor Multij er me functio	ms o plicati thods ons. ns by	f per ion b of fir y Laj	iodic y t ⁿ , nding place

	UNIT- III Vector Differential Calculus : Scalar and vector point functions, Del applied to scalar point functions- Gradient, Del applied to vector point functions, Physical interpretation of divergence and curl, Del applied twice to point functions, Del applied to products of point functions
	UNIT- IV Vector Integral Calculus : Integration of vectors, Line integral, Surface integral, Green's theorem in the plane, Stokes's theorem, Volume integral, Gauss divergence theorem, Irrotational fields.
Text books and Reference books	 Text Book: [T1] B.S.Grewal, Higher Engineering Mathematics, 44th Ed., KhannaPublishers,2019. Reference Books: [R1] Erwin Kreyszig, "Advanced Engineering Mathematics", 10th Ed., John Wiley & Sons, 2015 [R2] B.V.Ramana, "Higher Engineering Mathematics", 1st Ed., Tata MC Graw Hill, 2007 [R3] N.P.Bali, Dr. Manish Goyal, "A Text Book of Engineering Mathematics, 9th Ed., Laxmi Publications, 2014
E- resources and other digital material	 <u>https://www.nptelvideos.com/mathematics/</u> <u>https://nptel.ac.in/courses/122/104/122104017/</u> <u>https://nptel.ac.in/courses/111/105/111105035/</u>

20BS2102 – Engineering Chemistry

Course Category:	Basic Science	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Chemistry knowledge at	Continuous Evaluation:	30
	Intermediate level	Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	Upon successful completion of the course, the student will be able to:														
outcomes	CO1	Ana	Analyze various water treatment methods and boiler troubles.													
	CO2		apply the concept of phase equilibrium to different materials and the nowledge of working of electrodes and batteries in various technological fields.													
	CO3	Eval	Evaluate corrosion processes as well as protection methods.													
	CO4		Apply the knowledge of conventional fuels and mechanistic aspects of onducting polymers for their effective and efficient utilization.													
Contributi on of		PO 1														
Course Outcomes towards achieveme	CO1		3													
nt of Program	CO2	2														
Outcomes (L – Low,	CO3			3												
M - Medium, H – High	CO4		2													
Course Content	UNIT Water Sedime chlorin of elect Water conditional aluminatic corrosid UNIT Phase compositional Applica	Tecl entation ation ro dia Tech oning ate, C on cau - II Rule nent a nent s ations	n, C and it lysis nolog met Causti ises a and and c system of ph	Coagu is sigr and re gy-II: hods c em nd con App legree n – V ase ru	lation nificar everse Boile – Pl brittle ntrol blicat e of t Vater ile.	, Fil nce – e osmo er trou nosph ement ions: freedo syste	tratio Desal osis, A ubles ate c - Res Defin om, P em, T	n, D inatio Advan – Sca onditi asons, nition hase wo c	visinfe on of b tages lles- F oning Meo and rule ompo	ection pracki and d forma , Cal chanis expla equat nent	by sh wa isadva tion, 1 Igon m an anatio ion, 1 syster	chlo antage Disad condi nd its n of Phase n– Si	rinatio Princes. vanta itionin con the equi ilver	on, l iple at ges an g an trol a terms libria – Lea	Breaky nd pro- nd int d so and b - P of s ad sys	point ocess ernal dium ooiler hase, ingle stem,

	Chloride electrode and principle, Construction and working of glass electrode, Determination of ph using glass electrode. Chemistry of modern batteries-LI/SOCL ₂ battery and LI _x C/LICOO ₂ battery– Construction, Working and advantages. Fuelcells: General working principle of a fuel cell, Examples, ChemistryofH ₂ -O ₂ fuel cell. UNIT- III
	 Corrosion Principles: Introduction, Definition, Reason for corrosion, Examples – Types of electrochemical corrosion – Hydrogen evolution and oxygen absorption –Corrosion due to dissimilar metals, Galvanic series– Differential aeration corrosion– Pitting corrosion and concept of passivity. Corrosion Control Methods: Cathodic protection- Principle and types - Impressed current method and sacrificial anode method, Anodic protection – Principle and method, corrosion inhibitors– Types and mechanism of inhibition– Principle, Process and advantages of electroplating and electroless plating.
	UNIT- IV Conducting Polymers: Definition, Examples, Classification – Intrinsically conducting polymersand extrinsically conducting polymers – Mechanism of conduction of undoped polyacetylene, Doping of conducting polymers- Mechanism of conduction of p-doped and n-doped polyacetylenes – Applications of conducting polymers.
	Fuel Technology: Fuel- Definition, Calorific value- Lower and higher calorific values and numericals on calculation of HCV and LCV relation, Analysis of coal – Proximate analysis and ultimate analysis, Flue gas analysis byorsat's apparatus, Numericals basedon calculation of air required for combustion.
Text books and Reference books	Text Book: [T1] Shikha Agarwal, "Engineering Chemistry – Fundamentals and Applications", 1 st Ed., Cambridge University Press, NewDelhi, 2015. Reference Books:
	 [R1] Sunita Rattan, "A Text Book of Engineering Chemistry", 1st Ed., S.K. Kataria & Sons, NewDelhi, 2012. [R2] P.C. Jain, "Engineering Chemistry", 15th Ed., Dhanpat Rai Publishing Company (P) Limited ,NewDelhi. [R3] B.S.Bahl, G.D.Tuliand Arun Bahl, "Essentials of Physical Chemistry", S.Chandand Company Limited, NewDelhi. [R4] O.G.Palanna, "Engineering Chemistry", Tata McGraw Hill Education Pvt. Ltd.,NewDelhi.
E- resources and other digital material	 http://nopr.niscair.res.in/bitstream/123456789/5475/1/JSIR%2063%289% 29%20715-728.pdf https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Suppleme ntal_Modules_(Analytical_Chemistry)/Electrochemistry/Basics_of_Electr ochemistry https://www.filtronics.com/blog/tertiary-treatment/stages-in-typical- municipal-water-treatment/

20ES2103 – Object Oriented Programming using Python

Course Category:	Engineering Science	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Programming for Problem	Continuous Evaluation:	30
	Solving	Semester end Evaluation:	70
	Programming for Problem	Total Marks:	100
	Solving Laboratory		

COI Interpret the python syntax and semantics of control flow statements CO2 Apply 3 rd party packages for developing solutions for real time problems CO3 Apply 3 rd party packages for developing solutions for real time problems CO4 Implement the problems in terms of real world objects using OOPs Contribution on of Course PO	Course	Upon	succe	ssful	com	pletic	on of	the c	ourse	, the	stude	ent wi	ill be	able	to:		
	outcomes	CO1	Inte	Apply functions and modules in python to solve a problem													
		CO2	App														
CO4ConceptPO		CO3															
on of Course Outcomes towards 		CO4	-														
Course Outcomes towards achievement of Program Outcomes (L - Low, M - H - High CO2 2 2 2 2 2 3 1 C02 2 2 2 2 2 3 1 1 C03 2 2 2 2 3 1 1 C04 2 2 2 3 1 1 Course Content CO4 2 2 2 3 1 VNIT- I Introduction: History- Origins of Python, Features of Python- Why choose Python, what can I do with Python, Installing, Python 2 &3 installation on windows Variables, Expressions & Statements: Variables, Variable names & keywords, Operators & operands, Expressions, Order of operations, Modulus operator, String operations. Conditional Execution: Boolean expressions, Logical operators, Conditional execution, Alternative execution, Chained conditionals, Nested conditionals, Exceptions using try and except, Short circuit evaluation of logical expressions. Iterations: The while statement, Infinite loops, "Infinite loops" and break, Finishing iterations with continue, Definite loops using for. UNIT- II																	
Outcomes towards achievement of Program CO1 3 2 2 1 2 3 1 CO2 2 2 2 2 2 3 1 1 Outcomes Outcomes (L - Low, M - Medium, H - High CO3 2 2 2 1 1 2 3 1 1 CO3 2 2 2 1 1 2 3 1 1 Medium, H - High CO4 2 2 2 3 1 1 Course Content CO4 2 2 2 3 1 1 Variables, Expressions & Statements: Variables, Variable names & keywords, Operators & operands, Expressions, Order of operations, Modulus operator, String operations. Conditional Execution: Boolean expressions, Logical operators, Conditional execution, Alternative execution, Chained conditionals, Nested conditionals, Exceptions using try and except, Short circuit evaluation of logical expressions. Iterations: The while statement, Infinite loops, "Infinite loops" and break, Finishing iterations with continue, Definite loops using for. UNIT- II			1														
towards achieveme nt of Program Outcomes CO2 2 2 2 2 3 1 1 Outcomes CO3 2 2 2 2 3 1 1 M - Medium, H – High CO4 2 2 2 3 1 1 Course Content UNIT- I Introduction: History- Origins of Python, Features of Python- Why choose Python, what can I do with Python, Installing, Python 2 & 3 installation on windows Variables, Expressions & Statements: Variables, Variable names & keywords, Operators & operands, Expressions, Order of operations, Modulus operator, String operations. Conditional Execution: Boolean expressions, Logical operators, Conditional execution, Alternative execution, Chained conditionals, Nested conditionals, Exceptions using try and except, Short circuit evaluation of logical expressions. Iterations: The while statement, Infinite loops, "Infinite loops" and break, Finishing iterations with continue, Definite loops using for. UNIT- II																	
achieveme nt of Program Outcomes (L - Low, M - H - High CO2 2 2 2 2 2 2 3 1 1 CO3 2 2 2 2 1 1 2 3 1 1 Medium, 		CO1	3														
nt of Program Outcomes (L - Low, M - Medium, H - High CO2 2 2 2 2 2 2 2 3 1 1 CO3 2 2 2 2 2 2 3 3 1 1 1 1 2 3 1<																	
Program Outcomes (L - Low, M - Medium, H - High CO3 2 2 2 2 3 1 CO3 2 2 2 2 3 1 1 2 3 1 1 Medium, H - High CO4 2 2 2 3 1		CO2	2	n	2						2			2			
Outcomes (L - Low, M- Medium, H - High CO3 2 2 2 2 1 2 3 1 CO4 2 2 2 2 2 3 1 1 1 2 3 1 1 Course Content CO4 2 2 2 2 1 1 1 2 3 1 1 Course Content UNIT- I Introduction: History- Origins of Python, Features of Python- Why choose Python, what can I do with Python, Installing, Python 2 & 3 installation on windows Variables, Expressions & Statements: Variables, Variable names & keywords, Operators & operands, Expressions, Order of operations, Modulus operator, String operations. Conditional Execution: Boolean expressions, Logical operators, Conditional execution, Alternative execution, Chained conditionals, Nested conditionals, Exceptions using try and except, Short circuit evaluation of logical expressions. Iterations: The while statement, Infinite loops, "Infinite loops" and break, Finishing iterations with continue, Definite loops using for. UNIT- II			2	2										3			
M Medium, CO4 2 2 2 3 M-High CO4 2 2 2 3 4 Course Content UNIT- I Introduction: History- Origins of Python, Features of Python- Why choose Python, what can I do with Python, Installing, Python 2 &3 installation on windows Variables, Expressions & Statements: Variables, Variable names & keywords, Operators & operands, Expressions, Order of operations, Modulus operator, String operations. Conditional Execution: Boolean expressions, Logical operators, Conditional execution, Alternative execution, Chained conditionals, Nested conditionals, Exceptions using try and except, Short circuit evaluation of logical expressions. Iterations: The while statement, Infinite loops, "Infinite loops" and break, Finishing iterations with continue, Definite loops using for. UNIT- II	0	CO 2	-														
Medium, H – HighCO422222Course ContentUNIT- I Introduction: History- Origins of Python, Features of Python- Why choose Python, what can I do with Python, Installing, Python 2 &3 installation on windowsVariables, Operators & operands, Expressions operations.Statements: Variables, Variable names & keywords, Operators, Modulus operator, String operators, Modulus operator, String operators.Conditional Execution: Boolean expressions, Logical operators, Conditional execution, Alternative execution, Chained conditionals, Nested conditionals, Exceptions using try and except, Short circuit evaluation of logical expressions.Logical operators, Conditional execution, String operators with continue, Definite loops using for.UNIT- II		003	2	2	2						2			3			
H – HighIIIIICourse ContentUNIT- I Introduction: History- Origins of Python, Features of Python- Why choose Python, what can I do with Python, Installing, Python 2 &3 installation on windowsVariables, Expressions & Statements: Variables, Variable names & keywords, Operators & operands, Expressions, Order of operations, Modulus operator, String operations.Conditional Execution: Boolean expressions, Logical operators, Conditional execution, Alternative execution, Chained conditionals, Nested conditionals, Exceptions using try and except, Short circuit evaluation of logical expressions.Iterations: The while statement, Infinite loops, "Infinite loops" and break, Finishing iterations with continue, Definite loops using for.UNIT- II																	
Course ContentUNIT- I Introduction: History- Origins of Python, Features of Python- Why choose Python, what can I do with Python, Installing, Python 2 &3 installation on windowsVariables, Expressions & Statements: Variables, Variable names & keywords, Operators & operands, Expressions, Order of operations, Modulus operator, String operations.Conditional Execution: Boolean expressions, Logical operators, Conditional execution, Alternative execution, Chained conditionals, Nested conditionals, Exceptions using try and except, Short circuit evaluation of logical expressions.Iterations: The while statement, Infinite loops, "Infinite loops" and break, Finishing iterations with continue, Definite loops using for.UNIT- II		CO4	2	2	2						2			3			
ContentUNIT- I Introduction: History- Origins of Python, Features of Python- Why choose Python, what can I do with Python, Installing, Python 2 &3 installation on windowsVariables, Expressions & Statements: Variables, Variable names & keywords, Operators & operands, Expressions, Order of operations, Modulus operator, String operations.Conditional Execution: Boolean expressions, Logical operators, Conditional execution, Alternative execution, Chained conditionals, Nested conditionals, Exceptions using try and except, Short circuit evaluation of logical expressions.Iterations: The while statement, Infinite loops, "Infinite loops" and break, Finishing iterations with continue, Definite loops using for.UNIT- II																	
 Introduction: History- Origins of Python, Features of Python- Why choose Python, what can I do with Python, Installing, Python 2 &3 installation on windows Variables, Expressions & Statements: Variables, Variable names & keywords, Operators & operands, Expressions, Order of operations, Modulus operator, String operations. Conditional Execution: Boolean expressions, Logical operators, Conditional execution, Alternative execution, Chained conditionals, Nested conditionals, Exceptions using try and except, Short circuit evaluation of logical expressions. Iterations: The while statement, Infinite loops, "Infinite loops" and break, Finishing iterations with continue, Definite loops using for. 		UNIT	- I														
 Variables, Expressions & Statements: Variables, Variable names & keywords, Operators & operands, Expressions, Order of operations, Modulus operator, String operations. Conditional Execution: Boolean expressions, Logical operators, Conditional execution, Alternative execution, Chained conditionals, Nested conditionals, Exceptions using try and except, Short circuit evaluation of logical expressions. Iterations: The while statement, Infinite loops, "Infinite loops" and break, Finishing iterations with continue, Definite loops using for. UNIT- II 		Introd	uction	ı : His	tory-	Origi	ns of	Pytho	n, Fea	atures	of Py	thon-	Why	choo	se Py	thon,	what
 Operators & operands, Expressions, Order of operations, Modulus operator, String operations. Conditional Execution: Boolean expressions, Logical operators, Conditional execution, Alternative execution, Chained conditionals, Nested conditionals, Exceptions using try and except, Short circuit evaluation of logical expressions. Iterations: The while statement, Infinite loops, "Infinite loops" and break, Finishing iterations with continue, Definite loops using for. UNIT-II 		can I d	o with	Pyth	on, In	stallir	ng, Py	thon 2	2 &3 i	install	ation	on wi	ndow	'S			
 Operators & operands, Expressions, Order of operations, Modulus operator, String operations. Conditional Execution: Boolean expressions, Logical operators, Conditional execution, Alternative execution, Chained conditionals, Nested conditionals, Exceptions using try and except, Short circuit evaluation of logical expressions. Iterations: The while statement, Infinite loops, "Infinite loops" and break, Finishing iterations with continue, Definite loops using for. UNIT-II 		X 7 • 1		F	•	0	C 4	4		7 • 1	1	.			0	1	1
 operations. Conditional Execution: Boolean expressions, Logical operators, Conditional execution, Alternative execution, Chained conditionals, Nested conditionals, Exceptions using try and except, Short circuit evaluation of logical expressions. Iterations: The while statement, Infinite loops, "Infinite loops" and break, Finishing iterations with continue, Definite loops using for. UNIT-II 			,	-												•	-
 Conditional Execution: Boolean expressions, Logical operators, Conditional execution, Alternative execution, Chained conditionals, Nested conditionals, Exceptions using try and except, Short circuit evaluation of logical expressions. Iterations: The while statement, Infinite loops, "Infinite loops" and break, Finishing iterations with continue, Definite loops using for. UNIT-II 		-		c ope	rands	, exp	oress10	ons, C	Jraer	01 0	operat	ions,	wool	ulus (operat	or, S	uring
 Alternative execution, Chained conditionals, Nested conditionals, Exceptions using try and except, Short circuit evaluation of logical expressions. Iterations: The while statement, Infinite loops, "Infinite loops" and break, Finishing iterations with continue, Definite loops using for. UNIT- II 		operati	ons.														
 Alternative execution, Chained conditionals, Nested conditionals, Exceptions using try and except, Short circuit evaluation of logical expressions. Iterations: The while statement, Infinite loops, "Infinite loops" and break, Finishing iterations with continue, Definite loops using for. UNIT- II 		Condit	ional	Exec	cution	: Boo	lean	expre	ssions	s, Log	gical o	perate	ors, C	Conditi	ional	exect	ition,
 and except, Short circuit evaluation of logical expressions. Iterations: The while statement, Infinite loops, "Infinite loops" and break, Finishing iterations with continue, Definite loops using for. UNIT- II 								-		-		-					
Iterations: The while statement, Infinite loops, "Infinite loops" and break, Finishing iterations with continue, Definite loops using for.UNIT- II													- 1	- 1			
iterations with continue, Definite loops using for. UNIT- II			•							1							
UNIT- II										-	'Infin	ite lo	ops"	and t	oreak,	Finis	shing
		iteratio	ns wit	h con	tinue	, Defi	nite lo	ops u	sing f	or.							
		UNIT	- II														
- unevents, i unevent euros, some in functions, i per conversion functions, Rundom				Func	tion	calls,	Built	t-in f	unctio	ons, 7	Гуре	conve	ersion	func	ctions	, Rar	ndom

	numbers, Math functions, Adding new functions, Definition and uses, Flow of Execution, Parameters & arguments, Fruitful and void functions, Why functions?, Recursion, Scope of a variable.
	Modules : Packages small description about modularity, Third party packages, A brief tour of standard library, Command line arguments, Error output redirection and program termination, String pattern matching, Mathematics, Internet access, Dates & times, Data Compressions
	UNIT- III Lists : Syntactically, Accessing element from list, Slicing a list, Lists are mutable sequences, Deleting items in a list and deleting list, Methods, Searching
	Dictionaries: Creating a dictionary, Dictionary operations, Dictionary methods, Aliasing and copying
	Tuples: Tuples are immutable, Comparing tuples, Tuple assignment, Dictionaries and tuples, Multiple assignment with dictionaries, Using tuples as keys indictionaries
	Strings : A string is a sequence, Getting the length of a string using len, Traversal through a string with aloop, String slices, Strings are immutable, Looping and counting, The in operator, String comparison, String methods
	Sets: Modifying a set, Removing items from set, Set operations.
	UNIT- IV Object Oriented Programming in Python : Python classes, Methods, Constructors, Class variables & instance variables, Basic inheritance, Special methods, Data hiding
Text	Text Books:
books and	[T1] Vamsi Kurama, "Python Programming: A Modern Approach", Pearson
Reference	India, 2017.
books	[T2] Charles Severance, "Python for Informatics –Exploring Information",
	1stEd., Shroff Publishers, 2017.
	Reference Books:
	[R1] Mark Lutz,"Learning Python", 5 th Ed., Orielly,2013.
	[R2] Allen Downey "Think Python, How to Think Like a Computer Scientist",
	2 nd Ed., Green Tea Press, 2015.
	[R3] W.Chun,"Core Python Programming", 2 nd Ed., PrenticeHall,2006.
	[R3] Kenneth.A.Lambert, "Introduction to Python", 1 st Ed., Cengage
	Learning,2011
Е-	1.Charles Severance: University of Michigan, "Python for Everybody"-
resources and other	Coursera <u>https://www.coursera.org/</u> 2 Prof Sudarshan Ivangar, UT Popar, Prof Vayati Gupta, UIT Dharwad, "The
digital	2.Prof. Sudarshan Iyengar, IIT Ropar, Prof. Yayati Gupta, IIIT Dharwad, "The Joy of Computing using Python–Nptel
material	https://nptel.ac.in/courses/106/106/106106182/#
	<u> </u>

20ES2104C - Network Theory

Course Category:	Engineering Science	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Calculus, Basics of Electrical	Continuous Evaluation:	30
	Engineering	Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succe	essful	com	pletic	on of	the c	ourse	, the	stude	ent w	ill be	able	to:		
outcomes	CO1	App	ly the	basic	netw	ork co	oncept	ts to s	olve e	electri	c circ	uit pro	oblem	s.		
	CO2		-				-					-	k prob			
	CO3		Analyze the Transient behavior and Resonant condition of electrical circuits.													
	CO4		Derive the two port network parameters and their relationship.													
Contributi		РО	PO P													
on of		1														
Course																
Outcomes	CO1	2														
towards	001	-														
00achieve																
ment of	CO2		3													
Program																
Outcomes	CO3		2													
(L - Low,	005															
M -			_													
Medium,	CO4		2													
H – High	UNIT	т														L
Course Content			a of (inoui	t Flor	monto	Circ	wit of	naant		tivo o	ad no		irani	alam	onto
Content	Introd								-			-				
	Ideal,				-											
	transfo			-									-			
	their se		-			tion; S	Star D	Delta t	ransfo	ormati	ons a	nd pro	oblem	s. Ene	ergy st	ored
	in indu	ctors	and ca	apacit	ors											
	UNIT	- II														
	Netwo	rk Th	eorer	ns: M	lesh a	nd no	dal ar	nalysis	s havi	ng inc	lepen	dent a	ind de	pende	ent sou	ırces
	with p							•		-	-			-		
	Theven															
	UNIT	- III														
	Sinuso	idal S	Steady	y Stat	e Ana	alysis	: 'j' n	otatio	n and	l conc	ept of	phas	or, Ph	asor 1	notatio	on of
	voltage	, Cur	rent a	nd ci	rcuit e	eleme	nts in	singl	e pha	se and	d thre	e pha	se cir	cuits,	Mesh	and
	nodal							-	-			-				
	Applica															
	theorem							-	-							
	meorer	115, IV.	алііі	um p	UWEI	u alls			15 10	AU	uncul	13. U	ompu	anon	or a	

	power, Power factor
	UNIT- IV Resonance and Transients: Series and parallel resonance, Selectivity, Bandwidth and Q factor, Series and parallel RLC circuits. Transient analysis of RL, RC, RLC circuits with DC using Laplace transforms. Two-port networks: Calculation of Z, Y and h parameters and their conversions.
Text	Text Book:
books and Reference	[T1]A.Sudhakar and S.P.Shyam Mohan, "Circuits and Networks: Analysis and Synthesis", 2 nd Ed., TMH, 2002
books	Reference Book: [R1] Fraklin F.Kuo, "Network Analysis and Synthesis", 2 nd Ed., John Wiley & Sons, 2003 [R2] William H. Hayt, Jack E. Kemmerly and Steven M. Durbin, "Engineering Circuit Analysis", 6 th Ed., TMH, 2002
E- resources and other	
digital material	

20ES2105 – Engineering Graphics

Course Category:	Engineering Science	Credits:	3
Course Type:	Theory & Practice	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succe	ssful	com	pletio	on of	the c	ourse	e, the	stude	ent w	ill be	able	to:		
outcomes	CO1	Und	nderstand the scales and conics													
	CO2	Dra	raw orthographic projections of points, lines and planes													
	CO3		aw orthographic projections of solids and to understand basics of atoCAD													
	CO4			nd th toCA		tions	, deve	elopr	nent	of sol	ids a	nd dr	aw is	somet	ric v	iews
Contributi on of		РО 1	PO PS PS PS											PS O3		
Course Outcomes towards achieveme	CO1	3		3				3								
nt of Program	CO2	2		3				3								
Outcomes (L – Low,	CO3	2		3				3								
M - Medium, H – High	CO4	1		3				3								
Course Content	UNIT- Introdusignific Scales: Conic eccentr UNIT- Orthog Lines (geomet UNIT- Project Cylinde	uction cance Cons Section icity of -II graph (Treat ric fig -III tions	tructions: Corgen ic Proment gures of So	on of Constr eral n o jecti is lir (Up to o lids :	plain uction nethoo ons: I nited plan Proje	and d n of e d only Princi to fin e incl	iagon llipse,) ples o rst any ined to s of s	al sca para f orth gle pr o both	les bola a ograp rojecti n of th e soli	hic pr ion) a e refe ds su	perbo rojecti and protection rence ch as	ons – cojecti plane cube	reatm proje ions c es) es, Pr	ent is ctions of pla isms,	limit s of po ne re Pyrar	ed to bints, gular nids,

	reference planes)
	Introduction to AutoCAD: Basic introduction and operational instructions of various commands in AutoCAD.(Internal evaluation only)
	 UNIT–IV Sections and Development of Surfaces of Right Angular Solids: Sections and sectional views of rightangular solids of Prism, Pyramid and Cone, Development of surfaces of right regular solids of prism, Pyramid and cone. Isometric Projections: Conversion of isometric views into orthographic projections of simple castings using AutoCAD. (Treatment is limited to simple objects only, Internal Evaluation only).
Text books and Reference books	 Text Books: [T1] Basanth Agrawal & C.M.Agrawal, "Engineering Drawing", McGraw Hill Education Private Limited, NewDelhi. [T2] N.D.Bhatt "Engineering Drawing", 53rd Ed., Charotar Publishing House, Anand, 2019 Reference Books: [R1] K.L.Narayana & P.Kannaiah, "Text Book on Engineering Drawing", 2nd Ed., Scitech publications (India) Pvt.Ltd., Chennai, 2006. [R2] K.Venugopal, "Engineering Drawing and Graphics + AutoCAD", New Age International, NewDelhi. [R3] D.M.Kulkarni, A.P.Rastogi, A.K.Sarkar, "Engineering Graphics with AutoCAD", PHI Learning Private Limited, Delhi, 2013.
E- resources and other digital material	1.http://www.me.umn.edu/courses/me2011/handouts/drawing/blanco- tutorial.html#isodrawing. 2.https://onlinecourses.nptel.ac.in/noc20_me79/preview 3.https://nptel.ac.in/courses/112/103/112103019/

20ES2152 – Object Oriented Programming using Python Laboratory

Course Category:	Engineering Science	Credits:	1.5
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0- 3
Prerequisites:	Programming for Problem	Continuous Evaluation:	30
	Solving, Programming for	Semester end Evaluation:	70
	Problem Solving	Total Marks:	100
	Laboratory		

Course outcomes	Upon	succe	ssful	com	pletic	on of	the co	ourse	, the	stude	ent wi	ill be	able	to:		
outcomes	CO1	1	leme		ython	n pro	gram	ming	g cor	istruc	ets to	bui	ild s	mall	to 1	arge
	CO2	_	plement the problems in terms of real world objects using OOPs oncept													
	CO3			and l	nandl	e the	error	s dur	ring r	un tir	ne in	volve	ed in	a pro	gram	
	CO4	Extr	raluate and handle the errors during run time involved in a program tract and import packages for developing different solutions for altime problems													
Contributi on of		PO 1	PO 2											PS O3		
Course Outcomes towards	CO1	3		2						2			3			
achieveme nt of Program	CO2	3	3 2 2 2 2 3													
Outcomes (L – Low,	CO3	2	2	2						2			3			
M - Medium, H – High	CO4	2	2	2						2			3			
Course Content	List of Week 2 Runnin Write a Week 2 Develo Week 2 Develo Week 2 Develo	1: Funds and program program 2: Op p Pyth 3 & 4: p Pyth 5: Fund p Pyth	ndam ructio ram to eratio non pr : Con non pr nctior non pr	ental ons in o purp ons rograr dition rograr ns rograr	intera ose fu ns usi nal & ns tha ns usi	ctive ally ra ng ba Cont at mak	ise in sic op rol Fl e use	dentat eratio ow of con	tion er	rror an Pytho nal ar	nd con n nd con	rect i	low st	ructu	res.	

	Develop Python programs using suitable data structures
	Week 9: Modules
	Illustrate installing packages via PIP and develop Python programs using modules
	 Week 10 & 11: Application oriented case studies Week 12: Classes, Inheritance Illustrate class variables and instance variable Develop Python programs to exemplify the concepts of inheritance and overloading
Text books and Reference books	 Text Books: [T1] Vamsi Kurama, "Python Programming: A Modern Approach", Pearson India, 2017. [T2] Charles Severance, "Python for Informatics – Exploring Information",1st Ed., Shroff Publishers,2017 Reference Books: [R1] Mark Lutz, "Learning Python", 5th Ed., Orielly,2013. [R2] Allen Downey, "Think Python, How to Think Like a Computer Scientist", 2nd Ed., Green Tea Press, 2015. [R3] W.Chun, "Core Python Programming", 2nd Ed., PrenticeHall,2006. [R4] Kenneth.A.Lambert, "Introduction to Python", 1st Ed., CengageLearning,2011.
E-	1. Charles Severance: University of Michigan, "Python for Everybody",
resources	Coursera
and other digital	https://www.coursera.org/ 2.Prof .Sudarshan Iyengar, IIT Ropar, Prof. Yayati Gupta, IIIT Dharwad, "The
material	Joy of Computing Using Python" NPTEL
	https://nptel.ac.in/courses/106/106/106106182/#
	3.Charles Russell Sevarance, University of Michigan, "Python for Everybody", 2019. https://www.coursera.org/learn/python
	<u>intpose w w w courser a orgeneanter python</u>

20ES2153 – Engineering Workshop

Course Category:	Engineering Science	Credits:	1.5
Course Type:	Lab	Lecture - Tutorial - Practice:	0-0-3
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succe	ssful	com	pletic	on of	the c	ourse	, the	stude	ent w	ill be	able	to:		
outcomes	CO1				basic e wiri	-	s usin	g woo	od and	l fami	liariz	e with	n vari	ous fu	ından	nental
	CO2	Prepare basic models using sheet metal and practice joining of metals using arc welding technique.														
	CO3		Familiarize with various manufacturing processes such as injection moulding and 3D printing													
	CO4	Und	Understand the preparation of PCB													
	CO5	Und	erstan	d sim	ple IC	DT ap	plicati	ions u	sing A	Arduir	10					
Contributi on of Course		PO 1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
Course Outcomes towards achieveme nt of Program	CO1			2					1			3	2			
	CO2			2					1			3	2			
Outcomes (L – Low, M -	CO3			2					1			3	2			
Medium, H – High	CO4						1									
	CO5							2								
Course Content	Part-A Carpen Demon Demon Electri Fundan Practice	ist of Experiments:														

	Preparation of a square box using sheet metal and practice of soldering.
	Welding:
	Preparation of corner joint using arc welding process. (1class)
	Preparation of "T" joint using arc welding process.
	Manufacturing Processes:
	Preparation of a small plastic part using injection moulding process. (1class)
	Demonstration of manufacturing a simple model using 3D printing process.
	Demonstration of manufacturing a simple model using 5D printing process.
	Electronic Circuits:
	To prepare PCB for the given electronic circuit
	To prepare the layout and printing it on copper clad board
	To etch and drill the holes on PCB (2classes)
	To solder the components on the PCB prepared and test the circuit
	To identify and solder the components on the PCB prepared
	To test the operation of the circuit.
	Basic IOT:
	Demonstration of Arduino board
	Demonstrate different components & pin configuration of Arduino
	To setup Arduino IDE for programming.
	To measure Temperature & Humidity
	Interfacing of temperature & humidity sensor with Arduino. (2classes)
	Execute the program on Arduino IDE & display the measured values.
	To measure Distance
	Interfacing of ultrasonic sensor with Arduino
	Execute the program on Arduino IDE & display the measured value.
	Part-B
	Group Activity(4classes)
	Students must prepare a working model / assembly using the knowledge gained from the
	above trades.
Tort	Torré De cher
Text books and	Text Books:
Reference	[T1] Kannaiah.P & Narayana.K.C, "Manualon Workshop Practice", Scitech Publications, Chennai, 1999.
books	[T2] Venkatachalapathy.V.S., "First year Engineering Workshop Practice", Ramalinga
	Publications, Madurai, 1999.
	Reference Books:
	[T1] Gopal.T.V,Kumar.T and Murali.G, "A First Course on Workshop Practice – Theory,
	Practice and Work Book", Suma Publications, Chennai, 2005
	Tradice and Work Dook , Suma Labreatons, Chemia, 2005

E-	1. https://dsceme.files.wordpress.com/2016/08/workshop-practice-manual-
resources	<u>2016-17-1.pdf</u>
and other	2. <u>https://www.protosystech.com/rapid-prototyping.htm</u>
digital	3. <u>https://www.arduino.cc/en/Tutorial/Foundations</u>
material	4. https://www.tutorialspoint.com/arduino/index.htm

20MC2106 – Professional Ethics & Practice

Course Category:	Mandatory	Credits:	-
Course Type:	Theory	Lecture - Tutorial - Practice:	1 - 0- 0
Prerequisites:		Continuous Evaluation:	100
		Semester end Evaluation:	-
		Total Marks:	100

Course	Upon	Jpon successful completion of the course, the student will be able to:														
outcomes	CO1	Kno	w the	mora	al auto	onom	y and	uses	of eth	nical t	heori	es.				
	CO2	Und	erstan	d eng	ineeri	ng as	expe	rimen	tation							
	CO3								fessio							
	CO4		now the ethics regarding global issues related to environment, computers and eapons development. Understand general principles of contracting.													
Contributi on of		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
Course Outcomes towards	CO1	2														
achieveme nt of Program	CO2								2							
Outcomes (L – Low,	CO3						3									
M - Medium, H – High	CO4											2				
Course Content	UNIT Engine inquiry Consen Self-int UNIT Engine respons case stu UNIT Safety, benefit Collegi Conflic Intellec	ering – Ma sus an erest - II ering sible e ady - III Resp analy ality a	oral c nd Co – Cus as S experi vsis at and lc inter	lilemr ntrove toms ocial i mente oilitie nd rec oyalty rest -	nas – ersy – and re Expenders – C s and ducing – Res Occu	Mora Mod eligion rimen Codes Rigg g risk spect ipatio	al aut els of n – Us ntation of eth nts: S – Th for au nal c	onom profe ses of n: Eng nics – afety ne thr thorit rime	y- Ko essiona ethica gineer A bal and r ee mi cy - Co – Pro	ohlber al role al theo ring as ancec isk-as le isla	g's thes es – T pries. s expe l outlo ssessn and a ve ba	eory heorid erimen ook or nent o nd ch rgaini	- Gill es abo ntation n law of safe ernob	ligan': but right n – Er –The ety an byl cas Confic	s theo ht acti- nginee challe d risk se stu- lentia	ory – ion – ers as enger e-risk dies. lity -

	 UNIT- IV Global Issues: Multinational corporations – Environmental ethics – Computer ethics – Weapons development- Engineers as managers- Consulting engineers- Engineers as expert witnesses and advisors - Moral leadership – Sample code of ethics (Specific to a particular engineering discipline). General Principles of Contracts Management: Indian contract act,1972 and amendments covering general principles of contracting.
Text books and Reference books	 Text Books: [T1] Mike Martin and Roland Schinzinger, "Ethics in Engineering", Mc Graw Hill, NewYork (1996). [T2] Govindarajan. M, Natarajan. S, Senthil Kumar.V.S., "Engineering Ethics", Prentice Hall of India, NewDelhi (2004). Reference Books: [R1] Baum, R.J. and Flores, A., "Ethical Problems in Engineering, Center for the studyof the Human Dimensions of Science and Technology", Rensellae Polytechnic Institute, Troy, NewYork,1978. [R2] Beabout.G.R, Wennemann.D.J, "Applied Professional Ethics: A Developmental Approach for Use with Case Studies", University Press of America Lanham, MD, 175pp , 1994. [R3] Dutt, "Indian Contract Act", Eastern Law House, 1994.
E- resources and other digital material	

Second Year (III Semester)

20BS3101 – Complex Analysis & Numerical Methods

Course Category:	Basic Science	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Algebra of complex	Continuous Evaluation:	30
	numbers, Convergence of	Semester end Evaluation:	70
	infinite series, Theory of	Total Marks:	100
	equations		

Course	Upon	succe	ssful	com	pletic	on of	the c	ourse	, the	stude	ent w	ill be	able	to:		
outcomes	CO1	Dete	rmine	e anal	ytic, r	non-ar	alytic	func	tions	and ev	valuat	e com	plex i	integr	als	
	CO2		lyze 7		-				valua				_	_		sidue
	CO3	poly	algebraic, transcendental, system of equations and estimate functions using lynomial interpolation lynomial value problems numerically													
	CO4	Solv	e initi	ial val	ue pr	oblem	is nun	nerica	lly	1	I	1		1		-
Contributi on of		PO 1													PS O3	
Course Outcomes towards	CO1	3	2 1 1													
achieveme nt of Program	CO2	3	2			1										
Outcomes (L – Low, M -	CO3	3	2			1										
Medium, H – High	CO4	3	2			1										
Course Content	UNIT Comple functio Comple UNIT Taylor' theorem around UNIT Numer Raphso method	ex A ns, H ex inte - II s serie n, Ca the un - III rical N on met	larmo egratio es, La lculat nit cir	nic f on, Ca uurent ion o cle (ii ods: S	unctio auchy 's seri f Res) Inte Solutio	ons, ('s inte es, Za sidues gratio on of	Drthog gral tl eros a , Eva n arou algeb	gonal heoren nd Si lluatic ind a raic a	syste m, Ca ngula on of small and tra	ems, uchy's rities real semi-	Appli s integ of an defini circle	cation gral fo analy ite in e, Bili l equ	n to ormula ytic fu tegral near tu ations	flow a inctio s:(i) ransfc s with	probl n, Rea Integr prmati	lems, sidue ation on 'ton -

	 Interpolation: Introduction, Finite differences-Forward, Backward and central differences, Symbolic relations, Newton's interpolation formulae- Forward and backward differences, Central difference interpolation formulae-Gauss's, Stirling's, Bessel's formulae interpolation with unequal intervals - Lagrange's and Newton's divided difference formulae. UNIT- IV Numerical Differentiation: First and second order derivatives using Newton's forward and backward difference formulae, Numerical integration with trapezoidal rule and Simpsons 1/3 rule, Numerical solutions of differential equations-Taylor's series method, Euler's method, Modified Euler's method and Runge - Kutta method of 4thorder.
Text books and Reference books	 Text Book: [T1] B.S.Grewal, "Higher Engineering Mathematics", 44th Ed., Khanna Publishers, 2019. Reference Books: [R1] Erwin Kreyzig, "Advanced Engineering Mathematics", 10th Ed', John Wiley& Sons, 2015. [R2] R.K.Jain, S.R.K.Iyengar, "Advanced Engineering Mathematics", 5thEd., Narosa Publishers, 2016. [R3] N.P.Bali, Manish Goyal, "A Textbook of Engineering Mathematics", 9thEd., Lakshmi Publications (P) Limited, 2016. [R4]H.K.Das, Er.Rajnish Verma, "Higher Engineering Mathematics", 3rdR Ed., S.Chand & Co., 2014. [R5]S.S.Sastry,"Introductory Methods of Numerical Analysis", 5th Ed., PHI Learning, 2012
E- resources and other digital material	 Prof. Pranav Haridas, Kerala School of Mathematics, Complex Analysis https://onlinecourses.nptel.ac.in/noc21_ma39/preview Prof. Ameeya Kumar Nayak, Prof. Sanjeev Kumar, IIT Roorkee, Numerical methods https://onlinecourses.nptel.ac.in/noc21_ma45/preview Jeremy Orloff, Massachusetts Institute of Technology: MIT Open Course Ware, Complex Variables with Applications https://ocw.mit.edu. Henrik Schmidt, Massachusetts Institute of Technology: MIT Open Course Ware, Introduction to Numerical Analysis for Engineering https://ocw.mit.edu

20ES3102 – Electronic Devices and Circuits

Course Category:	Engineering Science	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Engineering Physics	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succe	ssful	com	pletic	on of	the c	ourse	e, the	stude	ent w	ill be	able	to:		
outcomes	CO1	App	ly th	e bas	ic co	ncept	of se	emico	onduc	tor d	evice	S				
	CO2	Ana	lyze	the o	perat	ion o	f V-I	char	acteri	istics	of se	mico	nduc	tor d	evice	s
	CO3	Ana	lyze	vario	us sta	abilit	y bias	sing t	echn	iques	in B	JT an	nd FE	Т		
	CO4	Des	ign d	iode	circu	it for	vario	ous ap	oplica	ations	5					
	CO5	Use	se SPICE simulator to implement a circuit for diode applications													
Contributi		PO	PO	PO	PO	РО	РО	PO	РО	РО	РО	РО	РО	PS	PS	PS
on of		1	2	3	4	5	6	7	8	9	10	11	12	01	O2	O3
Course Outcomes towards	CO1	2														
achieveme nt of Program	CO2		2													
Outcomes (L – Low, M -	CO3		2												2	
Medium, H – High	CO4		3												1	
	CO5					2										1
Course Content	UNIT Condu in an i semico Semico as a D Charac capacit UNIT Diode Parallel Rectifi	ction intrins nducto onduc Diode, teristi- ances. - II Appli I and s	sic se or, Di tor D The cs, D Brea cation series	micor ffusio iode Volt iode kdow ns: D – Par	nducto n. Char Amp Resis n Dio iode a allel c	or, Do acteri bere (tance, des. V approx	onor istics: Charao Spac /olt A volt A vimati uratio	and a Qual cterist ce Ch mper- cons, S ons wi	litative litative lics, T aarge e Cha Series th DC	or im e theo The to or Tr racter diodo	ory of emper cansiti istics e cont ts, Cli	P-N j rature on Ca of Ze figura	iunctio depe apacit ner di tions , Clar	e dens on, p- ondend ance, ode with 1 npers.	sities n Jun ce of Diff DC ir	in a netion P-N usion nputs,

	without filter and with filters - Inductor filter, Capacitor filter, L section, Zener regulator.
	UNIT- III
	Transistor Characteristics: The Junction transistor, Characteristics of common base,
	Common emitter and Common collector configuration.
	Transistor Biasing & Thermal Stabilization: The operating point, Bias stability, Collector to base bias, Self- bias, Bias compensation, Thermistor & Sensistor compensation, Thermal runaway and thermal stability
	UNIT- IV Field Effect Transistors: Construction and Characteristics of JFETs, Transfer characteristics, Specification sheets (JFETs), Depletion-type MOSFET and Enhancement-type MOSFET.
	FET Biasing : Introduction, Fixed bias configuration, Self- bias configuration, Voltage divider biasing, Depletion-type MOSFET and Enhancement-type MOSFET
Text	Text Books:
books and Reference	[T1] Jacob Millman, Christos C Halkias & Satyabrata JIT, "Millman's Electronic Devices
books	and Circuits", 4 th Ed., TMH, 2015. (Unit I, II& III)
	[T2] Robert L Boylested and Louis Nashelsky, "Electronic Devices and Circuit Theory", 10 th Ed., Pearson India, 2009. (UNIT IV).
	Reference Books:
	[R1] Nandita Das Gupta and Amitava Das Gupta, "Semiconductor Devices Modelling and
	Technology", PHI Learning Pvt. Ltd., 2013
	reemonogy, i'm Eeuming i ve Eu., 2015
	[R2] David A Bell., "Electronic Devices and Circuits", 5th Ed., Oxford University Press,
	[R2] David A Bell., "Electronic Devices and Circuits", 5th Ed., Oxford University Press, 2008
E-	 [R2] David A Bell., "Electronic Devices and Circuits", 5th Ed., Oxford University Press, 2008 1. <u>http://www.nptelvideos.in/2012/12/basic-electronics-drchitralekha-</u>
resources	 [R2] David A Bell., "Electronic Devices and Circuits", 5th Ed., Oxford University Press, 2008 <u>http://www.nptelvideos.in/2012/12/basic-electronics-drchitralekha-mahanta.html</u>
	 [R2] David A Bell., "Electronic Devices and Circuits", 5th Ed., Oxford University Press, 2008 1. <u>http://www.nptelvideos.in/2012/12/basic-electronics-drchitralekha-</u>

20EI3303 – Digital Circuits & Systems

Course Category:	Program Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succe	ssful	com	pletic	on of	the co	ourse	, the	stude	ent w	ill be	able	to:		
outcomes	CO1	Den	nonst	rate p	orofic	eiency	in c	odes	and r	numb	er sy	stem	conv	erting	g circ	uits
	CO2								using					,	<u> </u>	
	CO3	Des	ign d	igital	elec	tronic	circ	uits v	vith a	nd w	ithou	it me	mory	elem	ents.	
	CO4	Sele	ect su	itable	e mer	norie	s and	logi	c fam	ilies	for d	igital	syste	em de	esign	
	CO5	Use	se the spice software to design the digital electronic circuits													
Contributi		PO	PO	PO	PO	PO	PO	PO	РО	PO	РО	РО	РО	PS	PS	PS
on of		1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
Course Outcomes																
towards	CO1	2														
achieveme																
nt of	CO2		3												1	
Program			_													
Outcomes	CO3		3												2	
(L - Low,	COS		3													
M - Medium,	<i></i>	-														
H – High	CO4	2													1	
	CO5					2										2
Course	UNIT	. T														
Content	Digital		lame	ntals•	Num	her sy	vstem	s = De	cima	1 Rin	arv (Octal	Hexa	lecim	al 15	s and
	2's con					•				-					·	
	Univers	-							•							
	using a	-									-					
	of mini	0		enniq		Luinut	.8.1	up III		Julion	unu	Quint		Clubic	cy in	Junou
			- • • •													
	UNIT	- II														
	Combi	natio	nal L	ogic 1	Desig	n: Ha	lf-Ad	der, F	ull-A	dder,	Half-	Subtra	actor,	Full-S	Subtra	actor,
	BCD to	o 7 seg	gment	deco	der, D	esign	of a b	oinary	to gr	ay an	d gray	/ to bi	nary c	ode c	onvei	ters.
	Combi	notic	nalT	oria	Doci-	n II-	ing N	16T <i>(</i>	incut	ta. N	1,,1+:	lover	Com	hingt	onal	logia
	Combi			0	0		0				-					U
	design design.	-	multi	piexe	15, De	munn	piexei	18 / D	ecode	is and	i inefr	use 1	ii com	ioinat	ional	iogic
	UNIT	. 111														

	Flip-Flops: Clocked S-R flip-flop, Preset and clear, J-K flip-flop, Race around condition, Master slave J-K flip-flop, D flip-flop, T flip-flop, Excitation table of a flip-flop.
	Sequential Logic Design: Shift register, Bi-directional shift register, Applications of shift resisters: Ring counter, Twisted ring counter, Sequence generator. Asynchronous counters –Up/Down counters, Modulus of the counter, Design of synchronous counters.
	UNIT- IV Memory Devices: Functional block diagram and operation- ROM, PROM, EPROM, EEPROM, Flash memory, RAM: Static and dynamic RAM, ROM as a PLD.
	Digital Integrated Circuits: Characteristics of Digital ICs, Logic Families: MOS and CMOS logic families.
	Computer Aided Design of Digital Systems: Computer Aided Design (CAD) concepts, CAD tools, Introduction to VHDL, Combinational Circuits using VHDL, Sequential circuits using VHDL.
Text books and Reference books	Text Book: [T1] R P Jain "Modern Digital Electronics", 4 th Ed., TMH. Reference Books: [R1] A.Anand Kumar, "Fundamentals of Digital Circuits", PHI, 2006 [R2] M.Morris Mano, "Digital Logic and Computer Design", PHI,2003
E- resources and other digital material	

20EI3304 – Sensors and Transducers

Course Category:	Program Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succe	ssful	com	pletic	on of	the c	ourse	e, the	stude	ent w	ill be	able	to:		
outcomes	CO1				ous asurei			ice c	harad	cteris	tics	of in	nstrui	ment	and	the
	CO2							er bas	ed or	n tran	sduct	tion r	orinci	ples		
	CO3	Sele	ect a	rele	_							_		ious	phy	sical
	CO4		mete		cents	ofsi	anal	cond	itioni	ng ci	reuit	for v	ario	is trai	neduc	ore
Contributi	04															
on of		PO 1													PS O3	
Course		1	2	3	4	5	0	/	0	9	10	11	12	01	02	05
Outcomes towards CO1 2 1																
achieveme nt of	CO2	2												1		
Program Outcomes (L – Low,	CO3		3											2		
M - Medium, H – High	CO4	2														1
Course Content	UNIT Instrum charact Transfe instrum Measu of limit UNIT Transf Variab Charac thermo and Sig	ment eristic er fun hents t remen ing er - II lucers le R teristi meter	es - 1 o step nt Er ror, S s: Cla esista cs and , Ther	Desira , Dyn) inpu rors a tatisti ssifica ance d app misto	able namic t. and S acal tro ation of Tran olications, Ho	& Un resp Statist eatme of tran nsduc ons o ot-wir	ndesir onse tical 4 nt, Cu nsduce ers: f Res e anei	able of Z Analy urve fi ers, C Princ istanc mome	chara ero o sis: I atting haract iple e pot	Definit methor ceristic of o entior	tics; First tion o ods cs of t perati neters	Dyna orde of para ransd on, 0 5, Stra	mic o er and amete ucers Const ain ga	charac 1 Sec rs, Cc ructio iuge,	n de	tails,

	UNIT- III Reactance Transducers Variable Inductance Transducers: Principle of operation, Construction, Characteristics and applications of LVDT - RVDT, Variable reluctance accelerometer, Signal conditioning of inductive transducers
	Capacitive Transducers – Principle of operation, Construction, Characteristics and applications of Variable air gap, Variable distance, Variable permittivity capacitive transducer, Frequency response, Signal conditioning of capacitive transducers
	UNIT-IV Special Sensors: Introduction, Smart sensors, Micro Sensors, IR radiation Sensors, Ultrasonic Sensors, Fiber optic sensors, Colour sensor, Proximity sensors, Chemical sensor, IC sensor, Bio Sensors.
Text books and Reference books	 Text Book: [T1] A.K.Sawhney & Puneet Sawhney, "A Course In Electrical And Electronic Measurements And Instrumentation", 19th Ed., Dhanapat Rai & Co., 2015 [T2] D.V.S.Murty, "Transducers & Instrumentation", 2nd Ed., PHI, 2013 Reference Books: [R1]A.K.Ghosh, "Introduction to Measurements & Instrumentation", 3rd Ed., PHI, 2009 [R2] Raman Pallas & John G.Webster, "Sensors & Signal Conditioning", 2nd Ed., J. Wiley, 2012
E- resources and other digital material	1. https://nptel.ac.in/courses/108/108/108108147

20EI3305 – Electrical and Electronic Measurements

Course Category:	Program Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Circuit analysis	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succe	ssful	com	pletic	on of	the c	ourse	e, the	stude	ent w	ill be	able	to:		
outcomes	CO1		•	iitabl para			defle	ction	type	tech	nique	e to i	meas	ure p	rescr	ibed
	CO2	Sele	elect a suitable digital instrument to measure physical and electrical rameters													rical
	CO3	1	ompare the operation of various oscilloscopes and probes													
	CO4	Exp	plain the principles of various signal generators and wave analyzers													
Contributi on of		РО 1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
Course Outcomes towards achieveme	CO1	3												2		
nt of Program	CO2		3											2		
Outcomes (L – Low,	CO3		2													
M - Medium, H – High	CO4															
Content	UNIT Electro equatio magnet comper Electri ammete Ohms Calibra Electro Watt he UNIT Bridge bridge,	n at s move nsation cal N ers, T per v tion dynar our mo - II s: W	teady ing co n. Ieasu he Ay olt ra of nome eter, I heatst	state bil me orton ating, dc ter, Th Power	defle echani nts: shun Load instru hermo facto	ction, ism – DC a t, DC ling e ments o Instr r mete	Dyna Torq mmet voltn ffect, , A umen ers.	umic b ue eq ers - neters Serie Iternat ts, Ele ridge,	Shun - Mu es typ ting ectrod	ior, D n, Tau It resi Itiplie oe oh curre ynam well	ampin it-ban istor, er resi ent i omete bridge	Ayrto Ayrto stor, I er, SI ndica ers in	echani pensic on sh Multin hunt t ting power y brid	sms; 1 on, Te unt, M range type o instru r meas dge, T	Perma mper Multin voltn ohmn umen surem	anent rature range neter, neter, ts - nents,

	 Electronic Instruments: AC Voltmeter using rectifiers, True RMS voltmeter, Digital voltmeters - Ramp technique, Dual slope integrating type DVM, Staircase ramp DVM, Successive approximation type DVM, Q Meter - Impedance measurement using Q Meter, Analog pH meter – pH measurement using hydrogen electrode. UNIT- III Oscilloscopes: Block diagram of oscilloscope, Cathode Ray Tube, Electrostatic deflection, Vertical amplifier, Horizontal deflecting system, Typical CRT connections, Delay line in triggered sweep, Dual beam CRO, Dual trace oscilloscope (basic block diagram), Sampling oscilloscope, Digital storage oscilloscope, Probes for CRO - Direct probes, Passive voltage probe, Active probes, Attenuators - Uncompensated attenuators, Simple compensated attenuator, Measure of frequency by lissajous method. UNIT- IV Signal Generators: Basic standard sine wave generator, Standard signal generator, Function generator, Laboratory square wave and pulse generator.
	Wave Analyzers: Basic wave analyzer, Frequency selective wave analyzer, Heterodyne wave analyzer, Harmonic distortion analyzers, Spectrum analyzer.
	Frequency Counters and Time-Interval Measurements: Digital frequency meter - Principle of operation, Basic circuit of a digital frequency meter, Digital measurement of time - Principle of operation, Time base selector, Period measurement, Digital tachometer, Digital pH meter
Text books and Reference books	 Text Books: [T1] W D Cooper & A D Helfrick, "Electronic Instrumentation and Measurement Techniques", PHI, 1998 (Unit-I) [T2] H.S.Kalsi, "Electronic Instrumentation", 2ndEd., TMH. (Units-II, III and IV) Reference Books: [R1]A.K. Sawhney, "A Course in Electrical and Electronic Measurements and Instrumentation", Dhanpat Rai & Co [R2] Oliver & Cage, "Electronic Measurements and Instrumentation", Mc Graw Hill, 1975
E- resources and other digital material	1. <u>https://www.youtube.com/watch?v=3eYmFjHnQjY&list=PLbRMhDVU</u> <u>MngcoKrA4sH-zvbNVSE6IpEio</u>

20ES3151 – Electronic Devices and Circuits Lab

Course Category:	Engineering Science	Credits:	1.5
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0- 3
Prerequisites:	Engineering Physics	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succe	ssful	com	pletic	on of	the c	ourse	, the	stude	ent w	ill be	able	to:		
outcomes	CO1		ign v Multi		is ana	log e	electr	onic	circu	its us	sing o	liscre	ete co	ompo	nents	and
	CO2								ret t					by e	electr	onic
	CO3		nduct experiments as an individual or team.													
	CO4		pare an effective report based on experiments.													
Contributi on of		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
Course Outcomes towards	CO1			3		3									2	
achieveme nt of Program	CO2				3										2	
Outcomes (L – Low,	CO3									2			2			
M - Medium, H – High	CO4										2					
Course Content	2. 3. 4. 5. 6. B. Soft 7. 8. 9. 10.	dwar Chara Chara Desig Drain Desig Desig	e Mo acteris acteris and t and t gn of c (Mul gn Vo icatio icatio icatio	dule: stics o stics o transis transfe unbias clippe tisim) ltage 1 n of h n of fu respo	f tran stor se er cha sed cla rs.) Mod alf-wa ull-wa nse of	sistor If-bia racter amper lule: tor us ave re- tor re- f CE a	in con s circu istics s. sing Z ctifier ctifier umplif	nmon uit. of jur ener c oper opera ïer.	n emits action liode. ation	ter co field with a	nfigur effect	trans:	istor.			

	12. Design of Voltage Series Feedback amplifier
Text books	
and	
Reference	
books	
Е-	
resources	
and other	
digital	
material	

20EI3352 – Digital System Design Lab

Course Category:	Program Core	Credits:	1.5
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0- 3
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succe	ssful	com	pletic	on of	the c	ourse	, the	stude	ent w	ill be	able	to:		
outcomes	CO1		•	e kno circui		lge o	f Bo	olean	alge	bra t	o der	nons	trate	the tr	ruth t	able
	CO2		0			nbina	tiona	l and	sequ	entia	l logi	c cir	cuits			
	CO3		<u> </u>	outpu					-		0					
	CO4	Con	onduct experiment with an individual or team by using modern tool ke Multisim, VHDL repare an effective report based on an experiment													ools
	CO5	Prep	bare a	an eff	ectiv	e rep	ort ba	used of	on an	expe	rime	nt				
Contributi on of		PO 1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
Course Outcomes towards	CO1	2													2	
achieveme nt of Program Outcomes (L – Low, M -	CO2			3											2	
	CO3		3												2	
Medium, H – High	CO4				3	3				2			1			3
	CO5										2					
Course Content	 Ver 3. Des 	tal El lization ification sign o sign o pice I emention gn BC	lectro on of ion of f sync f MU Modu t the g nary to CD-to	mics I logic Flip- chrono X and le: given 5 gray 7 seg	gates Flops DUS CO DEN Boole and g ment	using using ounters IUX can fur gray to decod	g gates s IC 7 nction o bina	4163 using	g logic	-		OP an	nd POS	S form	ns.	

	 C. VHDL Module: 1. Implement the full adder and verify the functionality using VHDL 2. Design of multiplexer and demultiplexer using VHDL 3. Implement the 3 bit up/down counter using VHDL 4. Implement priority encoder using VHDL
Text books and Reference books	
E- resources and other digital material	

20EI3353 – Measurements Lab

Course Category:	Program Core	Credits:	1.5
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0- 3
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon successful completion of the course, the student will be able to:															
outcomes	CO1	Apply the basic measurement techniques to measure the electrical parameters														
	CO2		Analyze the outputs and interpret the data generated from the null and deflection techniques													
	CO3	Con	Conduct various experiments as an individual or team.													
	CO4	Prepare an effective report based on experimental outcome														
Contributi on of		PO 1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
Course Outcomes towards	CO1	3												3		
achieveme nt of Program	CO2		3											3		
Outcomes (1 – Low,	CO3				3					1			1			1
2 - Medium, 3 – High	CO4										2					
Course Content	List of 1. DC t 2. AC t 3. Meas 4. Simu 5. Meas 6. Meas 7. Meas 8. Simu 9. Meas func 10. Me 11. Me 12.Cali	meters meters surem alatior surem surem alatior surem etion g asurer asurer	s using s using ent of n of C ent of ent of n of sp ent of genera ment of ment of	g D'A g D'A f volta RO, f f resis f induc capa bectru f ampl tor. of induc	rsonv ge, fr unctic tance ctance citance citance itude uctance	al gal equer on ger of sm e usin e usin lyzer and f ce of l y usin	vanor acy, pl alerator all res g Max ng Sch using requen nigh Q g a W	neter nase a r usin sistors well nearin analo ncy of 2 coils Vien b	and th ngle a g anal s using bridge g brid g brid g brid g diso f diffe s using ridge.	neir ra and ph og dis g Kelv g Kelv ge. cover rent t	nge e nase si scove vin do y kit. ypes c	xtensi hift us ry kit. uble l	ion. sing a oridge	2.		

Text	
books and	
Reference	
books	
E-	
resources	
and other	
digital	
material	

20TP3106 – Logic and Reasoning

Course Category:	Soft Skills	Credits:	1
Course Type:	Learning by Doing	Lecture - Tutorial - Practice:	0 - 0- 2
Prerequisites:		Continuous Evaluation:	100
		Semester end Evaluation:	0
		Total Marks:	100

Course	Upon	succe	ssful	comp	oletio	n of t	he co	ourse,	, the	stude	nt wi	ll be	able	to:		
outcomes	CO1	Thi	nk rea	son l	ogica	lly ir	n any	critic	al sit	uatio	n					
	CO2		lyze g		<u> </u>							1				
	CO3	Ton	o reduce the mistakes in day to day activities in practical life evelop time management skills by approaching different shortcut ethods se mathematical based reasoning to make decisions													
	CO4															
	CO5	Use														
	CO6		pply logical thinking to solve problems and puzzles in qualifying arms for companies and in other competitive exams													
Contributi on of		РО 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
Course Outcomes towards achieveme	CO1						2									
nt of Program	CO2		2													
Outcomes (L – Low, M -	CO3								2							
M - Medium, H – High	CO4									2						
0	CO5	2														
	CO6	1														
Course Content	2. 3. 4.	 Series Completion Coding-Decoding Blood Relation Blood Puzzles test Direction sense test 														

[
	2. Number test, Ranking test
	3. Mathematical operations
	4. Arithmetical Reasoning
	5. Syllogism
	UNIT- III
	1. Binary Logic
	2. Inserting missing character
	3. Data sufficiency
	4. Analogy
	5. Classification
	UNIT- IV
	1. Water images,
	2. Mirror images,
	3. Paper folding,
	4. Paper cutting,
	5. Embedded Figures,
	6. Dot situation,
	7. Cubes & Dice
Text	Text Book:
books and	[T1] S. Aggarwal, "Verbal and Non-Verbal reasoning", S Chand Publication, 2017
Reference	
books	
Е-	1. <u>https://www.indiabix.com/</u>
resources	2. <u>https://treeknox.com/</u>
and other	3. <u>https://www.examveda.com/</u>
digital	
material	

20MC3107A – Environmental Studies

Course Category:	Mandatory Course	Credits:	
Course Type:	Theory	Lecture - Tutorial - Practice:	2 - 0- 0
Prerequisites:		Continuous Evaluation:	100
-		Semester end Evaluation:	0
		Total Marks:	100

Course outcomes	Upon	succe	ssful	com	pletic	on of	the c	ourse	, the	stude	ent w	ill be	able	to:		
outcomes	CO1			vario 1easu		actors	s cau	sing	degr	adati	on o	f nat	ural	resou	ırce	and
	CO2					osvst	em ai	nd ne	ed fo	r hio	diver	sitv				
	CO3	Rea	dentify various ecosystem and need for biodiversity Realize and explore the problems related to environmental pollution and													and
	005		s management													
	CO4		Apply the information and technology to analyse social issues, use acts associated with environment													
Contributi		РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PS	PS	PS
on of Course		1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
Outcomes towards	CO1	1							1							
achieveme																
nt of	CO2		1	1							1					
Program																
Outcomes	CO3				1	1										
(L – Low, M -																<u> </u>
Medium,	CO4						1	1	1							
H – High Course																
Content	UNIT	- I														
	The mu		ciplin	ary na	ature o	of env	rironn	nental	studi	es, De	efiniti	on, Sc	cope a	nd in	porta	nce,
	Need for	or pub	olic av	varene	ess.								•		1	
	Natura	al Res	ource	es :												
	Renew	able a	and N	on-re	enewa	ble R	lesoui	ces: 1	Natura	al reso	ources	and a	associa	ated p	oroble	ms.
	(a)For											ation.	Timl	ber e	extract	tion,
	Mining															
	(b)Wat											nd gr	ound	water	r, Flo	ods,
	Drough								-				-			
	(c)Min					and e	exploi	tation	, Env	ironn	nental	effec	ts of	extra	cting	and
	using n					1 6	1		~	1			1	•	L.	1
	(d)Foo						-			•			•	0		
	overgra Salinity	-	Ellec	US OI 1	mode	in agr	icultu	re, re	erumz	er-pes	liciae	prob	iems,	w ate	i iogg	,mg,
	Samme	y.														

(e)Energy Resources: Growing energy needs, Renewable and non-renewable energy sources, Use of alternate energy sources.

(**f**)Land Resources: Land as a resource, Land degradation, Man induced landslides, Soil erosion and desertification. Role of an individual in conservation of natural resources. Equitable use of resources for sustainable lifestyles

UNIT- II

Ecosystems: Concept of an ecosystem. Structure and function of an ecosystem. Producers, Consumers and decomposers. Energy flow in the ecosystem. Ecological succession. Food chains, Food webs and ecological pyramids. Introduction, Types, Characteristic features, Structure and function of the following ecosystem: (a) Forest ecosystem (b)Grassland ecosystem (c)Desert ecosystem

(d)Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

Biodiversity and its Conservation

Introduction, Definition: Genetic, Species and ecosystem diversity. Biogeographically classification of India. Value of biodiversity: Consumptive use, Productive use, Social, Ethical, Aesthetic and option values. Biodiversity at global, National and local levels. India as a mega-diversity nation. Hot-spots of biodiversity. Threats to biodiversity: Habitat loss, Poaching of wildlife, Man-wildlife conflicts. Endangered and endemic species of India. Conservation of biodiversity: in-situ and ex-situ conservation of biodiversity

UNIT- III

Environmental Pollution: Definition, Causes, Effects and control measures of (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards

Solid waste management: Causes, Effects and control measures of urban and industrial wastes. Role of an individual in prevention of pollution.

Disaster management: Floods, Earthquake, Cyclone and landslides

UNIT- IV

Social Issues and the Environment: From unsustainable to sustainable development. Urban problems related to energy. Water conservation, Rain water harvesting, Watershed management. Resettlement and rehabilitation of people; Its problems and concerns.

Environmental ethics Issues and possible solutions. Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Wasteland reclamation, Consumerism and waste products.

Environment Protection Act: Air (Prevention and control of pollution) act. Water

	(Prevention and control of pollution) act. Wildlife protection act. Forest conservation act.
	Issues involved in enforcement of environmental legislation.
	Public awareness: Human population and the environment, Population growth, Variation among nations, Population explosion - Family Welfare Programme.
	Environment and Human Health: Human rights, Value education, HIV/AIDS, Women and child welfare, Role of information technology in environment and human health.
	Field Work/ Case Studies: Visit to a local area to document environmental assets – River/ Forest/ Grassland/ Hill/ Mountain. Visit to a local polluted site – Urban/Rural/Industrial/Agricultural. Study of common plants, insects, birds. Study of simple ecosystems - Pond, river, hill slopes, etc.
	Self-Study : Water resources, Threats to biodiversity, Solid waste management, Role of information technology in environment and human health.
Text	Text Book:
books and	[T1] "Grants Commission", New Delhi, Bharati Vidyapeeth Institute of Environment
Reference	Education and Research
books	Reference Books:
	[R1]AnjaneyuluY. "Introduction to Environmental Sciences", B S Publications PVT Ltd,
	Hyderabad
	[R2].Anjireddy.M "Environmental Science & Technology", BS Publications PVT Ltd, Hyderabad.
	[R3]Benny Joseph, "Environmental Studies", The Tata McGraw- Hill publishing company limited, New Delhi, 2005.
	[R4]. P.VenuGopalaRao, "Principles of Environmental Science. &Engineering", Prentice-Hall of India Pvt. Ltd., New Delhi, 2006.
	[R5]Santosh Kumar Garg, RajeswariGarg, "Ecological and Environmental Studies", Khanna Publishers, New Delhi 2006.
	[R6] Kurian Joseph & R Nagendran, "Essentials of Environmental Studies", Pearson
	Education publishers, 2005. [R7] A.K Dee, "Environmental Chemistry", New Age India Publications.
	[R8] BharuchaErach, "Biodiversity of India", Mapin Publishing Pvt.Ltd
E-	
resources	
and other	
digital	
material	

Second Year (IV Semester)

20BS4101 – Analog Electronic Circuits

Course Category:	Basic Science	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Electronic Devices and	Continuous Evaluation:	30
	Circuits, Network Theory	Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	Upon successful completion of the course, the student will be able to:														
outcomes	CO1	Ana	lyze	ampl	ifier	circu	its at	low a	& hig	h fre	quen	cies				
	CO2	Dete	ermir	ne var	rious	parai	neter	s of t	he an	nplifi	er ci	rcuits				
	CO3	Des	ign d	iffere	ent os	cillat	or ci	cuits								
	CO4								circui					ficien	ncy	
	CO5	Dev	elop	analo	og ele	ectror	nic cii	cuits	usin	g mo	dern	tools				1
Contributi		PO													PS	
on of		1	2	3	4	5	6	7	8	9	10	11	12	01	O2	O3
Course																
Outcomes	CO1		3													
towards																
achieveme nt of	a a	2														
Program	CO2	3														
Outcomes																
(L - Low,	CO3			2												
M -																
Medium,	CO4		2													
H – High																
	CO5					2										
Course																
Content	UNIT	- I														
	Transi	stor A	mpli	fiers	at Lo	w fre	auena	ries								
	BJT A		-				-		f trans	sistor	Anal	vsis d	of trat	nsista	r amn	lifier
	using h															
	CB con	-				-		•			-					
		ingula	auons	, Cast	aueu	siage		(تات), (_asc00		L-CD	, Dai	mgto	n i all		CC).
	FET A	mplif	iers:	FET s	small	signa	l mod	el, Ar	nalysis	s of F	ET ar	nplifi	ers at	low f	reque	ncies
	- CS/C	_				0		,	5			I			1	
				0												
	UNIT															
	Transi	stor	Amp	lifiers	s at	High	freq	uenci	ies: 7	The h	ybrid	-pi (π) Co	ommo	n En	nitter
	Transis	tor M	lodel,	hybri	id-pi	(π) co	nduct	ances	, the	hybri	d-pi (π) caj	pacita	nces,	validi	ty at
	hybrid-	pi (π)	mod	lel, va	riatio	n of 2	Hybri	d-pi (π) pa	ramet	ers, tl	ne CE	E shor	t circ	uit cu	rrent
	gain, c	- · ·					-									
	Gain-B		-					-	-				•		-	
			r		,				0	1						

	 UNIT- III Feedback Amplifiers: Feedback concepts, General characteristics of Negative feedback Amplifiers, Input resistance & output resistance, Method of analysis of feedback amplifiers - Voltage series, Current series, Voltage shunt, Current shunt feedback amplifiers. Oscillators: Classification of Oscillators, Sinusoidal oscillators, Barkhausen criteria, RC phase shift oscillator using BJT, Wein bridge oscillator, LC oscillators- Hartley and Colpitts Oscillator
	UNIT- IV Power Amplifiers : Classification of power amplifiers, Class A series fed and transformer coupled, Second harmonic distortion, Class B transformer coupled Push-Pull and complementary symmetry push-pull, Cross over distortion
Text books and Reference books	 Text Books: [T1] Jacob Millman and Christos C Halkias, "Integrated Electronics: Analog and Digital Circuits and Systems", 12thEd., TMH, 1991. [T2] G.K.Mithal, "Electronic Devices and circuits", 23rd Ed., Khanna Publishers 2010. Reference Books: [R1] A.P.Godse and U.A.Bakshi "Electronic Circuit Analysis", 1stEd., fourth reprint, Technical Publications,2010. [R2] Robert Boylestad and Louis Nashelsky, "Electronic Devices and Circuit Theory", 6th Ed., PHI 2000
E- resources and other digital material	

20EI4302 – Linear Integrated Circuits and Applications

Course Category:	Program Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Electronic Devices and	Continuous Evaluation:	30
	Circuits, Network Theory	Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	Upon successful completion of the course, the student will be able to:														
outcomes	CO1	Und	ersta	nd th	e cha	racte	ristic	s of 7	741IC	2						
	CO2		pply the concepts of 741IC to implement various linear and non linear oplications.												near	
	CO3				ent IC	circ	uits u	sing	741,	555 a	and 7	23 IC	Cs			
	CO4		ustrate the operation of special purpose ICs and their applications.													
Contributi on of		PO 1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
Course Outcomes towards	CO1	2													2	
achieveme nt of Program	CO2	3													2	
Outcomes (L – Low, M -	CO3		3			2									3	
M - Medium, H – High	CO4	3													2	
Course Content	UNIT Operat Power practica charact Rate. Linear followe Voltage UNIT Nonlin Applica output	tional suppl al Op eristic appl er, Dif e to cu - II ear ations circui	ies; I p-amp is - D icatio ferent urrent applic - Pre t. s an	Block spec C and ns of tial an conve cation ccision d Wa	diag cificat d AC Op- A nplific erter a us of n full avefo	ram r ions, Chara Amp er, Su und Cu op- wave rm (epress 741 acteris - Inve mmin urrent Amp recti Gener	entation Op-a stics of arting g amp to vo : San fier, (ators	on of imp f of an (ampli plifier ltage (mple Clippe : Bas	Op Feature Op A fier, I , Instr conve and ers, Pe	amp, es an mp - Non-i umen rter hold eak do	Ideal d sp Frequ nverti tation circu etecto ator,	Op ecifica ency ng an ampl uit, P r and Appli	amp, ations Respo nplific ifier, Precisi Abso	Ideal , Op- onse, er, Vo Integr on d olute v	and -amp Slew Itage ator, iode, value Zero

	generators - Square wave generator, Triangular wave generator.
	generators - Square wave generator, mangular wave generator.
	UNIT- III
	Active Filters: Active LP and HP filters, Sallen key LP and HP filters, Band pass filters -
	Wide band pass and multiple feedback band pass filters; Band stop filters - Wide band
	stop and notch filter; State variable filter.
	Analog to Digital and Digital to Analog Converters: Introduction, Basic DAC
	techniques - Weighted resistor DAC, R-2R ladder D/A converter; A/D conversion -
	Parallel comparator type ADC, Successive approximation ADC and dual slope ADC;
	DAC and ADC specifications
	UNIT-I
	Special Purpose ICs and Applications: 555 Timer - 555 as Monostable and Astable
	operation, Applications, Schmitt trigger; Voltage controlled oscillator (IC566),ICL8038
	Function generator, Frequency to voltage converters. IC voltage regulators- Fixed voltage
	regulators- LM78XX, LM79XX; Variable voltage regulators – LM 317, LM 723 IC
Text	Text Books:
books and	[T1] D. Roy Choudhry and Shail B. Jain, "Linear Integrated Circuits", 4 th Ed., New
Reference	Age International Pvt. Ltd, 2011.
books	[T2] Rama Kant A. Gayakwad, "Op-Amps and Linear Integrated Circuits", 4 th Ed,PHI,
	2012
	Reference Books:
	[R1] S. Franco, "Design with Operational Amplifiers and Analog Integrated
	Circuits", TMH, 2016.
	[R2] R. F. Coughlin & F. F. Driscoll, "Operational Amplifiers and Linear Integrated
	Circuits", 6 th Ed,PHI, 2012.
	[R3] Jacob, "Applications and Design with Analog Integrated Circuits", 2 nd Ed., PHI 1996
	[R4] Sanjay Sharma, "Op-Amps and Linear Integrated circuits",1 st Ed, Katson
	educational series,2008.
	[R5] S.Salivahanan & V.S. Kanchana Bhaskaran, Linear Integrated Circuits, TMH,
L	2 nd Ed., 2015.
E-	1. <u>www.analog.com</u>
resources	 <u>https://nptel.ac.in/courses/108106068/</u> https://www.allaboutcircuits.com/
and other digital	 <u>https://www.anaboutcircuits.com/</u> <u>https://www.linkwitzlab.com/filters.htm</u>
material	T. https://www.hinkwitziao.com/inters.html
maithai	

20EI4303 – Control Systems

Course Category:	Program Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Laplace transforms and	Continuous Evaluation:	30
	integral calculus, Network	Semester end Evaluation:	70
	theory	Total Marks:	100

Course	Upon	Upon successful completion of the course, the student will be able to:														
outcomes	CO1	Exp	lain t	he co	ncep	ts of	contr	ol sv	stems	5						
	CO2	and signal flow graph approaches														ram
	CO3	frequency domain approaches														
	CO4															
Contributi on of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
Outcomes towards achieveme	CO1															
nt of Program	CO2	2														1
Outcomes (L – Low, M -	CO3		3													2
Medium, H – High	CO4					2										2
Course Content	UNIT Introduction Sensitiv Mathemeter electric equation Mason UNIT Time I response systems adding actions	uction nd clo vity an matic al, n al, n n, Bl 's gain - II Domai se of s, Tin poles	al M nechan ock on form first-on ne do	loop ernal odels nical diagra nula a alysis order main	ontro noise of P and m re s: Star system speci	ol sys hysica elect presen ndard m to ficatio	al Systems, al Systemation ntation test s stand ons, S	Effe stems chanic n of ignals ard te Steady	For al sy contro s – Ste est sig	feedl mulat vstems ol sys ep, ran gnals, e erro	ion of s, Po stems, mp, pa Step r and	on ov f diffe les, 2 , Sign arabol respo error	verall erentia Zeros nal fl lic and onse o conse	gain al equ , Ch ow g d imp of sec	, Stab uation aracte graphs oulse, ⁷ cond 6 , Effe	s for ristic and Time order ct of

	 UNIT- III Stability Analysis in Complex Plane: Stability definitions – Bounded input and bounded output (BIBO) stability, Stability study based on poles of closed-loop transfer function, Absolute and relative stability, Routh–Hurwitz criterion. Root Locus Technique: The root locus concept, Magnitude and angle conditions, Properties and construction of the root loci (For positive K only),Effect of adding poles and zeros to root locus UNIT- IV Frequency Domain Analysis: Frequency domain specifications, Correlation between
	time and frequency response, Bode plot – Magnitude plot, Phase plot, Determination of phase margin and gain margin, Stability analysis from bode plots, Polar plots, Nyquist stability criterion, Nyquist Plot
Text books and Reference books	 Text Books: [T1] A.Anand Kumar, "Control Systems", 2nd Ed., PHI, 2014 [T2] I J Nagrath& M Gopal, "Control Systems Engineering", 5th Ed., New Age International, 2008 Reference Books: [R1] Katsuhiko Ogata, "Modern Control Engineering", 4th Ed., Pearson Education, 2003 [R2] A.NagoorKani, "Control Systems", 2nd Ed., RBA Publications, 2006
E- resources and other digital material	1. <u>http://www.nptelvideos.com/control_systems/</u> 2. <u>https://nptel.ac.in/courses/108101037/</u>

20EI4304 – Industrial Instrumentation

Course Category:	Program Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Sensors and Transducers	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succe	ssful	com	pletic	on of	the c	ourse	e, the	stude	ent wi	ill be	able	to:		
outcomes	CO1	Exp	lain t	he ba	sic c	once	pts of	indu	strial	proc	ess v	ariab	les			
	CO2		Apply the concepts of industrial process variables to solve the engineering problems													the
	CO3	Iden	dentify suitable transducer for measurement of industrial process variables Analyze the performance of various measurement techniques in ndustrial process variables													
	CO4															
Contributi on of		PO 1	PO 2	PO 3	РО 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
Course Outcomes towards	CO1															
achieveme nt of Program	CO2	3														2
Outcomes (L – Low, M -	CO3	3														2
Medium, H – High	CO4		2													2
Course Content	UNIT Tempe on char Thermo sensors UNIT Pressu devices Inducti Pirani Probler UNIT Flow M and Pit	ratur nge in o elec , SAV - II re Mo 5 – E ve, C & Ion ns. - III Vleasu	dime etricit V ther easur Diaphr apaci nizatio	ension y – ' mome emen agms, tive, on ga ent: In	ns - B Thern eter, U t: Int , Bell Piezo uges;	imeta nocou Jltrase roduc lows, electr Calil	ls; Ch ples; onic th tion, j Bour ic; La bratio	ange IC s hermo pressu don t ow pr n of d type	in ele ensors ometer ure sta tubes; ressur pressu pressu	ectrica s, Ra r, Prob undarc Secc e me ure ga	l proj diatio blems ds, Ma ondary asuren auges ers -	anoma y tran using	s – R' romet eters; asduce - Me g dea ee pla	TD, T force ers – cleod, d wei	'hermi Fiber-(e sumi Resis Knud ght te	istor; optic ming stive, dsen, ester, tube

	flow meters - Electromagentic, Turbine, Anemometers; Mass flow measurement type – Coriolis; Positive displacement flow meters - Nutating disc and lobed impeller; Open channel flow meters- Weirs, Flumes, Problems UNIT- IV Level Measurement: Introduction, Mechanical level indicators - Differential pressure type; Optical – Laser sensors; Electrical type - Resistive, inductive and Capacitive; Radiative methods - Ultrasonic, Gamma; Problems. Humidity, Density & Viscosity Measurement: Introduction, hygrometers-Wet and dry
	bulb, Electrolytic hygrometers; Moisture analyzer-Neutron back scatter moisture analyzer; Densitometers- Electromagnetic suspension, Ultrasonic densitometers; Viscometers- Saybolt and Float viscometers.
Text books and Reference books	 Text Book: [T1] A.K.Ghosh, "Introduction to Measurements & Instrumentation", IIIrd Ed., PHI, 2009 Reference Books: [R1] A.K.Sawhney & Puneet Sawhney,"A Course in Mechannical Measuremnets & Instrumentation", 12th Ed., Dhanapat Rai & Co., 2012. [R2] Ernest O Doebelin/Dhanesh, N Manik, "Measurement systems", 6th Ed., Tata Mc Grawhill. [R3] C.S.Rangan, G.R.Sarma & V.S.V.Mani "Instrumentation Devices &Systems", 2nd Ed., TMH, 2011
E- resources and other digital material	 <u>http://nptel.ac.in/courses/108105064</u> <u>http://nptel.ac.in/courses/108106074</u>

20HS4105 – Universal Human Values

Course Category:	Humanities and Social Sciences	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	50
		Semester end Evaluation:	50
		Total Marks:	100

Course outcomes	Upon	succe	ssful	com	pletic	on of	the c	ourse	e, the	stude	ent wi	ill be	able	to:		
outcomes	CO1				nd a ture)		of t	hems	elves	and	thei	r sur	roun	dings	s (fa	mily,
	CO2		Handle problems with sustainable solutions, while keeping human relationships and human nature in mind Exhibit critical ability and become sensitive to their commitment towards their understanding of human values, human relationship and human society Apply what they have learnt to their own self in different day-to-day settings in real life													
	CO3	towa hum														
	CO4															
Contributi on of Course		PO 1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PSO 3
Outcomes towards achieveme	CO1						1			1						
nt of Program	CO2			3												
Outcomes (L – Low, M -	CO3						2									
Medium, H – High	CO4								3				2			
Course Content	UNIT	- I														
	Course Educat	tion:		,		,										
	Part-1: explora	-									-					
	validati look at			-			explo	ratior	n. Con	itinuo	us haj	ppine	ss and	l pros	sperit	y – A
	Part-2: for ful Unders scenari	fillme tandir	ent o ng haj	f asp ppine	oiratio ss and	ns o 1 pros	f eve sperity	ry h cori	uman rectly	bein – A	g wi critic	th th al app	neir c oraisa	correct	t pri the c	iority, urrent

harmony at various levels.

(Practice sessions are to be included to discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and co-existence) rather than as arbitrariness in choice based on liking-disliking).

UNIT- II

Understanding Harmony in the Human Being – Harmony in Myself:

Part-1: Understanding human being as a co-existence of the sentient 'I' and the material 'Body'. Understanding the needs of self ('I') and 'body' – Happiness and physical facility, Understanding the body as an instrument of 'I' (I being the doer, seer and enjoyer).

Part-2: Understanding the characteristics and activities of 'I' and harmony in 'I'. Understanding the harmony of I with the body: Sanyam and health; Correct appraisal of physical needs, Meaning of prosperity in detail, Programs to ensure sanyam and health.

(Practice sessions are to be included to discuss the role others have played in making material goods available to me. Identifying from one's own life. Differentiate between prosperity and accumulation. Discuss program for ensuring health vs. dealing with disease).

UNIT- III

Understanding Harmony in the Family and Society – Harmony in Human-Human Relationship:

Part-1: Understanding values in human-human relationship; Meaning of justice (nine universal values in relationships) and program for its fulfillment to ensure mutual happiness; Trust and respect as the foundational values of relationship, Understanding the meaning of trust; Difference between intention and competence, Understanding the meaning of respect, Difference between respect and differentiation; The other salient values in relationship.

Part-2: Understanding the harmony in the society (society being an extension of family); Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive human goals, Visualizing a universal harmonious order in society–Undivided society, Universal order– From family to world family.

(Practice sessions are to be included to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education, etc. Gratitude as a universal value in relationships. Discuss with scenarios. Elicit examples from students' lives).

UNIT- IV

Part-1: Understanding Harmony in Nature & Existence – Whole existence as Coexistence: Understanding the harmony in the nature, Interconnectedness and mutual fulfillment among the four orders of nature – Recyclability and self-regulation in nature,

	Understanding existence as co-existence of mutually interacting units in all-pervasive space, Holistic perception of harmony at all levels of existence.
	Part-2: Implications of the above Holistic Understanding of Harmony on Professional Ethics: Natural acceptance of human values, Definitiveness of ethical human conduct, Basis for humanistic education, Humanistic constitution and humanistic universal order, Competence in professional ethics: a) Ability to utilize the professional competence for augmenting universal human order, b) Ability to identify the scope and characteristics of people-friendly and eco-friendly production systems, c) Ability to identify and develop appropriate technologies and management patterns for above production systems, Case studies of typical holistic technologies, management models and production systems, Strategy for transition from the present state to universal human order: a) At the level of individual: as socially and ecologically responsible engineers, technologists and managers, b) At the level of society: as mutually enriching institutions and organizations.
	(Part-1: Practice sessions are to be included to discuss human being as cause of imbalance in nature (film "Home" can be used), pollution, depletion of resources and role of technology, etc. Part-2: Practice exercises and case studies are to be taken up in practice (tutorial) sessions eg. to discuss the conduct as an engineer or scientist, etc.).
Text books and Reference books	 Text Book: [T1] R. R. Gaur, R. Sangal and G. P. Bagaria, "Human Values and Professional Ethics", Excel Books Private Limited, New Delhi (2010). Reference Books: [R1] A. Nagaraj, Jeevan Vidya Prakashan, Amarkantak, "Raman Jeevan Vidya: Ek Parichaya (1999). [R2] A. N. Tripathi, "Human Values", New Age International Publishers, New Delhi
	 [R2] A. N. Hipath, "Human values", New Age International Fublishers, New Denn (2004). [R3] Annie Leonard, "The Story of Stuff: The Impact of Overconsumption on the Planet, our Communities, and our Health and how we can make it better", Free Press, New York (2010). [R4] Mohandas Karamchand Gandhi, "The Story of my Experiments with Truth: Mahatma Gandhi Autobiography", B. N. Publishing (2008). [R5] E. F. Schumacher, "Small is Beautiful: A Study of Economics as if People Mattered", Vintage Books, London (1993). [R6] Cecile Andrews, "Slow is Beautiful: New Visions of Community", New Society Publishers, Canada (2006).
	 [R7] J. C. Kumarappa, "Economy of Permanence", Sarva-Seva-Sangh Prakashan Varanasi (2017). [R8] Angreji Raj, Pandit Sunderlal, Prabhath Prakashan, "Bharat Mein"Delhi (2018). [R9] Dharampal, "Rediscovering India Society for Integrated Development of Himilayas" (2003).

	[R10] M. K. Gandhi, "Hind Swaraj or Indian Home Rule", Navajivan Publishing House,
	Ahmedabad (1909)
	[R11] Maulana Abul Kalam Azad, "India Wins Freedom: The Complete Version", Orient
	Blackswan (1988).
	[R12] Romain Rolland, "The Life of Vivekananda and the Universal gospel", Advaitha
	Ashrama, India (2010).
	[R13] Romain Rolland, "Mahatma Gandhi: The Man who become one with the Universal
	Being", Srishti Publishers & Distributors, New Delhi (2002).
E-	1. AICTE – SIP Youtube Channel
resources	https://www.youtube.com/channel/UCo8MpJB_aaVwB4LWLAx6AhQ
and other	2. AICTE – UHV Teaching Learning Material
digital	https://fdp-si.aicte-india.org/download.php#1
material	

20EI4351 – Transducers Lab

Course Category:	Program Core	Credits:	1.5
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0- 3
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	Upon successful completion of the course, the student will be able to:														
outcomes	CO1	Use	sens	ors a	nd tra	insdu	cers	for m	easu	remei	nt of	vario	us pa	rame	eters.	
	CO2	Ana	lyze	the c	harac	terist	ics of	f vari	ous t	ransd	ucers	5.	1			
	CO3				rimer											
	CO4	Wri	te an	effec	tive	repor	t base	ed on	expe	erime	nts.					
Contributi		РО														
on of		1	2	3	4	5	6	7	8	9	10	11	12	01	O2	03
Course																
Outcomes	CO1	3				1								3		
towards	001	C .				-								0		
achieveme																
nt of	CO2				3									2		
Program																
Outcomes	CO3									1			1	2		
(L - Low,	000									-			-	_		
M -	COL															
Medium,	CO4										2					
H – High Course																
Content	List of	f Exn	erim	ents												
Content		Tem			169611	reme	nt nei	nσ R	TD a	nd th	ermi	stor				
								-					temn	erati	ire sei	nsor
		Char						0		-			-	oraci	10 50	1501
		Meas					-			-				r		
						-			-	-					ck-up)
		Flow					-	-	-	-	-			T	1	
		Calit				-										
		Disp														
		Inter														
		Interf									-	•				
	11.	Inter			nduc	tive p	roxii	nity s	senso	r witl	n Ard	luino	for o	bject		
		detec									~					
	12.]	Interfa	acing	a gas	senso	r with	Ardu	ino ai	nd dis	play o	on Sei	nal M	onito	r		
	Notes	1	10 0	f the	over	ninaci	ata in	the	hore	a lint	need	to b	0.007	nnlat	ad h-	the
	Note: studen	•			-									-	-	uie
	Studell	101	111111/1			ingitu		write	UIIIV	ersity	y 1 1 d	ciical	ыла	iiiiia	10115	

Text	Text Books:
books and	[T1] A.K.Ghosh, "Introduction to Measurements & Instrumentation", 3 rd Ed., PHI, 2009.
Reference	[T2] A.K.Sawhney & Puneet Sawhney, "A Course in Mechanical Measurements &
books	Instrumentation", 7 th Ed., Dhanapat Rai & Co., 2012.
Е-	1. https://store.arduino.cc/digital/create
resources	2. <u>https://www.allaboutcircuits.com/</u>
and other	
digital	
material	

20EI4352 – Control Systems Lab

Course Category:	Program Core	Credits:	1.5
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0- 3
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succe	ssful	com	pletic	on of	the c	ourse	, the	stude	ent wi	ill be	able	to:		
outcomes	CO1	App	pply control system techniques/approaches to solve problems													
	CO2		nalyze the responses and stability of the given control system													
	CO3		onduct the experiments as individual or team													
	CO4	Mał	ke an	effec	tive	repor	t base	ed on	expe	erime	nts					
Contributi		РО	PO PS PS PS													
on of		1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
Course																
Outcomes	CO1	2				2										1
towards																
achieveme																
nt of	CO2				3	2										2
Program Outcomes																
(L – Low,	CO3									2			1			
M - U = L																
Medium,	CO4										2					
H – High	04										2					
Course																
Content	List of	Expe	rimei	nts												
	Part-A	<u>.</u>														
	1.Dyna	mic c	haract	teristi	cs of t	first o	rder s	ystem	IS							
	2. Time	e resp	onse d	of seco	ond or	der sv	ystem	s								
	3. Char								eceive	r						
	4. Spee			-												
	5.Chara							, onio								
	2. Churc				,	P11										
	Part-B															
		Using	мΔт	I AR	/SIMI	ILINI	K for	contre	nl svet	tems						
		I: I							•		ΕW					
								NUL	11 11 11/1		17.44					
		II: F	•								п					
		III: S	-									· /	1 1 1 1			
		Mathe					•	•		-						C
		Block	-				-			termi	nation	of t	ransfe	er fun	ction	of a
	-	given	•		-											
	4. 1	Deterr	ninati	on of	step,	impu	ilse ai	nd rar	np re	spons	es for	first	order	unity	y feed	lback

	system using MATLAB/LabVIEW
	5. Determination of step, impulse and ramp responses for second order unity feedback
	system using MATLAB/LabVIEW
	6. Determination of step and impulse responses for a type '0', type '1' and type '2'
	systems
	7. Root locus plot for a given transfer function using MATLAB/LabVIEW
	8. Stability studies using Bode and Nyquist plots for a given transfer function using
	MATLAB/LabVIEW
	9. Study the effect of addition of zeros to the forward path transfer function of a
	closed loop system
	10. Study the effect of addition of poles to the forward path transfer function of a
	closed loop system
	Note: Any 10 of the experiments in the above list need to be completed by the student, by
	choosing a minimum of 3 experiments from part- A and 7 from part-B for him/her to be
	eligible to write University Practical Examinations
Text	Text Book:
books and	[T1] I.J.Nagrath & M.Gopal, "Control systems Engineering", New Age publisher, 5 th Ed.
Reference	[T2] A.Ananda Kumar, "Control Systems", PHI
books	Reference Books:
	[R1] B.C.Kuo, "Automatic Control Systems", 7th Ed., PHI.
Е-	1. <u>www.linearcontrolsystems.com</u>
resources	2. <u>www.linearcontrols.net</u>
and other	
digital material	
matchal	

20EI4353 – Linear Integrated Circuits Lab

Course Category:	Program Core	Credits:	1.5
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0- 3
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	Upon successful completion of the course, the student will be able to:														
outcomes	CO1		Design linear and non-linear applications of op-amp circuits, 555 timer and IC voltage regulators.													
	<i></i>		nalyze the outputs generated by an electronic circuit and interpret the													
	CO2	data	ta from output waveforms.													
	CO3				<u> </u>				vidua				_			
	CO4	Prep	bare a	in eff	ectiv	e rep	ort ba	ised o	on ex	perin	ienta	l resu	ilts	<u> </u>	1	
Contributi on of		PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
Course		1	2	3	4	5	6	7	8	9	10	11	12	01	02	O3
Outcomes	CO1			3											2	
towards	CO1															
achieveme					3										2	
nt of	CO2				5										2	
Program Outcomes										2			2			
(L - Low,	CO3															
M -											2					
Medium,	CO4										2					
H – High Course																
Content	List of	Expe	rimei	nts												
		Meas			Op-a	mp pa	ramet	ers								
		Desig			-				iit and	l com	parato	or usir	ig Op	-Amp	IC74	1.
		Desig		0	-					-			• •	1		
		Desig									•					
	5.	Desig	gn an i	integr	ator u	sing 7	41IC									
	6.	Desig	gn a w	vavefo	rm ge	enerat	ion us	ing 74	41IC (squar	e, tria	ngula	ur)			
	7.	Desig	gn a V	Wein l	oridge	e oscil	lator ı	using	741IC	2						
	8.	Desig	gn of	first c	order a	active	low p	ass ai	nd hig	h pas	s filte	r usin	g 741	IC		
	9.	Desig	gn an Ì	IC 55	5 time	er asta	ble c	ircuit								
	10.	Desig	gna s	chmit	t trigg	ger us	ing IC	555	Timer	•						
	11.	Desig	gn a vo	oltage	regul	lator ı	using 1	IC 72	3							
	12.	Desig	gn a D	/A co	nvert	ers us	ing 74	1IC ι	ising (3 bit F	R-2R]	ladder	circu	it tecl	hniqu	e
	Note: A	-		-								-	eted by	y the	studei	nt for
	him/he	r to be	e eligi	ble to	write	Univ	ersity	Pract	ical E	xamii	nation	IS				

Text	Text Books:
books and	[T1] D. Roy Choudhry and Shail B. Jain, "Linear Integrated Circuits", 4th Ed., NewAge
Reference	International Pvt. Ltd, 2011.
books	[T2] Rama Kant A. Gayakwad, "Op-Amps and Linear Integrated Circuits", 4th Ed., PHI,
	2012
Е-	1. <u>www.analog.com</u>
resources	2. https://nptel.ac.in/courses/108106068/
and other	3. <u>https://www.allaboutcircuits.com/</u>
digital	
material	

20TP4106 – English for Professionals

Course Category:	Soft Skills	Credits:	1
Course Type:	Learning by Doing	Lecture - Tutorial - Practice:	0 - 0- 2
Prerequisites:		Continuous Evaluation:	100
		Semester end Evaluation:	0
		Total Marks:	100

Course outcomes	Upon	succe	ssful	com	pletic	on of	the c	ourse	, the	stude	ent wi	ill be	able	to:		
outcomes	CO1												rld by	y she	dding	g off
	CO2		eir inhibitions about communicating in English troduce themselves as well as others appropriately													
	CO3	Use	e vocabulary to form sentences and narrate stories by using creative hking skills volve in practical activity-oriented sessions and respond positively by veloping their analytical thinking													
	CO4	deve														
	CO5	Lear	rn ab	out v	ariou	s exp	ressi	ons to	be u	ised i	n dif	feren	t situ	ation	s	
Contributi on of		PO 1	PO 2	PO 3	РО 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
Course Outcomes towards achieveme	CO1															
nt of Program	CO2		3 3 3													
Outcomes (L – Low, M -	CO3										3	3				
Medium, H – High	CO4								2		3	3				
	CO5										3	3				
Course Content	2. UNIT 1. 2. 3. UNIT 1.	Begi Pract - II Erroi conju Intro Pract	ticing trs in unction ducing ducing	g on f usage ons, i ng ba g on f g self	e of j diom sic gr uncti	onal parts s/phr ramm onal ners	ases. ar conve	ersati beech	ons with			on ve	erbs,	adjec	tives	and

	3. Telephonic etiquette, Social etiquette and table manners
	4. Practicing on functional conversations
	UNIT- IV
	1. Direct, Indirect/Reporting speech
	2. Public speaking basics
	3. Versant test preparation
	4. Practicing on situational conversations
Text	Text Books:
books and	[T1] Swaroopa, Polineni, "Practicing on Situational Conversations - Strengthen Your
Reference	Communication Skills", 1st Ed., Maruthi Publications, 2013.
books	[T2] Mamta Bhatnagar & Nitin Bhatnagar, "Communicative English", 1st Ed., Pearson
	India, 2010.
Е-	
resources	
and other	
digital	
material	

20EI4607 – Virtual Instrumentation

Course Category:	Skill Oriented Course	Credits:	2
Course Type:	Theory	Lecture - Tutorial - Practice:	0 - 0- 4
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

virtual instrument for simple problems	to cre	ate a								
virtual instrument for simple problems		derstand the graphical programming terminology and able to create a								
	1 1									
	le to use the various looping constructs, arrays, matrices and clusters									
CO3Able to use various data plotting techniques and structuresCO4Able to use the data acquisition device to acquire the measure	amont	data								
CO4 From real world into PC	emem	uata								
Contributi PO PO <th>PS</th> <th>PS</th>	PS	PS								
on of 1 2 3 4 5 6 7 8 9 10 11 12 O	02	O3								
Course										
Outcomes towards CO1 3		3								
achieveme										
nt of CO2 2 3		3								
Program		5								
Outcomes		2								
Medium, CO4 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3		3								
Course										
Content List of Experiments:										
1. Introduction to Virtual Instrumentation and LabView										
2. Programs on controls and indicators										
3. Programs on arithmetic operations										
4. Programs on boolean operations										
5. Programs on sub VI's										
6. Programs on repetition and loops										
7. Programs on arrays										
8. Programs on matrices										
9. Programs on clusters										
10. Programs on data plotting										

	 11. Programs on structures 12. Programs on formula nodes and math script nodes 13. Programs on strings, file I/O 14. Temperature acquisition using 3-wire RTD.
	15. Programs on data logging 16. Programs using NI myDAQ
Text	Text Book:
books and	[T1] Jovitha Jerome, "Virtual Instrumentation using LabVIEW", 1 st Ed., PHI, 2013
Reference	Reference Books:
books	[R1] Sanjay Gupta, Joseph John, "Virtual Instrumentation using LabVIEW", 1st Ed., Tata
	McGraw-Hill, 2005
	[R2] Gary Johnson, Richard Jennings, "LabVIEW Graphical Programming", Tata
	McGraw-Hill, 2006
Е-	1. <u>http://www.ni.com</u>
resources	
and other	
digital	
material	

20MC4108B – Indian Constitution

Course Category:	Mandatory Course	Credits:	
Course Type:	Theory	Lecture - Tutorial - Practice:	2 - 0- 0
Prerequisites:		Continuous Evaluation:	100
		Semester end Evaluation:	0
		Total Marks:	100

Course	Upon	pon successful completion of the course, the student will be able to:														
outcomes	CO1	Kno	w the	e fun	dame	ntal l	aw o	f the	land							
	CO2	Und	lersta	nd ho	ow fu	ndan	nenta	l righ	ts are	e prot	ected	1				
	CO3												ernm			
	CO4	Exp	lain	when	and	how	an e	merg	ency	can	be in	npose	ed and	l wha	t are	the
		cons	seque	ences	1	1	1	1	1	1	1	1	1	1	1	1
Contributi		РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PS	PS	PS
on of		1	2	3	4	5	6	7	8	9	10	11	12	01	02	O3
Course Outcomes																
towards	CO1						2									
achieveme																
nt of	CO2						2									
Program	02						2									
Outcomes	002						2									
(L - Low,	CO3						2									
М -																
Medium,	CO4															
H – High Course																
Content		uction utiona ution (- II	lism, of Ind	Histo ia.	orical	persj	pectiv	e of	const	itutio	n of	India	, Sali	ent fe	eature	s of
	to equa of the r UNIT Nature financia Parlian Preside	 UNIT- II Fundamental rights: Scheme of the fundamental rights, Scheme of the fundamental right o equality, Scheme of the fundamental right to certain freedoms under Article 19, Scope of the right of life and personal liberty under Article 21, writs jurisdiction UNIT- III Nature of the Indian constitution: Federal structure and distribution of legislative and inancial powers between the union and states Parliamentary form of Government in India: The constitution powers and status of the President of India, Amendment of the constitutional powers and procedure, Historical powers of the constitutional amendments in India 														

	Local Self Government: Constitutional scheme in India
	UNIT- IV Emergency Provisions: National emergency, President rule, Financial emergency
Text	Text Book:
books and	[T1] Dr. J.N. Pandey, "Constitutional Law of India" published by Central law
Reference	Agency, Allahabad, Edition 2018
books	Reference Books:
	[R1] V.N Shukla's, "Constitution of India" Eastern Book Company, Lucknow.
	[R2] M.P. Jain, "Indian Constitution Law", Wadhwa and Company, Nagpur.
	[R3] D.D. Basu, "Constitution of India", Wadhwa and Company, Nagpur
Е-	
resources	
and other	
digital material	

Third Year (V Semester)

20EI5301 – Analytical Instrumentation

Course Category:	Program Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Engineering Chemistry	Continuous Evaluation:	30
-		Semester end Evaluation:	70
		Total Marks:	100

Г

Course	Upon	Upon successful completion of the course, the student will be able to:														
outcomes	CO1	D1 Understand the basic concepts of analytical instruments. Apply the analytical instruments for the measurement of qualitative and														
	CO2		-		-	al inst of the			for tl	he m	easur	ement	of	qualit	ative	and
	CO3	Iden	tify s	uitabl	e anal	lytical	detec	tors f	or var	ious a	applic	ations	5.			
	CO4	Con	npare	vario	us ana	alytica	l instr	rumen	ıts in i	indust	rial a	oplica	tions.			
Contributio		РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PS	PS	PS
n of Course		1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
Outcomes towards the achievement	CO1															
of Program Outcomes	CO2	3												3		
(1– Low, 2– Medium, 3 –	CO3	1														
High)	CO4		2											2		
Course Content	UNIT Spect Radia Spect FTIR UNIT Mass deflec NMR spect UNIT Nucle Propo	roph tion, ropho spec C – II Spe ction, and spe rosco C – II car I	Radiotomo troph ectros The I ES ctron py, E I Radia	iation eters otom scopy time R S neters SR s	Sound Sound	rces, ngle Appl Princi ight. rosco Contin omet	Filter beam icatio ple, py: I nuous er s: Io	rs, M n nul ons Type Princ s wa nizat	ionoc l typ s of iple o ve a ion c	hrom be, D mas of N nd F	ators ouble s sp MR T N ber,	and bea ectron spect MR, Geige	detec m ra meter rosco Prin er M	etors, tio r s - opy, ciple uller	UV- ecord Magn Type of	VIS ling, netic s of ESR

	 X-Ray Spectroscopy: Production of X-Rays and X-Ray spectra, Instrumentation, X-Ray diffractometer, X-Ray absorption meter, X-Ray fluorescent spectrometer. Raman Spectrometer: Raman effect, Resonance enhanced Raman scattering, Surface enhanced Raman scattering, Principle of Raman spectrometer, Laser based Raman
	spectrometer. UNIT – IV Chromatography: Basic definitions, Classification of chromatographic methods, Gas chromatography - Introduction, Basic parts of chromatograph, Liquid chromatography - Introduction, Types, High performance liquid chromatograph - Detection systems, Applications.
	Industrial Gas Analysers: Types, Paramagnetic oxygen analyser, Infrared gas analyser, Thermal conductivity analyser
Textbooks and Reference books	Text Book: [T1] R.S.Khandpur, "Handbook of Analytical Instruments", 2 nd Ed., TMH, 2006 [T2] Willard H.H, Merrit L.L, Dean J.A,"Instrumental Methods of Analysis", 7 th Ed., CBS publishers and Distributors, 1988
	Reference Books: [R1] D.A.Skoog and James J.Leary, "Principles of Instrumental Analysis", 5 th Ed., Holt-Saunders, 1997 [R2] James.W.Robinson, Eileen.M.Skelly.Frame, Georgia.Frame, "Undergraduate Instrumental Analysis", 7th Ed., CRC Press, 2014
E-resources and other digital material	 <u>http://nptel.ac.in/courses/103108100</u> <u>http://instruct.uwo.ca/chemistry/532/lectures.htm</u>

20EI5302 – Process Control

Course Category:	Program Core	Credits:	3
Course Type:	Theory	Lecture- Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
-		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	Upon successful completion of the course, the student will be able to:CO1Explain the concepts associated with process control														
outcomes	CO1	Expl	ain th	e con	cepts a	associ	ated v	vith p	rocess	s cont	rol					
	CO2	Buil		hema	tical							rol so	chem	es fo	r var	ious
	CO3		Select suitable controller, mode, final control element and control schemes for a given application Analyse various control schemes and tuning methods													
	CO4	Anal	yse va	arious	contr	ol sch	emes	and t	uning	meth	ods					
	CO5				softwa											
Contributio n of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
Outcomes towards the achievement	CO1															
of Program Outcomes	CO2	2														1
(1-Low, 2-	CO3			2												2
Medium, 3 – High)	CO4		1													1
	CO5					2										1
Content	UNIT Introd contin of con contro UNIT Model Charao therma UNIT Basic	luction uous a trol sy l block C - II ling a cteristi al syste C - III	nd ba ystem and cs of ems, N	tch pr desig ram, l C ontr physi /Iathe	rocess n, De Defini col of cal sy matic	es, The grees tion, f f Phy stems al mo	ne hien of fr Servo y sical s, Ma deling	rarchy eedon and r Sys t thema g of bi	of pr n, Intr egula tems: tical nary o	rocess roduct tory o Nee mode distill	contr tion to perati d of ling c ation	rol act o proc ion math of liqu colum	tivitie cess c nemat id sy n	es, An contro ical stems	over l, Pro mode , Gas	view ocess ling, and

	Characteristic of on-off, Proportional, Integral and derivative control modes.
	Controlling Elements: Pneumatic controllers, hydraulic controllers, Electrical controllers and electronic controllers.
	Control Valves : Sliding stem control valves, Rotating shaft control valves, Control valve sizing.
	 UNIT – IV Controller Tuning: PID controller design and tuning, Criteria for good control, Tuning methods - Ziegler-Nichols method of tuning, Cohen-Coon method of tuning. Advanced Control Strategies: Cascade control, Feed forward control, Ratio control, Smith predictor control, Internal model control
Textbooks and Reference books	 Text Book: [T1] Seborg, D E., Mellichamp, D.A,. Edger, T.F., "Process dynamics and control", 2nd Ed., John Wiley, 2009. [T2] Donald P. Eckman, "Automatic process control", Wiley India Pvt. Ltd. [T3] Donald R. Coughanowr, "Process Systems Analysis and Control", 2nd Ed., Mc Graw- Hill International edition Reference Books: [R1] Stephanopoulos G, "Chemical Process Control", 3rd Ed, PHI, 1994 [R2] D Patranabis, "Principles of Process Control" 2nd Ed., TMH, 2007.
E-resources and other digital material	 www.freevideolectures.com /Course/3126/Process-Control-and- Instrumentation www.nptel.ac.in/courses/103105064/

20HS5103 – Engineering Economics and Management

Course Category:	Humanities and Social Sciences	Credits:	2
Course Type:	Theory	Lecture- Tutorial - Practice:	2 - 0- 0
Prerequisites:		Continuous Evaluation:	30
-		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succ	essfu	l con	npleti	ion o	f the	cours	e, the	e stuc	lent v	vill b	e able	e to:		
outcomes	CO1	Und	erstar	nd var	ious f	orms	of org	ganiza	tions	and p	rincip	les of	mana	igeme	ent.	
	CO2 Understand the various aspects of business economics.															
	CO3 Perceive the knowledge on Human resources and Marketing functions.															
	CO4 Evaluate various alternatives economically.															
Contributio	PO P											PS				
n of Course		1	2	3	4	5	6	7	8	9	10	11	12	01	O2	O3
Outcomes towards the achievement	CO1	2														
of Program Outcomes	CO2	2				3										
(1– Low, 2– Medium, 3 –																
High)	CO4	2				3										
Content	UNIT Forms Joint s Mana scienti UNIT Introd Margin margin Dema inelast Suppl functio	s of H tock of geme fic m C – II luctional utional utional ution nal utional u	compa nt: In anage on to tility ility. nalys nedula mand,	any, C ntrodu ement, and t is: Th e and , Type	Co-ope action , Mod omics total neory dema es of e	to n ern pr s: Intr utility of de nd cu elastic	e soci nanag fincipl roduct , Law mand rve, S ity.	ety an ement les of ion to y of o : Den hift in	d pub , Fun mana b basid dimin nand t n dem	olic se action geme c econ ishing functi and, 1	ctor. s of 1 nt. nomic g mar on, Fa	manag conc ginal actors city of	epts, utility influ	ut, Pri Utilit y, La encin and: 1	inciple y ana w of g den Elastie	es of lysis: equi nand, c and

	UNIT – III Human Resource Management: Meaning and difference between personnel management and human resource management, Functions of human resource management.
	Marketing Management: Concept of selling and marketing – Differences, Functions of marketing, Product life cycle, Concept of advertising, Sales promotion, Types of distribution channels, Marketing research, Break-Even analysis
	UNIT – IV Financial Management: Functions of financial management, Time value of money with cash flow diagrams, Concept of simple and compound interest.
	Depreciation: Causes of depreciation, Factors influencing depreciation, Common methods of depreciation: Straight line method, Declining balance method, Sum of year's digits method –Problems.
	Economic Alternatives: Methods of evaluating Alternatives under present worth method, Future worth method, Annual equivalent method - Problems.
Textbooks and Reference books	 Text Book: [T1] M.Mahajan, "Industrial Engineering and Production Management", 2nd Ed., DhanpatRaiPublications [T2]MartandTelsang" Industrial & Business Management" S.Chand publications Reference Books: [R1] R.Paneerselvam "Production and Operations Management" PHI [R2]Philip Kotler & Gary Armstrong "Principles of Marketing", Pearson Prentice Hall,NewDelhi,2012 [R3] IM Pandey, "Financial Management", 11th Ed., Vikas Publications [R4]B.B.Mahapatro, "Human Resource Management", New Age International
E-resources and other digital material	1. https://www.toppr.com/guides/fundamentals-of-economics-and-management/supply/supply-function/ 2. https://keydifferences.com/difference-between-personnel-management-and-human-resource-management.html 3. http://productlifecyclestages.com/ 4. https://speechfoodie.com/cash-flow-diagrams/

20EI5404/A – VLSI Design

Course Category:	Program Elective 1	Credits:	3
Course Type:	Theory	Lecture- Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
-		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succe	essful	com	pletic	on of	the c	ourse	, the	stude	ent w	ill be	able	to:		
outcomes	CO1	Und	erstan	d VL	SI fat	oricati	on pro	ocesse	s and	CMC	OS Lo	gic D	esign.			
	CO2					cal pr	-					0				
	CO3					es of I	-				and B	iCMC	DS cir	cuits.		
	CO4	Und	erstan	nd the	basic	circu	it con	cepts	and so	caling	of M	OS ci	rcuits	•		
Contributio	PO P															
n of Course		1	2	3	4	5	6	7	8	9	10	11	12	01	O2	O3
Outcomes	001	2													2	
towards the	CO1	3													2	
achievemen																
t of	CO2		2												2	
Program																
Outcomes	CO3		3												2	
(1–Low, 2–			~												_	
(1– Low, 2– Medium, 3	COA														2	
– High)	CO4	2													2	
Course															1	
Content	UNIT Introd VLSI to action,	uction echno	logy,	Basic	MOS	S tran	sistors	s, Enh	ancer	nent a	and de	pletic	on mo			
	Basic I I _{ds} vers Trans transist another transist latch-u	 action, NMOS fabrication, CMOS fabrication, BICMOS technology. UNIT – II Basic Electrical Properties of MOS and BICMOS Circuits: Drain-to-Source Current Ids versus Voltage (Vds), relationships, Aspects of MOS transistor threshold voltage (Vt), Trans conductance gm and output conductance gds, Figure of merit (ωo), The pass transistor, NMOS inverter, Pull-up to Pull-down ratio for NMOS inverter driven by another NMOS inverter. Alternative forms of pull-up, The CMOS inverter, MOS transistor circuit model, BiCMOS inverter, Latch-up in CMOS circuits and BiCMOS latch-up susceptibility. UNIT – III 														
	MOS layout.			-					•			-		-		
	2							0		· •				·		
	CMOS	BICN	1021	rules,	1.2µľ		ible n	ietai,	Doub	ie pol	y UN	US ri	nes, I	Layou	i diag	rams

	of NAND and NOR gates and CMOS inverter, Symbolic diagrams-Translation to mask form. UNIT – IV Basic Circuit Concepts: Sheet Resistance Rs, Standard unit of capacitance, The delay unit, inverter delays, Driving large capacitive loads, Propagation delays. Scaling of MOS Circuits: Scaling models and scaling factors, Scaling factorsfor device
Therefore a large	parameters. Subsystem Design and Layout: Architectural issues, Switch logic, Gate logic, Examples of structured design (combinational logic)- A parity generator, Multiplexers (data selectors).
Textbooks and Reference books	 Text Book: [T1] Douglas A. Pucknell, "Basic VLSI Systems and Circuits", 3rd Ed., Prentice Hall of India, 2008. [T2] Neil.H.E.Weste,DavidHarris,AyanBanerjee, "CMOSVLSIDesign",3rdEd., Pearson Education2009. [T3] John F Wakerly, "Digital Design Principles & Practices", 3rd Ed., Pearson Education, 2002 Reference Books: [R1] Weste & Eshraghian, "Principles of CMOS VLSI Design", Addison [R2] John P.Uyemura, "Introduction to VLSI Circuits and Systems", John Wiley& Sons, Reprint 2009.
E-resources and other digital material	 <u>http://www.cdeep.iitb.ac.in/nptel/Electrical%20&%20Comm% 20Engg / VLSI % 20</u> <u>Design/Course % 20 Objective.html</u> <u>http://nptel.iitm.ac.in/video.php?subjectId=117106092</u>

20EI5404/B – Sensor Signal Conditioning

Course Category:	Program Elective 1	Credits:	3
Course Type:	Theory	Lecture- Tutorial - Practice:	3 - 0- 0
Prerequisites:	Sensors and Transducers, Industrial Instrumentation	Continuous Evaluation: Semester end Evaluation:	
	Network Theory	Total Marks:	100

Course	Upon	succe	ssful	com	pletic	on of	the c	ourse	, the	stude	ent w	ill be	able	to:		
outcomes	CO1	Expl	lain th	e bas	ic con	cepts	of fo	r resis	stive,	reacti	ve an	d self	gener	ating	senso	ors
	CO2	Sele		table s	signal	cond	itioniı	ng ciro	cuits f	for res	sistive	and r	eactar	nce va	riatic	on
	CO3	Iden	tify sı	uitable	e sign	al con	ditior	ning ci	ircuits	s for s	elf-ge	enerati	ing set	nsors		
	CO4		Illustrate the operation of resonant and semiconductor sensors with communication system													
Contributio		PO														
n of Course		1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
Outcomes towards the	CO1															
achievemen t of Program	CO2		3											3		
Outcomes	CO3		2											2	1	
(1– Low, 2– Medium, 3 – High)	CO4	2												2		
Course Content	UNIT- Signal of resis measur UNIT- Signal sensors Specific resolve UNIT- Signal Choppe amplifi UNIT-	Cond stance ement II Cond , Prot c sigr r conv III Cond er and ers, N	, Vol ts, Dif l ition i olems nal co verters l ition i l low	tage fferen ing fo and a onditio s, Prol ing fo drift	divide tial ar or Rea lterna oners blems or Sel ampli	ers, W nd inst actand trives, for c for c for c	Vheats trume ce Va AC b apacit eratin Elect	riatio riatio oridge ive so ng Se romet	bridg n amp n Ser s, Car ensors nsors nsors	e: Ba plifier nsors: rtier a s, Res : Ove d Tra	lance s, Inte Over mplifi solver erview nsimp	meas erferer view iers ar to D	of reand coh Digital	ents, robler ctance nerent and	Defle ns e vari detec Digit	ction ation ction, al to usors,

	Resonant Sensors and Other Sensing Methods: Sensors based on quartz resonators, SAW sensors, Vibrating wire strain gauges, Digital flowmeters, Sensors Based on Semiconductor Junctions, Sensors Based on MOSFET Transistors, Charge-Coupled and CMOS Image Sensors, Communication system for sensors
Textbooks and Reference books	 Text Book: [T1] Roman Pallas Areny and John G Webster, "Sensor and Signal Conditioning", 2nd Ed., John Wiley & Sons, Inc. 2001 Reference Books: [R1] Fred Schraff, Steve Lekas, Mike Fraser, Paul Holland "Signal Conditioning and PC based Data Acquisition Handbook", 3rd Ed., Measurement Computing corporation, USA, 2012. [R2] Daniel H Sheingold "Transducers Interfacing Handbook", 1st Ed., Analog Devices, Inc., USA, 1980
E-resources and other digital material	1.https://nptel.ac.in/courses/108105064/22 2.https://nptel.ac.in/courses/112105232/27

20EI5404/C – Robotics and Control

Course Category:	Program Elective 1	Credits:	3
Course Type:	Theory	Lecture- Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	Upon successful completion of the course, the student will be able to:														
outcomes	C01	Und	erstar	nd the	funda	ament	al cor	cepts	and y	vorkii	ng pri	nciple	es of re	obot a	natom	IV
	CO2					tics ar						-				<u> </u>
	CO3	Sele	ect var	rious o	contro	ol strat	egies	to ma	nipul	ator d	esign					
	CO4	Iden	tify tl	he use	of ro	bots i	n indı	ıstrial	appli	catior	ıs					
	CO5															
Contributio		PO														PS
n of Course Outcomes		1	2	3	4	5	0	/	8	9	10	11	12	01	02	03
towards the achievement	CO1															
of Program Outcomes	CO2	3														3
(1– Low, 2– Modium 3	CO3		2													2
Medium, 3 – High)	CO4	2														2
	CO5	2														2
Course Content	UNIT Introd anatom manip vision UNIT Robot Coord of obj Funda Direct joints,	luction ny, M ulaton C – II Kino linato ects i menta Kino	lanipu c, Arn e mati e Fra n n spa als of emati emati	n and cs: mes, l ce, Tr rotation c Mo c mod	s, Lini wrist Mapp ransfo on ma del: 1 deling	ks, Ty conf oing a ormati atrices Mecha g of t	nd T on of nical	f join ion, E ransfe vecto struc anipu	ts, De End ef orma ors, H ture a lator,	tions: omog	of front rs, Ro coord geneou ptation avit H	eedon bot a rdinat is trai is, De Harter	n, Rec ctuato e fran nsform script iberg	uired ors, Se nes, D nation ion of (DH)	DOF ensors Descrip matr	in a and otion ices, and tion.
	Kinem				-			-					-			

	study - 3DOF articulated arm kinematic model, 3 DOF RPY wrist kinematics.
	Inverse kinematics: Manipulator work space, Solvability of inverse kinematic model, Solution techniques, closed form solution, Case study - 3DOF articulated arm inverse kinematics.
	UNIT – III Control of Manipulators: Block diagram of manipulator control system, Open and closed loop control system, Manipulator control problem, Linear control schemes, Linear second order SISO model of a manipulator joint, Model of a DC motor, Partition PD and PID control schemes. Force control of robotic manipulator, Hybrid position/ force control, Impedance force/torque control
	UNIT – IV Robot Sensors and Vision: Sensors in robotics, kinds of sensors used in robotics, industrial applications of vision controlled robotic systems, process of imaging, Architecture of robotic vision systems.
	Applications of Robots: Industrial applications: Material handling - Material transfer applications, Machine loading and unloading application, Picking and placing, Palletizing and depalletizing, Processing applications - Welding assembly applications, Peg in hole assembly, Inspection applications, An overview of non-industrial applications, Work place design considerations for safety.
Textbooks and Reference books	 Text Book: [T1] R.K.Mittal&, I.J.Nagarath, "Robotics and Control", Tata McGraw Hill Pvt. Ltd, 15th Ed., 2010 [T2] S.R.Deb, "Robotics Technology and Flexible Automation", Tata McGraw Hill Pvt. Ltd., 2002 Reference Books: [R1] R.D.Klafter, T.A.Chimielewski & M. Negin, "Robotic Engineering - An Integrated Approach", Prentice Hall of India, New Delhi, 1994 [R2] P.J.McKerrow, "Introduction to Robotics", Addison Wesley, USA, 1991
E-resources and other digital material	http://nptel.ac.in/courses/112103174/4 http://nptel.ac.in/courses/112103174/3

20EI5404/D – Industrial Electronics

Course Category:	Program Elective 1	Credits:	3
Course Type:	Theory	Lecture- Tutorial - Practice:	3 - 0- 0
Prerequisites:	Basics of Electrical Engineering, Electronic Devices and Circuits	Continuous Evaluation: Semester end Evaluation: Total Marks:	30 70 100

Course outcomes	Upon	succ	essfu	l con	npleti	ion of	f the	cours	e, the	e stuc	lent v	vill b	e able	e to:		
outcomes	CO1	Und devi		nd th	e pri	nciple	s and	l cha	racter	ristics	of o	liffere	ent p	ower	elect	ronic
	CO2	Converters. CO3 Outline the operation of DC amplifiers and Regulated power supplies,UPS and SMPS for industrial applications.														Cyclo
	CO3															and
	CO4 Illustrate various industrial applications of SCR.															
Contributio n of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
Outcomes towards the	CO1														2	
achievement of Program Outcomes	CO2		2												2	
(1-Low, 2-	CO3		2												2	
Medium, 3 – High)	CO4	3													2	
Course Content	Thyria characc SCR cc Mode ,PUT, UNIT AC-D Halfw DC-A	CO4 3 UNIT-I Thyristors:SCR structure and operation, Characteristics of SCR: StaticV-I characteristics, Switching characteristics and gate characteristics, SCR turn on methods, SCR commutation techniques. Modern Semi-Conductor Power Electronic Devices: DIAC, TRIAC, PUT,SUS,SBS,SCS and LASCR UNIT – II AC-DC Converters – Thyristor Converters: Introduction, Single phase converters: Halfwave converters, Fullwave converters; Bridge converters. DC-AC Converters – Thyristor Inverters: McMurray Inverter, McMurray Bedford Inverter McMurray Single phase inverters, McMurray														

	chopper, Principle of step-up chopper, Chopper configurations.
	AC-AC Converters – Thyristor Cyclo Converters: Introduction, Single phase cyclo converters, Single phase centre tapped cyclo converters, Single phase bridge type cycloconverters
	UNIT – IV Amplifiers and Regulated Power Supplies: DC Amplifier, Differential amplifier as a DC amplifier, Regulated power supplies, Uninterrupted power supply (UPS), Switched mode power supplies (SMPS).
	Industrial Applications: Industrial timing circuits, Electric welding methods and types, Induction and dielectric heating: Principle, Theory and applications, Ultrasonic generators and applications
Textbooks and Reference books	Text Book: [T1] G.K.Mithal and Dr.Maneesh Gupta, "Industrial and Power Electronics," 9 th Ed., Khanna Publications, 2007 Reference Books: [R1] M.Ramamurthy, "Thyristors and their Applications", East-West Press, 2 nd Ed., 1998 [R2]M.H.Rashid, Power Electronics Devices, Circuits and Application, Prentice Hall of India, 2003 [R2] P.S.Bimbra, "Power Electronics," 4 th Ed., Khanna Publications,2010
E-resources and other digital material	 www.nptel.ac.in/downloads/108105066/ http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-334- powernelectronics-spring-2007/lecture-notes/ http://www.nptelvideos.in/2012/11/power- electronics.htmlhttp://onlinevideolecture.com/?course_id=510

20EI5205/A – Essential Principles of Image Sensors

Course Category:	Open /Job Oriented Elective 1	Credits:	3
Course Type:	Theory	Lecture- Tutorial - Practice:	2 - 0- 0
Prerequisites:		Continuous Evaluation:	30
-		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succ	essfu	l con	npleti	on of	f the	cours	e, the	e stud	lent v	vill be	e able	e to:		
outcomes	CO1	Ana	lyze t	he cha	aracte	ristics	s of in	nage s	ensor	S						
	CO2							limita			rious	image	sense	ors		
	CO3							on ima								
Contributio		РО	РО	PO	РО	PO	РО	PO	РО	РО	PO	РО	РО	PS	PS	PS
n of Course		1	2	3	4	5	6	7	8	9	10	11	12	01	O2	03
Outcomes	G A 1		•													
towards the	CO1		2													
achievement																
of Program	CO2	3														
Outcomes																
(1– Low, 2–			2													
Medium, 3 –	CO4		2													
High)																
Course	***	. .														
Content	UNIT Imagi types, Dynar Low-L Dynar UNIT Hardw pixels, to satu Softwa Genera Noise UNIT CCD S MOS	ng ar Funct nic R .ight nic rat ratior A Mult ratior are M al stru- remov C - II Senso	iional ange imagi nge g Meth iiple s n, Gra Ietho ucture val, T I I rs -Pr	elema ng lin aps, C ods t ampli dient- ds to e of a one n incipl	ents o mitatio ptica o Ext ing, N basec Exter a soft nappin e of C	f imag ons, F l limit fend I fultip l imag d Dy ware ng	ge sen Bright tation: Dynai le-sen ge nami appro	lisors, -light s mic R sing n c Ran ach, 1 s, Pixo	Circu imag ange nodes, nge High	it con ing li : Inte Loga dynai	mitati gratin rithm mic r gy, Pr	g line ic pho ange	r imag Signal ar pix otovol image s, Elec	ge sen I-to-N kels, N taic p e data	sors. oise 1 /ultili ixel, 7 merg	ratio, inear Γime ging, ter

	 CMOS Sensors- Principle of CMOS Sensors, Pixel technology, Progress, Electronic shutter UNIT – IV Image Information Quality: Deteriorating elements of image information quality, Impacts of digitization, Sampling in space domain, Sampling in time domain, Sampling in wavelength domain and color information, Technologies to improve image information quality
Textbooks and Reference books	 Text Book: [T1] Takao Kuroda, "Essential Principles of Image Sensors", CRC Press, 2015. [T2] Arnaud Darmont, "High Dynamic Range Imaging: Sensors and Architectures", 1st Ed., SPIE Press, 2013. Reference Books: [R1] Jun Ohta, "Smart CMOS Image Sensors and Applications", CRC Press, 2008. [2]Junichi Nakamura, "Image Sensors and Signal Processing for Digital Still Cameras", Taylor & Francis, 2006
E-resources and other digital material	

20EI5205/B – Wireless Technologies

Course Category:	Open /Job Oriented Elective 1	Credits:	3
Course Type:	Theory	Lecture- Tutorial - Practice:	2 - 0- 0
Prerequisites:	Computer Networks	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	Upon successful completion of the course, the student will be able to:														
outcomes	CO1	Und	erstan	d the	archit	tectur	e of p	rotoco	ols and	d netv	vorks					
	CO2						1		trans							
	CO3									ce in v	variou	is syst	ems			
	CO4						_			tegor						
Contributio		РО	PO	PO	РО	РО	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
n of Course		1	2	3	4	5	6	7	8	9	10	11	12	O1	O2	O3
Outcomes	~ ~ .															
towards the	CO1	3														
achievemen																
t of	CO2			2												
Program																
Outcomes	CO 2	0														
	CO3	2														
(1–Low, 2–																
Medium, 3	CO4			2												
– High)																
Course Content	UNIT- Introdu archited Narrow UNIT- Wirele data str HDR so UNIT- Cellula System pattern, Downli microco UNIT- Multip	uction cture, /band II ss Da cucture olution III ar pri perfe , Inter ink ellulan IV	Cha and v ata To e, Phy n, Me nciple ormar feren interf	nnel videba echno ysical dium e: Ce nce, I ce in erenc ems, I	struc and sy logy: chan acces llular nterfe narro e—Or nterfe	ture, stems Intro nels a s, Han hieran rence wban mnidi rence	RF duction nd lo ndoff cchy, cont d and rection in wi	Chan tiple a on, G gical featur rol, C wide nal deban	nel, access eneral chanr res, Tl m ma Cellula eband anten ad sys	s, Spa l pack nels, I hrough ar reu syste nna, tems,	cal c ce div cet rac EIA/T hput p nent, ise pa ms, li Inter Netw	hanne ision dio se IA/IS perforn Link attern, nterfer ferenc ork ca	el, Le multij rvice, -95B, mance qualit Mac rence ze i apacit	ogical ple ac , Data High e y mea rocell in na n n y	cess flow data asurer ular urrowb arrow	nnel, 7 and rate, nent, reuse band, band

	domain, Brief remarks on signal domains, Duplexing, Frequency division duplexing, Time division duplexing, Code division duplexing, Space division duplexing Brief remarks on duplexing techniques, Multiple-access categories, Scheduled multiple access, Frequency division multiple access, Time division multiple access, Code division multiple access, Space division multiple access, Random multiple access
Textbooks and Reference books	Text Book: [T1] Michel Daoud Yacoub, "Wireless Technology: Protocols, Standards, andTechniques", CRC Press, 2001 Reference Books: [R1]Avnip Deora, Pooja Dhand, Roopali Sood, "Introduction to Wireless Technology", 2011. [R2]"Wireless TechnologiesConcepts, Methodologies, Tools andApplications Volume 1, 2012.
E-resources and other digital material	

20EI5205/C – Industry Based Elective

Course	Open /Job Oriented Elective 1	Credits:	3
Category:			
Course Type:	Theory	Lecture- Tutorial - Practice:	2 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

20EI5351 – Advanced Instrumentation Lab-1

Course Category:	Pro	ogran	n Cor	e Lal	b 1								Credi	its:	1.5		
Course Type:	La	b						Le	cture	e - Ti	itoria	al - P	racti	ce:	0 - 0-	- 3	
Prerequisites:									Co	ontin	uous	Eval	luati	on:	30		
_								Semester end Evaluation:									
	Total Marks:											100					
<u> </u>																	
Course	Upon	succ	essfu	l con	npleti	on of	the o	cours	e, the	e stud	lent v	vill be	e able	e to:			
outcomes	CO1	Signal analysis tasks.CO2Apply the knowledge of LabVIEW programming to develop VI to acquire the data from analog and digital sensors.														for	
	CO2																
	CO3	CO3 Analyze outputs and interpret the data for a given problem.CO4 Conduct experiments as individual or team															
	CO4																
	CO5	CO5 Prepare an effective report based on experiments.															
Contributio n of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3	
Outcomes towards the	CO1			3											3	3	
achievement of Program Outcomes	CO2			3											3	3	
(1–Low, 2–	CO3				3										3	3	
Medium, 3 – High)	CO4							3 2									
	CO5										3						
Course Content	2. 3. 4. 5. 6. 7. 8.	Dev Dev Spec Dev Dev Dev Dev	velop velop ctrum velop velop velop velop	a VI a VI a V a VI a VI a VI a VI a VI a	to Si to de I to to sin to de to an to co to de	tect e estim nulat tect e alyze mput tect p	e the e the e dges e the the the peaks	s in a he po Sour in ar ime- aver and	a sign eak f nd Le n ima frequ aged valle	al us reque vel N ge wi ency powe ys in	ing L ency Aeter ith 2I spec er spe a sig	abVI and Con trogra ectral nal	EW powe volut am dens	er in tion ity	/IEW a pc	ower	

analog input. 10.Develop a VI to demonstrate how to continuously re-generate analog

	output data 11.Develop a VI to demonstrate configuring of counter input and counter output of a DAQ 12.Develop a VI to demonstrate configuring of digital input and digital output of a DAQ
Textbooks and Reference books	Text Book: [T1] Jovitha Jerome, "Virtual Instrumentation using LabVIEW", Prentice Hall India, 1 st Ed., 2010
E-resources and other digital material	1. <u>www.ni.com</u>

20EI5352 – Process Control Lab

Course Category:	Program Core Lab 2	Credits:	1.5
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0- 3
Prerequisites:	Control Systems	Continuous Evaluation:	30
-		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	Upon successful completion of the course, the student will be able to:														
outcomes	CO1	Der loop		trate	the c	harac	terist	tics of	f maj	jor co	ompo	nents	s of p	roces	s con	ıtrol
	CO2		alyze ions.	the p	perfor	manc	ce of	diffe	rent c	contro	ol sch	iemes	s in v	ariou	s pro	cess
	CO3		nduct cesse	-	erim	ents	as i	ndivi	dual	or	team	on	vario	ous	indus	trial
	CO4 Write an effective report based on experiments.															
Contributio n of Course		PO PO<														
Outcomes towards the achievement	CO1	3														
of Program Outcomes	CO2		3													2
(1– Low, 2– Modium 3	CO3															
Medium, 3 – High)	CO4										2					1
Course Content	2. 3. 4. 5. 6. 7. 8. 9. 10	Cha tran Cha Cha Cha Cha Cha Cha Cha a Cor Cha . Cha	aracte smitt aracte aracte aracte aracte aracte aracte aracte aracte aracte aracte aracte	ristic ristic ristic ristic ristic ristic ristic ristic ristic pH c	es of s of l s of l s of l s of f s of f s of f s of p f P, l s of c s of f es of f	PID c evel DN/C low t PI con pressu	ontro transp FF c transp ntroll ure tra PID c de co forwa tem.	oller i mitter ontro nitter er in ansm contro ntrol. rd co	n ten r and ller i r and flow itter a ol mo ntrol	I/P c n leve contr proce and L odes i	ture p onve el pro ol va ess st /P co n pre	proce rter. pcess lve. ation		tion.	-	

Textbooks and Reference books	Text Book: [T1] Process control lab manual. [T2] Donald P. Eckman, "Automatic Process Control', Wiley India Pvt. Ltd. [T3] Donald R. Coughanowr, "Process Systems Analysis and Control, 2 nd Ed., McGraw-Hill international edition
E-resources and other digital material	 www.freevideolectures.com /Course/3126/Process-Control-and-Instrumentation www.nptel.ac.in/courses/103105064

20HS5153 – Advanced Communication Skills Lab

Course Category:	Humanities and Social Sciences	Credits:	1
Course Type:	Theory& Lab	Lecture- Tutorial - Practice:	0 - 0- 2
Prerequisites:	Considerable semi-advanced proficiency in language skills viz Listening, Speaking, Reading, Writing and Sentence construction abilities	Continuous Evaluation: Semester end Evaluation: Total Marks:	30 70 100

Course outcomes	Upon	succ	essfu	ıl con	npleti	ion of	the	cours	e, the	e stud	lent v	vill b	e able	e to:		
outcomes	CO1	environments												ional		
	CO2	spee	Apply rational spoken communication with authentic accentuation in connected speech complemented by the abilities of argumentation and skills of public speaking													
	CO3	techno-professional communication													ional	
	CO4	Produce higher order written communication required for administrative and												and		
Contributio n of Course		PO 1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
Outcomes towards the achievement	CO1										3					
of Program Outcomes	CO2						1		1	2	3	2				
(1– Low, 2– Medium, 3 –	CO3								1	2	3	2				
High)	CO4				1		1			2	3	2				
Course Content	C	Arced I TALK ATO h soft C – II nced S aterpe	S-Li R PI t com Spoke erson	stenin TCH: ponen en Co al Co tramev	g inv Pitcl ts and mmu ommu vork a	hes fo	or teo tration on Sl ion actice	chnica ns cills -Indiv	ıl aud ridual	and	Grou	ıp -	Pyrar	nid d	liscus	sion-

	Practice including paralinguistic elements
	 UNIT – III Advanced Reading and interpretation skills Effective Reading- SQ3R Method, ERRQ Method and SPE Method with textual practice Logical Reading- Syllogisms -illustrations and practice
	 UNIT – IV Advanced Writing and other Professional Communication Skills > Advanced Compilation and Drafting Skills - Minuets, Resume & Video profile, Review and case writing > Life Skills for Work Place Communication including sensitivity towards gender and diversity in communication- Multi-genre activity
Textbooks and Reference books	 Text Book: [T1] Lokesh Mehra, Sanjiva Dubey, S. P. Singh, "Corporate Employability skills", 1stEd., CEGR, New Delhi, 2016 [T2] Brent C. Oberg.C., "Interpersonal Communication", 1stImpression, Jaico Publishing, Mumbai, 2005 [T3] Eclectic materials offered by the Department of English Reference Books: [R1] Chauhan, Gajendra Singh, Smitha Kashiramka, "Technical Communication", Cengage, Delhi, 1st Impression, 2018 [R2] Quintanilla KellyM, Shan T Wahl, "Business and Professional Communication: Keys for Workplace Excellence", SAGE, New Delhi, 2nd Impression 2012 [R3] Selinkar, Larry et al, English for Academic and Technical Purposes, ist Ed., Newbury House Publishers, 1981. [R4] John Langan, College Writing Skills, McGraw Hill, 9th Ed., 2014 [R5] Martin Cutts, Oxford Guide to Plain English, 7th Impression, OUP, 2011
E-resources and other digital material	 ODll Language Learner's Software, Aug 2021 Orell Techno Systems, Visionet Spears Digital Language Lab software Advance Pro, Feb 2021 www.britishcouncil.org/learning-english-gateway. the-oxford-guide-to-english-usage-pdf. www.cambridgeapps.org

20TP5106 – Personality Development

Course Category:	Soft Skills-3	Credits:	1
Course Type:	Theory	Lecture- Tutorial - Practice:	0 - 0- 2
Prerequisites:		Continuous Evaluation:	30
_		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	Upon successful completion of the course, the student will be able to:														
outcomes	CO1	Und	erstar	nd the	corpo	orate e	etique	tte								
	CO2	Mak	te pre	sentat	ions e	effecti	vely v	vith a	pprop	riate	body l	angua	age			
	CO3		1		1	ositive										
	CO4	Und	Inderstand the core competencies to succeed in professional and personal life													
Contributio		DO	PO P													
n of Course		PO 1														
Outcomes		1	2	5	-	5	0	,			10	11	12	01	02	05
towards the									_							
achievement	CO1															
of Program Outcomes																
Outcomes	CO2									2	3					
(1– Low, 2– Medium, 3 – High)	CO3										3					
, ingin)	CO4									2	3					
Course Content	UNIT 1. Ana by Az percep 2. Co langua UNIT 3. Seli Six thi 4. Etic UNIT 5. Sta Email 6. Ve senter senter	lytica dim F dim F mmu dge) f - II f - man nking quette f - II ndarce & Le erbal nces	Premji nicati agem g hats, socia I d ope etter abili analo	ent sl ent sl Tean al etiq writin ty sy ogies,	ening cills cills a n buil uette, n me ng ynony , Spo	activ verbal unger ding, Busin thods vms, otting	vity), l con mana Leade ness e note Anto erro	Self muni gemei ership tiquet mak nyms rs, S	 An ication nt, Str quali te, Te ing, 1 s, On enter 	n; No ress n ties lepho Note ne wo nce c	s, De onverl nanag ne eti takin ord s ompl	velop oal c emen quette ag, M ubsti etion	t, Tin e, Din inute tutes, Co	ositiv unicat ne ma ing et s. pro -Corr urse	e atti ion () inager iquetti eparat ection of ac	tude, body nent, e tion, n of ction

	work UNIT – IV 7.Job-Oriented Skills - I Group discussion, Mock group discussions 8.Job-Oriented Skills –II Resume preparation, Interview skills, Mock interviews
Textbooks and Reference books	 Text Book: [T1] Barun K. Mitra, Personality Development and Soft Skills, Oxford University Press, 2011. [T2] S.P. Dhanavel, English and Soft Skills, Orient Black swan, 2010. [T3] R.S.Aggarwal, A Modern Approach to Verbal & Non-Verbal Reasoning, S.Chand& Company Ltd., 2018. [T4] Raman, Meenakshi& Sharma, Sangeeta, Technical Communication Principles and Practice, Oxford University Press, 2011
E-resources and other digital material	1. <u>www. Indiabix.com 6. www.freshersworld.com</u>

20EI5354 – EPICS/Internship

Course Category:	Internship/Project	Credits:	1.5
Course Type:	Internship/Project	Lecture- Tutorial - Practice:	0 - 0- 3
Prerequisites:		Continuous Evaluation:	30
-		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	Upon successful completion of the course, the student will be able to:														
outcomes	CO1		Demonstrate a through and systematic understanding of societal problems and contemporary issues													
	CO2	Deve	evelop interest towards research oriented field through literature exploration													
	CO3	Exhi prob		ompet	ency	in su	ggest	ing o	ptimu	m so	lution	by c	letail	analy	sis of	f the
	CO4		emonstrate effective interpersonal, communication& presentation skills in lating engineering issues to broader societal context													
Contributio		РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PS	PS	PS
n of Course		1	2	3	4	5	6	7	8	9	10	11	12	01	O2	O3
Outcomes towards the achievemen	CO1						3	3								3
t of Program	CO2												2			2
Outcomes	CO3						2									2
(1– Low, 2– Medium, 3 – High)	CO4									2	2	2				2

20EI5607 – Digital System Design with FPGA

Course Category:	Skill Oriented Course 1	Credits:	2
Course Type:	Theory& Lab	Lecture- Tutorial - Practice:	0 - 0- 4
Prerequisites:		Continuous Evaluation:	30
-		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succ	essfu	ıl con	npleti	ion of	f the o	cours	e, the	e stud	lent v	vill b	e able	e to:		
outcomes	CO1	Con	struct	scala	r and	wide	comb	inator	ial cir	cuits	using	HDL	and H	FPGA		
	CO2		onstruct the sequential circuits using HDL and FPGA													
	CO3		alyze outputs and interpret the data for a given problem													
	CO4	Con	onduct experiments as an individual or team.													
	CO5	Prep	repare an effective report based on experiments													
Contributio		PO	PO PS PS PS													
n of Course		1	2	3	4	5	6	7	8	9	10	11	12	01	O2	03
Outcomes	CO1			3		2									3	3
towards the	COI			5											5	5
achievement																
of Program Outcomes	CO2			3		2									3	3
(1– Low, 2–	CO3				3										3	3
Medium, 3 – High)	CO4									3			2			
	CO5										3					
Course																
Content	List of	f Exp	erime	ents												
	1.	Mod	leling	Conc	epts-	Write	mod	els to	read	switcl	nes ar	nd pus	h but	tons,	and o	utput
		on L	EDs	and 7-	-segm	ent di	splay	S								
	2.	Nun	ıberin	ng Sys	tems	Create	e a 4-1	oit rip	ple ca	arry ac	lder u	sing c	lataflo	ow mo	odelin	g.
	3.	Mul	ti-Ou	tput C	Circuit	s-Des	ign a	nd im	pleme	ent a	popul	ar IC,	, 7413	38, fu	nctior	ality
		usin	g data	aflow	mode	ling a	nd the	e deco	der.							
	4.	Desi	ign an	1 8-to-	3 pric	ority e	ncode	er.								
	5.	Desi	ign a 2	2-bit c	compa	arator	that c	ompa	res tw	vo 2-b	it nun	nbers.				
	6.		-		-			-						roduc	t in b	inary
		-	our L		•		1		U			•				
	7.				ns, ar	nd Te	stbenc	h- D	evelo	o task	s for	mode	eling	a con	nbinat	orial
									-	-			-		elop a	
				est an					-			-		,	r	
	8.			Latch			-	-								
	9.		-			-	-		gister	with	synch	nrono	us res	et, sei	t, and	load

	signals. Assign Clk, D input, reset, set, load, and output Q. Verify the design in
	hardware.
	10. Modeling Counters
	11. Behavioral Modeling and Timing Constraints- Use various language constructs
	using behavioral modeling, Communicate timing expectations through timing constraints.
	12. Architectural Wizard and IP Catalog- Use the Architectural Wizard to configure
	clocking resource, Use the IP Catalog tool to configure and use counters and memories
	13. Counters, Timers, and Real-Time Clock- Generate several kinds of counters,
	timers, and real-time clocks.
	14. Finite State Machines- Model Mealy FSMs, Model Moore FSMs
	15. Sequential System Design using Algorithmic State Machine (ASM) Charts
Textbooks	Text Book:
and	[T1] M. Rafiquzzaman, Steven A. McNinch, "Digital Logic: With an
Reference	Introduction to Verilog and FPGA-Based Design", 1st Ed., Wiley, 2019.
books	[T2] Cem Unsalan, Bora Tar, "Digital System Design with FPGA:
	Implementation Using Verilog and VHDL", 1 st Ed., McGraw Hill Professional,
	2017.
	[T3] Frank Bruno, "FPGA Programming for Beginners: Bring your ideas to life
	by creating hardware designs and electronic circuits with SystemVerilog",
	Packt Publishing Ltd., 2021
E-resources	1.https://www.xilinx.com/
and other	2. <u>https://digilent.com/reference/learn/programmable-logic/tutorials/start</u>
digital	
material	

20MC5108A – Biology for Engineers

Course Category:	Mandatory Course	Credits:	0
Course Type:	Theory& Lab	Lecture- Tutorial - Practice:	2 - 0- 0
Prerequisites:		Continuous Evaluation:	100
-		Semester end Evaluation:	0
		Total Marks:	100

outcomes	~ ~ /				010010	10 10		ourse	, the	stude	ent Wi	II be	able	10:		
	CO1					-	al co rgani	-	ts fro	m an	engi	neeri	ng po	erspe	ctive	and
	CO2		emonstrate the fundamentals of biomolecules like structure, function ad regulation of biological processes													
	CO3	Und	nderstand the basic principles of Mendelian genetics, gene interactions nd transfer/inheritance of genetic factors/genes													
-	CO4	Exp	xplain the process of cellular respiration and photosynthesis, and ustrate important diversified microorganisms and their classification													
Contributi on of		PO 1	PO 2	РО 3	РО 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
Course Outcomes towards achieveme	CO1							3								
nt of Program	CO2							3								
Outcomes (L – Low, M -	CO3							3								
Medium, H – High	CO4							3								
Course Content	UNIT- Introdu differer Bird fl discove referrin Classift multice utilizati Ammon three m UNIT-	action nees b ight a ries-e g to th icatio llular on notelio ajor k	etwee and a xamp ne orij n: Cl (b)U -Auto c, uric	en scie ircraf les fi ginal assifie Jltrast troph	ence a t. Bic rom 1 observ cation ructur s, H e, urec	nd en blogic Brown vation of liv re- P leterou	ginee al ob nian n of Ro ving o rokary trophs	ring d servat motio obert organia yotes	lraw a tions n and Brown sms b or e thotro	of 18 of 18 1 the n and ased eukary ophs	pariso Bth C origi Julius on (a) yotes. (d)	n bety entury n of s May Cellu (c) Ami	ween of that therr or. llarity Energ nonia	eye ar lead nodyr - Uni gy ar exc	nd car to m namica cellul nd ca cretion	nera, najor s by ar or rbon n –

	Biomolecules and Enzymes Biomolecules: Structures of sugars (Glucose and Fructose), Starch and cellulose. Nucleotides and DNA/RNA. Amino acids and lipids. Proteins- Structure and functions- as enzymes, transporters, receptors and structural elements.
	Enzymes: Enzyme classification. Mechanism of enzyme action, Enzyme kinetics and kinetic parameters.
	 UNIT- III Genetics and Gene information Transfer Genetics: Mendel's laws of inheritance, Concept of segregation and independent assortment. Concept of allele, Recessiveness and dominance. Gene Interaction-Epistasis. Cell cycle and cell division -Meiosis and Mitosis. Transfer of genetic material from parent to offspring during cell division.
	Information Transfer: DNA as a genetic material. Hierarchy of DNA structure - from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Define gene in terms of complementation and recombination
	 UNIT- IV Metabolism and Microbiology Metabolism: Exothermic and endothermic reactions versus end ergonic and exergonic reactions. Respiration- Breakdown of glucose toCO2 + H2O (Glycolysis and Krebs cycle) Photosynthesis- Synthesis of glucose from CO2 and H2O. Energy yielding and energy consuming reactions.
	Microbiology: Concept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Growth kinetics. Ecological aspects of single celled organisms. Microscopy
Text books and Reference books	 Text Books: [T1]Campbell, N. A.; Reece, J. B.; Urry, Lisa; Cain, M,L.; Wasserman, S. A.; Minorsky, P. V.; Jackson, R. B, "Biology: A Global Approach", Pearson Education Ltd [T2] Conn, E.E; Stumpf, P.K; Bruening, G; Doi, R.H., "Outlines of Biochemistry", John Wileyand Sons [T3] Nelson, D. L and Cox, M. M.W.H. Freeman, "Principles of Biochemistry", 5th Ed. [T4] Stent, G. S.; and Calender, R.W.H. Freeman and company, "Molecular Genetics", 2nd Ed., CBS Publisher [T5] Prescott, L.M J.P. Harley and C.A. Klein, "Microbiology", 2nd Ed., Wm, C.Brown Publishers, 1995
E- resources and other digital material	

Third Year (VI Semester)

20EI6301 – Microcontrollers and Embedded Systems

Course Category:	Program Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
-		Semester end Evaluation:	70
		Total Marks:	100

CO1 Describe the architectural features and instructions of 32-bit microcontroller ARM Cortex M4. CO2 Apply the knowledge gained for Programming ARM Cortex M4 for different applications CO2 Apply the knowledge gained for Programming ARM Cortex M4 for different applications CO3 Apply the real time operating systems concepts in designing applications on ARM Cortex M4 CO4 Interface the various input and output peripherals with ARM Cortex M4 CO4 Interface the various input and output peripherals with ARM Cortex M4 CO4 PO PO

Overview of exceptions and interrupts, Overview of interrupt management, Exception

	sequence overview, NVIC registers for interrupt control, SCB registers for exception and interrupt control, special registers for exception or interrupt masking. Overview of OS support features, Shadowed stack pointer, SVC exception, Context switching in action, Introduction to embedded OSs, Keil RTX Real-Time Kernel, CMSIS- OS examples, Troubleshooting.
	UNIT – IV Hardware Interfacing: GPIO Programming, Interfacing with LEDs, Interfacing of LCD and keyboard, ADC& DAC interfacing, Timer programming, UART programming, Relay, Optoisolator and stepper motor interfacing, PWM and DC motor control
Textbooks and Reference books	 Text Book: [T1] Joseph Yiu, "The Definitive Guide to Arm® Cortex®-M3 and Cortex®-M4 Processors", 3rd Ed., Newnes, Elsevier, 2014. [T2] Muhammad Ali Mazidi, Shujen Chen, Eshragh Ghaemi, "STM32 Arm Programming for Embedded Systems", 1st Ed., MicroDigitalEd, 2018. Reference Books: [R1] Joseph Yiu, "System-on-Chip Design with Cortex-M Processors", ARM Education Media, 2020
E-resources and other digital material	1.https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog 2. https://www.st.com/en/embedded-software/development-tool-software.html 3.Embedded System Design with ARM, IIT kharagpur https://nptel.ac.in/courses/106105193

20EI6302 – Digital Signal Processing

Course Category:	Program Core	Credits:	2
Course Type:	Theory	Lecture- Tutorial - Practice:	2 - 1 - 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succ	essfu	l con	npleti	ion o	f the	cours	e, the	e stuc	lent v	vill be	e able	e to:		
outcomes	CO1	CO1 Analyze the discrete signals and systems using Z- transform														
	CO2	Con	Compute the Discrete Fourier Transform using Fast Fourier Transform Algorithms													
	CO3	Desi	esign digital infinite impulse response filters (Butterworth and Chebyshev) sing bilinear transformation and impulse invariance transformation methods													
	CO4	Desi	ign th	e digi	tal fin	ite in	pulse	respo	onse fi	ilters	using	windo	owing	techr	niques	
Contributio n of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
Outcomes towards the achievement	CO1		3												3	2
of Program Outcomes	CO2		3			2									3	2
(1-Low, 2-	CO3			3		2									3	2
Medium, 3 – High)	CO4			3		2									3	2
Course Content	UNIT Classi Sampl Z-Tran The or UNIT Fourie (DFT) (FFT) Invers UNIT Analog from a Examp structu	fication ing of insform ne side r Rep r Rep , Pro - Ra e FFT C – II g filte inalogiples,	f analo n: Tho ed Z-1 poresen pertie dix-2 T r app g filter Basic	og sig e Z-tr transf ttation s of Deci roxim rs - In Stru	ansfor orm, S orm, S of F DFT, imation nation npulse ctures	Samp rm, Pr Soluti inite 1 Line on in s- Bu e inva s for	ling the copert con of Duration ar conduction time there we conclude the second	neoren ies of linear ion Se nvolu and orth a	n. Z-tra const equen tion Decin	nsforn tant-c ces - using natior hebys ilinea	m, Invoeffic The I DFT i in f hev, I r tran	version ient d Discre , Fast reques Design	n of th ifferent Four ncy F n of Il ation	ne Z-7 nce ec urier rier T FFT a IR dig metho	Fransf quatio Transf Transf Igorit gital fi	form form prms hms,

	UNIT – IV Design of linear phase FIR filters using Windows, Design of Linear phase FIR filters by the Frequency Sampling method, Comparison of FIR and IIR filters, Basic structures for FIR systems: Direct-Form structures and Cascade-Form structures
Textbooks and	Text Book:
Reference	[T1] V.Oppenheim and R.W.Schafer, "Digital Signal Processing" 2 nd Ed., Pearson, 2004.
books	[T2] J. G. Proakis and D. G. Manolakis, "Digital Signal Processing: Principles, Algorithms, and Applications", 4 th Ed., Pearson, 2007 Reference Books:
	[R1] Sanjit K Mitra, "Digital Signal Processing A Computer Based Approach", 1 st Ed., Tata McGraw Hill, 1998.
	[R2] Jhony R Jhonson, "Introduction to Digital Signal Processing", 1 st Ed., Prentice Hall, 1989.
	[R3] P Ramesh Babu, "Digital Image Processing", 6th Ed., Scitech, 2010
E-resources and other	1. <u>http://ocw.mit.edu/resources/res-6-008-digital-signal-processing-spring-2011.</u> 2.nptel.ac.in/digital signal processing/
digital material	

20EI6303 – Industrial Automation

Course Category:	Program Core	Credits:	3
Course Type:	Theory	Lecture- Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
-		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	on successful completion of the course, the student will be able to:														
outcomes	CO1												ed in	indus	tries	
	CO2		pply the concepts of PLC and DCS in automation esign ladder logic and function block diagrams for simple applications													
	CO3															
	CO4		lustrate the applications of automation technologies in various adustries													
Contributio n of Course		PO 1	PO 2	РО 3	РО 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
Outcomes towards the achievement	CO1		3													2
of Program Outcomes	CO2	2														1
(1– Low, 2– Medium, 3 –	CO3			2												1
High)	CO4	3														
Content	UNIT Overv Princij Discre Field I UNIT Progr langua counte instruc UNIT Distri Genera Local Contro	riew ples o te I/O I/O de – II amm ages, ers, ctions – III buted alized Cont	f oper) mod evices ing o Rela; Progr I Co I distr rol U	ration ules, f PLO y typ am ntrol ribute nit (L	, PLC Analo C: Ba be ins contro Syst d cor .CU),	ems function	of PLC on, 1 struct (DCS system tion b	The properties of the second s	r, PLC Progra gramm h ins Data voluti nitectu	C size mmin ning structi a ma ion, l ure, F	and a g dev - Prog ons, inipul Result	pplica ice, F gram Progr ation ting	ations, SCAN ammi instr system compo	, PLC mental J, Pro ng ti ruction n arc	hardy ls of l grammers ns, 1 hitect	vare, ogic, ning and Math ures, DCS.

	Applications of DCS: Application of DCS in thermal power plants, Iron and steel making process, Bio-technology plant control, Cement plants, Pulp and paper process
	control, Onshore oil and gas field automation, Offshore oil and gas field automation.
	control, Offshore of and gas field automation, Offshore of and gas field automation.
Textbooks	Text Book:
and	[T1] Frank D.Petruzella, "Programmable Logic Controllers", 2 nd Ed, Glencoe
Reference	McGraw Hill
books	[T2] Michael P. Lucas, "Distributed Control Systems-Their Evaluation and
	Design", Van Nostrand Reinhold Company Inc.1986.
	[T3] DobrivojePopovic and Vijay P.Bhatkar, "Distributed Computer Control",
	CRC Taylor &Fransis group.1990
	Reference Books:
	[R1]B R Mehtha, Y J Reddy, "Industrial Process Automation Systems",
	ButterworthHeinmann imprint of Elsevier, 2015
E-resources	1. <u>http://ee.sharif.edu/~industrialcontrol/LADDER_LOGIC_Tutorial.pdf</u>
and other	2.https://www.elprocus.com/distributed-control-system-features-and-elements/
digital	2. https://www.eliprovus.com/ubil/outed/condition/system/routares/and/otements/
material	

20EI6404/A – Biomedical Instrumentation

Course Category:	Program Elective II	Credits:	3
Course Type:	Theory	Lecture- Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon successful completion of the course, the student will be able to:															
outcomes	CO1	CO1 Infer the physical foundations of biological systems and bioelectric potentials in medical field.														
	CO2	Flucidate the methods to monitor different bioelectric potentials in the														
	CO3	Illustrate the concepts of medical assisting and therapeutic equipment for intensive and critical care and equipment for certain diagnosis.														
	CO4	Outline medical imaging techniques and Biotelemetry systems.														
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
Outcomes towards the achievement	CO1	3														
of Program Outcomes	CO2		3												2	
(1– Low, 2– Medium, 3 – High)	CO3	3													2	
Hign)	CO4	3													2	
Course Content	nerve Musc Bioel poten UNIT Bioel Elect typic Cardi UNIT Assis	duct instr iolog m, R to cular ectri itials F- II al wa ac or F- II ting	ical espir musc syste ic Po , Biod ic Fo s, EC ivefo utput. I an	nt sys Syst atory ele fu m. otenti electr Ooten G, El rms, d 1	tem, ems syst inctio als: ic po tials EG, H Meas	Prob of tl em, 1 on, T Restitentia Ac EMG surem	lems he B Nervo Transi ing a dis, E cquis Lead ient o ient o	enco ody: ous synission nd a voke ition system of Blo	unter Bas ystem on of ction d pot an ems a bod p	ed in ic fe i- Elo f imj pote entia and ro ressu	meas eature ectro pulse ential ls. Meas ecord ure, B	suring s of phys from s, Pr suren ing n clood emak	g a liv the iolog n ner opaga opaga nent: netho flow	Card y of rve t ation Bi ds, A , Hea	system iovas nerve o mu of a iopote analy art so	m. ccular e and iscle, cction ential sis of

	machine, Dialyzers, Diathermy, Audiometers, Endoscope.
	Instruments in Clinical Laboratory: Blood gas analysers: Blood pH, pCO_2 and pO_2 measurement, Complete Blood gas analyser, Blood cell counters.
	UNIT- IV Imaging Modalities in Bio-Medical Field: X-ray machine, Applications of X-Rays in medicine, CT scan, MRI scan, SPECT, PET, Ultrasonography.
	Biotelemetry: Introduction, Components of a Biotelemetry system, Applications of telemetry in patient care.
Textbooks	Text Books:
and Reference books	 [T1] Leslie Cromwell, Fred. J, Weibell and Erich A. Pleiffer, "Biomedical Instrumentation and Measurements", 2nd Ed., Prentice Hall of India, 2004. [T2] R.S.Kandpur. "Handbook of Biomedical Instrumentation", 3rd Ed., McGraw Hill Education Pvt. Ltd., 2014.
	Reference Books:
	[R1] Dr M. Arumugam, "Biomedical Instrumentation", 2 nd Ed., Anuradha publications, 2009.
	[R2] John. G. Webster, "Medical Instrumentation Application and Design", 3 rd Ed., John Wiley & Sons, 2014.
E-resources	[E1] https://www.visiblebody.com/learn/muscular/muscle-types
and other	[E2] https://nptel.ac.in/courses/108/105/108105101/
digital material	[E3] https://nptel.ac.in/courses/108/105/108105091/ [E4] http://www.sprawls.org/ppmi2/

20EI6404/B – Industrial Communication Networks

Course Category:	Program Elective 2	Credits:	3
Process Course Type:	Theory	Lecture- Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation: Total Marks:	70 100

Course	Upon	SUCC	essfu	l con	onlet	ion of	the	POUR	e the	e stuć	lent u	vill b	a able	a to:		
outcomes	-				-									. 10.		
	CO1 CO2															
	CO2 CO3	1														
	CO4															
Contributio	001	Select appropriate communication protocols for process automation.POPOPOPOPOPOPOPOPSPSPOPOPOPOPOPOPOPOPOPSPS														
n of Course		1 2 3 4 5 6 7 8 9 10 11 12 01 02 03														
Outcomes																
towards the	CO1															
achievement																2
of Program	CO2	2														2
Outcomes	002	_														
	CO3		2													2
(1–Low, 2–	COS		2													
Medium, 3 –	004		3													3
High)	CO4															
Course																
Content	UNIT	- I														
	Introd										Data					
	comm														· ·	
	impair													, 110		,51011
	Introdu								-		z com	nona	nta (laccif	Ficatio	n of
	networ								•	twon		ipone	ints, C	145511	Icatio	11 01
	netwo	iks, C	51 110	ouer,	ICF/I	r leit	rence	moue	51							
	UNIT	- II	[
	Netwo	orks	in P	roces	s Au	toma	tion	and	Field	buses	: Inti	oduct	tion.	Comr	nunica	ation
	hierard												,			
	Compa	-		-									-			
	view v						•	ciii vv	iiii u	1 1010		y sten		Jundo	u net	WOIK
	VIC VV V	v 1011 1		, 110	auous	Jene	11.5.									
	Highw	vay A	ddre	ssable	e Ren	note T	rans	ducer	· (HA	RT):	Intro	ductio	on to l	HART	[prot	ocol,
	HART	enc	oding	and	wave	eform.	HA	RT ad	ddress	sing,	Com	nunic	ation	mode	es, H	ART
	networ									U,					÷	
		,					5									
	UNIT	$\Gamma - II$	Ι													

	 Foundation Field Bus: Introduction, Definition and features, Architecture, H1 benefits, HSE benefits, OSI reference model of foundation fieldbus, Physical Layer, Data link Layer, Application Layer, User application blocks, Device information, Redundancy UNIT – IV PROFIBUS: Introduction, Transmission technology, Communication protocols, Device classes, PROFIBUS in Automation, PROFIBUS-DP Characteristics, Version DP-V0, Version DP-V1 and Version DP-V2, Communication profile of PROFIBUS-DP, PROFIBUS-PA characteristics, Redundancy, PROFISafe, PROFIdrive, PROFInet
Textbooks and Reference books	 Text Book: [T1] S. Sunit Kumar, "Fieldbus and Networking in Process Automation", 1st Ed., CRC Press, Taylor and Francis Group, 2014. [T2] S.Mackay, E.Wrijut, D.Reynders and J.Park, "Practical Industrial Data Networks: Design, Installation and Troubleshooting", 1st Ed., Newnes Publication, Elsevier, 2004 Reference Books: [R1] S. Mackay, J. Park and E. Wright, "Practical Data Communication for Instrumentation and Control", Newnes Elsevier, 2002. [R2] R. Bowden, "HART application Guide", HART Communication Foundation, 1999
E-resources and other digital material	1.https://www.youtube.com/watch?v=DgAwOJMN2N0 2.http://nptel.iitg.ernet.in/Elec_Engg/IIT 3.http://www.nptel.ac.in/courses/106105081

20EI6404/C – Process Modeling and Simulation

Course Category:	Program Elective 2	Credits:	3
Course Type:	Theory	Lecture- Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
_		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	Upon successful completion of the course, the student will be able to:														
outcomes	CO1	techniques.														
	CO2		evelop mathematical models and controllers for various chemical processes sing suitable approaches.													
	CO3		nalyze the dynamic characteristics of various processes with different control oproaches.													
	CO4	Use	Use modern software tools for controller design and analysis.													
Contributio n of Course		РО 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
Outcomes towards the achievement	CO1															
of Program Outcomes	CO2	3														3
(1– Low, 2– Modium 3	CO3		2													2
Medium, 3 – High)	CO4					2										2
Course Content	UNIT Introd model behavi of dyn linear UNIT PID Closed Direct of the UNIT Intern contro	luctic ing ec iour, l amic state T - II Contr l-loop syntl desire T - II nal N	quatio Reaso mode space coller o oscil hesis ed res I fodel	ns, C ns for els, Li mode Tun llatior for m ponse Con	lassifi mode nearia els, Er ing a n-base inimu , Anti trol:	catior eling, zation npiric and l ad tuni um-ph reset	n of m Mate of no al mo Enhan ing, T ase an windu ductio	athem rial ba online dels nceme funing nd no up, Au	natica alance ar mo ents: rules nmini itotun mode	l mod es, Ma odels, Intro s for f imum ing te el-bas	els, P tterial Dyna ductio irst-or phase chniq ed co	on, P rocess and e mic b on, P rder + e proc ues	s mod nergy ehavi ID co dead cesses	els and balar our, S ontroll time , Refo	d dyna aces, F stabili ler fo proce ormula	amic Form ty of orms, sses, ation

	 uncertainty and disturbances, The Internal Model Control (IMC) structure, The IMC design procedure, Effect of model uncertainty and disturbances, Improved disturbance rejection design. UNIT – IV Model Predictive Control: Block diagram of Model Predictive Control (MPC), Basic concept of MPC, Least squares and absolute values objective functions, Finite step response and finite impulse response models, Steps involved in implementing Dynamic Matrix Control (DMC), Derivation of DMC, Effect of tuning parameters
Textbooks and Reference books	 Text Book: [T1]B.Wayne Bequette, Process Control - Modeling, Design and Simulation, Prentice Hall International Series in the Physical and Chemical Engineering Sciences, 1st Ed., 2003. [T2] Amiya K.Jana, Chemical Process Modeling and Computer Simulation, PHI, 2nd Ed., 2011. Reference Books: [R1] B. Wayne Bequette, Process Dynamics - Modeling, Analysis, and Simulation, Prentice Hall International Series in the Physical and Chemical Engineering Sciences, 1st Ed., 1998.
E-resources and other digital material	 <u>https://nptel.ac.in/courses/103103037/module4/lec7/3.html</u> <u>https://nptel.ac.in/courses/103101003/26</u> <u>https://nptel.ac.in/courses/103103037/24</u>

20EI6404/D – Power Plant Instrumentation

Course Category:	Program Elective 2	Credits:	3
Course Type:	Theory	Lecture- Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
-		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	Jpon successful completion of the course, the student will be able to:														
outcomes	CO1	Und	erstar	nd the	opera	ation a	and sa	fety n	neasu	res in	therm	al po	wer pl	lants		
	CO2	Select suitable measuring techniques for pollution, impurity and turbine parameters														
	CO3	in p	elect suitable control techniques for water, air fuel circuits and turbines n power plant analyze boiler efficiency in thermal power plants													
	CO4	Ana	lyze	boile	r effi	cienc	y in	thern	nal po	ower	plant	s		-	_	
Contributio n of Course		РО 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
Outcomes towards the achievement	CO1	3												1		
of Program Outcomes	CO2	3												2		
(1– Low, 2– Medium, 3 –	CO3		2													1
High)	CO4		1											1		
Course Content	UNIT Overv Compa power of typi Instru circula impuri UNIT Instru air, Fl draft c of cart detecto	iew arisor plant cal th ment tion, ties, 1 – II ment ue ga ontro	n of v c, Obj cermal cation Con Measu Measu ses, V l, An ioxide	variou ective l powe trols ureme and Vaste alytica e in flu	s con es of i er pla Con in w nt of Cont gases al me ue gas	trol in asurer s, Con	onal p nenta iping a in W circui ities Air-l trols nent - nbusti	oower tion a and in ater t, Im Fuel (in air Oxy, bles a	plan nd co istrum Circu puritio fuel gen m inalyz	ts, Cl ntrol nentati nit: W es in it: Ain circui neasur neasur ner, In	assific in the ion di Vater wate t fuel t - Co remen frared	cation ermal agram circui er and circui ombus t in fl	t of in power it, Bo d stea t - Fue stion c ue ga gas ar	els, C contro s, Me nalyze	nents its, La Geed V Effect ombu ol, Fui casure ers, Si	in a ayout water as of stion ment moke

	instruments.
	UNIT – III Power Plant Management: Introduction, Master control, Combustion Process - Stoichiometric air requirement, Excess air requirement, Products of combustion, Boiler efficiency - Calculation of boiler efficiency, Types of maintenance, Maintenance costs, Life cycle costs, Maintenance procedures, Intrinsic safety of instruments, Electrical safety, Explosion hazards, Interlocks for boiler control, Application of DCS in power plants
	UNIT – IV Turbine Monitoring and Control: Introduction, Classification, Principle parts of steam turbines, Turbine steam inlet system, Turbine measurements - Process parameters, Mechanical parameters, Electrical parameters, Turbine control system - Safety control systems, Lubrication for turbo alternator - Lubrication system, Controls in lubrication system, Turbo Alternator cooling system - Lube oil cooling system, Condensate cooling system, Alternator/Generator cooling system
Textbooks and Reference books	 Text Book: [T1] K. Krishnaswamy& M. PonniBala, "Power Plant Instrumentation" PHI Learning Private Limited, 1st Ed., Delhi-110092 Reference Books: [R1] P.K. Nag, 'Power Plant Engineering', Tata McGraw Hill, 2001 [R2] S.M. Elonka and A.L. Kohal, 'Standard Boiler Operations', Tata McGraw Hill, New Delhi,1994 [R3] Sam G. Dukelow, 'The Control of Boilers', Instrument Society of America, 1991
E-resources and other digital material	 <u>http://www.instrumentationguide.com/article/boilerlevelcontrol.htm</u> <u>https://www.wisegeek.com/what-is-hydroelectric-power.htm</u> <u>https://www.brighthub.com/environment/renewable-energy/articles/7728.aspx</u>

20EI6205/A – Artificial Intelligence and Machine Learning in Healthcare

Course Category:	Open /Job Oriented Elective 2	Credits:	3
Course Type:	Theory	Lecture- Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
-		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	Jpon successful completion of the course, the student will be able to:														
outcomes	CO1	Und	erstar	d the	conce	epts o	f AI iı	n dise	ase m	anage	ement					
	CO2					1				0		betes	mellit	us		
	CO3		lect a machine learning algorithm for cancer diagnosis													
	CO4		cribe AI techniques used in detection of COVID 19													
Contributio		РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PS	PS	PS
n of Course		1	2	3	4	5	6	7	8	9	10	11	12	01	O2	O3
Outcomes	CO1	2														
towards the	CO1	2														
achievement																
of Program	CO2			3												
Outcomes																
(1– Low, 2– Medium, 3 –	CO3		3													
High)	CO4		2													
Course Content	UNIT Applie diagno Public machin AI M model UNIT Trans Metho Auton Introdu for dev	cation $osis, A$ c Dat c Dat ne lea $codels$	AI in i a Re arning on port v Learr gy: Ste n, Rol ment o	dentif posite repos Disea ector ning eps to agnos e of 1	icatio ories: sitory se D mach in H retrai is of machi	n of b List c ata: ine m Health n a pr f Di a ne lea	ioman of pub Logist odel n Ca retrain abetes arning	re: l re: l re: l ed mo	f dise ata re gressi Introd odel u ellitus	ase posito on m uction sing t s Ba s mel	ories - nodel, n, Tr ransfe sed litus 1	– Kag Artif ansfer er lear on I manag	ggle , ficial r Lea ning Vlach	Arch neura arning	iives, 1 netv 5 Mo Learn	UCI work dels, iing:

	Application of Machine Learning Algorithms in Cancer Diagnosis: Introduction, Analysis in medical diagnostics, Machine Learning and Cancer Prediction: Types of cancer, Machine learning techniques for cancer prediction, Dataset for cancer study, Flow chart for cancer prediction using ML, Tool selection for cancer prediction, Methodology, Selection of ML algorithm, Metrics for performance measurement. Future possibilities and challenges in cancer prognosis.
	UNIT – IV Machine Learning Approaches in Detection and Diagnosis of COVID-19: Introduction, Methods Used in Predicting COVID-19: Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM) and its variant, Deep LSTM/Stacked LST, Bidirectional LSTM (Bi-LSTM), Deep learning model framework, ResNet model, Inception and Xception models, The data imbalance challenge, Performance measurement metrics
Textbooks and Reference books	 Text Book: [T1] Ankur Saxena, Shivani Chandra, "Artificial Intelligence and Machine Learning in Healthcare", 1st Ed., Springer Singapore, 2021 [T2] Tom M. Mitchel "Machine Learning", 1st Ed., McGraw-Hill International Editions Computer Science Series, 2017 Reference Books: [R1] Stuart Russell and Peter Norvig, "Artificial Intelligence: A Modern Approach", 4th Ed., Pearson Series in Artifical Intelligence, 2020 [R2] Ian Goodfellow, Yoshua Bengio, and Aaron Courville, "Deep Learning", MIT Press, 2016
E-resources and other digital material	1. <u>https://nptel.ac.in/courses/106105078</u> 2. <u>https://onlinecourses.nptel.ac.in/noc22_cs83/preview</u> 3. <u>https://www.foreseemed.com/artificial-intelligence-in-healthcare</u> 4. <u>https://www.classcentral.com/course/artificial-intelligence-for-healthcare-opportunit-13302</u>

20EI6205/B – SAFETY INSTRUMENTATION SYSTEMS

Course Category:	Open Elective II	Credits:	3
Course Type:	Theory	Lecture- Tutorial - Practice:	3 - 0- 0
Prerequisites:	Instrumentation	Continuous Evaluation:	30
	Engineering	Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	Upon successful completion of the course, the student will be able to:														
outcomes	CO1	Und	erstar	nd the	conc	epts o	f desi	gn life	e cycl	e of s	afety	Instru	menta	tion s	system	1.
	CO2	Diff	Pifferentiate the process control versus safety control.													
	CO3	App														
	CO4	Ana	nalyze different methods of safety integrity level.													
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
Outcomes towards the achievement	CO1	3													2	
of Program Outcomes	CO2		2												2	
(1– Low, 2– Medium, 3 – High)	CO3		2												2	
ingn)	CO4		3												3	
Course Content	Maint UNIT Defind Safety Contin 61508 System UNIT Desig Shutd System Divers	ngs of ions t ngine enance -II F ed; P Con nuous , ISA natic/ - III n, Pr own/I ns, sificat	the H o Pro erring ce, Mo PROC rocess trol - Mod SP8- (Funct PRO cocess Interlo Scrub tion.	HSE; tectiv , Ins odifica ESS Con Passi e; Sej 4, AP tional TEC Con ock S bers	Desig e Lay stallat ations trol - ve/Do parati I RP Failu TION trol Syster & INT	n Life rers, I ion, , Deco VTRO Activormanion of 14C, res - I V LAY System ns, P Flares	e Cyc Develo Com ommi DL V ve/Dy t, The Contr API R Huma YERS m, A hysic t, Fin	le - H op Saf missic ssioni S. SA namic Neec ol and P 55 ² n Issu : Intr larm al Pr e & LEVI	azard fety R oning, ing. FET c, The l for I d Safe 4, NF es. oduct Syste otecti Ga EL (S	X R Requir , and Y C e Nee Restri ety Sy PA 8: ion; I ems- on; I s Sy SIL):	isk Ar remen d Va ONTI d for cting /stems 5, IEE Prever Hum Mitiga /stems	nalysi ts Spe alidati ROL: Maki Chang s - HS EE 802 ntion an R ation s, Ev uating	s, All ecification, Con ing Fri ges, D SE, Al 3; Con Layer eliabi Laye vacuat	ocatio ition, Opera ntrol requer Deman IChE mmon IChE mmon s - Pr lity, rs- C ion	on of S SIS I ations and S at Cha d Mo CCPS a Caus Process Proce Contain Proce	Safety Design and Safety anges; de vs. S, IEC se and Plant dures, nment dures; Risk,
	Fatali											-	-			-

	Tolerable Levels of Risk, Tolerable Risk in the Process Industries; Safety Integrity Levels; Method1: As Low As Reasonably Practical (ALARP); Method2: Risk Matrix- Evaluating the Frequency, Evaluating the Severity, Evaluating the Overall Risk, Evaluating the Effectiveness of Additional Layers; Method3: Risk Graph; Method4: Layers of Protection Analysis (LOPA)- Tolerable Risk, Initiating Event Frequencies, Performance of Each Safety Layer, Example Using LOPA.
Textbooks and Reference books	 Text Book: [T1] Safety Instrumented Systems - Design, Analysis, and Justification (2nd Edition). Reference Books: [R1] Overview of Safety Instrumented Systems–Book boon-Ventus Publishing by IDC Technologies, (2012). [R2] Plant Hazard Analysis and Safety Instrumentation Systems by Swapan Basu.
E-resources and other digital material	 Free Safety Instrumented System Training Course (instrumentationtools.com) Safety Instrumented System Overview - Process Safety Control System - YouTube

20EI6205/C – CLAD Certification

Course Category:	Open /Job Oriented Elective 2	Credits:	3
Course Type:	Theory	Lecture- Tutorial - Practice:	3 - 0- 0
Prerequisites:	Computer Networks	Continuous Evaluation:	30
-	_	Semester end Evaluation:	70
		Total Marks:	100

20EI6351 – Microcontrollers and Embedded Systems Lab

Course Category:	Program Core Lab 1	Credits:	1.5
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0- 3
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon			•				-								
outcomes	CO1	Use the instruction sets of ARMCortex-M microcontrollers to solve engineering problems.														
	CO2		lyze the output of various interfacing peripherals with ARM Cortex-M rocontrollers.													
	CO3	Con	duct 1	the ex	perii	ments	s as ir	ndivio	dual o	or tea	m by	usin	g mo	dern	tools	
	CO4	Make	e an e	ffectiv	ve rep	ort ba	sed or	n expe	erime	nts.						
Contribution		PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
of Course		1	2	3	4	5	6	7	8	9	10	11	12	01	O2	O3
Outcomes towards the	CO1	3													3	
achievement of Program Outcomes	CO2		3												3	
(1– Low, 2– Medium, 3 –	CO3					3				2			1		3	
High)	CO4															
Course Content	2. 3. 4. 5. 6. 7. 8. 9. 10 11 12	iment Progr Interf Interf Interf Interf Interf Seria Interf . Progr . Interf	s to b ramm facing facing facing facing facing facing facing facing facing facing	e don ing wi of Se of L of St of A of A of A of A of A of A of A of A	ith GI even S CD epper DC AC eyboa muni C Mo on tim ptoiso TC	PIO Segme Moto rd cation tor er pro lator	nt Dis or ogrami	splay		eed to	be co	mplet	ed by	the st	rudent	
Textbooks and Reference books	[T1] N forEm	ote: Any 10 of the experiments in the above list need to be completed by the student ext Book: ¹] Muhammad Ali Mazidi, Shujen Chen, Eshragh Ghaemi, "STM32 Arm Programming rEmbedded Systems", 1 st Ed., MicroDigitalEd. ²] Joseph Yiu, —The Definitive Guide to Arm® Cortex®-M3 and Cortex®-M4														

	Processors, 3 rd Ed., Newnes, (Elsevier), 2014.
E-resources	1] https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog
and other	[2] https://www.st.com/en/embedded-software/development-tool-software.html
digital	[3] Embedded System Design with ARM, IIT Kharagpur
material	https://nptel.ac.in/courses/106105193

20EI6352 – Industrial Automation Lab

Course Category:	Program Core Lab 2	Credits:	1.5
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0- 3
Prerequisites:		Continuous Evaluation:	30
-		Semester end Evaluation:	70
		Total Marks:	100

г

Course outcomes	Upon	succ	essfu	l con	npleti	ion of	the o	cours	e, the	e stude	ent w	ill be	able	to:		
outcomes	CO1									and f	functi	on b	lock	prog	ramn	ning
			ethods to control industrial process. plement simple programs for the automation of various industrial pocesses.													
	CO2	-												unun		
	CO3		onduct experiments as individual or team on various industrial													
	CO4	1	processes Write an effective report based on experiments.													
Contributio	04	PO														
n of Course		1	2	3	4	5	6	7	8	9	10	11	12	01	02	O3
Outcomes towards the achievement	CO1	3														3
of Program Outcomes	CO2	3														3
(1– Low, 2– Medium, 3 –	CO3		3 2 1													
High)	CO4										2					
Course Content	2. 3. 4. 5. 6. 7. 8. 9. 10 11 12 13	Imp Imp ON PID PIC Aut Elev Bate . Aut . Aut . Aut	leme leme -OFF -OFF cont Con omat vator ch pro omat omat omat dy of	ntatio ntatio Con Con rol o trol o ion o contro ocess ion o ic dri ic pno distr	on of on of trol c trol c f Ten f Mo f mat rol us reac f bott lling euma ibute	ing F tor co tle fil syste tic st d con	ers an vel us ssure ture to beed b hand PLC ontrol ling S em us ampi trol s	d Co ing F using using ling s lusin System ing P ng m ystem	PLC g PLC PLC syster g PL g PL m usi LC achin n -Ho	C n usin	.C ng PL rell D	C CS C				

	15.Level control of single tank liquid system using DCS 16.Level control of multi tank liquid system using DCS
	17. Implementation of cascade control in liquid system using DCS
Textbooks	
and	
Reference	
books	
E-resources	
and other	
digital	
material	

20EI6353 – Advanced Instrumentation Lab-II

Course	Pro	ograr	n Cor	e La	b 3								Credi	its:	1.5		
Category:																	
Course Type:	La	b						Le	cture	e - Tı	ıtoria	al - P	racti	ce:	0 - 0	- 3	
Prerequisites:													luati		30		
									Sem	lester			luati		70		
											ſ	'otal	Mar	ks:	100		
Course	Upon	succ	essfu	l con	npleti	ion of	the	cours	e, the	e stud	lent v	vill b	e able	e to:			
outcomes		App	pply the knowledge of LabVIEW programming to develop VI for embedded														
	CO1		sor int		-			1	0			1					
		Apr	ly the	knov	vledge	e of L	abVII	EW pr	ogran	nming	g to de	evelor	vI fo	or Ve	rnier		
	CO2		nedica		•			-	U	-		1					
	CO3		lyze c				0				ı prob	lem					
	CO4		-			-				-	-						
	CO5		onduct experiments as individual or team. repare an effective report based on experiments.														
Contributio	000	PO	PO	PO	РО	PO	PO	РО	PO	РО	РО	РО	РО	PS	PS	PS	
n of Course		1	2	3	4	5	6	7	8	9	10	11	12	01	02	03	
Outcomes	~~ 1			_											3	3	
towards the	CO1			3													
achievement															3	3	
of Program Outcomes	CO2			3											0	C	
Outcomes																	
(1– Low, 2–	CO3				3										3	3	
Medium, 3 –																	
High)	CO4									3			2				
	CO5										3						
Course		L	I	I	I	I		I	I	I	I	I	I		I	l	
Content	List o	of Ex	perin	nents	5												
	1.	Dev	elop	a VI	to in	terfac	e DO	C mot	or wi	ith m	yRIC)					
	2.	Dev	velop	a VI	to in	terfac	e ph	oto in	terru	pter v	with	myRl	O				
	3.	Dev	velop	a VI	to in	terfac	e Ha	ll-eff	ect se	ensor	with	myR	RIO				
			/elop									•					
	5.		velop								•		myR	OIS			
	6.		/elop					-	-				•				
			/elop							-		RIO					
			/elop								•						
			velop				-		-		•						
			velop									RIO					
			/elop								-		cardi	ograi	n (E	CG)	
			P	1										- 0- m		/	

	signal.
	12. Develop a VI to study the muscle activity and fatigue using hand
	dynamometer.
Textbooks	Text Book:
and	[T1] Jovitha Jerome, "Virtual Instrumentation using LabVIEW", Prentice Hall
Reference	India, 1 st Ed., 2010
books	
E-resources	1. <u>www.ni.com</u>
and other	
digital	
material	

20TP6106 – Quantitative Aptitude

Course Category:	Soft Skills-4	Credits:	1
Course Type:	Theory	Lecture- Tutorial - Practice:	0 - 0- 2
Prerequisites:		Continuous Evaluation:	30
_		Semester end Evaluation:	70
		Total Marks:	100

Course	opon successful completion of the course, the student will be												e able to:			
outcomes	CO1	Follow strategies in minimizing time consumption in problem solving Apply														
	CO2	shortcut methods to solve problems												pply		
	CO3	skills both in their professional as well as personal life.														
	CO4	table, graphs and formulas														
Contributio n of Course														PS O3		
Outcomes towards the achievement	CO1 2															
of Program Outcomes	CO2	CO2 2 2														
(1– Low, 2–	CO3	2														
Medium, 3 – High)	CO4				2											
Content	UNIT Nume on nur Nume UNIT Arithu Trains UNIT Arith Races	rical nbers rical C — II netic netic C — II meti	Abili al Ab al Ab I Cal <i>A</i>	ty II: ility l ility bility	Ratic : Prot 11: Tit	o & Pr blems me &	oporti on ag Dista	ion, P es, Ti ance, S	artner me & Proble imple	worl worl ems c	Perce k, Pip	ntages es & (nts &	s, Pro Cister Stean	fit & l n, Cha ns, Pr	Loss ain Ru oblem	ıle. ıs on

	Logical ability: Permutations and combination, Probability.
	UNIT – IV
	Mensuration: Geometry, Areas, Volumes
	Data interpretation: Tabulation, Bar graphs, Pie charts, line graphs
Textbooks	Text Book:
and	[T1] R. S. Aggarwal "Quantitative Aptitude", S Chand publication, 2017,
Reference	ISBN:8121924987
books	
E-resources	
and other	
digital	
material	

20EI6554 – Mini Project - I

Course Category:	Internship/Project	Credits:	1.5
Course Type:	Internship/Project	Lecture- Tutorial - Practice:	0 - 0- 3
Prerequisites:		Continuous Evaluation:	30
-		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succe	ssful	com	pletic	on of	the c	ourse	, the	stude	nt wi	ill be	able	to:		
outcomes	CO1	Dev	Develop interest towards research oriented field through literature exploration													
	CO2		address the feasible solution of a problem, identified in EPICS													
	CO3		whibit competency in suggesting optimum solution by detail analysis of the oblem													
	CO4	Dem	Demonstrate effective interpersonal, communication & presentation skills													
Contributio		РО	PO	PO	РО	PO	PO	PS	PS	PS						
n of Course		1	2	3	4	5	6	7	8	9	10	11	12	01	O2	03
Outcomes	001									3			3			
towards the	CO1															
achievemen		2					2			2						
t of Program	CO2	2					2			2						2
Outcomes	CO3		2				2		2	2						2
(1– Low, 2– Medium, 3 – High)	CO4									3	3	3				3

20MC6107B – Innovation Incubation & Startup

Course Category:	Mandatory Course	Credits:	0
Course Type:	Theory& Lab	Lecture- Tutorial - Practice:	2 - 0- 0
Prerequisites:		Continuous Evaluation:	100
		Semester end Evaluation:	0
		Total Marks:	100

Course	Upon s	succe	ssful	com	pletic	on of	the c	ourse	, the	stude	ent wi	ill be	able	to:		
outcomes	CO1															
	CO2													-		
	CO3					±				l prop						
	CO4									ship a						
Contributio		PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
n of Course		1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
Outcomes																
towards the	CO1		1						2	2		2				
achievemen																
t of	CO2	02 2 1 2 2 1 2														
Program	002															
Outcomes	CO 2		2							2		2				
	CO3		2						2	3		3				
(1–Low, 2–			1													
Medium, 3	CO4	204 1 3 2 2														
– High)																
Course Content	UNIT - Innovat process UNIT - Innova product strategy industry UNIT - Intelleo right (I geograp traditio UNIT -	tion 2 v inn tion a - II tion: t deve y for g y inno - III ctual PR) - phical nal kr	ovation nd in New elopm growtlo vation Prop Kinda indi	Pro ent – n – W n cycl erty I s of ir cation	an o on – F duct Cons hat is le Right ntellecon, Pla	Deve Deve sidera new s (IP) ctual p nt va	clopm tions produ R): In proper	ent (when (when ct? – trodu ty rig s and	NPD) deve Class ction hts: P layc	t – I vation): Inr elopin ificati and t vatent, out de	Different - In novati g as on of he new Copy esign	ent ty novati on m NPD new j ed for vright, – Ge	pes of ion as anage strate produ ; intel , Trad enetic	of inn s a ma ement gy - cts –] lectua e mar reso	anage and NPD NPD a NPD a	on - ment new as a as an perty sign,

	Entrepreneurship: Concept and need of entrepreneurship - Characteristics and types of entrepreneurship - Entrepreneurship as a career - Entrepreneurship as a style of management - The changing role of the entrepreneur - Entrepreneurial traits, Factors affecting entrepreneurs.
Textbooks and Reference books	 Text Book: [T1] Paul Trott, "Innovation Management and New Product Development", Pearson Education Limited, UK, 2017. [T2] Nithyananda, K V., "Intellectual Property Rights: Protection and Management", Cengage Learning India Private Limited, 2019. [T3] Dr.S S Khanka, Entrepreneurial Development, S Chand, New Delhi, 2020 Reference Books: [R1] Joe Tidd, John Besant, "Weste Managing innovation: Integrating Technological, Market and Organizational Change",2018. [R2] Neeraj, P., & Khusdeep, D, "Intellectual Property Rights", PHI learning Private Limited, India, 2019. [R3] Vasant Desai, "The Dynamics of Entrepreneurial Development and
E-resources and other digital material	Management", Himalaya Publishing House, India, 2022 1.https://edisciplinas.usp.br/pluginfile.php/5553082/mod_folder/content/0/Trott%20- %202017%20-%20%20roz%20Innovation-Management-and-New-Product- Development.pdf?forcedownload=1

Fourth Year (VII Semester)

20EI7301– Computer Control of Processes

Course Category:	Program Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Control systems, Digital signal	Continuous Evaluation:	30
	processing	Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	Upon successful completion of the course, the student will be able to:														
outcomes	CO1	Exp	blain the role of computers in industrial automation													
	CO2	-	odel the various processes in discrete time domain													
	CO3		halyze the time response and stability of computer control system using pulse insfer function													
	CO4	Desi	esign an appropriate digital control algorithm for industrial processes													
	CO5		e the concepts of intelligent controllers in real time applications													
Contributi on of		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
Course Outcomes towards achieveme	CO1															
nt of Program	CO2	1														
Outcomes (L – Low, M -	CO3		3			3										3
Medium, H – High	CO4			3												3
8	CO5	2				2										2
Course Content	UNIT Introd Advant Applica direct d Mather Pulse t order a UNIT Analys	uction ages a ations ligital matic ransfe nd sec - II sis of	and di of co contr al Me er fun cond c Disc	sadva mpute ol odelin ctions order j	ntage ers in ng of s, Ma proces Fime	s, Fur proce Discr thema sses w Syste	retion ss Ind rete S utical rithour	al blo ustrie ysten mode t and y	ck dia s-Dat ns: In l for with p Pulse	ngram a logg trodu proce oure d e Tra	of a c gers, S ction esses elay,	to ma in dis Highe	atter co visory athem crete er orde	ontrol contr atical doma er syst s: Ma	mode in - ems	n, l ling, first
		sis of														

	closed loop analysis of discrete time systems, Stability in Z- domain, Jury stability test
	UNIT- III Design of Digital Control Algorithms : General expression for digital control algorithm for set point changes, Dead beat algorithm, Dahlin's algorithm, Kalman's algorithm, Design of digital control algorithm for load changes, Digital PID algorithms-position and velocity forms, Selection of sampling time
	UNIT- IV Intelligent Controllers: Introduction, Adaptive controllers, Artificial intelligence(AI) based systems, Expert control system, Introduction to fuzzy control, Fuzzy control system, Artificial neural networks –introduction, Neural controllers and Neuro Fuzzy control system
Text books and Reference books	 Text Book: [T1] Pradeep B.Deshpande and Raymond H Ash, "Elements of Computer Process Control with Advanced Control Applications", 2nd Ed., Instrument Society of America.,1981 [T2] Krishna Kant, "Computer based Industrial Control", 2nd Ed., PHI, Delhi, 2010. Reference Book: [R1]M.Gopal, "Digital Control and State Variable Methods", 2rdEd.,TMH, New Delhi, 2009 [R2]C.D. Johnson, "Process Control Instrumentation Technology", 4th Ed., PrenticeHall Inc, 2000.
E- resources and other digital material	 4. <u>http://nptel.ac.in/courses/112103174/4</u> 5. <u>http://nptel.ac.in/courses/112103174/3</u>

20EI7402A – Instrumentation and Control in Food Processing

Course Category:	Program Elective-3	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Industrial Instrumentation	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succe	ssful	com	pletic	on of	the c	ourse	, the	stude	ent w	ill be	able	to:		
outcomes	CO1	Sum	mariz	the the	food	proces	ss in f	ood p	rocess	sing in	ndustr	ies.				
	CO2	Sele	ct a si	uitable	e mea	suring	g techi	nique	for qu	ality	contro	ol in f	ood p	rocess	sing	
	CO3												id gra			
	CO4		ustrate the role of computers in monitoring and control in food processing lustries.													
Contributi on of		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
Course Outcomes towards	CO1															
achieveme nt of Program	CO2	3												3		
Outcomes (L – Low, M -	CO3	2												1		
Medium, H – High	CO4		1											1		
Course Content	UNIT Food F Introd parame control Sensin Self-ge Cell, M Selection UNIT Moistu quality Moistu	Process auction aters, ler. g Dev nerati fagnet on of t - II ure C of fo	n to H Batch vices: ng tra to electransd transd	Proces and Role unsduc ctric t lucers t Me	of tr cont cers, H ransd	e men t absor	entati s pro- cers i electri Radi t in 1 ption	ion an cess, n foo c tran oactiv Food	nd Co Overv d pro sduce ze tran Proc	view cessin rs, Ph nsduce essin	on co ng, Cl noto c ers, V g: Ro	ontroll assifi onduc ariab	lers a cation ctive a le par	nd Se of tr and Ph amete	electic ransdu notovo r type conte	on of acers, bltaic e and nt in

	Humidity in the Food Processing Environment: Role of humidity in quality of food,
	Conventional type and Electrical type of humidity meters.
	Temperature Measurement in Food Processing: Temperature of food on a conveyor, Food tempering monitoring and Precision temperature measurement.
	Food Flow Metering: Turbine flow meter, Positive displacement flow meter, Solid flow metering and Gravimetric feeder meters.
	Turbidity and Color of Food: A basic Turbidity meter, Standards and Units of turbidity, Light scattering type turbidity meter, Color reflectance and Digital color image processing in food grains.
	UNIT- III Viscosity of Liquid Foods: Definition, Newtonian and Non Newtonian food flow, Rotating cylinder viscometer.
	Brix of Food: Brix Standards, Refractometers – Refraction angle refractometer and Critical angle refractometer.
	$\mathbf{P}^{\mathbf{H}}$ Values of Food: $\mathbf{P}^{\mathbf{H}}$ scale, $\mathbf{P}^{\mathbf{H}}$ electrodes and Potential, Ion sensitive field effect transistor $\mathbf{P}^{\mathbf{H}}$ sensors.
	Food Enzymes: Importance of food enzyme detection, Enzyme sensors – Principle of operation, Calibration and Sensor materials, Semiconductor enzyme sensor.
	Flavor Measurement: Sources of flavor in food, Electronic Nose – Basic electronic nose, Sensor types and Signal processing
	UNIT- IV Controllers and Indicators : Introduction, Temperature control in food dehydration and drying, Electronic Controllers, Atmosphere control in food preservation, Timers and Indicators in food processing, Food sorting and Grading control.
	Computer Based Monitoring and Control: Introduction, Importance of monitoring and control with computers, Hardware features of a data acquisition and control computer, Examples of computer based measurement and Control in food processing
Text books and Reference books	Text Book: [T1] Manabendra Bhuyan "Measurement and Control in Food Processing", Taylor &Francis Group.2007.
	Reference Books:

	[R1] Erika Kress Rogers and Christopher J. B. Brimelow, "Instrumentation and sensors for the food Industry", II nd Ed., Woodhead Publishing Limited, 2001
E- resources and other digital material	1. <u>https://nptel.ac.in/courses/126105011/</u>

20EI7402B – Industrial Internet of Things

Course Category:	Program Elective-3	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Industrial Communication	Continuous Evaluation:	30
	Networks, Embedded	Semester end Evaluation:	70
	Systems	Total Marks:	100

Course	Upon	succe	ssful	com	pletic	on of	the c	ourse	e, the	stude	ent w	ill be	able	to:		
outcomes	CO1	Clas	sify	the ir	ndusti	ry en	viron	ment	s and	scen	arios	cove	ered b	y IIC	T	
	CO2				n the									<i>v</i>		
	CO2	Mod	del th	ne Ind	dustri	al In	terne	t Sys	tems	by s	elect	ing s	uitab	le mi	ddlev	ware
	CO3	plat	form	s and	WAI	N tec	hnolo	ogies								
	CO4	Ana	lyse	the d	eploy	ment	t of II	IOT i	n Ind	ustry	4.0					
Contributi		РО	РО	РО	РО	РО	РО	РО	РО	РО	PO	РО	РО	PS	PS	PS
on of		1	2	3	4	5	6	7	8	9	10	11	12	O1	O2	O3
Course																
Outcomes	CO1		3													
towards	001		2													
achieveme																
nt of	CO2	3														
Program																
Outcomes	CO3	3														
(L - Low,	COS	5														
M -																
Medium,	CO4		2													
H – High																
Course	UNIT	- I														
Content	Introd	uctio	n to l	[ndus	trial	IOT:	Tech	nical	Requ	ireme	ents, I	OT k	ey teo	chnolo	ogies,	IOT
	and IIC	DT Sir	nilari	ties a	nd dif	feren	ces, IO	OT A	nalyti	cs and	d AI,	Indus	try Er	nviron	ments	s and
	scenari	os cov	vered	by IIO	DT.											
				•												
	Under	stand	ing t	he Ir	ndusti	rial I	Proces	ss an	d De	evices	: Tec	hnica	l Rec	luiren	nents,	The
	industr	ial pro	ocess,	The (CIM p	yram	id, Th	ne IIO	T data	a flow	v. Indu	ıstrial	Inter	net U	se -Ca	ises -
	Health	-			-	-										
						-										
	UNIT	- 11														
	Indust)ata 1	Flow	and I	Device	ns∙ T≏	chnic	al rea	miren	nente	The	IIOT	data f	low i	n the
									-	-						
	factory					ie act	uator	cnain	, Con	uonei	rs, inc	ustria	u pro	locols	, SCA	DA,
	Histori	an, El	KP and	a ME	5.											
	Key I		Tach	مامط	ins. (wher	nhvei	ical e	vetom	w W	ireles	e tech	noloc	w ID	moh	ility
	•			U		•			•				-	•		
	Networ			-								-				
	fog, Bi	g data	a and	analy	tics, I	M2M	learni	ing an	id arti	ficial	ıntell	1genc	e, Au	gmen	ted re	ality,

	3D Printing
	UNIT- III IOT Reference Architecture: Industrial internet architecture Framework, Functional viewpoint, The three-tire topology, Key system characteristics, Data management.
	Designing Industrial Internet Systems: The concept of the IIOT, The proximity network, WSN edge node, Legacy industrial protocols, Modern communication protocols, Wireless communication technologies, Proximity network communication protocols, Industrial gateways.
	UNIT- IV Middleware IIOT platforms, IIOT WAN technologies and protocols, Securing the industrial internet, Introduction to Industry 4.0, Main characteristics of Industry 4.0, Industry 4.0 design principles, Building blocks of Industry 4.0, Industry 4.0 reference architecture, Smart factories, Real-world Smart factories.
Text books and Reference books	Text Book: [T1]Alasdair Gilchrist "Industry 4.0: The Industrial Internet of Things", 1 st Ed., Apress, 2016. [T2] CiacomoVeneri, Antonio Capasso, "Hands on Industrial Internet of Things", 1 st Ed.,
	 Packt Publishing Ltd., 2018 Reference Books: [R1] Ulrich Sendler, "The Internet of Things: Industry 4.0 unleashed", 1st Ed., Springer, 2016. [R2] Sabina Jeschke, Christian Brecher "Industrial Internet of Things: Cyber manufacturing systems", 1st Ed., Springer, 2017

20EI7402C - Wireless Sensor Networks

Course Category:	Program Elective -3	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon successful completion of the course, the student will be able to:															
outcomes	CO1	Un	derst	and t	he ba	sic co	oncep	ts of	wirel	ess s	ensor	netw	orks			
	CO2		-						ures i							
	CO3	Apply suitable protocol in routing based on network and user requirement.Analyze various clustering and localization techniques.														
	CO4	An	alyze	vari	ous c	luster	ring a	nd lo	caliza	ation	techr	ique	s.		1	0
Contributi on of		PO 1	PO 2	PO 3	РО 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
Course Outcomes towards	CO1															
achieveme nt of Program	CO2		2											2		
Outcomes (L – Low,	CO3	2														2
M - Medium, H – High	CO4		3													2
Course Content	UNIT Overvi mechar technol networ UNIT Sensor consum archited concep UNIT Networ and trai duty cy address	ew on nisms, logies k appl - II Node ption cture- ts - III rking nsceiv ccle pr	Uni for icatio e Arc of se Sense Zer dea rotoco	ique wirele ns, Ce chitec ensor or net ors: V sign c ols and	const ess so ollabo tures nodes work Wirele	traints ensor orative : Sing s, Ope scena ess cha eratio eup c	and network proc gle-no erating rios. (annel ns, M oncep	l cha orks, essing de ar g syst Optim and c AC P ts. Ac	allenge Adva g and f chitec ems a nizatio	es of antag Key d ture - and ex on goa	f ser es of lefinit - Haro xecuti lls and tion fu r wire name	Isor sens ions c lware on en l figu indam less si mana	netwo or ne of sens comp wiron res of nentals ensor gemei	orks, etwork sor ne conen ments merit s, Phy netwo nt - N	Emer as, Se twork ts. Er , Net , Gate sical prks - aming	ensor s hergy work eway layer Low g and

	Energy - efficient routing.
	 UNIT- IV Infrastructure Establishment: Topology control, Clustering - Hierarchical networks by clustering. Time synchronization, Localization and positioning, Localization and services, Sensor tasking and control. Sensor Network Platforms and Tools: Sensor node hardware, Programming challenges, Node - level software platforms, Node level simulators
Text books and Reference books	 Text Book: [T1]Feng Zhao & Leonidas J. Guibas, "Wireless Sensor Networks" An Information Processing Approach, Elsevier, 2007. [T2] Holger Karl & Andreas Willig, "Protocols And Architectures for Wireless Sensor Networks", John Wiley, 2005 Reference Books: [R1] KazemSohraby, DanielMinoli, &TaiebZnati, "Wireless Sensor Networks-Technology, Protocols, And Applications", John Wiley, 2007 [R2] V.Gagrigungor, Gerhard P. Hancke "Industrial Wireless Sensor Networks", CRC Press, 2013.
E- resources and other digital material	 <u>https://nptel.ac.in/courses/106/105/106105160/</u> <u>http://computerscienceppt.blogspot.com/2010/08/introduction-to-wireless-sensor.html</u>

20EI7402D – Drives and Control for Industrial Automation

Course Category:	Program Elective - 3	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Control systems, Process	Continuous Evaluation:	30
	Control	Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	Upon successful completion of the course, the student will be able to:														
Jucomes	CO1		ly the		epts o	f hydi	raulic	and p	neum	atic d	rives	in ser	vo cor	ntrol		
	CO2	App		conc	epts	of ele	ctric	and p	iezoel	lectric	c drive	es in	indus	trial a	utom	ation
	CO3		trate matio		perati	on of	basic	and	servo	o cont	rol st	ructui	res us	ed in	indu	strial
	CO4	Use	Use the programming standards for servo control systems in industrial automation													
Contributi on of		PO 1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
Course Outcomes towards	CO1	3												3		
achieveme nt of Program	CO2	3												3		
Outcomes (L – Low, M -	CO3	2														2
Medium, H – High	CO4		2													2
Course Content	UNIT Overvi control Servo and pn fluidic UNIT Electri electric charact drive aj - Micro	ew of - Mea Hydr eumat drives - II c and drive eristic pplica	aulic ic dri syste Syste Se, Elec s of I tion, S	nent, and ive, F em, Ba zoeled etric r DC an Solid	Actua Pneu undar asic h ctric notor ad AC state	ntion, matic nenta ydrau drive s-DC moto	Power Driv ls of lic cir s: Ov motor prs, Po	r mod ves: C hydra cuits. vervie rs, AC ower e	eratio Dvervi ulic a w of C mot electro	n, Co ew, C nd pr electrors ar onics,	ntrol. Config neuma ric dr nd ste Senso	guratio atic di ives, pper 1 prs, C	on of rives, config motor onfigu	servo Comj gurati s, Toi uring	o hydr poner on of rque s an ele	raulic nts of f an speed ectric

	UNIT- III Control System in Servo Drives : Servo control challenges - System design, Nonlinear dynamics, Disturbances, Basic Control Structures- Cascaded velocity and position loops, Single-loop PID position control, and Cascaded loops with feedforward control.Servo control structures - Trajectory generator, Feedback control, Feed forward compensator, States feedback with observers, Notch filter
	UNIT- IV IEC61131-3 Programming standards : Introduction, Features of IEC61131 standards, Instruction List(IL), Structured Text(ST), Sequential Functional Chart(SFC), Functional Block Diagrams(FBD) and Continuous Function Chart(CFC)
	Motion Control System and Applications: Components of a Motion Control System, Single axis motion –Jogging, homing, Multi axis motion -Electronic Gearing, Electronic Camming, Spool winding, triggered camming., tension control
Text books and Reference books	 Text Book: [T1] Tan KokKiong and Andi Sudjana Putra, "Drives and Control for Industrial Automation", 1st Ed., AIC, Springer-Verlag London Limited, 2011 [T2] Hakan Gurocak, "Industrial Motion Control", 1st Ed., John Wiley & Sons, Ltd,UK, 2016 Reference Books: [R1] Teresa Orlowska Kowalska, Frede Blaabjerg, "Advanced and Intelligent Control in Power Electronics and Drives", 1st Ed., Studies in Computational Intelligence, Springer International Publiching Switzerland 2014
E- resources and other digital material	International Publishing Switzerland 2014. 1. <u>https://nptel.ac.in/courses/108105062/</u> 2. <u>https://nptel.ac.in/courses/108102046/</u>

20EI7403A – Advanced Sensors

Course Category:	Program Elective - 3	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course Outcomes	Upon successful completion of the course, the student will be able to:														
Outcomes	CO1		Understand the principle of operation of different sensors and their applications							their					
	CO2	Beu	Be updated on the recent trends in sensor technologies.												
	CO3	App	Apply knowledge in designing smart sensors.												
	CO4	Design environmental measurement systems using different chemical sensors.													
	CO5		Solve design and modelling issue using complex engineering mathematics.												
Contribut ion of		PO 1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
Course Outcomes towards	CO1	2													
the achievem	CO2		3												
ent of Program Outcomes	CO3	2													
(1– Low,	CO4			2											
2– Medium, 3 – High)	CO5					3									
Course Content	 UNIT- I Sensor Fundamentals and Characteristics: Sensor Classification, Performance and Types, Error Analysis characteristics Classification of Instruments Transducers: Input and output characteristics of various transducers, variable resistance transducer and its equivalent circuit, potentiometers, their construction and performance, variable inductance and variable capacitance transducers, their construction and performance, Piezoelectric transducer. UNIT – II Sensor Technologies: MEMS sensor, Comparison between MEMS and Macro sensor, Fabrication and packaging issue in sensor design, Thick film and thin film technique Physical sensors. Bio sensor, Silicon sensor, RF Sensor, sensors for robotics 														

	Smart Sensors: Smart sensor basics, signal conditioning and A/D conversion for sensors, examples of available ICs and their applications.
	UNIT – III Advanced Sensing Technology: Sensors, instruments, and measurement techniques for emerging application areas such as environmental measurement like DO(dissolves oxygen),BOD (biological oxygen demand),COD(chemical oxygen demand)TOC(total organic carbon)Cox(carbon dioxides)NOx(nitrogen oxide),SOx (Sulpher Oxides)
	UNIT – IV Design and Modelling Issue in Advanced Sensing Technique : Introduction of different mathematical tools used in sensor design. Optimization techniques used in sensor design. The role of PCA, LDA, Neural network in designing sensor array.
Text books and Reference books	 Text Book: [T1] Jon. S. Wilson, "Sensor Technology Hand Book", 2011, 1st edition, Elsevier, Netherland. (Unit-I) [T2] Tai Ran Hsu, MEMS & Micro systems Design and Manufacture Tata McGraw Hill, New Delhi, 2002(Unit-II and III) [T3]Jacob Fraden, "Handbook of Modern Sensors: physics, Designs and Applications", Springer, New York, 3rd edition, 2015(Units- IV) Reference Books: [R1] Jacoba Fraden "Handbook Of Modern Sensors "2nd Edition ,Springer-Verlag.New York 1996 [R2] G.K. Ananthasuresh, K. J. Vinoy, S. Gopalakrishnan, K.N. Bhat, V.K. Aatre, "Micro and Smart Systems: Technology and Modeling",Willey Publications, 2013.
E- resources and other digital material	1. <u>https://www.youtube.com/watch?v=q8UuRkOQ9A0</u>

20EI7403B – Database Management Systems

Course Category:	Program Elective-4	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succe	ssful	com	pletio	on of	the c	ourse	e, the	stude	ent w	ill be	able	to:		
outcomes	CO1	Und	erstan	d the	basic	elem	ents o	f a rel	ationa	al data	abase	mana	gemer	nt syst	tem.	
	CO2	Drav	v enti	ty rela	ations	hip ar	nd con	vert e	entity	relatio	onship	o diag	rams i	nto R	DBM	S
	CO3	Crea	eate a relational database using SQL.													
	CO4	App	ply normalization techniques for logical schema model.													
	CO5		ves concurrent issues and problems through locking mechanism.													
Contributi		РО	PO	РО	РО	РО	PO	РО	PO	PO	PO	PO	PO	PS	PS	PS
on of		1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
Course																
Outcomes	CO1		3												3	
towards	COI		5												5	
achieveme																
nt of	CO2		3												3	
Program																
Outcomes	CO3			3		2									3	
(L - Low,	COS			3											3	
M -	~ ~ .			_											_	
Medium,	CO4			3		2									3	
H – High																
	CO5			3		2									3	
Course																
Content	UNIT	- I														
	Databa	ase Sy	stem	Arch	nitect	ure: I	ntrod	uctior	n, The	three	leve	ls of a	archite	ecture	, (Ext	ernal
	level,	Conce	eptual	leve	l, Int	ternal	leve	l), M	lappin	ig, Tl	ne da	itabas	e adn	ninist	rator,	The
	databas	se mar	nagem	nent s	ystem	s, Cli	ent/Se	erver a	archite	ecture	•					
			U	•	•											
	E-R M	lodels	: The	E-R	mode	ls, Th	e rela	tional	l mod	el, Re	lation	al cal	culus,	, Intro	oduction	on to
	databas	se des	sign,	Datał	base	design	n and	ER	diagr	ams,	Entit	ies a	ttribut	es, E	Intity	sets,
	Relatio		-			-			-						•	
	model	-			-			-		0						
	Genera	-	-		annes	0,01	Teruti	0115,	ney	const	unnes	, 101	01511	acy c	onsur	unico,
	Genera	ii cons	am	з.												
	UNIT	- II														
	Relatio		Algel	ora:	Relat	ional	alge	bra,	Select	tion	and	projec	ction.	Set	opera	tion.
	Renam		0				U								-	
	relation	-						-		Y ^{uel}	, 1	contraction	Jiiui	curcu		apic
	relation	iai cal	cuius	, Dui		Tatiol	iai ca	cuius	•							

	Queries, Constraints, Triggers : The form of basic SQL query, Union, Intersect, and except, Nested queries, Aggregate operators, Null values, Complex integrity constraints in SQL, Triggers and active database
	UNIT-III Normalization: Purpose of normalization or schema refinement, Concept of functional dependency, Normal forms based on functional dependency (1NF, 2NF and 3 NF), Concept of surrogate key, Boyce-Codd normal form (BCNF), Lossless join and dependency preserving decomposition, Fourth normal form(4NF).
	UNIT- IV Transaction Management: Transaction, Properties of transactions, Transaction log, and transaction management with SQL using commit rollback and save point. Concurrency control for lost updates, Uncommitted data, Inconsistent retrievals and the Scheduler.
	Concurrency Control with Locking Methods : Lock granularity, Lock types, Two phase locking for ensuring serializability, Deadlocks, Concurrency control with time stamp ordering: Wait/Die and Wound/Wait Schemes, Database recovery management: Transaction recovery.
Text books and Reference books	 Text Book: [T1] CJ Date, "Introduction to Database Systems", Pearson. [T2] Raghurama Krishnan, Johannes Gehrke, "Database Management Systems", 3rd Ed., Tata McGraw Hill. [T3] H G Molina, J D Ullman, J Widom, "Database Systems - The Complete Book", Pearson. [T4] Ramez Elmasri, Shamkant B. Navathe, "Database Management Systems", 6th Ed., EA. Reference Books: [R1] Peter Rob & Carlos Coronel, "Database Systems Design, Implementation, and Management" 7th Ed., [R2] Silberschatz, Korth, "Database System Concepts", 5th Ed., TMH. [R3] Narain Gehani, "The Database Book Principles & Practice Using Oracle/MySQL", University Press
E- resources and other digital material	-

20EI7403C – Intelligent Systems and Control

Course Category:	Program Elective-4	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon s	pon successful completion of the course, the student will be able to:														
outcomes	CO1	App	ly fuz	zy log	gic for	r simp	le cor	ntrol a	pplica	ations						
	CO2	Use	neura	l netw	vorks	for sy	stem	identi	ficatio	on and	l cont	rol ap	plicat	ions.		
	CO3	Com	mpare various neuro fuzzy system configurations.													
	CO4		esent the steps involved in various evolutionary and swarm intelligence chniques.													
Contributi on of		РО 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
Course																
Outcomes towards achieveme	CO1	3														
nt of Program	CO2	3														
Outcomes (L – Low,	CO3		2													
M - Medium, H – High	CO4	2														
Course Content	UNIT Fuzzy Operati If-The Sugence UNIT Neural functio and un identifi UNIT Neuro Cooper Concur Adapti	Logic ions o n rule o fuzzy - II Netv ns, Fe nsupe cation - III Fuzz rative rent	n fuz es, Fu y mod works eed fo rvised a and o zy Sy neuro neuro	zy set uzzific lels, F s and orward l lea contro ystem p-fuzz	ts, Lin cation uzzy App d netw rning, bl, Ne s: In y syst y syst	nguist , Def contro licatio works, , Rec ural n ntrodu cems – stems,	ic var fuzzifi ol. ons: I Mult curren etwor ction, - Cooj Hyt	iables ication introd tilayen t neu ks for ks for Cor peration	s, Ling n, Inf uction r perc ural contr nbina ve FS	guistic Ference a, Art eptrop netwo rol. tion	c hedge me ificial n networks, of ne	ges, F chani neur works Neur eural	on mo , Sup- al sy and	relatio Mar odel, ervise /stems fuzzy NN-F	ons, F ndani Activ ed lear s, Sy syst S syst	ation ation rning stem

	UNIT – IV Evolutionary and Swarm Intelligence Algorithms: Introduction, Terminologies of evolutionary computing-Chromosome representation, encoding schemes, population, fitness functions, Genetic operators – selection operators, crossover operators and mutation operators, Performance measures of evolutionary algorithms, Evolutionary algorithms - Genetic Algorithm (GA) and Differential Evolution (DE), Swarm intelligence algorithms - Basic Particle Swarm Optimization (PSO
Text books and Reference books	 Text Book: [T1] Nazmul Siddique and Hojjat Adeli, Computational Intelligence -Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing, Wiley, 1st Ed., 2013. [T2] Andries. P. Engelbrecht, Computational Intelligence-An introduction, Wiley, 2nd Ed., 2007 Reference Books: [R1] Robert E. King, Computational Intelligence in Control Engineering, Marcel Dekker Inc., 1st Ed., 1999. [R2] Witold Pedrycz, Computational Intelligence-An introduction, CRC Press, 1st Ed., 1997
E- resources and other digital material	 <u>http://nptel.ac.in/courses/108104049/27#</u> <u>http://uni-obuda.hu/users/fuller.robert/nfs.html</u> <u>http://nptel.ac.in/courses/112106064/38</u>

20EI7403D – Digital Image Processing

Course Category:	Program Elective-4	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	Upon successful completion of the course, the student will be able to:														
outcomes	CO1	Expl	ain th	e fun	damei	ntals o	of digi	tal im	age p	roces	sing					
	CO2	App	pply image enhancement techniques in spatial and frequency domains													
	CO3		alyze various restoration techniques for image quality.													
	CO4		alyze the performance of compression techniques and segmentation methods.													
Contributi on of		PO 1	PO PO<													
Course Outcomes towards	CO1															
achieveme nt of Program	CO2	2				1										
Outcomes (L – Low, M -	CO3		3			1										
Medium, H – High	CO4		3			1										
Course Content	UNIT Digita Compo Image relatio UNIT Image Histog Basics Image transfo filters, UNIT Image in the freque	I Ima onent sen nship - II E Enl ram of sp - Enl orm, 3 Hom - III E Res pres	s of sing betv nance proce batial hanc Smoo nomo toral ence	an i and veen emen essing filter emen othing rphic ion: of r	mage acqu pixel t in g, Er ring, f t in g free filter Imag	e pro uisitions. Spat hance Smoo Fre quence ring. ge de only	cessin on, 1 tial I cemer othing cy do grada c, Spa	ng sy Image Doma nt usi g spat ncy I main ntion/ atial	vstem e sar ing a ial fi Doma filte	h, Ele mplir Basic rithm lters, ain: rs, S ration ing,	ementing at a gray netic Shar Intro harpe	ts of nd q y lev and penin ducti ening cess odic 1	visu Juanti rel tra logic ng spa on t freq mode noise	al pe izatio ansfo al oj atial o the uency el, Re	ercept n, B rmati perati filters e Fou y dor estora actior	tion, asic asic ons, ons, s. urier nain tion by

	 filtering, Minimum mean square error (Wiener) filtering, Constrained least squares filtering. UNIT- IV Image Compression: Fundamentals, Image compression models, Error free compression, Lossless predictive, Lossy compression. Image Segmentation: Detection of discontinuities, Edge linking and boundary
	detection, Thresholding, Region based segmentation
Text books and Reference books	 Text Book: [T1] Gonzalez and Woods, "Digital Image Processing", 2nd Ed., Pearson Education, 2002. Reference Books: [R1] Anil K. Jain, "Fundamentals of Digital Image Processing", 3rd Ed., Pearson Education, 2003. [R2] William K Pratt, "Digital Image Processing", 4th Ed., A Wiley-Interscience Publication, 2007
E- resources and other digital material	1. <u>http://www.imageprocessingplace.com/</u>

20EI7404A – Instrumentation and Control in Paper Industries

Course Category:	Program Elective-5	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Transducers, Electronic	Continuous Evaluation:	30
	Measurements and	Semester end Evaluation:	70
	Instrumentation, Process	Total Marks:	100
	Control		

Course	Upon	succe	ssful	com	pletic	on of	the c	ourse	, the	stude	nt wi	ill be	able	to:		
outcomes	CO1	-	plain the pre-processing stages of raw material in paper making													
	CO2	Sele	elect suitable sensors used in wet and dry end instrumentation and ality measurement of paper making industry entify the paper quality and appropriate control strategies for thick and in stock system													
	CO3	Ider thin														
	CO4	Ana	alyze the role of computers in pulp and paper industries													
Contributi on of		РО 1	PO 2	PO 3	РО 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
Course Outcomes towards	CO1															
achieveme nt of Program	CO2	3												3		
Outcomes (L – Low, M -	CO3	2												2		
Medium, H – High	CO4		2											2		
Course Content	UNIT Paperr Screeni section propert Suspen Stock UNIT Wet ar measur Continu measur	nakin ing, 1 , Cale ies of sion - - II nd Dr ement aous	Bleacl nders f liqu - Con y End ts, Mo cons	hing, , Driv iids - nposit d Inst easure istenc	Cool e, Fin Hyd ion a trume ement y mo	cing, ishing rostat nd Be entation of p easuri	Chen g, Oth ics, L ehavic on: O H anc ng d	nical er-aft iquid or of l vervid l ORI evice	addit er trea s in Paper ew of P, Pri s, Li	ion, atmen motic Stock basic mary quid	Paper t proc n. Pr c, The senso visco dens	makin esses operti Flov ors use sity r ity a	ng m , Coat ies of v Proj ed in v neasu nd s	achin ing, I pap pertie wet a remei pecifi	e, Dr Elemer er ma s of F nd dry nt dev ic gra	rying ntary king Paper / end rices, avity

measurements - Electrical, Energy absorption. Freeness measurement, Grammage or basis

	 weight measurement, Thickness measuring systems - Contacting and non-contacting types, Digester UNIT- III Quality Measurement: Paper quality measurements - Brightness, Color, Gloss, Opacity, Ash, Modulus. Thick and Thin Stock Systems Control: Introduction, Simple thick stock system, Breakers and beaters, Thick stock flow control, Basic thin stock system, Cleaners, Screens, The flow box and its controls, Refiner control instrumentation UNIT- IV Computers in the Pulp Mill: Batch digesters, Continuous digesters - Vertical type, Inclined type, Bleach plant. Computers in the Paper Mill: Stock preparation - Refiners, Stock proportioning, Paper machine - Rush/drag, Basis weight and moisture, Speed change, Coordinated control
Text books and Reference books	 Text Book: [T1] Robert J.McGill, "Measurement and Control in Papermaking", Adam Hilger Limited, Bristol, 1st Ed., 1980. [T2] John R.Lavigne, "An Introduction to Paper Industry Instrumentation", Miller Freeman Publications, California, 1st Ed., 1985. [T3] John R.Lavigne, "Instrumentation Applications for the Pulp and Paper Industry", Miller Freeman Publications, California, 1st Ed., 1990 Reference Books: [R1] Benjamin C. Kuo, "Automatic Control Systems", 7th Ed., PHI, 2001. [R2] James P.Casey, Pulp Paper Chemistry and Chemical Technology, John wiley& sons, New york, 1981. [R3] Sankarnarayanan P.E, "Pulp Paper Industry–Technology & Instrumentation", Kothari's Deskbook, 1995
E- resources and other digital material	 <u>http://www.nptelvideos.com/control_systems/</u> <u>https://www.wateronline.com/doc/instrumentation-for-the-pulp-paper%20industry0002</u>

20EI7404B – Computer Networks

Course Category:	Program Elective-5	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Digital Electronics,	Continuous Evaluation:	30
	Digital Signal Processing	Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succe	ssful	com	pletio	on of	the c	ourse	e, the	stude	ent w	ill be	able	to:		
Sucomes	CO1			basic del a		-	f OS <mark>I</mark>	refer	ence 1	model	, serv	rices a	and ro	le of	each	layer
	CO2	Ana	lyse t		nctio		Netw	ork]	Layer	i.e.	Logic	al ad	dressi	ng, s	ubletti	ing&
	CO3		nalyse the different Transport Layer function i.e. Port addressing, onnection Management, Error control and Flow control mechanism													
	CO4	Ana	Analyse the different protocols used at application layer													
Contributi on of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
Outcomes towards	CO1	2														
achieveme nt of Program	CO2		3													
Outcomes (L – Low, M -	CO3		3													
Medium, H – High	CO4	2														
Course Content	UNIT Introd Referen (TCP)// Physic Commu UNIT Data Elemer (MAC) Cabling algorith Protoco	uction nce m Intern al La unicat - II Link ntary) sub g- Ma g- Ma nm, V	odels et Pro yer: ion sa Laye data layer unches Virele	– Op otocol Guid atellite er: D link : Cha ster c ss LA	oen S (IP). led tr es, Tru ata 1 protoo unnel oding ANs,	ansmi unks a ink la cols, alloca - M Broac	ission and mu ayer Slidin ation AC s band	med ultiple design g wi probl ub la d wir	ia, W exing, n issu ndow em, M yer pr eless,	OSI) – Vireles Switc nes, I proto Multip rotocc Blue	- Trar ss co ching Error ocols. ble ac bl- Bi tooth	corre Mec cess nary archi	ection lium protoo expor	on, L and Acces cols, nentia re Ap	ocal detections Co Ethern back plicat	tocol loop, etion, ontrol net - k off ions-

	bridge – Remote bridge
	UNIT- III Network Layer: Network layer design issues, Routing algorithms – Shortest path routing – Flooding – Distance vector routing – Link state routing – Hierarchical routing – Broadcast routing – Multicast routing – Routing for mobile hosts, Congestion control algorithms - Congestion prevention policies, Quality of service, Techniques for achieving good quality of service, Over provisioning, Buffering, Traffic shaping, Leaky bucket algorithm, Token bucket algorithm, Internetworking. IP protocol
	 UNIT- IV Transport Layer: Transport service, Elements of transport protocol – Addressing, Internet transport protocols – User Datagram Protocol (UDP) – TCP protocol – TCP segment header – TCP connection establishment- TCP connection release. Application Layer: Domain Name Service (DNS), Electronic mail, WWW – architectural overview
Text books and Reference books	Text Book:[T1] A.S. Tanenbaum, Computer Networks Fourth edition, PHI Education, 2003Reference Books:[R1] William Stallings, Data and computer communications, PHI, 2001.[R2] Forouzan, Data Communications and networking, PHI,2000
E- resources and other digital material	

20EI7404C - HMI &SCADA

Course Category:	Program Elective-5	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Transducers, Electronic	Continuous Evaluation:	30
	Measurements and	Semester end Evaluation:	70
	Instrumentation, Process	Total Marks:	100
	Control		

Course	Upon	succe	ssful	com	pletio	on of	the c	ourse	, the	stude	ent w	ill be	able	to:		
outcomes	CO1	Und	lersta	nd th	e bas	ic co	ncept	s ass	ociate	ed wi	th SC	CAD	A and	I HM	I.	
	CO2	Expl	lore a	nd int	erpret	funct	ionali	ty of	SCAI	DA an	d HM	[I .				
	CO3	Desc	cribe t	he ba	sic de	sign a	spect	s of S	CAD	A and	HMI					
	CO4		11	-							for an	indus	strial a	pplic	ation	
	CO5	Dev	Develop simple SCADA and HMI screens													
Contributi		РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PS	PS	PS
on of		1	2	3	4	5	6	7	8	9	10	11	12	01	O2	03
Course Outcomes	CO1															
towards	COI															
achieveme		_														
nt of	CO2	2														2
Program																
Outcomes	CO3	2														2
(L - Low,																
M -	CO4		1													1
Medium, H – High																
ii ingn	CO5					2										1
Course															I	
Content	UNIT	- I														
	Intro	luctio	on a	nd	Over	view	: W	hat	is S	CAD	A, I	Defin	ition	of	SCA	DA,
	Applic	cable	proc	cesses	s, El	emer	its o	f a	SCA	DA	syste	m, A	A bri	lef h	istory	/ of
	SCAD	A- I	Devel	opme	ent f	rom	telen	netry,	Dep	pende	ence	on c	omm	unica	ation	and
	compu	iters,	Rea	l tim	e sy	stems	s - V	Vhat	is re	eal ti	me s	syster	m, C	omm	unica	ntion
	access	, Det	ermir	ning s	scan i	nterv	als									
	UNIT	TT														
	Remo		ontra	ol• N	Auro	hv'e	law	and	rem	nte d	ontro	1 C	afety	inet	rume	nted
	system				-	•							•			
	compo															
	_															
	interfa					-			-	-	noni	loring	z, IVI8	ister	rerm	mai
	Units		JSJ - 1	Com	nuni	catiol	I, CO	mgu	iratio	11						
	UNIT	- III														

	 History and Current Status of HMI: Earlier control panels, Early and current HIMs, Related challenges, Need of change of HMI, HMI best practices - Hierarchy based display, Fundamentals of HMI design, Assessing HMI performance - HMI evaluation methodology, Users of HMI, HMI style guides UNIT- IV High Performance HMI: Basic principles - Overview, Implementation of trends, General consideration for displays, Depicting lines, Vessels and static equipment, Depicting text, Values, Depicting alarm behaviour, Alarm indication methods, Audible alarms, Process controllers, Valves, Instrument lines, Shutdown actuation.
Text books and Reference books	 Text Book: [T1] Stuart A. Boyer: "SCADA-Supervisory Control and Data Acquisition", Instrument Society of America Publications,USA,2004 [T2] Bill Hollifield, Dana OliverLanNimmo and Eddie Habibi "The High performance Hand Book", 1st Ed., PAS,Houston, 2008. [T3] Gordon Clarke, Deon Reynders: "Practical Modern SCADA Protocols: DNP3, 60870.5 and Related Systems", Newnes Publications, Oxford, UK,2004 Reference Books: [R1] David Bailey, Edwin Wright, "Practical SCADA for industry", Newnes, 2003 [R2] R Mehra, V. Vij, PLCs & SCADA - Theory and Practice, Laxmi Publications, 2nd edition 2017. [R3] Jean YvesFiset, "Human-Machine Interface Design for process control applications", ISA, 2009
E- resources and other digital material	 <u>Real-Time HMI and SCADA for C/C++/C#.NET, Java, HTML5 &</u> JavaScript, Linux, Windows, Web, Emdedded and Mobile (genlogic.com) <u>PLC and HMI Programming Course with Example Problems</u> (automationcommunity.com)

${\bf 20EI7404D-Real\ World\ Instrumentation\ with\ Python}$

Course Category:	Program Elective-5	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succe	ssful	com	pletic	on of	the c	ourse	, the	stude	ent w	ill be	able	to:		
outcomes	CO1	Und	lersta	nd th	e bas	ic co	ncept	ts of]	Pytho	n lar	iguag	e				
	CO2						-		ising				ts			
	CO3	Imp	lemen	t cont	rol sy	stems	using	g Pyth	on sir	nulate	ors					
	CO4	Illus	trate v	variou	is data	ı I/O i	nterfa	ices fo	or real	worl	d appl	licatio	ons			
Contributi		РО	PO PS PS PS													
on of		1	2	3	4	5	6	7	8	9	10	11	12	O1	O2	O3
Course																
Outcomes	CO1															
towards																
achieveme																
nt of	CO2	2				2										
Program Outcomes																
(L - Low,	CO3	2				2										
$(\mathbf{L} - \mathbf{L}0\mathbf{w}, \mathbf{M} - \mathbf{M}\mathbf{w})$																
Medium,	CO4	2														
H – High	04															
Course																
Content	UNIT	- I	Ι													
	The Py	ython	Prog	gramr	ning	Lang	uage:	Insta	lling	Pytho	n, Co	mma	nd - L	Line o	ptions	and
	enviror	nment	, Ob	jects	in F	ythor	n, Da	ita ty	pes	in P	ython	, Exp	pressi	ons,	Opera	tors,
	Statem	ents,	String	s, Pr	ogram	n orga	nizati	ion, I	mport	ing n	nodule	es, Lo	ading	g and	runni	ng a
	Python		-		-	-			-	-			-			-
	Debug			20010	p+						-p-, -	<i></i>		-iopi		,
	Decug	5015														
	UNIT	- II														
	Projec	t De	finitio	o n:]	Defin	ing t	he p	roject	, Re	quire	nents	, Tra	aceabi	lity,	Captu	ıring
	require	ments	, Des	signin	g the	e soft	ware,	Fun	ctiona	l tes	ting,	Test	cases	, Tes	sting	error
	handlir	equirements, Designing the software, Functional testing, Test cases, Testing error andling, Implementation, Code reviews, User documentation, Implementing Control ystems in Python														
	UNIT	TTT														
	Buildin		d Hei	na Si	mula	ore	What	ic cirr	ulatic	n He	ing P	vthon	to cr	ate o	simul	ator
		-		-							-	-				
	Data I									-	• •		nation	i uata	a, P10	ung
	creatin	g you	rown	simu	lators,	Simi	natior	1 scop	e, In	ne and	1 effo	rt				

	UNIT- IV Instrumentation Data I/O: Data I/O interface software, Interface formats and protocols, Python interface support packages, Data I/O: Acquiring and writing data, Basic data I/O, Blocking versus nonblocking calls, Data I/O methods, Handling data I/O errors, Handling inconsistent data
Text books and Reference books	 Text Book: [T1] J.Hughes, "Real World Instrumentation with Python" I Ed., O'Reilly Media. 2010. [T2] Mark. Lutz, "Learning Python" V Ed., O'Reilly Media. 2013 Reference Books: [R1]E.Balaguruswamy, "Introduction to Computing and Problem Solving Using Python", Ist Ed., Mc Graw Hill, Jul 2017 [R2] SheetalTaneja, Naveen Kumar, "Python Programming: A modular approach", Ist Ed., Pearson Education, Sep 2017
E- resources and other digital material	1. https://nptel.ac.in/courses/106/106/106106145/

20EI7205/C – Automation in Manufacturing

Course Category:	Open Elective /Job Oriented Elective -3	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Basic Instrumentation,	Continuous Evaluation:	30
	Transducers	Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succe	ssful	com	pletic	on of	the co	ourse	, the	stude	ent w	ill be	able	to:		
outcomes	CO1	Expl	ain the	e conc	ents of	autor	nation	in ma	nufact	uring	indust	ries				
	CO2	Ident	Explain the concepts of automation in manufacturing industries Identify various fabrication components and sensors required in typical automated systems for manufacturing											nated		
	CO3	App	ply the concepts of electric drives and select suitable drive in nufacturing applications													
	CO4	Ana	alyze the basic elements and interpolators of CNC technology in nufacturing													
Contributi		РО	PO	РО	РО	PO	РО	РО	РО	PO	РО	РО	PO	PS	PS	PS
on of		1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
Course																
Outcomes towards	CO1															
achieveme nt of Program	CO2		2												2	
Outcomes (L – Low,	CO3			2											2	
M - Medium, H – High	CO4	2													2	
H – High Course Content	UNIT Introd manufa of auto of auto of med of a sy of Med UNIT Relation Formin Sensor transd	uction acturin matio hanics stem, hatror - II onal H og, Joi	ng, Pr n. Me s: Wri Mech nics-b F abri e ning,	oduct echatr ist wa nanica ased s catior Mach in	ion sy onics, tch, M il spri systen Pro ining, Ma	vstem, Disc Aecha ng, N n, Dev cess i , Addi nufac	Man iplines tronic fechat zelopn in Ma itive N	ufactu s of M s-base ronics nent o unufa Ianuf	uring Iecha ed sys s base of an e cturin acturi	syster tronic stem. ed aut equiva ng: O ng. surem	n, Pro s, Me Defin omate llent M vervie	oduct echatri ition ed sys Mecha ew of	lifecy onics of a s stem, ttronic fabri	for re ystem Build cs bas cation	mport placer , Exan ing bl ed sys n, Cas	ance ment mple ocks tem ting,

	 sensors, Strain gauge-based sensors, Capacitive elements, Linear variable differential transducer (LVDT), Eddy current based sensor, Inductive proximity switch. Optical encoder, Electric connection based switches, Pneumatic sensors, Hall effect based sensors UNIT- III Electric Drives in Manufacturing Process: Application of electric drives in automation. Direct current (DC) motor, alternating current (AC) motor, Working principle, Construction and application, Types of industrial automation, Mechanisms, Machines
	UNIT- IV CNC Technology in Manufacturing : Flexible manufacturing system, CNC technology in manufacturing, Vertical milling process: An example. CNC machine tools, Adaptive control technology based machine tools, Automated storage and retrieval system, Industrial conveyors, Industrial robots. CNC machines and interpolation
Text books and Reference books	 Text Book: [T1] Sathish, Anup Goel, A. Jacob Moses, Dr. Subhash L. Gadhave, Vinayak V. Gaikwad, "Automation in Manufacturing", Technical Publications [T2] Anup Goel, Dr. Subhash, L. Gadhave, A. Jacob Moses, "Automation in Manufacturing", Technical Publications Reference Books: [R1] SIA Experts, "Automation in Manufacturing", 1st Ed., SIA Publishers & Distributors Pvt Ltd, 2018 [R2] Beno Benhabib, "Manufacturing Design, Production, Automation, and Integration", 2003
E- resources and other digital material	1.https://nptel.ac.in/courses/112/103/112103293/

20EI7206/E – Industrial Safety and Environmental Management

Course Category:	Open Elective /Job Oriented Elective -4	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succe	ssful	com	pletic	on of	the c	ourse	e, the	stude	ent w	ill be	able	to:		
outcomes	CO1	Infe	vario	ous ha	zards	and s	afety	metho	ods er	nploy	ed in	indus	tries.			
	CO2	Cho	ose su	itable	risk a	assess	ment	and n	nanag	ement	meth	ods.				
	CO3	Out	line t	he sa	fety 1	netho	ods in	ı oil a	and g	as inc	lustry	/				
	CO4	Expl	lain th	e imp	act of	findu	stries	on en	viron	ment						
Contributi		РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO	PS	PS	PS
on of		1	2	3	4	5	6	7	8	9	10	11	12	01	O2	O3
Course																
Outcomes	CO1			3				3								
towards																
achieveme nt of	G 00															
Program	CO2			3			3	3								
Outcomes																
(L - Low,	CO3			3			3									
M -																
Medium,	CO4			3			3	3								
H – High				-			-	-								
Course Content	UNIT Safety design Hazard UNIT Accide regulati exposu explosi prevent UNIT Safety method	Assu and Evalu - II nt M ions, re ind on n tion m - III Measuls in d	opera lation lodeli Toxic ex(CI nodels nethod	tions, and (ng, F c rele EI), C c, Fla ls, Eve in De	Orga Contro Risk eases- ase st ummal ent tre sign a	Anizin ol, Ha Asses mode udies bility ee and And C	g for zop, F smen ls and in oil diag fault	t and t and d me indus rams, tree a tion:	ty, H case d Ma ethods stries, Exp nalys Safety	azard study nagei , Che Quan osure es	Clas , FMF ment: emica titativ moc	sifica EA. Dos l risk ve risk lels, n oil d	tion a e asse c ana c asses Fire & gas	and a essme lysis, ssmer and indus	ent, S Cher at, Fire explo	afety nical e and sion-

	Environmental Issues and Management : Environmental impact and management, Impact of oil and gas industry in marine environment, Oil hydrocarbons in marine environment, Chemical disposal of offshore industry and environmental management, Dispersion models and atmospheric pollution, Hazard assessment.
Text books and Reference books	Text Book: Reference Books:
E- resources and other digital material	

20EI7607 – Real Time Operating Systems

Course Category:	Skill Advanced Course	Credits:	3
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0- 4
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	Upon successful completion of the course, the student will be able to: Develop algorithms for data protection, synchronization and Intertask															
outcomes	CO1			algor catior				a pr	otecti	on,	synch	roniza	ation	and	Inte	rtask	
	CO2						sing F	reeRT	202								
	CO2						_		data 1	for a	niver	nroh	lem				
	CO4								lual c			i prot	Jiem				
	CO5								xperin								
Contributi	2.30	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	РО	PS	PS	PS	
on of		PO 1	PO 2	3	4	PO 5	РО 6	PO 7	8	PO 9	10	PO 11	12	PS 01	PS 02	PS 03	
Course						_											
Outcomes	CO1			3		2									3	3	
towards	001																
achieveme			3 2 3 3														
nt of	CO2																
Program Outcomes															2	2	
(L - Low,	CO3		3 3 3														
$(\mathbf{L} - \mathbf{L}0\mathbf{w}, \mathbf{M} - \mathbf{M})$																	
Medium,	CO4									3			2				
H – High																	
	CO5										3						
Course	List of	Fyne	rimei	nte													
Content		Crea			and s	tartir	og the	sche	edulei	r. Tas	sk me	mory	z allo	catio	n.		
		unde	0				0										
		STM		0								, J					
	2.	Prote	ecting	g Data	a and	Sync	chron	izing	task	s usir	ig ser	naph	ores.				
		Prote				•		-				lling.					
		Sync		-				-	inver	sion.							
		Sync							1 1			C.	.•				
		Sync				-				ta usi	ing so	oftwa	re tir	ners.			
		Inter Inter								ek no	tifico	tions					
		Devi									unca	lions	•				
		Devi															
		Devi															
		Shar				-		-			ing st	tream	buff	ers.			
		Crea									-						
	14.	Mem	nory 1	nana	geme	nt- C	lompa	aring	Free	RTO	S hea	p im	plem	entati	ons		

Text books and Reference books	 Text Book: [T1] Trevor Martin, "The Designers Guide to the Cortex-M Processor Family", 2nd Ed., Elsevier, 2018. [2]Warren Gay, "Beginning STM32: Developing with Free RTOS, Libopencm3 andGCC", 1st Ed., Apress, 2018. [3].Jiacun Wang, "Real-Time Embedded Systems", 1st Ed., Wiley, 2017
E- resources and other digital material	1. <u>https://www.freertos.org/Documentation/RTOS_book.html</u>

20EI7551 – Mini Project-II

Course Category:	Internship/Project	Credits:	1.5
Course Type:	Internship/Project	Lecture- Tutorial - Practice:	0 - 0- 3
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succe	ssful	com	pletic	on of	the c	ourse	, the	stude	ent wi	ill be	able	to:		
outcomes	CO1	Deve	elop i	nteres	t towa	ards re	esearc	h orie	ented f	field t	hroug	h liter	rature	explo	oration	1
	CO2		address the feasible solution of a problem													
	CO3		Exhibit competency in suggesting optimum solution by detail analysis of the problem													
	CO4	4 Demonstrate effective interpersonal, communication & presentation skills														
Contributio		РО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PS	PS	PS
n of Course		1	2	3	4	5	6	7	8	9	10	11	12	01	O2	03
Outcomes	001									3			3			
towards the	CO1															
achievemen t of		2					2			2						
Program	CO2															2
Outcomes	CO3		2				2		2	2						2
(1– Low, 2– Medium, 3 – High)	CO4									3	3	3				3

20EI7552 – Industrial/Research Internship

Course Category:	Internship/Project	Credits:	1.5
Course Type:	Internship/Project	Lecture- Tutorial - Practice:	0 - 0- 3
Prerequisites:		Continuous Evaluation:	30
_		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succe	ssful	com	pletic	on of	the co	ourse	, the	stude	ent wi	ill be	able	to:		
outcomes	CO1						n of k ned jo				till se	ts acq	uired	from	the co	ourse
	CO2						ationa eal wo						r life-	long		
	CO3		hibit critical thinking and problem solving skills by analysing underlying ue/s to challenges													
	CO4		ommunicate and collaborate effectively and appropriately with different ofessionals in the work environment through written and oral means													
	CO5	Exhi	hibit professional ethics by displaying positive disposition during internship													
Contributio		РО	РО	РО	РО	РО	PO	РО	РО	РО	РО	РО	РО	PS	PS	PS
n of Course		1	2	3	4	5	6	7	8	9	10	11	12	01	O2	O3
Outcomes towards the	CO1	3														2
achievemen																
t of Program	CO2											3				3
Outcomes	CO3		3				2	2								2
(1– Low, 2– Medium, 3 – High)	CO4										3					3
	CO5								2							2

Fourth Year (VIII Semester)

20EI8551 – Major Project & Internship

Course Category:	Internship/Project	Credits:	12
Course Type:	Internship/Project	Lecture- Tutorial - Practice:	0 - 0- 24
Prerequisites:		Continuous Evaluation:	30
-		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succe	ssful	com	pletic	on of	the c	ourse	, the	stude	ent wi	ll be	able	to:		
outcomes	CO1	Desi	gn tig	htly i	ntegra	ated p	roject	plans	using	g appr	opriat	e tool	S			
	CO2		lustrate proficiency in the use modern methodologies, multidisciplinary skill set nd knowledge in while working on the project													
	CO3	Dem	emonstrate effective execution process that result in successful projects													
	CO4	Dem	Demonstrate effective interpersonal, communication & presentation skills													
Contributio		РО														
n of Course		1	2	3	4	5	6	7	8	9	10	11	12	01	O2	03
Outcomes towards the achievemen	CO1			3												2
t of Program	CO2					2	2	2		2						3
Outcomes	CO3				2	2				2			2			2
(1– Low, 2– Medium, 3 – High)	CO4									3	3		3			3

The student should undergo internship and parallelly he/she should work on a project with well-defined objectives. At the end of the semester the candidate shall submit an internship completion certificate and a project report