VELAGAPUDI RAMAKRISHNA SIDDHARTHA ENGINEERING COLLEGE SCHEME OF INSTRUCTION FOR FOUR YEAR UG

PROGRAMME [VR20] GROUP A (CSE, ECE, EIE,IT)

SEMESTER I

CONTACT HOURS:26

S. No	Course Code	Course Category	Course Name	L	Т	P	Credits
1.	20BS1101	Basic Science	Matrices and Differential Calculus		0	0	3
2.	20BS1102A 20BS1102B	Basic Science	Engineering Physics (ECE/EIE) Applied Physics (CSE/IT)	3	0	0	3
3.	20ES1103	Engineering Science	Programming for Problem Solving	3	0	0	3
4.	20ES1104	Engineering Science	Basics of Electrical Engineering	3	0	0	3
5.	20HS1105	Humanities and Social Science	Technical English and Communication Skills	2	0	0	2
6.	20BS1151A	Basic Science	Engineering Physics Laboratory		0	3	1.5
7.	20ES1152	Engineering Science	Programming for Problem Solving Laboratory	0	0	3	1.5
8.	20HS1153	Humanities and Social Science	Technical English and Communication Skills Laboratory		0	3	1.5
9.	20ES1154	Engineering Science	Computing and Peripherals Laboratory		0	2	1
10.	20MC1106	Mandatory Course	Technology and Society		0	0	-
	Total		15	0	11	19.5	
11.	20MC1107	Mandatory Course	Induction Program				-

Category	Credits
Basic Science Courses	3+3+1.5=7.5
Engineering Science Courses	3+3+1.5+1=8.5
Humanities and Social Science Courses	2+1.5=3.5
Mandatory Courses	0
TOTAL CREDITS	19.5

SEMESTER II

S.No	Course Code	Course Category	Course Name	L	Т	P	Credits
1.	20BS2101	Basic Science	Science Laplace Transforms and Integral Calculus		0	0	3
2.	20BS2102	Basic Science	Engineering Chemistry	3	0	0	3
3.	20ES2103A 20ES2103B	Engineering Science	Object Oriented Programming using Python (CSE/ECE/IT) Python Programming (EIE)	3	0	0	3
4.	20ES2104A 20ES2104B 20ES2104C	Engineering Science	Basic Electronics Engineering (CSE/IT) Circuit Analysis(ECE) Network Theory(EIE)	3	0	0	3
5.	20ES2105	Engineering Science	Engineering Graphics	1	0	4	3
6.	20BS2151B	Basic Science	Engineering Chemistry Laboratory	0	0	3	1.5
7.	20ES2152A 20ES2152B	Engineering Science	Object Oriented Programming using Python Lab (CSE/ECE/IT) Python Programming lab(EIE)	0	0	3	1.5
8.	20ES2153	Engineering Science	Engineering Workshop	0	0	3	1.5
9.	20MC2106	Mandatory Course	Professional Ethics and Practice	1	0	0	-
	1	I	Total	14	0	13	19.5

Category	Credits
Basic Science Courses	3+3+1.5=7.5
Engineering Science Courses	3+3+3+1.5+1.5=12
Humanities and Social Science Courses	0
Mandatory Courses	0
TOTAL CREDITS	19.5

VELAGAPUDI RAMAKRISHNA SIDDHARTHA ENGINEERING COLLEGE SCHEME OF INSTRUCTION FOR FOUR YEAR UG

PROGRAMME [VR20] GROUP B (CE, EEE, ME)

SEMESTER I

CONTACT HOURS:27

S.No	Course Code	Course Category	Course Name	L	T	P	Credits
1.	20BS1101	Basic Science	Matrices and Differential Calculus	3	0	0	3
2.	20BS1102	Basic Science	Engineering Chemistry	3	0	0	3
3.	20ES1103	Engineering Science	Programming for Problem Solving	3	0	0	3
4.	20ES1104A 20ES1104B 20ES1104C	Engineering Science	Introduction to Civil Engineering (CE) Mechanics for Engineers (EEE) Engineering Mechanics—I(ME)	3	0	0	3
5.	20ES1105	Engineering Science	Engineering Graphics	1	0	4	3
6.	20BS1151B	Basic Science	Engineering Chemistry Laboratory	0	0	3	1.5
7.	20ES1152	Engineering Science	Programming for Problem Solving Laboratory	0	0	3	1.5
8.	20ES1153	Engineering Science	Engineering Workshop	0	0	3	1.5
9.	20MC1106	Mandatory Course	Technology and Society	1	0	0	-
			Total	14	0	13	19.5
10.	20MC1107	Mandatory Course	Induction Program				-

Category	Credits
Basic Science Courses	3 +3 +1.5 =7.5
Engineering Science Courses	3 +3 +3 +1.5 +1.5=12
Humanities and Social Science Courses	0
Mandatory Courses	0
TOTAL CREDITS	19.5

SEMESTER II

S. No	Course Code	CourseCategory	Course Name	L	Т	P	Credits
1.	20BS2101	Basic Science	Laplace Transforms and Integral Calculus	3	0	0	3
2.	20BS2102A 20BS2102B	Basic Science	Engineering Physics (EEE) Physics for Engineers (CE/ME)	3	0	0	3
3.	20ES2103B	Engineering Science	Python Programming	3	0	0	3
4.	20ES2104D 20ES2104E 20ES2104F	Engineering Science	Engineering Mechanics (CE) Network Analysis (EEE) Engineering Mechanics –II(ME)	3	0	0	3
5.	20HS2105	Humanities and Social Science	Technical English and Communication Skills	2	0	0	2
6.	20BS2151A	Basic Science Course	Engineering Physics Laboratory	0	0	3	1.5
7.	20ES2152B	Engineering Science	Python Programming Laboratory	0	0	3	1.5
8.	20HS2153	Humanities and Social Science	Technical English and Communication Skills Laboratory	0	0	3	1.5
9	20ES2154	Engineering Science	Computing and Peripherals Laboratory	0	0	2	1
10.	20MC2106	Mandatory Course	Professional Ethics and Practice	1	0	0	_
			Total	15	0	11	19.5

Category	Credits
Basic Science Courses	3+3+1.5=7.5
Engineering Science Courses	3+3+1.5+1=8.5
Humanities and Social Sciences	2+1.5=3.5
Mandatory Courses	0
TOTAL CREDITS	19.5

SEMESTER III

CONTACT HOURS:30

S.No	Course Code	CourseCategory	Course Name	L	T	P	Credits
1.	20BS3101A	Basic Science	Mechanics of Solids	3	0	0	3
2.	20ES3102A	Engineering Science	Engineering Geology	2	0	2	3
3.	20CE3303	Program Core	Surveying and Geomatics	3	0	0	3
4.	20CE3304	Program Core	Fluid Mechanics	3	0	0	3
5.	20CE3305	Program Core	Concrete Technology	2	0	2	3
6.	20ES3151A	Engineering Science Lab	Design Thinking and Civil Engineering Workshop	0	0	3	1.5
7.	20CE3352	Program CoreLab1	SurveyingLab-1	0	0	3	1.5
8.	20CE3353	Program CoreLab2	Computer Aided Civil Engineering Drawing	0	0	3	1.5
9.	20TP3106	SoftSkills-1	Logic and Reasoning	0	0	2	1
10.	20MC3107B	Mandatory Course(AICTE suggested)	Indian Constitution(CE)	2	0	0	-
	Total 15 0 15 20.5					20.5	

Category	Credits
Basic Science Courses	3
Engineering Science Courses	4.5
Program Core Courses	12
Skill oriented courses	1
Mandatory Courses	0
TOTAL CREDITS	20.5

SEMESTER IV

S.No	Course Code	Course Category	Course Name	L	T	P	Credits
1.	20BS4101	Basic Science	Probability and Statistics for Engineers	3	0	0	3
2.	20CE4302	Program Core	Structural Analysis	3	0	0	3
3.	20CE4303	Program Core	Geotechnical Engineering	3	0	0	3
4.	20CE4304	Program Core	Hydraulics and Hydraulic Machines	3	0	0	3
5.	20HS4105	Humanities and Social Sciences	Universal Human Values	3	0	0	3
6.	20CE4351	ProgramCoreLab1	Strength of Materials Lab	0	0	3	1.5
7.	20CE4352	ProgramCoreLab2	Fluid Mechanics and Hydraulic Machinery Lab	0	0	3	1.5
8.	20CE4353	ProgramCoreLab3	Geotechnical Engineering Laboratory	0	0	3	1.5
9.	20TP4106	SoftSkills-2	English for Professionals	0	0	2	1
10	20CE4607	Skill Oriented Course - 1	Autodesk Revit and Excel for Engineers	1	0	2	2
11	20MC4108A	Mandatory Course(AICTE suggested)	Environmental Studies(CE)	2	0	0	-
	Total					13	22.5
	Summe	er Internship 6 weeks (Manda	atory) during summer vacation (EPIC	S)		
Hon	Honors / Minor Courses (the hours distribution can be 4-0-0, 3-0-2 or 3-1-0 also)						4

Category	Credits
Basic Science Courses	3
Program Core Courses	13.5
Engineering Science Courses	0
Skill Oriented courses	3
Humanities and Social Science courses	3
Mandatory Courses	0
TOTAL CREDITS	22.5

SEMESTER V

CONTACT HOURS:34

C N -	Course	Commence Containment	C N	_	Т	P	Credit
S.No	Code	Course Category	Course Name	L	1	Р	s
1	20CE5301	Program Core	Water Resources Engineering	3	0	0	3
2	20CE5302	Program Core	Environmental Engineering	3	0	0	3
3	20CE5303	Program Core (Group B)	Design of Concrete Structures	2	0	0	2
4	20CE5404	ProgramElective1		3	0	0	3
5	20CE5205	Open Elective/Job oriented elective-1	A) Geospatial Technologies B) Building Services Engineering	2	0	2	3
6	20CE5351	Program Core Lab1	Computer Applications in Civil Engineering Lab 1	0	0	3	1.5
7	20CE5352	ProgramCoreLab2	Environmental Engineering Lab	0	0	3	1.5
8	20CE5353	Program Core (Group B)	Advanced Surveying Lab	0	0	3	1.5
9	20TP5106	Soft Skills –3	Personality Development	0	0	2	1
10	20CE5354	Internship/Project(6weeks)	EPICS/Internship	0	0	3	1.5
11	20CE5607	Skill Oriented course -2	Building Information Modeling (BIM)	1	0	2	2
12	20MC5108 B	Mandatory Course (AICTE suggested)	Innovation, IPR & Entrepreneurship (GroupB)	2	0	0	-
			Total	16	0	18	23
Н	onors/Minor (Courses (the hours distribution can be	4-0-0, 3-0-2 or 3-1-0 also)	4	0	0	4
Catego			Credits				•
Progra	Program Core Courses (Group B)		12.5				
Humanities and Social Sciences (Group B)		0					
Program Elective Courses			3				
Open Elective Courses 3							
Skill Oriented courses			3				
	hip/Project		1.5				
	tory Course		23				
IUIA	LCKEDIIS		43				

SEMESTER VI

S. No	Course Code	Course Category	Course Name	L	Т	P	Credits
1	20CE6301	Program Core	Design of Steel Structures	3	0	0	3
2	20CE6302	Program Core	Transportation Engineering	3	0	0	3
3	20HS6103	Humanities and Social Sciences	Engineering Economics and Management	2	0	0	2
4	20CE6404	ProgramElective2		3	0	0	3
5	20CE6205	Open Elective /Job oriented elective-2	A) Green Buildings and Sustainability B) Advanced Construction Materials C) Quality Control and Quality Assurance	3	0	0	3
6	20CE6351	ProgramCoreLab1	Transportation Engineering Lab	0	0	3	1.5
7	20CE6352	ProgramCoreLab2	Computer Applications in CivilEngineeringLab-2	0	0	3	1.5
8	20HS6153	Humanities & Social Science	English and Communication Skills Lab	0	0	2	1
9	20TP6106	Soft Skills-4	Quantitative Aptitude	0	0	2	1
10	20CE6554	Internship/ Project	Mini Project-I	0	0	2	1
11	20MC6107 B	Mandatory Course (AICTE suggested)	Biology for Engineers / Foreign Languages (German/French)/ Law for Engineers/Sanskrit Bhasa/ Yoga & Meditation/ Psychology	2	0	0	0
		•	Total	16	0	12	20

Industrial/ResearchInternshipsixweeks(Mandatory)duringsummery	acati	on		
Honors/Minor Courses (the hours distribution can be 4-0-0, 3-0-2 or 3-1-0 also)	4	0	0	4

Category	Credits
Program Core Courses (Group B)	9
Humanities and Social Sciences (Group B)	3
Program Elective Courses	3
Open Elective Courses	3
Skill Oriented courses	1
Mandatory Course	0
Internship/Project	1
TOTALCREDITS	20

SEMESTER VII

CONTACT HOURS:29

S.No	Course Code	Course Category	Course Name	L	T	P	Credits
1.	20CE7301	Program Core	Estimation and Costing	3	0	0	3
2.	20CE7402	Program Elective 3		3	0	0	3
3.	20CE7403	Program Elective 4		3	0	0	3
4.	20CE7404	Program Elective 5		3	0	0	3
5.	20CE7205	Open Elective / Job Oriented Elective - 3		2	0	2	3
6.	20CE7206	Open Elective / Job Oriented Elective - 4		2	0	2	3
7.	20CE7607	Advanced Skill Course	Computer Aided Construction Management	1	0	2	2
8.	20CE7551	Internship / Project	Mini Project - II	0	0	3	1.5
9.	20CE7552	Internship / Project	Industrial / Research Internship	0	0	3	1.5
			Total	17	0	12	23

Note: Open Elective Courses 3 and 4 are self – learning. Students may opt from any MOOCS platform. They have to submit the certificate before the last instruction day of VII Semester.

Category	Credits
Program Core	3
Program Electives	9
Open Electives	6
Skill Oriented Courses	2
Internship / Project	3
TOTAL CREDITS	23

SEMESTER VIII

CONTACT HOURS:24

S.No	Course Code	Course Category	Course Name	L	T	P	Credits
1.	20CE8551	Internship / Project	Major Project and Internships (6 Months)	0	0	24	12
			Total	0	0	24	12

^{**} The student should undergo internship and simultaneously he/she should work on a project with well-defined objectives. At the end of the semester the student should submit an internship completion certificate and a project report.

CREDITDISTRIBUTION-Year Wise

GroupA(CSE,ECE,EIE,IT)

Year	Semester I	Semester II	Total Credits
I	19.5	19.5	39
II	20.5	22.5 [82]	43
Ш	20.5	22.5[125]	43
IV	23	12	35
	,	Total	160

GroupB(CE,EEE,ME)

Year	Semester I	Semester II	Total Credits
I	19.5	19.5	39
II	20.5	22.5[82]	43
III	23	20[125]	43
IV	23	12	35
		Total	160

Non-Credit Courses				
	(1) Induction Program			
Mandatory Courses(7)	(2) Technology and Society			
	(3) Professional Ethics and practice			
	(4) Environmental Studies			
	(5) Indian Constitution			
	(6) Biology for Engineers			
	(7) Innovation, IPR and Entrepreneurship			
	(1) Co-curricular participation			
Mandatany Student Practice Courses (2)	(2) NCC/NSS/Games and Sports/Art and			
Mandatory Student Practice Courses (2)	Cultural / Professional Society activities			
	/Industry training certificate.			

Contact Hours:

	GRO	OUPA	GROUPB		
	ODD Semester	EVEN Semester	ODD Semester	EVEN Semester	
1stYear	26	27	27	26	
2ndYear	28	31	30	31	
3rdYear	33	30	34	28	
4 th year	29	24	29	24	

CREDITDISTRIBUTION-Category Wise

Category	Suggested AICTE	Suggested APSCHE	VR17	VR 20
Humanities and Social Sciences (HSMC),including Management	12	10.5	12	9.5
Basic Sciences (BSC) including Mathematics, Physics, Chemistry,	25	21	24	21
Engineering Sciences (ESC), including Materials, Workshop, Drawing, Basics of Electrical/ Electronics /Mechanical/Computer Engineering, Instrumentation	24	24	20	25
Professional Subjects-Core (PCC), relevant to the chosen specialization / branch	48	51	58	50
Professional Subjects-Electives (PEC), relevant to the chosen specialization / branch	18	15	17	15
Open Electives (OEC), from other technical and / or emerging subject areas	18	12	14	12
Project Work, Seminar, Internship in Industry or elsewhere (PROJ)	15	16.5	16	17.5
Mandatory Courses (MC) Induction Program, Technology and Society, Professional Ethics, Environmental Studies, Indian Constitution, Biology for Engineers, Innovation, IPR & Entrepreneurship Student Practice Courses	Non- Credit	Non- Credit	Non- Credit	Non - Credt
Skill Oriented /Soft Skill Courses(SC)		10	04	10
Total Credits	160	160	165	160

CREDITDISTRIBUTION-Category wise and Semester wise

	BS	ES	HS	PC	PE	OE	SC/SO	PROJ	Total
Sem-1	7.5	8.5/12	3.5/0	0	0	0	0	0	19.5
Sem-2	7.5	12/8.5	0/3.5	0	0	0	0	0	19.5
Sem-3	3	4.5	0	12	0	0	1	0	20.5
Sem-4	3	0	3	13.5	0	0	3	0	22.5
Sem-5	0	0	3/0	9/12.5	3	3	3	1.5	22.5/23
Sem-6	0	0	0/3	12.5/9	3	3	1	1	20.5/20
Sem-7	0	0	0	3	9	6	2	3	23
Sem-8	0	0	0	0	0	0	0	12	12
Total	21	25	9.5	50	15	12	10	17.5	160

LIST OF OPEN ELECTIVES:

SEMESTER-V

20CE5205:Open Elective/Joborientedelective-1

- A) Geospatial Technologies
- B) Building Services Engineering

SEMESTER-VI

20CE6205:Open Elective/Job oriented elective-2

- A) Green Buildings and Sustainability
- B) Advanced Construction Materials
- C) Quality Control and Quality Assurance

SEMESTER-VII

20CE7205: Open Elective /Job oriented elective

-3 20CE7206:Open

Elective/Joborientedelective-4

Note: Open Elective Courses 3 and 4 are self-learning. Students may opt from any MOOCs platform. They have to submit the certificate before the last instruction day of VII semester.

PROGRAM ELECTIVES:

SEMESTER V (P.E-I)

S.No	Course Code	Course	Subject L			P	Credits
1	20CE5404/A	ProgramElective-1	Advanced structural analysis	3	0	0	3
2	20CE5404/B	ProgramElective-1	Town planning & Architecture	3	0	0	3
3	20CE5404/C	ProgramElective-1	Air pollution and Control	3	0	0	3
4	20CE5404/D	ProgramElective-1	Environmental Geotechnology	3	0	0	3
5	20CE5404/E	ProgramElective-1	Forensics in Civil Engineering	3	0	0	3

SEMESTERVI(P.E-II)

S.No	Course Code	Course	Subject	L	T	P	Credits
1	20CE6404/A	ProgramElective-2	Advanced Design of concrete structures	3	0	0	3
2	20CE6404/B	ProgramElective-2	Foundation Engineering	3	0	0	3
3	20CE6404/C	ProgramElective-2	Advanced Environmental Engineering	3	0	0	3
4	20CE6404/D	ProgramElective-2	Railway and Tunnel Engineering	3	0	0	3
5	20CE6404/E	ProgramElective-2	Irrigation Structures	3	0	0	3

SEMESTERVII(P.E-III)

S.No	Course Code	Course	Subject	L	T	P	Credits
1	20CE7402/A	ProgramElective-3	Earthquake Resistant Design		0	0	3
2	20CE7402/B	ProgramElective-3	Solid Waste Management	3	0	0	3
3	20CE7402/C	ProgramElective-3	Ground Improvement Techniques	3	0	0	3
4	20CE7402/D	ProgramElective-3	Pavement design and Construction	3	0	0	3
5	20CE7402/E	ProgramElective-3	Open channel flow & River Engineering	3	0	0	3
6	20CE7402/F	ProgramElective-3	Analysis and Design of High Rise Building	3	0	0	3

SEMESTERVII (P.E-IV)

S.No	Course Code	Course	Subject	L	T	P	Credits
1	20CE7403/A	ProgramElective-4	Prefab Structures	3	0	0	3
2	20CE7403/B	ProgramElective-4	Construction Equipment and Automation	3	0	0	3
3	20CE7403/C	ProgramElective-4	Groundwater Hydrology	3	0	0	3
4	20CE7403/D	ProgramElective-4	Instrumentation and Sensor Technology in Civil Engineering	3	0	0	3
5	20CE7403/E	ProgramElective-4	Airport and Harbour Planning	3	0	0	3
6	20CE7403/F	ProgramElective-4	Design and Drafting using REVIT	3	0	0	3

SEMESTER VII- (PE-V)

S.No	Course Code	Course	Subject	L	T	P	Credits
1	20CE7404/A	ProgramElective-5	Design of Prestressed Concrete	3	0	0	3
2	20CE7404/B	ProgramElective-5	Repair and Rehabilitation of Structures	3	0	0	3
3	20CE7404/C	ProgramElective-5	Disaster Preparedness & Planning Management	3	0	0	3
4	20CE7404/D	ProgramElective-5	Urban Transport Planning	3	0	0	3
5	20CE7404/E	ProgramElective-5	Rural Water Supply and Sanitation	3	0	0	3
6	20CE7404/F	ProgramElective-5	Analysis and Design of Industrial Structures	3	0	0	3

S.No	Specialization	Program Electives									
		Elective1	Elective2	Elective3	Elective4	Elective5					
1	Structural	Advanced	Advanced	Earthquake	Prefab	Design of					
	Engineering	Structural	Design of	Resistant	Structures	Prestressed					
		Analysis	Concrete	Design		Concrete					
			Structures								
2	Geotechnical	Environmental	Foundation	Ground							
	Engineering	Geotechnology	Engineering	Improvement							
				Techniques							
3	Environmental	Air pollution	Advanced	Solid Waste		Rural Water					
	Engineering	and Control	Environmental	Management		Supply and					
			Engineering	_		Sanitation					
4	Transportation		Railway and	Pavement	Airport and	Urban					
	Engineering		Tunnel	Design and	Harbour	Transport					
			Engineering	Construction	Planning	Planning					
5	Hydrology		Irrigation	Open channel	Ground water						
	&Water		Structures	flow &	Hydrology						
	Resources			River							
	Engineering			Engineering							
6	Industry			Analysis and	Design and	Analysis					
	Oriented			Design of	Drafting	and Design					
	Courses			High Rise	using REVIT	of					
				Buildings		Industrial					
				using		Structures					
				ETABS and		using STAAD					
				Foundation design using		Pro					
				SAFE for		110					
				Seismic							
				Loads							
7	Miscellaneous	Town planning			Construction	Repair and					
		& Architecture			Equipment and	Rehabilitation					
					Automation	of Structures					
8		Forensics in			Instrumentation	Disaster					
		Civil			and Sensor	Preparedness &					
		Engineering			Technology in	Planning					
					Civil	Management					
					Engineering						

LIST OF COURSES OFFERED UNDER MINORS

Note:

- 1. Student can opt any 4 subjects from the list given below.
- 2. Compulsory MOOC/NPTEL Courses for 04 credits (02 courses@ 2 credits each OR a specialization with total 16weeks duration) in addition to the list given below.

S.No	Course Code	COURSE NAME	L	T	P	Credits
FOURTH	SEMESTER					
1	20CEM4701	Introduction to Civil Engineering – Concepts and Materials	3	1	0	4
FIFTH SE	MESTER					
2	20CEM5702	Methodology for Civil Engineering Construction	3	1	0	4
	20CEM5711	SELF LEARNING				2
SIXTH SE	EMESTER					
3	20CEM6703A	System Design for Sustainability	3	1	0	4
4	20CEM6703B	Ecology & Environment	3	1	0	4
SEVENTE	H SEMESTER					
5	20CEM7704A	Infrastructure and Transportation System Planning	3	1	0	4
6	20CEM7704B	Construction Planning and Execution	3	1	0	4

LIST OF COURSES OFFERED UNDER HONORS

- 1. Student can opt any 2 subjects from each of the POOLs given below (i.e, total of 4 subjects).
- 2. Compulsory MOOC/NPTEL Courses for 04 credits (02 courses@ 2 credits each OR a specialization with total 16weeks duration) in addition to the list given below.

S.No	Course Code	COURSE NAME	L	Т	P	Credits
FOURTH	SEMESTER		•	•		
1	20CEH4801A	Stability of Structures	3	1	0	4
2	20CEH4804B	Sustainable Construction Methods	3	1	0	4
3	20CEH4801C	Design of Formwork	3	1	0	4
FIFTH SE	MESTER	<u>-</u>	•	•		
4	20CEH5802A	Engineering Rock Mechanics	3	1	0	4
5	20CEH5801B	Advanced Steel Design	3	1	0	4
6	20CEH5804C	Geospatial Data Processing	3	1	0	4
SIXTH SE	EMESTER					
7	20CEH6803A	Traffic Analysis and Design	3	1	0	4
8	20CEH6803B	Transportation Economics	3	1	0	4
9	20CEH6802C	Advanced Foundation Engineering	3	1	0	4
SEVENTI	H SEMESTER					
10	20CEH7802A	Geo Synthetics and Reinforced Soil Structures	3	1	0	4
11	20CEH7803B	Intelligent Transportation Systems	3	1	0	4
12	20CEH7804C	Environmental Impact Assessment	3	1	0	4

20BS3101A	MECHANICS OF SOLIDS
20DS3101A	MIECHANICS OF SOLIDS

Basic Science	Credits:	3
Theory	Lecture - Tutorial - Practice:	3-0-0
Engineering Mechanics	Continuous Evaluation:	30
20ES2104D	Semester end Evaluation:	70
	Total Marks:	100
	Theory Engineering Mechanics	Theory Lecture - Tutorial - Practice: Engineering Mechanics Continuous Evaluation: 20ES2104D Semester end Evaluation:

Course outcom	ies	Upon	successf	ul con	npletic	on of th	ne cou	rse, th	e stude	ent wil	l be able	to:			
		CO1	unders	stand t	he cor	ncepts	of stre	esses, s	strains	and p	rinciples	stresses a	and strains	5.	
		CO2	detern	determine the shear forces and bending moments											
		CO3	determine the bending stresses and deflection at any point subjected to loads.												
		CO4	, , , , ,												
		CO5													
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO11	PO12	PSO 1	PSO2
towards achievement	CO1	3	2	2		3						2		1	3
of Program Outcomes	CO2	3	2	2		3						1		1	3
(1 – Low, 2 – Medium, 3–	CO3	3	2	2		3						1		1	3
High)	CO4	3	2	2		3						1		1	3
	CO5	3	2	2		3						1		1	3
		Stress volum compo	and stra etric stra site bars	nin - H ain – s – Ter	Hooke' Elastic mperat ND B l	s law c mod ture str	uli and resses- NG M	d the at Simp	relatio le prol NT	nship blems.	between Concept	them -	strain, Poi Bars of v ipal Stress	arying s	ection –

Text books	UNIT – II FLEXURAL STRESSES Theory of simple bending – Assumptions – Derivation of bending equation - Neutral axis – Determination of bending stresses – Section modulus of across various beam sections. SLOPE AND DEFLECTION Relationship between moment; slope and deflection; Macaulay's method; Moment area method; Use of these methods to calculate slope and deflection for determinant beams–Simple problems; Castigliano's theorem. UNIT – III SHEAR STRESSES AND TORSION Derivation of formula of shear stress– Shear stress distribution across various beam sections - Derivation of torsion equation and its assumptions; Applications of the equation of the hollow and solid circular shafts; Torsional rigidity; Simple problems. STRAIN ENERGY Introduction; Derivation of expressions for elastic strain energy in uni -axial stress; elastic strain energy in pure bending; elastic strain energy for shearing stresses; elastic strain energy of a bar in pure torsion. UNIT – IV COMPOUND STRESSES Introduction; Principle of superposition and its limitation; Stress distribution on various cross sections of members due to eccentric loads; Middle third rule; Core or Kernel of a section. COLUMNS Introduction, Stability of equilibrium; The Euler's formula for columns with different end restraints; Limitations of the Euler's formulas; Generalized Euler buckling – load formulas; [T1] Er.R.K.Rajput, "Strength of Materials(Mechanics of solids)", S.Chand& Company Ltd, New Delbii
	Delhi. [T2] S.Ramamrutham& R Narayan, "Strength of Materials", DhanpatRai Publishing Co.(P) Ltd, New Delhi.
Reference books	 [R1] S SBhavikatti, "Structural Analysis", V K Publishers. [R2] S P Timoshenki& D H Young, "Theory of structures". [R3] E P Popov, "Mechanics of materials", Prentice-hall of India Pvt. Ltd., New Delhi.
E-resources and other digital material	http://nptel.ac.in/courses/105105108/

20ES3102A	ENGINEERING GEOLOGY

Course Category:	Engineering Science	Credits:	3
Course Type:	Theory & Practical	Lecture - Tutorial - Practice:	2-0-2
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

CO1 CO2 CO3	apply probl	erties quant ems re	titativ		arious	mine	rals ar	nd roc	ks on th	ne basis o	f their en	oineerii			
CO3	probl	ems re		e skill		CO1 analyze and classify various minerals and rocks on the basis of their engineering properties									
				apply quantitative skills and frame work for solving basic engineering geology problems related to geological features and geological hazards											
66.4	. I	understand the importance of geo physical methods making engineering decisions specially site selection of engineering projects.													
CO4	co4 evaluate geological problems for a meaningful solution in the context of major civil engineering projects and their environmental impact.														
PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO11	PO12	PSO 1	PSO 2		
3													3		
3													3		
3	3		3										3		
3	3		3										3		
Course Content GEO 1. Int Engir Introd prope LAB a.			Engineralogieral	neerineelogi gy Ming min dentifieldspa	ng geo cal str neral nerals ication ar grou	udies Identi n of C up c. I	in var ificatio Commo Mica (ious (on by on Ro Group	Civil en Physica ck form d. Carl	gineering al propert ning grou bonate Gi	projects ies . Phys p of Mino	Minera sical erals			
	UNIT GEO 1. Int Engin Introd prope LAB a.	UNIT-I GEOLOGIC 1. Introduct Engineering: Introduction properties of LAB EXCE a. Quartz	UNIT-I GEOLOGICAL M 1. Introduction to Engineering: Scope Introduction to min properties of rock f LAB EXCERCISE a. Quartz Group	UNIT-I GEOLOGICAL MATE 1. Introduction to Engine Engineering: Scope of ge Introduction to mineralog properties of rock formin LAB EXCERCISE-I. Id a. Quartz Group b. Fo	UNIT-I GEOLOGICAL MATERIA 1. Introduction to Engineerin Engineering: Scope of geologi Introduction to mineralogy Mi properties of rock forming min LAB EXCERCISE-I. Identif a. Quartz Group b. Feldspa	UNIT-I GEOLOGICAL MATERIALS 1. Introduction to Engineering geo Engineering: Scope of geological str Introduction to mineralogy Mineral properties of rock forming minerals LAB EXCERCISE-I. Identification a. Quartz Group b. Feldspar group	UNIT-I GEOLOGICAL MATERIALS 1. Introduction to Engineering geology Engineering: Scope of geological studies Introduction to mineralogy Mineral Identi properties of rock forming minerals LAB EXCERCISE-I. Identification of C a. Quartz Group b. Feldspar group c. I	UNIT-I GEOLOGICAL MATERIALS 1. Introduction to Engineering geology -Defi Engineering: Scope of geological studies in var Introduction to mineralogy Mineral Identification properties of rock forming minerals LAB EXCERCISE-I. Identification of Common a. Quartz Group b. Feldspar group c. Mica Common and Com	UNIT-I GEOLOGICAL MATERIALS 1. Introduction to Engineering geology -Definition Engineering: Scope of geological studies in various C Introduction to mineralogy Mineral Identification by properties of rock forming minerals LAB EXCERCISE-I. Identification of Common Roa. Quartz Group b. Feldspar group c. Mica Group	UNIT-I GEOLOGICAL MATERIALS 1. Introduction to Engineering geology -Definition, Brance Engineering: Scope of geological studies in various Civil enginteroduction to mineralogy Mineral Identification by Physical properties of rock forming minerals LAB EXCERCISE-I. Identification of Common Rock form a. Quartz Group b. Feldspar group c. Mica Group d. Carl	UNIT-I GEOLOGICAL MATERIALS 1. Introduction to Engineering geology -Definition, Branches of Gengineering: Scope of geological studies in various Civil engineering Introduction to mineralogy Mineral Identification by Physical propert properties of rock forming minerals LAB EXCERCISE-I. Identification of Common Rock forming group a. Quartz Group b. Feldspar group c. Mica Group d. Carbonate	UNIT-I GEOLOGICAL MATERIALS 1. Introduction to Engineering geology -Definition, Branches of Geology us Engineering: Scope of geological studies in various Civil engineering projects Introduction to mineralogy Mineral Identification by Physical properties . Phys properties of rock forming minerals LAB EXCERCISE-I. Identification of Common Rock forming group of Mineral Quartz Group b. Feldspar group c. Mica Group d. Carbonate Group	UNIT-I GEOLOGICAL MATERIALS 1. Introduction to Engineering geology -Definition, Branches of Geology useful to Engineering: Scope of geological studies in various Civil engineering projects Minera Introduction to mineralogy Mineral Identification by Physical properties . Physical properties of rock forming minerals LAB EXCERCISE-I. Identification of Common Rock forming group of Minerals		

Sedimentary rocks – Formation –Classification and Textures, Metamorphic rocks and metamorphism – Formation –Classification and Texture, Engineering concerns of rocks

LAB EXCERSISE- II Identification of common rocks

a) Granite b) Basalt c) Diorite d) Sandston e Shale f) Limestone g) Gneiss h) Schist i) Marble

UNIT-II

EARTH PROCESS

- **1. Introduction:** Weathering, Engineering classification of weatheredrocks: Importance ofweathering in Civil Engineering. **Earth quakes -** Causes and effects of earthquakes Earthquake Magnitude and intensity scales. seismic zones of India: **Landslides -** Classification -Preventive measures
- **2.Structural geology** Stress –strain behavior of rock, Concept of rock deformation Rock outcrops- Types- strike and Dip **Folds** Types-Effects on construction **Faults**-Types-Effects on construction

LAB EXCERSISE-III- Identification of structural features on Models.

UNIT-III

GEOLOGICAL AND GEOPHYSICAL INVESTIGATION METHODS investigation Methods

- 1. Maps and their interpretation- Topographic Map and Geological Map
- LAB EXCERSISE-IV- Practicing topographic map cross section, Practicing geological maps and cross section
- **2. Geophysical Methods-** Principles of exploration geophysical Methods Electrical Resistivity method- Interpretation, Seismic refraction method- Interpretation

LAB EXCERSISE-V-Electrical Resistivity survey for civil engineering application

UNIT-IV

GEOLOGICAL INVESTIGATIONS FOR MAJOR PROJECTS

- **1. Dams -** Site selection for dams , Geological investigation methods for dams: **Reservoirs**-Failure of reservoirs , Reservoir suitable rocks, Reservoir induced seismicity **Tunnels-** Site selection for tunnels , Geological investigation methods for Tunnels.
- **2.Environmental geology**—Fundamental concept of environmental geology-Environmental impact on mining construction materials- aggregate waste disposal- sand mining--Impactof environment on the construction of dams, reservoirs, Groundwater contamination-Fluoride problem- Nuclear waste disposal-Health hazards

Text books	 [T1] F.G. Bell, Fundamental of Engineering Geology, BS Publications PVT Ltd, Hyderabad. [T2] Parbin Singh, "Engineering and General Geology", Katson Publication House, 1987. [T3] Principals of Engineering Geology by K.V.G.K. Gokhale – B.S publications [T4] Engineering Geology by N.Chennkesavulu, Mc-Millan, India Ltd. 2005. [T5] Environmental Geology by K.S Valdia, TaTaMcGraHill, NewDelhi
Reference books	 [R1] Krynine and Judd, "Engineering Geology and Geo techniques" McGraw Hill Book Company, 1990. [R2] Legeet, "Geology and Engineering", McGraw Hill Book Company, 1998. [R3] Blyth, "Geology for Engineers", ELBS, 1995. [R4] GoodmanR.F-Introduction to rockmechanics, JohnWiley, Chichestor [R5] S.K Duggal et.al Engineering Geology –McGraw Hill Education [R6] E.A Keller-Environmental Geology- Prientice Hall .N.Jercy
E-resources and other digital material	NPTEL Courses

20CE3303	SURVEYING & GEOMETICS
2002000	S011 / E111 / O 00 OE 01/1E110S

Course Category:	Programme Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0 - 0
Prerequisites:	Mathematics, Science	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outco	Upon	succes	ssful c	omple	tion o	f the c	course	, the s	studen	t will	be ab	ole to:			
	C				understand the basic principles of surveying and linear measurements										
	CO2	evaluate the reduced levels and plot contours													
	CO3	understand angular measurements and setting out simple curves													
	CO4	evaluate areas and volumes of various sections													
	CO5	understand various modern field equipments													
Contributio n of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	P O 11	PO 12	PSO 1	PSO 2
towards achievemen	CO1	3	2			3				1					
t of Program Outcomes	CO2	3	3	2		3				2	1			2	
(1– Low, 2-	CO3	3	2	2		3				2	1				
Medium, 3 – High)	CO4	3	3	2						1	1			2	
	CO5	3	1			3				1					

Course Content	UNIT – I
	BASICS OF SURVEYING
	Surveying: Definition; Primary divisions; Classification; Principles; Plan and map;
	Scales used for maps and plans; Accuracy; Precision; Sources of errors; Types of errors.
	CHAIN SURVEYING
	Principles of chain surveying; Basic definitions; Different methods; Instruments for
	Chaining and taping; ranging out; Chaining a line on a flat ground; Chaining on an

	uneven or a sloping ground; Chain & Tape corrections.
	UNIT – II LEVELLING Basic definitions; Bench marks; Different methods of leveling; Classification of direct leveling methods; Auto level; Leveling staff; Terms used in levelling; Theory of differential Levelling; Levelling field book; Missing entities; Height of Instrument and rise and fall method; Profile leveling; Cross sectioning; Sources of errors in leveling. CONTOURING Contouring; contour interval; Characteristics of contours; Methods of locating contours; Interpolation and Sketching of contours; Uses of contour maps.
	UNIT – III THEODOLITE SURVEYING Main parts of a vernier theodolite; Basic definitions; Fundamental lines; Temporary adjustments; Measurement of a horizontal angle by repetition and reiteration. Measurement of vertical angle; Errors in theodolite surveying. CIRCULAR CURVES Basic definitions; Designation of a curve; Relationship between radius and degree of curve; Elements of a simple curves; setting out of simple curve.
	UNIT – IV AREAS & VOLUMES Introduction; Area of a tract with straight irregular boundaries; Boundaries with offsets at irregular intervals; Coordinates method; Planimeter: working; Area of cross sections-two level sections only; Volume of a prismoid: Trapezoidal rule; Prismoidal formula; Capacity of a reservoir.
	MODERN FIELD SURVEY SYSTEMS EDM: Principle, Types of EDM instruments; Total Station: Fundamental parameters, Field equipment, Setup, Advantages, Uses; GPS: Functioning, Applications in Civil Engineering.
Text books	[T1] Surveying, Volume-1 by K. R. Arora; Standard Book House. [T2] Advanced Surveying by SatheeshGopi, R. Sathikumar, N. Madhu; Pearson Education
Reference books	[R1] Surveying, Volime-1 by B.C.Punmia; McGraw Hill Education (India) Private Limited
E-resources and other digital material	https://nptel.ac.in/courses/105/107/105107122/

20CE3304	FLUID MECHANICS

Course Category:	Programme Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	20BS1101&20BS2101- Maths	Continuous Evaluation:	30
	20BS2102A - Engineering Physics	Semester end Evaluation:	70
	20ES2104A – Engineering	Total Marks:	100
	Mechanics		

Course Outcomes	Upon	Upon successful completion of the course, the student will be able to:													
	CO1	eval	uate	the pre	essure (of the f	lowing	g fluid.							
	CO2	und	understand the kinematic and dynamic behavior of flow.												
	CO3		apply the principles to measure the flow of fluid through pipes and Orifices/Mouthpieces.												
	CO4	anal	analyze the flow through pipes.												
Contributio n of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
towards achievement	CO1	3	2	3											3
of Program Outcomes	CO2	3	2	3											3
	CO3	3	2	3										2	3
(1 – Low, 2 - Medium, 3 – High)	CO4	3	2	3										2	3
Course Content	PROP	UNIT I: PROPERTIES OF FLUID: Introduction; Properties of Fluid; Units of measurement; Fluid Continuum; Newtonian and Non - Newtonian fluids; Vapour pressure.										Fluid			
	FLUII Law;														

	and inclined plane surfaces.
	UNIT II:
	KINEMATICS OF FLUID FLOW: Methods of describing fluid motion; Classification of flow; Steady, unsteady, uniform and non-uniform flows; Laminar and turbulent flows; Three, two and one dimensional flows; Irrotational and rotational flows; Stream line; Path line; Streak line; Continuity equation; Velocity potential and stream function.
	DYNAMICS OF FLUID FLOW: Euler's equation of motion; Bernoulli's equation; Momentum principle; Application of Momentum equation; Force exerted on a pipe bend.
	UNIT III:
	MEASUREMENT OF FLOW THROUGH PIPES: Measurement of flow through Pipes – methods and various devices; Discharge through Venturi meter; Discharge through orifice meter; Measurement of velocity by Pitot tube.
	MEASUREMENT OF FLOW THROUGH ORIFICES: Flow through orifices; Determination of coefficients for an orifice; Flow through small orifice and large rectangular orifice.
	UNIT – IV
	ANALYSIS OF FLOW THROUGH PIPES: Energy losses in pipelines; Darcy – Weishbach equation; Minor losses in pipelines; Pipes in series and parallel.
	LAMINAR FLOW: Relation between shear and Pressure Gradients in Laminar Flow; Reynold's experiment; Critical velocity; Steady laminar flow through a circular pipe – Hagen Poiseuille's Law; Laminar Flow between Parallel Plates – Both plates at rest.
Text books	 [T1] P.N. Modi& S.N. Seth, "Hydraulics & Fluid Mechanics", 18th ed., Standard Book House, New Delhi, 2015. [T2] A.K. Jain, "Fluid Mechanics", 11th ed., Khanna Publishers, New Delhi, 2014.
Reference books	 [R1] R. K. Bansal, "Fluid Mechanics and Hydraulic Machines", 9thet.,Laxmi Publications; New Delhi, 2015. [R2] Rajput R.K., "Fluid Mechanics and Hydraulic Machines", 3rd ed., S.Chand and Company Ltd., New Delhi, 2014. [R3] K. Subramanya, "Theory and Applications of Fluid Mechanics", 3rd ed., Tata McGraw Hill Publishing Company, New Delhi, 2013.
E-resources and other digital material	www.nptel.ac.in/courses/105101082/ www.nptel.ac.in/courses/105103095/

20CE3305	CONCRETE TECHNOLOGY
20CE3303	CONCRETE TECHNOLOGI

Course Category:	Programme Core	Credits:	3
Course Type:	Theory cum Practice	Lecture - Tutorial - Practice:	2-0-2
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outco	Upon	success	sful co	mplet	tion o	f the c	course	, the s	studen	ıt will	be abl	le to:			
	CO1		rstanc				ing p	rocess	s of c	emen	t, type	es of o	cements	s and chemical	
	CO2	apply properties of the constituent materials in concrete													
	CO3	analyze and Compare the Properties of fresh and hardened concrete.													
	CO4	unde	understand effects of various chemical actions on concrete.												
CC			evalı	evaluate various special concretes and concreting methods based on the scenario.											
		CO6	evaluate an appropriate concrete mixdeign using Indian Standard.												
Contributio n of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2
towards achievemen	CO1							2						1	3
t of Program Outcomes	CO2	1					1	2						1	3
Outcomes	CO3			2										1	3
(1 – Low, 2 - Medium,	CO4				2		1	2						2	2
3 – High)	CO5						2	2						2	2
	CO6	1	3	3	2		3	3	2		1		1	2	2

Course Content

UNIT – I

CEMENT: Introduction to concrete as a structural material, Uses of cement, Chemical Composition of Ordinary Portland Cement, Functions of cement ingredients; Manufacturing process of cement(wet and Dry Processes), Hydration of Cement, Heat of Hydration, Water requirements for hydration, Types of cements --Ordinary, Rapid hardening, low-heat, sulphate resisting, Portland slag, Portland pozzolana, High alumina cement, white cement and colored cement properties and their applications; Storage of cement; Field tests for cement.

LABORATORY TESTS (As per IS Specifications): Fineness of cement, consistency, initial and final setting time, Specific gravity and compressive strength of cement.

AGGREGATES: Classification of Aggregates; Properties of aggregates Grading of Aggregates; IS: 383 requirements for aggregates; Alkali – Aggregate reaction.

LABORATORY TESTS (As per IS Specifications): Sieve analysis, specific gravity, bulk density of both fine and coarse aggregate, bulking of sand.

UNIT - II

WATER: General; Quality of water; Use of sea water; IS: 456 requirements.

MORTAR: Functions of sand in mortar; Classification of mortars; Uses of mortar; Properties of good mortar mix and mortar; Selection of mortar.

ADMIXTURES IN CONCRETE: General; Air–entraining agents; Plasticizers; Accelerators; Retarders; Miscellaneous admixtures for damp proofing and Surface hardening; Introduction to mineral admixtures.

CONCRETE: Definition; Future demand of concrete - advantages of concrete structures; Proportioning of concrete; Water – cement ratio; Properties of Fresh Concrete – Workability, Factors Affecting Workability, Segregation; Bleeding; Yield of Concrete.

LABORATORY TESTS (As per IS Specifications): workability tests on fresh concrete: slump cone, compaction factor.

UNIT - III

MANUFACTURE OF CONCRETE: Batching of concrete; Mixing; Transporting Concrete; Placing concrete; Compaction of concrete; Curing of concrete; Finishing.

HARDENED CONCRETE: General; Gel / space ratio; Gain of strength with age; Maturity concept of concrete; Elastic properties of concrete; Relation between modulus of Elasticity and strength; Factors affecting modulus of elasticity; Creep; Factors affecting creep; Shrinkage; Plastic shrinkage; Mechanism of shrinkage; Factors affecting shrinkage.

LABORATORY TESTS (As per IS Specifications): Compressive strength, Effect of height / diameter ratio on strength and failure patterns, flexural strength, split tensile test, Relation between Compressive and Tensile Strength; Introduction to Non-Destructive Tests(Demo on Rebound Hammer Test, Ultrasonic Pulse Velocity Test).

UNIT - IV

DURABILITY OF CONCRETE: Permeability of concrete; Sulphate attack; Methods of controlling sulphate attack; Durability of concrete in sea water; Corrosion mechanism of reinforcement in concrete, Environmental considerations, concrete durability and sustainability,

	technology for sustainable development.								
	SPECIAL CONCRETES & CONCRETING METHODS : Light weight concrete and No fines concrete; High strength and high performance of concrete; Polymer concrete and Fiber reinforced concrete; Gunite or shotcrete; Ferro cement; Vacuum concrete, Vacuum Dewatered Concrete, Self compacting concrete, Self healing Concrete.								
	CONCRETE MIX DESIGN: Concept of mix design; List of Mix design methods; Indian standard method of mix design (IS10262-2019).								
Text books	[T1] Concrete Technology by M. S. Shetty; S. Chand & Company (Pvt.) Ltd., New Delhi. [T2] Properties of Concrete by A. M. Neville; Published by Dorling Kindersley (India) Pvt. Ltd. Licensees of Pearson Education in south Asia, New Delhi.								
Reference books	[R1] Concrete Technology by A.R.Santhakumar; Oxford University press,New Delhi [R2] Concrete Technology by M. L. Gambhir; Tata McGraw – Hill Publishing Company Ltd., New Delhi.								
E-resources and other digital material	http://nptel.ac.in/courses/105102012								

20ES3151A	DESIGN THINKING AND CIVIL ENGINEERING WORKSHOP
EULOSISIA	DESIGN THINKING AND CIVIL ENGINEERING WORKSHOT

Course Category:	Engineering Science lab	Credits:	1.5
Course Type:	Practical	Lecture - Tutorial - Practice:	0-0-3
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon successful completion of the course, the student will be able to :														
	CO1	analyze complex civil engineering problems innovatively with the use of difference construction materials and structural elements.										ferent			
	CO2	apply	apply various power tools for construction												
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
Outcomes towards achievement of Program Outcomes	CO1	2	2	2	2	2				2		2	2		2
(1 – Low, 2 - Medium, 3 – High)	CO2	3	2	3	3	1				2		2	2		2

Course Content

1 DESIGN THINKING

a. Introduction to Design Thinking

An insight into Design, origin of Design thinking, Design thinking and its process models, application of Design thinking.

b. Empathize In Design Thinking

Role of Empathy in design thinking, methods and tools of empathy, understanding empathy tools. Explore define phase state users' needs and problems using empathy method.

*Carry out the detailed questionnaire to arrive at the problem of the selected theme. The empathy report shall be prepared based on the response of the stake holders.

c. Prototyping and Testing:

Methods and tools of ideations, prototyping and methods of prototyping, user testing methods, Advantages and disadvantages of user Testing/Validation.

- * For the problem identified, the team needs to give solution through thinking out of the box innovatively to complete the ideation stage of DTL.
- *Once the idea of the solution is ready, detailed design has to be formulated in the Design stage considering the practical feasibility.
- *If the Design of the problem is approved, the team should implement the design and come out with prototype of the system.
- *Conduct thorough testing of all the modules in the prototype developed and carry out integrated testing.

	*Demonstrate the functioning of the prototype along with presentations of the same.
	d. Product Innovation:
	Innovation towards product design Case studies.
	* Prepare a Digital poster indicating all the stages of DTL separately. A Detailed project report also should be submitted covering the difficulties and challenges faced in each stage of DTL. Methods of testing and validation should be clearly defined both in the Digital poster as well as the report.
	e. Ideation, Prototyping And Testing of an Innovative Model Based on the Topics Learnt – (Class may be divided in to groups. some marks may be allotted for the submission of innovation. Better innovations may lead to exhibition in NITs, IITs / patents / may be useful to Atal innovation ranking).
	2. Calculate the length, area, volume, area of a built-up space and a small parcel of land - use digital distance measuring devices and To set horizontal, vertical and angle lines using different types of laser instruments.
	3. (a) To find out the different materials present in the wall using wall scanner. (b) To view the objects using an inspection camera which are not accessible &visible. (c) To set different angles to a ramp or staircase using Inclinometer.
	4. (a) To cut shapes and curves in wood with its narrow blade using Jigsaw. (b) To cut through wood and other soft materials using Saber saw. (c) Polish the concrete using concrete grinder.
	5. Painting – Paint a given surface in this order - putty, primer and painting.
	6. Flooring – Suggest a suitable flooring and install in the given space.
	7. Plumbing – Design pipeline layout for the given plan and utilize proper fittings.
	8. Formwork – Suggest proper formwork for footings, stair case,
	9. Apply basic techniques for masonry and concreting works – different types of brick bonds, plumb, alignment, brick quantity estimation, estimation of material contents for cement mortar and plastering.
Text books	[T1] Building construction by B. C. Punmia -Laxmi Publications, New Delhi [T2] Design thinking for strategic Innovation, IdrisMootee, 2013, John Wiley & Design thinking – The guidebook – Facilitated by the Royal Civil Service Commission, Bhutan
Reference books	[R1] Design Methods: A Structured Approach for Driving Innovation in Your Organization, Vijay Kumar, First Edition, 2012, Wiley [R2] Human-Centered Design Toolkit: An Open-Source Toolkit to Inspire New Solutions in the Developing World, IDEO, Second Edition, 2011, IDEO.
E- resources and other digital material	

20CE3352	SURVEYING LAB - 1
20CE3352	SURVEYING LAB - I

Course Category:	Programme Core Lab - 1	Credits:	1.5
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0 - 3
Prerequisites:	Mathematics, Science	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes		Upon s	uccessf	ul com	pletio	n of th	ie coui	rse, the	e stude	ent wil	l be at	ole to:			
		CO1	evalu	ate dis	tances	, area	s by u	sing cl	hain sı	ırvey.					
		CO2	apply	princi	iples o	f com	pass sı	ırvey t	to plot	a trav	erse a	nd dete	rmine	the bearing	S.
	CO3	evaluate the horizontal and vertical angles using the odolite survey.													
	CO4	apply leveling methods to determine the elevations and plot contours.													
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
towards achievement	CO1	3	2			3				2	1	1			2
of Program Outcomes	CO2	3	2			3				2	1	1			2
(1 – Low, 2 – Medium, 3 –	CO3	3	2			3				2	1	1			2
High)	CO4	3	2			3				2	1	1			2

Course Content	1. Determine the area of a given parcel of land by using cross staff and chain survey.											
	2. Determine the distance between two points with obstacles in between.											
	3. Measurement of bearings of an open traverse with prismatic compass and computation of correct included angles.											
	4. Measurement of bearings of a closed traverse with prismatic compass and computation of area.											
	5. Measurement of horizontal angle by using Repetition method.											
	6. Measurement of horizontal angles by using Reiteration method.											
	7. Measurement of vertical angles using a Vernier theodolite.											
	8. Determination of elevations of various points remote from each other (differential leveling).											
	9. Survey and plot the longitudinal and cross sections of a given embankment.											
	10. Prepare a contour map of existing ground using an auto level.											
Text books	[T1] Surveying, Volume-1 by K. R. Arora; Standard Book House. [T2] Surveying, Volime-1 by B.C.Punmia; McGraw Hill Education (India) Private Limited											
Reference books	[R1] Advanced Surveying by SatheeshGopi, R. Sathikumar, N. Madhu; Pearson Education											
E-resources and other digital material												

Course Category:	Programme Core Lab-2	Credits:	1.5
Course Type:	Lab	Lecture - Tutorial -	0-0-3
		Practice:	
Prerequisites:	Engineeringgraphics20ES1105	Continuous Evaluation:	30
		Semester end	70
		Evaluation:	100
		Total Marks:	

Course outcomes	Upon s	uccess	sful co	mplet	ion of	the co	ourse,	the st	udent	will b	e able	to:			
Ĭ	CO1	apply the knowledge of Various measurements and dimensions of a building components													
	CO2	understand principles of planning, principles of architecture and building Bye-laws.													
	СОЗ	apply the principles of planning to secure building plans as per Building bye- laws													
	CO4		analyze the requirements of user to draw the plan, elevation, sectional view of the building as per principles of planning and NBC												
Contributio n of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
Outcomes towards	CO1	1		2											
achievement of Program Outcomes	CO2	1		2											
(1 – Low, 2-	CO3	1		2										2	2
Medium, 3– High)	CO4	1		2										2	
Course Content	PARTA Introduction and Theory concepts Explanation For the Following:													1	
	Princij	ples o	f plan	ning	& arc	hitec	ture								
	Buildi	Building bye-laws & National Building Code													
	Conve Plan, E		·		-			_							
	Standa								•		nents	of dif	ferent	t roon	ns

	and various structural components (MANUALDRAWING)
	1Drawing practice of coventional signs and symbols
	2. Drawing practice of Door, window and ventilator (Elevations only with standard measurements
	3. Drawing practice of section of a wall including foundation with specifications
	DESIGN LINE DIAGRAMS AND DRAW PLAN, ELEVATION & SECTION OF THE FOLLOWING:
	4.Residentialbuilding Drawing- Single bedroom, Living room, Kitchen(Load bearing wall structure)
	5. Elevations of various types of Buildings in explanation
	PART-B
	AUTOCAD DRAWING 1. AutoCAD Commands introduction and practice
	DESIGN LINE DIAGRAMS AND PREPARE THE APPROVAL DRAWINGS FOR LOCAL AUTHORITY WITH SET BACKS BY DRAWING PLAN, ELEVATIONSECTIONOFTHEFOLLOWING
	2. Single storied Residential Double bedroom building (Load bearing stucture)
	3. Dog legged Stair case
	4. RCC Two storied framed structure building with staircase
	5. Single storied Rural hospital building/school building Plan
Text books	 [T1] Building planning, designing and scheduling by Gurucharan Singh and Jagdish Singh. –Standard Publishers-Delhi. [T2] Building Drawing by M.G. Shah, C.M. Kale and S.Y.Patki; Tata McGraw Hill Publishing Co.Ltd., New Delhi.
Reference books	 [R1] National Building Code, Bureau of Indian Standards, New Delhi, 2005. [R2] Planning & Designing Buildings by Yashwant S. Sane; Allies Book Stall, Pune [R3] Residential Interior Design: A Guide To Planning Spaces 3rd Edition by Maureen Mitton (Author), Courtney Nystuen (Author)
E- resources and other digital material	www.floorplanner.com

20TP3106	LOGIC & REASONING

Course Category:	Institutional Core	Credits:	1
Course Type:	Learning by Doing	Lecture - Tutorial - Practice:	1 - 0-1
Prerequisites:		Continuous Evaluation:	100
		Semester end Evaluation:	0
		Total Marks:	100

Course outcom	nes	Upon	succes	sful co	mple	tion o	f the c	course	the s	studer	nt will b	e able to:				
		CO1	think	reaso	on log	ically	in an	y criti	cal sit	uatio	1					
		CO2	analy	analyze given information to find correct solution												
		CO3	to rec	luce th	ne mis	takes	in day	y to da	ay act	ivities	s in pra	ctical life	;			
		CO4	devel	levelop time management skills by approaching different shortcut methods are mathematical based reasoning to make decisions												
		CO5	use n													
		CO6		pply logical thinking to solve problems and puzzles in qualifying exams for companies and in other competitive exams												
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO11	PO12	PSO 1	PSO 2	
towards achievement	CO1						2									
of Program Outcomes	CO2		2													
(1 – Low, 2 - Medium,	CO3								2							
3– High)	CO4									2						
_	CO5	2														
	CO6	1														
Course Conten	nt	UNIT	`-I			l.		<u>I</u>		l.				1		
		1. 2.		es Co ing-D												

	3. Blood Relation Blood,
	4. Puzzles test
	UNIT-II
	1. Direction sense test,
	2. Logical Venn diagrams,
	3. Number test, ranking test,
	4. Mathematical operations
	1. Within the operations
	UNIT-III
	1. Arithmetical Reasoning,
	2. Inserting missing character,
	3. Syllogism.
	UNIT-IV
	1. Water images,
	2. Mirror images,
	3. Paper folding,
	4. Paper cutting,
	5. Embedded Figures,
	6. Dot situation,
	7. Cubes & Dice
Text books	[T1] R. S. Aggarwal, "Verbal and non-verbal reasoning", Revised Edition, S Chand publication, 2017 ISBN:81-219-0551-6
Reference books	
Reference books	
E-resources and other	
digital material	
arginal material	

20MC3107B	INDIAN CONSTITUTION
201/1C310/D	INDIAN CONSTITUTION

Course Category:	Mandatory Course	Credits:	
Course Type:	Theory	Lecture - Tutorial - Practice:	2-0-0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcom	ies	Upon	successf	ul con	npletio	n of th	ne cou	rse, the	e stude	ent wil	l be able	to:				
		CO1	unders	understand the spirit and origin of the fundamental law of the land												
		CO2	understand how fundamental rights can be protected													
		CO3	understand the structure and formation of the Indian Government at center as well as state													
		CO4	understand when and how an emergency can be imposed and its consequenses													
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO11	PO12	PSO 1	PSO2	
towards achievement	CO1						2									
of Program Outcomes	CO2						2									
(1 – Low, 2 – Medium, 3–	CO3						2									
High)	CO4						2									

Course Content

UNIT – I INTRODUCTION TO CONSTITUTION OF INDIA:

[Text Book - 2]

Meaning of the constitution law and constitutionalism, historical perspective of the constitution of India, salient features and characteristics of the constitution of India.

UNIT – II [Text Book – 1 & 2]

FUNDAMENTAL RIGHTS:

Scheme of the fundamental rights, scheme of the fundamental right to equality, scheme of the fundamental right to certain freedoms under article 19, scope of the right to life and personal liberty under article 21.

UNIT – III [Text Book – 1]

NATURE OF THE INDIAN CONSTITUTION:

Federal structure and distribution of legislative and financial powers between the union and

	the states.					
	PARLIAMENTARY FORM OF GOVERNMENT IN INDIA:					
	The constitution powers and status of the President of India, amendment of the constitutional powers and procedure, the historical perspectives of the constitutional amendments in India.					
	LOCAL SELF-GOVERNMENT:					
	Constitutional scheme in India.					
	UNIT – IV [Text Book – 1 & 2] EMERGENCY PROVISIONS:					
	National emergency, president rule, financial emergency					
Text books	[T1] Dr.J.C.Johari, "India Government and Politics", Vishal Publications, New Delhi, 2009 [T2] M.V.Pylee, "Introduction to constitution of India", Vishal Publications, New Delhi, 5 th edition, 2009.					
Reference books	[R1] D.D.Basu, "Introduction to the Constitution of India", Lexis Nexis, 2015. [R2] Subhas C. Kashyap, "Our Constitution", National Book Trust India, 2 nd Edition, New Delhi, 2013.					
E-resources and other digital material						

20	BS	11	Λ1
21	165	41	w

Course Category:	Basic Science Credits:								3	}					
Course Type:		Theory													5-0-0
J	Lecture-Tutorial-Practice:														
Prerequisites:								3	0						
					Semester end Evaluation:					7	70				
				_	Total Marks:					1	.00				
Course		Upon successful completion of the course, the student will be able to:													
Outcomes		CO1 find probabilities using axioms and understand random variables.													
	CO2	estimate Probability density functions.													
	CO3	apply random phenomena of sample to estimate errors													
	CO4	anal	vze co	rrelati	ion, re	gressi	on and	d qual	ity im	prove	ment, o	control	charts.		
Contribution of		РО	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PS	PS
Course		1	2	3	4	5	6	7	8	9	0	1	2	O1	O2
Outcomes	CO1	3	2			1								1	
towards	002	2	1			1								1	
achievement of	CO2	3	2			1								1	
Program Outcomes	CO3	3	2			1								1	
(3-HIGH,	CO4	3	2			1								1	
2-MEDIÚM,	CO4	3	2			1								1	
1-LOW)															
Course Content	UNIT I:														
	PROBABILITY: Sample Space and events, Probability, The Axioms of probability, Addition rule of probability, Conditional probability, Multiplication rule of probability, Bayes' theorem.														
	PROBABILITY DISTRIBUTIONS: Discrete Random Variable, Expectation, Variance and Standard deviation of discrete random variable, Binomial distribution, Poisson distribution.														
	UNIT II: PROBABILITY DENSITIES: Continuous Random Variable, Expectation, Variance and														
	Standard deviation of continuous random variable, Normal distribution, Normal approximation to the Binomial distribution.														
	OTHER PROBABILITY DENSITIES - Uniform distribution, Log normal distribution, Gamma distribution, Beta distribution, Weibull distribution.														
	UNIT III: SAMPLING DISTRIBUTIONS: Introduction, Populations and Samples, Sampling distribution of the mean (SD known and SD unknown) – Sampling distribution of the variance.														
	ESTIMATION OF MEAN: Point Estimation, Maximum error of estimate, Interval Estimation.														
		RESS										Scatter (diagram is.	, Karl	

	THE STATISTICAL CONTENT OF QUALITY IMPROVEMENT PROGRAMS: Quality Control- Control Charts for Measurements - Control Charts for Attributes.
Text books	[T1] Probability and Statistics for Engineers ,Eighth edition by Richard A. JohnsonPrentice Hall of India.[T2] Probability and statistics by K.Murugesan, P.Guruswamy, AnuRadha Publications.
Reference books	 [R1] Probability & Statistics for Engineers & Scientist by R.E. Walpole, R.H.Myers&S.L.Myers, Sixth Edition, Prentice Hall of India / Pearson Education. [R2] Probability and Statistics, Purna Chandra Biswal, Pearson Education Prentice Hall of India 2007. [R3] Probability and Statistics by T.K.V.Iyengar, B.Krishna Gandhi, S.Ranganatham, M.V.S.S.N.PrasadS.Chand.
E-resources and other digital material	https://onlinecourses.nptel.ac.in/noc22 mg31/preview https://nptel.ac.in/courses/111105041

20CE4302	STRUCTURAL ANALYSIS
-----------------	---------------------

Course Category:	Program Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:	Mechanics of Solids	Continuous Evaluation:	30
	20BS3101A	Semester end Evaluation:	70
		Total Marks:	100

Course outcon	nes	Upon	Upon successful completion of the course, the student will be able to:												
		CO1	CO1 understand, draw and interpret influence line diagrams.												
		CO2	CO2 apply energy methods for analysis of indeterminate beams and frames.												
		CO3	O3 analyze statically indeterminate structures using force and displacement methods.												
		CO4	evalu	ate m	ultisto	ry fra	mes f	or ver	tical a	and ho	orizon	ıtal loa	ds by	approx	imate methods.
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2
towards achievement	CO1	3				2							2	2	
of Program Outcomes	CO2	3	1			2							2	2	
(1 – Low, 2 - Medium, 3	CO3	3	1			2							2	2	
– High)	CO4	3	1			2							2	2	
Course Conter	nt	: EQU Influe maxim INFL : MU	UENC JILIBI nce line num an	RIUM e for b d abso E LIN BRES	PRINGE OF THE PRINGE OF T	reaction maxim	LES And the second seco	AND earing endin ICAL LES	ITS A g force g mor LLY E AND	APPLes; Beenent for the second	ICATending For rol RMI APPL	FION g mom lling lo NATE	ent; C oads.	UCTU alculati UCTU	on of

	UNIT – II
	ANALYSIS OF INDETERMINATE STRUCTURES USING ENERGY METHODS : BEAMS Strain Energy Method for analysis of continuous beams up to two spans.
	ANALYSIS OF INDETERMINATE STRUCTURES USING ENERGY METHODS :FRAMES Analysis of rigid frames up to first degree of redundancy.
	UNIT – III
	ANALYSIS OF INDETERMINATE STRUCTURES: FORCE METHOD Propped cantilever by consistent deformation method; Fixed beams for different loadings.
	ANALYSIS OF INDETERMINATE STRUCTURES:DISPLACEMENT METHODS Slope deflection method for continuous beam (two span) and portal frames without side sway. Moment distribution method for continuous (two span) and portal frames without side sway.
	UNIT – IV APPROXIMATE METHODS OF ANALYSIS FOR MULTI STORY FRAMES: KANI'S METHOD Introduction and principles of the kani's method; Application of the method to continuous beams; Application of method to the analysis of portal frames without side sway.
	APPROXIMATE METHODS OF ANALYSIS FOR MULTI STORY FRAMES: : ANALYSIS OF LATERAL LOADS Portal method and cantilever method.
Text books	[T1] Analysis of structures by Volume I –17 th Edition by Vazirani&Ratwani & Volume –II 16 th Edition by Vazirani&Ratwani, Khanna Publications; Delhi,2015. [T2] Structural Analysis by S.S. Bhavikatti, Volume-I and II, 4 th Edition, Vikas Publishing house PVT Ltd,2014.
Reference books	[R1] Structural analysis by Hibbeler, 6 th Edition, Pearson India Education Services PvtLtd.2015
	[R2] Structural Analysis by R.Vaidyanathan Volume-I and II, 3 rd Edition, Laxmi Publications (P) Ltd,2012. [R3] Theory of structures by S. Ramamrutham, 9 th Edition, DhanapatRai Publications,2014. [R4] Basic Structural Engineering by C.S Reddy, Tata McGraw Hill, ThirdEdition. [R5] Theory of structuresVol–IbyG.S. Panditand S.P. Gupta and R.Gupta by Tata McGraw Hill Ltd., New Delhi.
E-resources and other digital material	Structural Analysis—I - http://nptel.ac.in/courses/105101085 Structural Analysis - I - http://nptel.ac.in/courses/105105166 Structural Analysis - II - http://nptel.ac.in/courses/105101086

20CE4303 GEOTECHNICAL ENGINEERIN

Course Category:	Program Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outco	mes	Upon	of the	cours	e, the	stude	nt wi	ll be a	ble to:						
		CO1	under	rstand	the o	rigin	of soi	l and	basic	inter-	relati	onship	s of so	oil com	ponents.
		CO2	apply	apply the index properties of soil to classify the soil.											
		CO3	analy	ze the	Soil-	-Wate	er Inte	ractio	n.						
		CO4	evalu	evaluate compressibility and shear characteristics of soil.											
Contributi on of Course Outcomes		PO 1	PO 2	P O3	P O 4	P O 5	P O 6	P O7	P O8	P O9	P O1 0	PO 11	P O1 2	PSO 1	PSO2
towards achievemen	CO1	3	2												3
t of Program	CO2	3	2		2										3
Outcomes (1 – Low, 2	CO3	3	2		2										3
- Medium, 3 – High)	CO4	3	2		2										3

Course Content

UNIT – I

INTRODUCTION, BASIC DEFINITIONS AND RELATIONS

Scope of Geotechnical Engineering; Origin of Soils; Formation of soils; Types of soils; Transportation of soils; Major soil deposits of India.

Phase diagrams; Volumetric relationships; Weight relationship; Volume-weight relationships; Specific gravity of soils; Three phase diagram in terms of void ratio; Interrelationships;

INDEX PROPERTIES AND SOIL CLASSIFICATION

Introduction; Determination of Water content, Determination of Specific gravity; Mechanical sieve analysis; Sedimentation analysis- Stokes law*; Hydrometer analysis; Limitation of sedimentation analysis; Combined sieve and sedimentation analysis; Particle size distribution curve and its uses; Determination of field density (core cutter and sand replacement method), Relative density.

Plasticity of soils; Consistency limits; Determination of liquid limit by Casagrande method*, Plastic limit* and shrinkage limit*; Uses of consistency limits, Discussion on all Consistency Indices; Indian Standard Soil Classification System.

UNIT - II

SOIL MOISTURE AND PERMEABILITY

Flow of water in soils; Darcy's law; Validity of Darcy's law by Reynolds number*; Determination of coefficient of permeability* by constant head and variable head methods & Indirect methods; Seepage velocity; General expression for laminar flow*; Laminar flow through porous media; Factors affecting permeability; Permeability of stratified soil deposits.

EFFECTIVE STRESS

Effective stress principle; Effective stress in a soil mass under different loading conditions – effect of depth of Water table, Surcharge loading, Capillary water, Artesian Pressures

UNIT - III

SEEPAGE THROUGH SOILS

Seepage pressure; Quick sand conditions; Laplace equations*; Stream and potential functions*; Characteristics of flow net; Uses of flow nets; Seepage through earth dams with horizontal filter*; Uplift pressure; Flow net for anisotropic soils.

COMPACTION OF SOILS

Introduction; Standard proctor test and modified proctor test; Compaction of clayey soil and sand; Factors affecting compaction; Effect of compaction on properties of soils; Field compaction of soils and field compaction control.

UNIT - IV

CONSOLIDATION OF SOILS

Introduction; Initial, Primary and secondary consolidation; Spring analogy for primary consolidation; Terzaghi's theory of consolidation; Solution of basic differential equation*; Consolidation test; Determination of void ratio at various load increments-height of solids and change in void ratio methods; Consolidation test results; Determination of coefficient of consolidation-square root of time and logarithmic time fitting methods; Casagrande's method for determination of pre-consolidation pressure.

SHEAR STRENGTH OF SOILS

Introduction; Mohr – coulomb theory; Different types laboratory of shear strength tests*(Triaxial test Direct shear test; Unconfined compressive strength test; Vane shear test*); Different drainage conditions and their field applicability; Mohr - coulomb failure criterion; Shear characteristic of cohesive and cohesion less soils;

Text books

[T1] Soil Mechanics and Foundation Engineering by K.R. Arora; Standard Publishers & Distributors, NaiSarak, New Delhi.

[T2] Basic and Applied Soil Mechanics by GopalRanjan and A.S.R. Rao; New Age International Ltd., New Delhi.

Reference books	[R1] Soil Mechanics and Foundation Engineering by Dr. B. C. Punmia, Ashok Kumar Jain, Arun Kumar Jain; Laxmi Publications (P) Ltd., New Delhi. [R2] Relevant Indian Standard Code Books.
E-resources and other digital material	Introduction to Soil Mechanics - http://nptel.ac.in/courses/105103097/ Soil Mechanics - http://nptel.ac.in/courses/105101084/

Note:

- 1. In Laboratory tests, only test procedures according to relevant IS codes need to be studied no need of derivations of the formulae used in the tests
- 2.* indicates only methods and / or formulae no derivation of formulae needed.

20	CE	121	1
2U	CE.	4.31	74

Channel transitions.

Course Category:	Programme Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0 - 0
Prerequisites:	20CE 3304 – Fluid Mechanics	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course Outcomes	Upon	succe	essful o	comple	tion of	the co	ourse, t	he stud	lent wi	ll be a	ble to:				
Outcomes	CO1	eval	evaluate the most economical dimensions of different channel sections. Evaluate the flow through an open channel. Evaluate an equation for a phenomenon using dimensional analysis.												
	CO2	anal													
	СОЗ	eval													
	CO4	anal	yze an	d selec	et suita	ble typ	e of tu	rbine /	Pump	•					
Contributio n of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
towards achievement	CO1	3	2	3										3	
of Program Outcomes	CO2	3	2	3											3
(1 Low 2	CO3	3	2	3											3
(1- Low, 2 - Medium, 3 - High)	CO4	3	2	3										2	3
Course Content	chann sectio	N CH lels; (ns - R	Chezy' Lectang FORM	's, Ma gular, T 1 FLO	nning's Frapezo W: C	s, Baz oidal a oncept	in's, Ind Circ	Kutter's cular cl ecific e	s Equa hannel energy	ations; s. ; Spec	Hydra	lassific nulically ergy cu	y effic	ient cl Critical	hannel flow;

	UNIT II:
	GRADUALLY VARIED FLOW: Dynamic equation; Types of Surface Profiles; Computation of surface profiles by single step method; Back water Curves and Draw down curves.
	RAPIDLY VARIED FLOW: Hydraulic jump; Elements and characteristics of hydraulic jump; Types of hydraulic jumps; Applications of hydraulic jump; Energy loss in a hydraulic jump.
	UNIT III:
	DIMENSIONAL ANALYSIS AND SIMILITUDE: Dimensional homogeneity; Rayleigh's method; Buckingham – Pi theorem; Geometric, Kinematic and dynamic similarities; Scale effect.
	IMPACT OF JETS: Force exerted by fluid jet on stationary and moving flat plates and curved plates; Force exerted by fluid jet on series of flat vanes; Angular momentum principle; Torque exerted on a wheel with radial curved vanes.
	UNIT – IV
	HYDRAULIC TURBINES: Classification; Impulse; Reaction; Radial, Axial, mixed and tangential flow turbines; Pelton, Francis and Kaplan turbines; Velocity triangles; Head and efficiency; Draft tube theory; Concept of specific speed; Cavitation.
	CENTRIFUGAL PUMPS: Types of pumps, Manometric head; Losses and efficiencies; Working Principle and Work done; Priming; Velocity triangles; Multistage pumps; Specific speed; Cavitation.
Text books	[T1] P.N. Modi& S.N. Seth, "Hydraulics & Fluid Mechanics", 18th ed., Standard Book House, New Delhi, 2015.[T2] A.K. Jain, "Fluid Mechanics", 11th ed., Khanna Publishers, New Delhi, 2014.
Reference books	 [R1] Jagadhishlal, "Hydraulic Machines",9th ed., Metropoliton Company, New Delhi, 2012. [R2] R. K. Bansal, "Fluid Mechanics and Hydraulic Machines", 9th ed., Laxmi Publications; New Delhi, 2015. [R3] Rajput R.K., "Fluid Mechanics and Hydraulic Machines", 3rd ed., S.Chand and Company Ltd., New Delhi, 2014. [R4] K. Subramanya, "Flow in Open Channels" – 3rd ed., Tata McGraw Hill Publishing Company, New Delhi, 2013.
E-resources and other digital material	www.nptel.ac.in / courses/ 105103096/ www.nptel.ac.in / courses/ 105106114/

20HS4105	UNIVERSAL HUMAN VALUES 2: UNDERSTANDING
	HARMONY

Course Category:	Humanities and Social Sciences	Credits:	3
Course Type:	Mandatory course (suggested by AICTE)	Lecture - Tutorial - Practice:	2-1-0
Prerequisites:	None. Universal Human Values 1 desirable.	Continuous Evaluation: Semester end Evaluation:	50 50
		Total Marks:	

Course outcomes		Upon	succes	sful co	mpleti	on of t	he cou	rse, the	stude	nts wil	l be able	e to:			
		CO1	CO1 understand and aware of themselves and their surroundings(family, society and nature). CO2 handle problems with sustainable solutions, while keeping human relationships and human nature in mind. CO3 exhibit critical ability and become sensitive to their commitment towards their understanding of human values, human relationship and human society.												
		CO2													
		CO3													
		CO4	appl	y what	they h	ave lea	arnt to	their o	wn sel	f in dif	ferent d	ay-to-c	day se	ttings i	ı real
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO 11	PO 12	PSO 1	PSO 2
towards achievemen t of	СО	1					1			2					
Program Outcomes	СО	2		3											
(1 – Low, 2 - Medium,	СО	3					2								
3 – High)	СО	4							3				2		
Course Conto	ent	UNIT – I: COURSE I FOR VALO PART-1: P what is it?, process for	UE EE urpose its co	OUCA's and nontent	TION: notivat and pr	tion for	r the c	ourse, ıral ac	recapi ceptan	tulatio	on from	UHV- rientia	-I, Sel l valid	f-explo	oration: as the

PART-2: Right understanding, Relationship and Physical Facility – the basic requirements for

Aspirations.

fulfillment of aspirations of every human being with their correct priority, Understanding Happiness and Prosperity correctly – A critical appraisal of the current scenario, Method to fulfill the above human aspirations: understanding and living in harmony at various levels.

(Practice sessions are to be included to discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and co-existence) rather than as arbitrariness in choice based on liking-disliking).

UNIT - II:

UNDERSTANDING HARMONY IN THE HUMAN BEING – HARMONY IN MYSELF:

PART-1: Understanding human being as a co-existence of the sentient 'I' and the material 'Body'. Understanding the needs of Self ('I') and 'Body' – happiness and physical facility, Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer).

PART-2: Understanding the characteristics and activities of 'I' and harmony in 'I'. Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail, Programs to ensure Sanyam and Health.

(Practice sessions are to be included to discuss the role others have played in making material goods available to me. Identifying from one's own life. Differentiate between prosperity and accumulation. Discuss program for ensuring health vs. dealing with disease).

UNIT – III:

UNDERSTANDING HARMONY IN THE FAMILY AND SOCIETY – HARMONY IN HUMAN-HUMAN RELATIONSHIP:

PART-1: Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfillment to ensure mutual happiness; Trust and Respect as the foundational values of relationship, Understanding the meaning of Trust; Difference between intention and competence, Understanding the meaning of Respect, Difference between respect and differentiation; the other salient values in relationship.

PART-2: Understanding the harmony in the society (society being an extension of family); Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals, Visualizing a universal harmonious order in society—Undivided Society, Universal Order—from family to world family.

(Practice sessions are to be included to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education, etc. Gratitude as a universal value in relationships. Discuss with scenarios. Elicit examples from students' lives).

UNIT – IV:

PART-1:UNDERSTANDING HARMONY IN NATURE & EXISTENCE – WHOLE EXISTENCE AS COEXISTENCE: Understanding the harmony in the Nature, Interconnectedness and mutual fulfillment among the four orders of Nature – recyclability and self-regulation in nature, Understanding Existence as Co-existence of mutually interacting units in all-pervasive space, Holistic perception of harmony at all levels of existence.

PART-2: IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL ETHICS: Natural acceptance of human values, Definitiveness of ethical human conduct, Basis for humanistic education, humanistic constitution and humanistic universal order, Competence in professional ethics: a) ability to utilize the professional competence for augmenting universal human order, b) ability to identify the scope and characteristics of people-friendly and ecofriendly production systems, c) ability to identify and develop appropriate technologies and management patterns for above production systems, Case studies of typical holistic technologies, management models and production systems, Strategy for transition from the present state to Universal Human Order: a) at the level of individual: as socially and ecologically responsible engineers, technologists and managers, b) at the level of society: as mutually enriching institutions and organizations.

(Part-1:Practice sessions are to be included to discuss human being as cause of imbalance in nature (film "Home" can be used), pollution, depletion of resources and role of technology, etc. Part-2: Practice exercises and case studies are to be taken up in practice (tutorial) sessions eg. to discuss the conduct as an

	engineer or scientist, etc.)
Text books	[T1] Human values and professional ethics, R. R. Gaur, R. Sangal and G. P. Bagaria, Excel
	Books Private Limited, New Delhi (2010).
Reference books	[R1] JeevanVidya: EkParichaya, A. Nagaraj, JeevanVidyaPrakashan, Amarkantak (1999). [R2] Human Values, A. N. Tripathi, New Age International Publishers, New Delhi (2004). [R3] The Story of Stuff: The impact of overconsumption on the planet, our communities, and our health and how we can make it better, Annie Leonard, Free Press, New York (2010). [R4] The story of my experiments with truth: Mahatma Gandhi Autobiography, Mohandas Karamchand Gandhi, B. N. Publishing (2008). [R5] Small is beautiful: A study of economics as if people mattered, E. F. Schumacher, Vintage Books, London (1993). [R6] Slow is beautiful: New Visions of Community, Cecile Andrews, New Society Publishers, Canada (2006). [R7] Economy of Permanence, J. C. Kumarappa, Sarva-Seva-SanghPrakashan, Varanasi (2017). [R8] Bharat Mein Angreji Raj, PanditSunderlal, PrabhathPrakashan, Delhi (2018). [R9] Rediscovering India, Dharampal, Society for Integrated Development of Himilayas (2003). [R10] Hind Swaraj or Indian Home Rule, M. K. Gandhi, Navajivan Publishing House, Ahmedabad (1909). [R11] India Wins Freedom: The Complete Version, MaulanaAbulKalam Azad, Orient Blackswan(1988). [R12] The Life of Vivekananda and the Universal gospel, Romain Rolland, AdvaithaAshrama, India (2010). [R13] Mahatma Gandhi: The Man who become one with the Universal Being, Romain Rolland, Srishti Publishers & Distributors, New Delhi (2002).
E-resources and other digital material	https://www.youtube.com/channel/UCo8MpJB_aaVwB4LWLAx6AhQ https://fdp-si.aicte-india.org/download.php#1

20CE4351	STRENGTH OF MATERIALS LAB

Programme core lab1

Course Category:

Course Category.			1108	,	inic corv				1.0							
Course Type: Prac Prerequisites:											Lect	0-0-3				
						Continuous Evaluation:						30				
									S	Semes	ter en	d Eva	luation	70		
														Total	Marks	: 100
Cour	se outco	mes	Upon	succe	essful co	mple	tion o	f the c	ourse	, the s	studen	ıt will	be abl	e to:		
			CO1		understand the properties of wood, steel and other building materials as per IS coprovisions.										as per IS code	
			CO2		analyse the behaviour in stress-strain, deflection, flexure/bending and torsion, of building components											
n of (ributio Course omes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2
t of Prog	ievemen gram	CO1	3	3		3	1				2	2		1		2
(1 – I - Me	-	CO2	3	3		3	1				2	2		1		2
- Medium, 3 – High) Course Content					testing machine 2. Deter shear. 3. Find given material 4. Find conduct 5. Find cantilev 6. Find IZOD test on 1	the Brithe Y ing be the in mpacthe in mine mine	the ultrinnel oung's ending oung's am an apact testioduluthe methods.	s mod g test of s mod d propresistang mg ma s of ri	e shear dness ulus con sin ulus coped conce of achine gidity s of r	of the grantile of the grantil	given uppor given ver. given	of mile I Rock mater ted be mater mater	d steel kwell's rial (W eam. rial by rial by	rod in s hards food/S conductest or	ness num	and double aber of the aminum) by ending test on harpy test and ircular shaft.

Credits: 1.5

	 11. Strain gauge application and evaluation of stress. 12. Continuous beam – deflection test 13. Torsion Test on Beams: Torque and angle of twist characteristics, shear stress, modulus of rigidity, energy 14. Deflection Test on Beams: Load deformation characteristics, Young's Modulus, Maxwell's Reciprocal law verification.
Text books	[T1] Strength of Materials by S Ramamrutham& R Narayan; DhanpatRai Publishing Co.(P) Ltd, New Delhi.
Reference books	[R1] Material science and metallurgy for engineers by V D Kodgire and S V Kodgire, Everest publishing house, Pune.
E-resources and other digital material	https://home.iitm.ac.in/kramesh/Strength%20of%20Materials%20Laboratory %20Manual.pdf

20CE4352	FLUID MECHANICS AND HYDRAULIC MACHINES LAB

Course Category:	Programme Core Lab 2	Credits:	1.5
Course Type:	Practical	Lecture - Tutorial - Practice:	0-0-3
Prerequisites:	Fluid Mechanics	Continuous Evaluation:	30
	20CE3304	Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon successful completion of the course, the student will be able to :														
	CO1	evaluate the flow through pipes and open channels													
	CO2	anal	nalyze the performance of various Hydraulic machines												
Contributio n of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
Outcomes towards achievement of Program Outcomes	CO1	3 3 3 1											3		
(1– Low, 2– Medium, 3– High)	CO2	3	3	3	3					2	3		1		3
Course Content	1. Berna (a) Valid (b) Sign section. 2. Venta (a) Detection (b) Detection (c) Anawith Research (c) Estina (c) Detection (c) Personal (c) Per	ate Be ify the curimon ermine ermine ices & cout the cout	eter & ethe content the flow the flow expense the he van beter the content the flow expense the he van beter the content the flow expense the he van beter the content the flow expense the he van beter the content the flow expense the he van beter the content the flow expense the content the flow expense the content the flow expense the flow exp	Orifice coeffice coeffice coeffice coeffice wrate wrate wrate crimen state mination abort mination of minotic finance coefficients.	iceme ient of fficien te of a ces of a lie t of flui of di	ter f disch t of fluid iquid iquid u id flov scharg flow- and m	along using row by Fige coerate in	For a Vaction g a pip orifice nouth efficie n an o head	Ventur and e using e for spiece f	imeter coeff ng Ver teady for ste Number varie	a conficient ficient aturim flow i ady flow er ous flow el usir	eter / ow / u ow ma	g-dive	ty for emeter that the second	r an er.

	b) Sudden contractionsc) Sudden expansion.
	8.DetermineChezy's and Manning's coefficient for free surface flow in a rough/smooth
	surfaced rectangular channel.
	9. Measurement of force due to impact of jet on Flat/Curved vanes used in
	Hydropower projects
	 10. a) Find the overall efficiency of single stage centrifugal pump. b) Study the Performance characteristics of Multistage centrifugal pump i) When pump is in series ii) When pump is in parallel. 11. Study the Performance characteristics for Multistage Submersible pump. 12. Determine the hydraulic efficiency for Impulse turbine(Pelton). 13. Conduct Performance test forReaction turbine (Kaplan / Francis) at constant head and determine efficiency. Demonstration Experiments:
	 Performance studies on Reciprocating pump Performance studies on Gear pump
Text books	[T1] Fluid Mechanics and Hydraulic machinery laboratory manual by Dr. N.Kumara Swamy, Charrotar Publishing House Pvt. Ltd.
	[T2] Experiments in fluid mechanics by Dr. Baljeet Kapoor, Khanna Publications.
	[T3] Hydraulics and fluid mechanics including hydraulic machines by Dr. P.N.Modi and Dr. SM Seth, Standard book house, New Delhi
Reference books	
E-resources	www.nptel.ac.in/courses/105103096/
and other digital material	www.nptel.ac.in/courses/105106114/

Course Category:	Program Core Lab 3	Credits:	1.5
Course Type:	Practical	Lecture - Tutorial - Practice:	0-0-3
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outco	mes	Upon successful completion of the course, the student will be able to:													
		CO1	CO1 evaluate Index properties of soils												
		CO2	CO2 evaluate Engineering properties of soils												
Contributio n of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2
towards achievemen t of Program Outcomes	CO1	3			3					3	3				3
(1 – Low, 2 - Medium, 3 – High)	CO2	3			3					3	3				3
The laboratory course in Geotechnical Engineering covers all the tests on soil required classification of soil and also to determine the behaviour of soil. The list of experiments which are used to classify the soil into various groups. The classification of soil in the will give us an approximate idea on the behaviour of soil. The focus of Cycle determination of Engineering Properties of Soil, which give the exact behaviour of when subjected to loads. The following is the list of experiments included in the curriculum: Cycle I: Classification of Soils based on Index Properties Moisture Content Specific Gravity Field Density to find the natural density of soil at a given place Gradation to find particle size distribution Hydrometer Analysis to find percentage of clay								experiments is operties of soil, oil in to groups Cycle II is the our of the soils							

	Consistency Limits to find Liquid and Plastic limits
	Free Swell Index to find swelling of soil
	Cycle II: Engineering Properties to determine Soil behaviour
	 Permeability test to estimate seepage discharge through earth dams/compacted soil in embankments etc.
	• Compaction Test to determine compaction characteristics of soil used to ascertain the suitability of soil for road construction/improving the properties of soil in a given plot etc.
	• Shear Tests on Soil including Direct Shear Test, Unconfined Compression Test and Unconsolidated Undrained Triaxial Shear Test to determine the shear characteristics of soil which are used in determination of Safe bearing capacity, Stability of soil slopes, Earth retaining walls etc.
	• Consolidation Test to determine rate and magnitude of soil settlement under loads [Demonstration]
Text books	[T1] Soil Mechanics and Foundation Engineering by K.R. Arora; Standard Publishers & Distributors, NaiSarak, New Delhi.
Reference books	[R1] Relevant Indian Standard Code Books
E-resources and other digital material	

20TP4106 E	ENGLISH FOR PROFESSIONALS
------------	---------------------------

Course Category:	Programme Core	Credits:	1
Course Type:	PRACTICE	Lecture - Tutorial - Practice:	0-0-2
Prerequisites:	20TP1406 English For Professionals	Continuous Evaluation:	100
		Semester end Evaluation:	0
		Total Marks:	100

Course outcomes Upon successful completion of the course, the student will be able to:															
		CO1	how conversations are made												
		CO2	usage of grammar												
		CO3	etiquettes and manners												
	CO4	speaking Skills													
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO11	PO12	PSO 1	PSO2
towards achievement	CO1									3	3				
of Program Outcomes	CO2										3				
(1 – Low, 2 - Medium, 3– High)	CO3										3				
	CO4									3	3				
Course Content UNIT			' – I ginners,	Func	tional	. Situa	ationa	l Con	versat	ions					

Introduction

-Importance of spoken English in the placements and Group Discussion

Beginners Conversation

- -Self Introduction-Introducing Self
- -Introducing each other in a team (Pair Activity)

Functional Conversation

- -Seeking Permission from Seniors Teachers and other superiors (Team Activity)
- -Asking Direction-Direction from stranger or from Helpline
- -Making Requests-Requests for borrowing books, applications, or any other help from office staff in college or outside.
- 2. Just a minute:
- -Give a topic and ask the student to talk impromptu.

	-To present the topic in a structured manner.
	UNIT – II
	3. Structuring and forming sentences -Structure of mother tongue and pit falls in translation to EnglishFormation of sentences in English 4. Errors in Usage -Difficulty in right usage of wordsDifficulty in Pronunciation-Phonetic differences in mother tongue and English –areas to improveIdioms and Phrase –Frequently used Idiom and Phrases which help to enhance the quality of presentation and make the presentation meaningfulMeaning of frequently used Idioms and Phrases.
	UNIT – III
	 4. Introduction to different ways of speaking. -Elocution, Debate and Extempore -Principles of Elocution and its challenges practice in session. -Principles of Debates and its challenges –practice session. -Principles of Extempore - its pitfalls- practice sessions.
	UNIT – IV
	5. Etiquette -Need of Etiquette in Social arena -Dining Etiquette -Social Etiquette in conversation -formal and informal gatheringBook a table etc. 6. Versant Test -Mode of versant Test, -Aim of the test and various methods it follows -Practice session.
Text books	
Reference books	[R1] KamaleshSadanand, "A Spoken English", VOL 1&2; Orient BlackSwan, Second Edition,2014.
	[R2] "Communicative English"; Pearson; 2010
E-resources and other digital material	

20CE4607	AUTODESK REVIT AND EXCEL FOR ENGINEERS

Course Category:	Skill Oriented Course-1	Credits:	2
Course Type:	Practical	Lecture - Tutorial - Practice:	0-0-3
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outco	Durse outcomes Upon successful completion of the course, the student will be able to:														
		CO1 analyze 3D Structural elements using Autodesk Revit and develop drawings with necessary details for construction												vings with the	
		CO2	CO2 apply spreadsheet techniques to solve different engineering problems.												
Contributio n of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2
towards achievemen t of Program Outcomes	CO1	2	1			2						3		2	1
(1 – Low, 2 - Medium, 3 – High)	CO2	2	2			2						3		2	1
Course Con	itent	2. Work 3. Creat 4. Demo 3D mod 5. Mode	and Dra te additi king with ting and onstrate del using elling St onstration	wing onal g h Stru mana the S g Auto eel tr	the c grids actura aging Skills odesk uss fi	letails and I al Col Call and I Rive came	s of the evels umns out we know et Strand contraction	he fo , fam s, Be views ledge uctur design	llowi illy co ams, ,dupl e requ es n con	ng 3I onten walls icatin uired mectinagin	ts, floorige to co	ors, forward, American	ounda Annot Auto	tions ations cadd 2	D drawing to

	B: Excel for Engineers
	 Using excel as a engineering tool that helps solve real world problems related to civil engineering. Gain knowledge in excel and visual basics for applications. Create spreadsheets to solve different structural design problems. Utilize excel engineering for optimization and uncertainty analysis. Introduce user forms and user controls for overall project control
Text books	[T1] Auto desk Rivet structures manual. [T2] Exploring Autodesk Revit 2020 for structures, 10 th edition, byProf. Sham Tickoo, Purdue University Northwest, USA [T3] MS Excel user manual.
Reference books	[R1] Autodesk Revit 2021 Structure Fundamentals by By <u>ASCENT</u> publications Published August 10, 2020, ISBN: 978-1-63057-358-4 ISBN 10: 1630573582
E-resources and other digital material	https://www.coursera.org/learn/autodesk-revit-for-structural-design-exam-prep

20MC4108A	ENVIRONMENTAL STUDIES

Course	Mand	ators	, Cor	irco				Cro	dits:							
Category:	Ivianu	awi	Cot	II SC				Cre	uits.							
Course	Theor	y						Lec	ture-	Tuto	rial-		2	2-0-0		
Type:								Practice:								
Prerequisite	Consc	ciousness of Environment to						Cor	ıtinu	ous E	Cvalu	ation:	4	0+40+3	3+17	
s:	make	make it a better place to live.														
									neste			en	d			
									luati					00		
								Tot	al Ma	arks:			1	00		
Course	Upon	SUCC	essfi	ıl cor	nnleti	on of	the o	course	e the	stude	ent wi	11 be a	ble t	0.		
Outcomes	Cpon				_											
	CO1		identify various factors causing degradation of natural resource, (remember, understand, apply)													
	CO2	ide	entify	vario	ous ec	cosys	tem a	nd ne	ed fo	r bioo	divers	sity(ap	ply)			
	CO2	rea	lize a	and e	xplor	e the	probl	ems 1	elate	d to e	nviro	nmen	tal po	ollution	and	
	CO3							aluate					•			
	CO4									o ana	lyze s	social	issue	es, use a	cts	
		ass	ociat	ted w	ith en	viron	ment	(crea	ite)							
Contributio		P	P	P	P	P	P	P	P	P	P	P	P	PSO	PSO	
n of Course		О	O	0	0	O	O	O	O	0	О	0	O	1	2	
Outcomes		1	2	3	4	5	6	7	8	9	10	11	12			
towards	CO1	1						-	1					1		
achievement	CO2	1	1	1					1		1			1		
of Program	CO3		1	1	1	1					1		1	1		
Outcomes	CO4				1	1							1	1		
(1-Low, Medium-2,							1	1	1					1		
3- High)							1	1	1							
Course	UNIT															
Content			disci	nlina	m N	otura	of E	nviro	nman	tol S	tudia	c Dof	initio	n, scop	sa and	
Content	impor			•	•				mnen	iiai S	tuare	s Den	шис	on, scop	e and	
	NATI				•		arcin	. 33.								
							ENI	7 33 7 A 1	DIE	DES	ΛIJD	CEC.	Not	ural res	0112000	
						OIN-N	CLIVE	L VV A	DLL	KES	OUK	CES:	man	urar res	ources	
	and as			•		TEC.	I Igo	and a	NIOT C	wnlo	itation	dof	rost	otion T	imbor	
										-				ation. T	moer	
	extrac			-									-		mound.	
														e and g	ground	
	water,			_									_		nota of	
									exp.	onan	ion, e	:nviroi	ııner	ıtal effe	cus oi	
	extrac	_		_					a.1. 1		.l		1 1	h a•	14	
	(a)FC	(d)FOOD RESOURCES: World food problems, changes caused by agriculture														

and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity.

(e)ENERGY RESOURCES: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources.

(f)LAND RESOURCES: Land as a resource, land degradation, man induced landslides, soil erosion and desertification. Role of an individual in conservation of natural resources. Equitable use of resources for sustainable lifestyles.

UNIT II

ECOSYSTEMS

Concept of an ecosystem. Structure and function of an ecosystem. Producers, consumers and decomposers. Energy flow in the ecosystem. Ecological succession. Food chains, food webs and ecological pyramids. Introduction, types, characteristic features, structure and function of the following ecosystem:

- (a) Forest ecosystem (b)Grassland ecosystem (c)Desert ecosystem
- (d)Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

BIODIVERSITY AND ITS CONSERVATION

Introduction, definition: genetic, species and ecosystem diversity. Biogeographically classification of India. Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values. Biodiversity at global, National and local levels. India as a mega-diversity nation. Hot-spots of biodiversity. Threats to biodiversity: habitat loss, poaching of wildlife, manwildlife conflicts. Endangered and endemic species of India. Conservation of biodiversity: in-situ and ex-situ conservation of biodiversity.

UNIT III

ENVIRONMENTAL POLLUTION

Definition, Causes, effects and control measures of (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards

SOLID WASTE MANAGEMENT: Causes, effects and control measures of urban and industrial wastes. Role of an individual in prevention of pollution.

DISASTER MANAGEMENT: Floods, earthquake, cyclone and landslides.

UNIT IV

SOCIAL ISSUES AND THE ENVIRONMENT:

From unsustainable to sustainable development. Urban problems related to energy.

Water conservation, rain water harvesting, watershed management. Resettlement and rehabilitation of people; its problems and concerns.

ENVIRONMENTAL ETHICS Issues and possible solutions. Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Wasteland reclamation. Consumerism and waste products.

ENVIRONMENT PROTECTION ACT

Air (Prevention and Control of Pollution) Act. Water (Prevention and Control of Pollution) Act. Wildlife Protection Act. Forest Conservation Act. Issues

	involved in enforcement of environmental legislation.
	PUBLIC AWARENESS
	Human Population and the Environment, Population growth, variation among
	nations, Population explosion—Family Welfare Programme.
	ENVIRONMENT AND HUMAN HEALTH
	Human rights, Value education, HIV/AIDS, Women and Child Welfare.
	Role of Information Technology in environment and human health.
	FIELD WORK/ CASE STUDIES
	Visit to a local area to document environmental assets—
	river/forest/grassland/hill/ mountain. Visit to a local polluted site—
	Urban/Rural/Industrial/Agricultural. Study of common plants, insects, birds.
	Study of simple ecosystems—pond, river, hill slopes, etc.
Self-Study	Water resources, soil resources, mineral resource: radioactive elements, Threats
	to biodiversity, Solid waste management, Role of Information Technology in
	environment and human health.
Text books	[T1] Erach Bharucha. 2004, Environmental Studies for undergraduate courses,
	University Grants Commission, New Delhi, Bharati Vidyapeeth Institute of
	Environment Education and Research.
Reference	[R1] AnjaneyuluY. Introduction to Environmental sciences, B S Publications
books	PVT Ltd, Hyderabad
	[R2] Anjireddy.M Environmental science & Technology, BS Publications PVT
	Ltd, Hyderabad.
	[R3] Benny Joseph, 2005, Environmental Studies, The Tata McGraw-Hill
	publishing company limited, New Delhi.
	[R4] Principles of Environmental Science. & Engg. P. Venu Gopala Rao, 2006,
	Prentice-Hall of India Pvt. Ltd., New Delhi.
	[R5] Ecological and Environmental Studies – Santosh Kumar Garg, Rajeswari
	Garg (or) Rajani Garg, 2006, Khanna Publishers, New Delhi. [R6] Essentials of Environmental Studies, Kurian Joseph & R Nagendran,
	Pearson Education publishers, 2005.
	[R7] A.K Dee – Environmental Chemistry, New Age India Publications.
	[R8] BharuchaErach- Biodiversity of India, Mapin Publishing Pvt.Ltd
E-resources	https://www.ugc.ac.in/oldpdf/modelcurriculum/env.pdf
and other digital material	
uigitai materiai	

20CEM 4701	INTRODUCTION TO CIVIL ENGINEERING- CONCEPTS AND MATERIALS.

Course Category:	Minor	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 1- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course Outcomes	Upon s	Upon successful completion of the course, the student will be able to:													
	CO1		understand evaluation of civil engineering materials and use of stone as a primary component.												
	CO2	eval	evaluate the quality of bricks and timber.												
	CO3	appl	apply test on cement and understand varieties of concrete.												
	CO4	anal	yze th	ie qual	lity of	steel ar	nd pair	its.							
Contributio n of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
towards achievement	CO1	3						2							3
of Program Outcomes	CO2	3						2							3
(1 – Low, 2 -	CO3	3						2							3
Medium, 3 – High)	CO4	3						2							3
Course Content	UNIT	- I	1												
Content	INTRO Genera Engine STON Classif	nl Intreering ES:	oduct in the	ion to overa	ıll infra	structı	ıral de	velopn	nent of	the co	untry.	O.			

	Tools for blasting; Common building stones ofIndia.
	UNIT – II
	BRICKS: Composition of good brick earth; Qualities of good bricks; Tests for bricks; Classification of bricks; Size and weight of bricks.
	TIMBER: Definition; Structure of a tree; Qualities of good timber; Preservation of timber; Seasoning of timber; Advantages of timber construction; Use of timber.
	UNIT – III
	CEMENT Basic Ingredients; Grades of cement; Properties of cement; Field tests on cement. CONCRETE Definition: properties: Special Concretes Light weight concrete High density concrete Fibra
	Definition; properties; Special Concretes-Light weight concrete, High density concrete, Fibre reinforced concrete, Polymer concrete.
	UNIT – IV STEEL General; Manufacture of steel; Uses of steel; Market forms of steel; Properties of mild steel; Properties of hard steel;
	PAINTS, VARNISHES AND DISTEMPERS General; Painting; Varnishing; Distempering; Wall paper; White washing; Colour washing.
Text books	[T1] Engineering Materials by S. C. Rangwala; CharotarPublishing House.[T2] Building construction by B. C. Punmia -Laxmi Publications, New Delhi.
Reference books	[R1]Building construction and construction materials by G.S.Birdie and T.D.Ahuja, Dhanpathrai publishing company, New Delhi.
E-resource and other digital material	http://nptel.ac.in/courses/105102088/

20CEM5702	METHODOLOGY FOR CIVIL ENGINEERING
	CONSTRUCTION

Course Category:	Minor	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3-1-0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes		Upon	succes	sful co	mpletion	on of tl	ne cour	rse, the	studen	t will b	e able	to:			
		CO1	evaluate the feasibility of the construction project												
		CO2	apply	apply planning and construction contracts											
		CO3	analyse construction finance and organization structure												
		CO4	evaluate the materials and adopt the quality control procedures												
Contribution of Course Outcomes		PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
towards achievement	CO1	1	1	1							1	2			1
of Program Outcomes	CO2	1	1	1							1	2			1
(1 – Low, 2 - Medium, 3 –	CO3	1	1	1						1	1	2			1
High)	CO4	1		1							1	2			1
Role of stages PROJ Introd			of gove in con IECT l	struction FEASI , techn	t and con of a BILIT ical an	constructions of the construction of the const	t, the c PORT financ	onstruc S ial ana	ction te	eam.					

	UNIT – II PLANNING FOR CONSTRUCTION PROJECTS General, steps involved in planning, objectives, principles, advantages of planning, limitations, stages and types of planning, stages of planning by different agencies. CONSTRUCTION CONTRACTS & TENDERS General, contract documents, types of contract, tender notice, types of tenders, tender documents, Earnest money deposit and security deposit.
	UNIT – III CONSTRUCTION FINANCING AND CONTROL Introduction, costs associated with constructed facilities, estimates, effect of scale on construction cost, means of financing, application of financial assistance, cost control. ORGANISING FOR CONSTRUCTION Importance, general principles, types of organization structures, forms of business organizations.
	UNIT – IV MATERIALS MANAGEMENT Importance, Objectives, Costs, functions of material management, uses, stores management, material procurement, maintaining stocks, material handling. QUALITY CONTROL IN CONSTRUCTION Elements of quality, Organisation for quality control, Quality assurance techniques, Documentation, Quality control circles, variation.
Text books	[T1] Dr.S.Seetharaman, "Construction Engineering and Management", 5 th Edition, Umesh Publications, New Delhi,
Reference books	[R1] Kumar Neeraj Jha, "Construction Project Management", 2nd Edition, Pearson Education India, New Delhi, 2015
E-resources and other digital material	

20CEM6703A	SYSTEM DESIGN FOR SUSTAINABILITY

Course Category:	Minor	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

		Upon	success	sful co	mple	tion o	f the c	ourse	, the s	studer	ıt will	be ab	le to:			
		CO1	understand selection of resources with low environmental impact;													
		CO2	apply	apply design of products with low environmental impact;												
		CO3	analy	analyse product-Service System Design for eco-efficiency;												
		CO4	evalı	evaluate design for social equity and cohesion.												
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2	
towards achievement	CO1	1		1			2	3					1		2	
of Program Outcomes	CO2	1		1			2	3					1		2	
(1 – Low, 2 – Medium, 3 –	CO3	1		1			2	3					1		2	
High)	CO4	1		1			2	3					1		2	
Addr Syste for A DIST			ODU ssing S	ustain lied to A) Ago E D E	abilit Distr enda. E NER	ribute GY S	d Ren	ewab E MS	le Ene	ergy; l	United	d Natio	ons Su		Service ility Energy	

UNIT - II

SUSTAINABLE PRODUCT-SERVICE SYSTEM (S.PSS)

Introduction to S.PSS; Types; Sustainability Benefits; Barriers and Limits

SUSTAINABLE PRODUCT-SERVICE SYSTEM APPLIED TO DISTRIBUTED RENEWABLE ENERGIES

A Win-Win Opportunity; Scenario for S.PSS applied to Distributed Renewable Energy(DRE); S.PSS Applied to DRE: Sustainability Potential Benefits; S.PSS Applied to DRE: Sustainability Potential Benefits

UNIT - III

DESIGN FOR SUSTAINABILITY: AN INTRODUCTION

Evolution of Design for Sustainability; Product Life Cycle Design or Eco-Design; Design for Eco-Efficient Product-Service Systems; Design for Social Equity and Cohesion; Design for Socio-Technical Transitions; State of the Art of Design for Sustainability Human-Centred and Universal Design

SYSTEM DESIGN FOR SUSTAINABLE ENERGY FOR ALL: A NEW ROLE FOR DESIGNERS

System Design for Sustainable Energy for All (SD4SEA); SDSEA Design Criteria, Guidelines and Examples

UNIT - IV

METHOD AND TOOLS FOR SYSTEM DESIGN FOR SUSTAINABLE ENERGY FOR ALL(SD4SEA)

Method for System Design for Sustainable Energy; for All; Sustainability Design Orienting Scenario; (SDOS) on S.PSS&DRE; Sustainable Energy for All Idea Tables and Cards; E.DRE—Estimator for Distributed Renewable Energy; PSS + DRE Innovation Map S.PSS + DRE Design Framework & Cards; The Energy System Map Innovation Diagram for S.PSS&DRE; Concept Description Form for S.PSS and DRE Stakeholder Motivation and Sustainability Table

PRACTICAL EXAMPLES OF APPLICATION OF SDSEA APPROACH/TOOLS AND OTHER METHODS TO ACHIEVE SUSTAINABILITY

Solar Energy Company, Botswana; SMEs for Energy, Uganda; Summary and Considerations; green design; emotionally durable design; cradle to cradle design, biomimicry design; design for base of a pyramid design; design for social innovation

Text books

- [T1] FabrizioCeschin, İdilGaziulusoy, Design for Sustainability A Multi-level Framework from Products to Socio-technical Systems, Taylor and Francis, 2020.
- [T2] Carlo Vezzoli; FabrizioCeschin; Lilac Osanjo; Mugendi K. M'Rithaa; Richie Moalosi; VennyNakazibwe; Jan Carel Diehl, Designing Sustainable Energy for All Sustainable Product-Service System Design Applied to Distributed Renewable Energy; Green Energy and Technology, Springer, 2018.

Reference books	 [R1] Ceschin, F., and Gaziulusoy, I. (2016) Design for Sustainability: An Evolutionary Review, in Lloyd, P. and Bohemia, E. (eds.), Future Focused Thinking - DRS International Conference 2016, 27 - 30 June, Brighton, United Kingdom. [R2] Elisa Bacchetti, Towards sustainable energy for All Designing Sustainable Product-Service System applied to Distributed Renewable Energy, Politecnico di Milano, Milano, Italy 2017
E-resources and other digital material	Quality as Driver for Sustainable Construction—Holistic Quality Model and Assessment.pdf

20CEM6703B	ECOLOGY AND ENVIRONMENT
------------	-------------------------

Course Category:	Minor	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3-1-0
Prerequisites:	20CH1102 - Engineering chemistry 20MC4108B -Environmental studies	Continuous Evaluation:	30
	20101C+100B -Environmental studies	Semester end Evaluation:	70
		Total Marks:	100

Course outcomes		Upon	success	sful co	mple	tion o	f the c	course	, the s	studen	t will b	e able t	co:			
	CO1	CO1 analyze the issues concerned with ecology, environment and sustainability.														
	CO2	CO2 evaluate the quantity and quality of water based on the available natural sources.														
	CO3	evaluate the water purification units and components of the distribution systems.														
		CO4	CO4 analyse the effect of various attributes of environmental pollution													
Contribution of Course Outcomes		PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO 11	PO12	PSO 1	PSO2	
towards achievement	CO1	1						2					2			
of Program Outcomes	CO2	2	3		3		1						1		2	
(1 – Low, 2 - Medium, 3 –	CO3	2	1	3			1								3	
High))	CO4	1	1	2	1										2	
IN' Def eco soci		Defini ecolog social SUST	tion, s ty, eco securit AINAl	system system y. BILIT y – de	& in m - b	nporta alanco	nce, ed eco	need osyste	for pem, hu	oublic iman	activitie	ness- e es - foc	NT environme od, shelte pacts of	r, econo	omic and	

	UNIT – II WATER SUPPLY - QUANTITYOF WATER Sources of water, objectives of water supply systems, Per capita consumption; Types of demands; Fluctuations in demand.
	QUALITY OF WATER
	Impurities in water; routine water analysis - physical, chemical and bacteriological tests; Standards for drinking water; Water borne diseases.
	UNIT – III WATER TREATMENT
	Fundamentals of purification of water; plain sedimentation; coagulation and types of coagulants; sedimentation and coagulation tanks; theory of filtration; slow sand and rapid sand filters; operation; disinfection.
	DISTRIBUTIONSYSTEMS Methods of supply; Layouts, Plumbing-pipes and fittings; Traps; One pipe and Two pipe systems.
	UNIT – IV ENVIRONMENTAL POLLUTION
	Environmental Pollution and their effects. Water pollution, Land pollution, Air pollution, Public Health aspects.
	SOLID WASTE MANAGEMENT
	Solid waste characteristics—basics of on-site handling and collection—separation and processing — Incineration—Composting-Solid waste disposal methods — fundamentals of land filling.
Text books	 [T1] Benny Joseph, "Environmental Studies", Tata Mc Graw Hill, 2005 [T2] IgnaciMuthu S, "Ecology and Environment", Eastern Book Corporation, 2007 [T3] Birdie G.S. and Birdie J. S., "Water Supply and Sanitary Engineering", 9th ed., Dhanpat Rai Publishing Company, New Delhi, 2015.
Reference books	 [R1] Garg S. K., "Environmental Engineering Vol. I& II- Water supply engineering", Khanna Publishers, New Delhi, 2017. [R2] Gurucharan Singh, "Water Supply and Sanitary Engineering", Standard Publishers
	Distributors, Delhi, 2009.
	[R3] Anjaneyulu Y. "Introduction to Environmental sciences", B S Publications PVT Ltd, Hyderabad 2004.
E-resources and other	https://nptel.ac.in/courses/127106004
digital material	(Ecology and environment by Dr. Abhijit P. Deshpande, IIT Madras).

20CEM7704A INFRASTRUCTURE AND TRANSPORTATION SYSTEM PLANNING

Course Category:	Minor	Credits:	4
Course Type:	Theory	Lecture - Tutorial -Practice:	3 - 1 - 0
Prerequisites:		Continuous Evaluation:	30
•		Semester end Evaluation:	70
		Total Marks:	100

	Upon	succes	sful co	mplet	ion of	the co	urse, t	he stud	dent w	ill be a	able to	:				
Course Outcomes	CO1	unde	understand different pavement structures													
	CO2	unde	understand materials and methods used for construction													
	CO3	unde	understand the components of the Railway Track.													
	CO4	analy	analyse geometric features of railway track													
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	
Outcomes towards achievement of	CO1	3						1						3		
Program	CO2	3						1					1	3		
Outcomes	CO3	3												3		
(1 – Low, 2 - Medium, 3 – High)	CO4	3												3		

Course Content

UNIT-I

INTRODUCTION TO ROADWAYS

Different Modes of Transportation, Road development in India during twentieth century, Classification of different types of roads, Highway cross section elements,

PAVEMENTS

Different types of pavements – Cross section, functions of pavement layers, Need for design, importance of drainage

UNIT-II

MATERIALS FOR PAVEMENTS

Materials used in highway construction- soil, fine and coarse aggregate, bituminous binders, cement, water.

CONSTRUCTION OF PAVEMENTS

Construction of flexible pavement, Construction of rigid pavement, Equipment for excavation, equipment for compaction.

	UNIT-III INTRODUCTION TO RAILWAYS Historic development of railways in India, Classification of Indian Railways, Different gauges in Indian Railways COMPONENTS OF RAILWAY TRACK Permanent way cross section and functions, Types of rails, Types of Sleepers, Types of ballast, cross section of ballast, coning of wheels, sleeper density, length of rails.
	UNIT-IV GEOMETRIC FEATURES AND OPERATION Super elevation or cant, cant deficiency, cant excess, negative super elevation concept, types of transition curves, gradient types. POINTS AND CROSSINGS Switches, crossings, working principle of turnout, classification of signals, interlocking.
Text books	[T1] Sk Khanna, CEG Justo, A Veeraragavan, Highway Engineering, Nem Chand & Bros, 10 th Edition, 2018 [T2] Satish Chandra, MM Agarwal, Railway Engineering, Oxford University Press, 2 nd Edition 2013
Reference Book	[R1] Saxena, S.C. and Arora. S, Railway Engineering, Dhanpat Rai, NDLS, 2009
E-resources and other digital material	https://nptel.ac.in/courses/105/105/105105107/ https://nptel.ac.in/courses/105/101/105101087/ https://archive.nptel.ac.in/courses/105/107/105107123/

Course Category:	Minor	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3-1-0
Prerequisites:	-	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes		Upon	success	sful co	omple	tion o	f the c	course	the s	studer	nt will be	e able	to:		
		CO1	co1 evaluate planning process of various construction projects and apply various software in various construction process co2 apply scheduling of various construction projects and apply PERT and CPM networking methods. co3 apply the various types of construction contracts and understand the elements of quality planning and the implication												
		CO2													
		CO3													
		CO4	CO4 analyse the various legal requirements and understand the various safety concepts and requirements applied to construction projects.												
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO 11	PO12	PSO1	PSO2
towards achievement	CO1	2	2	2	2	2				2	2	3	2		2
of Program Outcomes	CO2	2	2	2		2				2	3	3	2		2
	CO3	2	2					2	2	2	2	3			2
(1 – Low, 2 - Medium, 3 – High)	CO4	2	2					2	2	2	2	3			2
Course Content		planni IT AP	NING involv ng; PLICA ruction	ed in ATIO proce	NS IN	N CO I	NSTR uteriz	RUCT ation	ION in Co	nstruc					tages of

	UNIT – II SCHEDULING Preparation of construction schedules; Methods of scheduling; Bar charts; Mile stone charts; Controlling; Job layout; Factors affecting job layout; Project work break down. PERT AND CPM Advanced planning and scheduling concepts – Computer applications – Case study.
	UNIT –III CONSTRUCTION CONTRACTS Indian Contracts Act – Elements of Contracts – Types of Contracts – Features – Suitability – Design of Contract Documents – International Contract Document – Standard Contract Document – Law of Torts QUALITY MANAGEMENT Introduction – Definitions and objectives – Factor influencing construction quality - Responsibilities and authority
	UNIT – IV LEGAL REQUIREMENTS Insurance and Bonding – Laws Governing Sale, Purchase and Use of Urban and Rural Land – Land Revenue Codes – Tax Laws – Income Tax, Sales Tax, Excise and Custom Duties and their Influence on Construction Costs – Legal Requirements for Planning, Local Government Laws for Approval. SAFETY MANAGEMENT Accidents and their Causes – Human Factors in Construction Safety - Costs of Construction Injuries – Occupational and Safety Hazard Assessment – Legal Implications, Owners responsibility and safety – owners responsibility clause.
Text books	[T1].Ming Sun and Rob Howard, "Understanding I.T. in Construction, Spon Press, Taylor and Francis Group, 2004. [T2].Feigenbaum,L., "Construction Scheduling with Primavera Project Planner: Prentice Hall Inc., 2002. [T3].George J.Ritz, "Total Construction Project Management", McGraw-Hill Inc,1994.
Reference books	 [R1] Gajaria G.T., "Laws Relating to Building and Engineering Contracts in India", 4 th Edition, M.M.Tripathi Private Ltd., Bombay, 2000. [R2] Jimmie Hinze, "Construction Contracts", 3 rd Edition, McGraw Hill, 2010. [R3] Joseph T. Bockrath, "Contracts and the Legal Environment for Engineers and Architects", 7 th Edition McGraw Hill, 2010. [R4] Paulson, B.R., "Computer Applications in Construction", Mc Graw Hill, 1995.
E-resources and other digital material	https://nptel.ac.in/courses/105103093 https://nptel.ac.in/courses/105104161

20CEH4801A	STABILITY OF STRUCTURES
------------	-------------------------

Course Category:	Honors	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3-1-0
Prerequisites:	20CE5404/A – Advanced Structural Analysis.	Continuous Evaluation:	30
	1 11111) 5.5.	Semester end Evaluation:	70
		Total Marks:	100

Course outcome	es	Upon successful completion of the course, the student will be able to:													
		CO1	analyze the buckling of columns, beam-columns and find critical loads using energy and non-energy methods												
		CO2	analy	analyze the lateral buckling of beams by energy and non-energy methods											
		CO3	_	ze the		_		_	ular p	lates	and fi	ind cri	tical o	compressiv	e loads for
		CO4	analyze the buckling of axially loaded cylindrical shells												
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
Outcomes towards	CO1	3	3 2 1 1 3 3 2 1 1 3						3						
achievement of Program	CO2	3							3						
Outcomes	CO3	3	3 2 1 1 1 3												
(L-1, M-2, H-3)	CO4	3	2		1	1								3	

UNIT – I

BUCKLING OF COLUMNS

Introduction; Methods of finding critical loads; Critical loads for straight columns with different end conditions and loading; Inelastic buckling of axially loaded columns; Energy methods; Prismatic and non-prismatic columns under discrete and distributed loading.

BEAM COLUMNS

Theory of Beam column – Stability analysis of beam column with different types of loads.

UNIT – II

BEAMS UNDER PURE BENDING

Cantilever and simply supported beams of rectangular and I sections.

	BEAMS UNDER TRANSVERSE LOADING Energy methods; Solution of simple problems.
	UNIT – III
	PLATES SIMPLY SUPPORTED ON ALL EDGES Plates simply supported on all edges and subjected to constant compression in one or two directions.
	PLATES SIMPLY SUPPORTED ALONG TWO OPPOSITE SIDES Plates simply supported along two opposite sides perpendicular to the direction of compression and having various edge conditions along the other two sides.
	UNIT – IV
	BUCKLING OF AXIALLY COMPRESSED CYLINDRICAL SHELLS Introduction to buckling of axially compressed cylindrical shells, failure of axially compressed cylindrical shells.
	CRITICAL LOAD OF AN AXIALLY LOADED CYLINDER Linear theory of cylindrical shells-donnell equations, critical load of an axially loaded cylinder.
Text books	[T1] Theory of elastic stability by Timoshenko & Gere, McGraw Hill, 1961. [T2] Background to buckling by Allen and Bulson, McGrawHill, 1980.
Reference books	[R1] Elastic stability of structural elements by N.G.R.Iyengar, Macmillan India Ltd., 2007. [R2] Principles of Structural stability theory by AlexandarChajes, 1974.
E-resources and other digital material	https://nptel.ac.in/courses/105105166 https://youtu.be/ZSQ_5lRj5gI https://nptel.ac.in/courses/105108141

20CEH4804B	SUSTAINABLE CONSTRUCTION METHODS

Course Category:	Honors	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3-1-0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcom	es	Upon	succes	sful co	mpletion	on of tl	ne coui	se, the	studen	t will b	oe able	to:			
		CO1	apply the green buildings and sustainable design aspects												
		CO2	analyze the water conservation and energy efficiency												
		CO3	evalı	evaluate the sustainable materials and wellbeing of residents											
		CO4	apply	y princ	iples o	f green	rating	system	ns in co	onstruc	tion				
Contribution of Course Outcomes		PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
towards achievement	CO1	1		1				2	1						1
of Program Outcomes	CO2	1		1				2	1						1
(Low – 1, Medium - 2,	CO3	1		1			2	2	1						2
High – 3)	CO4	1		1				2	1						2
Course Conten	t	INTR Green buildir SUST Local effect,	UNIT – I INTRODUCTION Green building, Global warming, requirement of Green Building, Benefits of buildings SUSTAINABLE DESIGN Local building requirements, soil erosion control, natural topography, vegetation, heat effect, roof & non-roof, passive architecture, basic house hold amenities, green educat awareness								island				

	UNIT – II
	WATER CONSERVATION Water efficient plumbing fixtures, rain water harvesting, landscape design, management of irrigation system, recycle and reuse of waste water, water quality ENERGY EFFICIENCY HCFC free equipment, minimum energy performance, enhance energy performance, alternate water heating systems, on-site renewable energy – common lighting, energy efficiency in common area equipment, integrated energy monitoring system
	UNIT – III
	MATERIALS & RESOURCES Separation of house-hold waste, green procurement policy, local materials, eco friendly wood based materials, alternate construction material, handling of construction & demolition material.
	RESIDENT HEALTH & WELLBEING Minimum day lighting, Ventilation design, no smoking policy, enhanced day lighting, enhanced ventilation design, cross ventilation
	UNIT-IV
	CONSTRUCTION AND OPERATIONS Construction, Occupancy & Operations
	GREEN RATING SYSTEMS IGBC, LEED, GRIHA, BEE, benefits of rating systems, procedure to get IGBC certification
Text books	 [T1] IGBC Green homes rating system Version 3.0 – A bridged reference guide, September 2019 [T2] Jerry Yudelson, "Green building through Integrated design", Mc Graw Hill, 2009 [T3] Gautham R K, "Green Homes", BSP Books Private Limited, New Delhi, 2009.
Reference books	[R1] "Sustainable building technical manual- Green building design, constructions and operation", Produced by Public Technology Inc., US Green Building Council
E-resources and other digital material	

A0 CETT 1001 C	PROJECT OF FORMWORK
20CEH4801C	DESIGN OF FORMWORK

Course Category:	Honors	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3-1-0
Prerequisites:		Continuous Evaluation:	
		Semester end Evaluation:	
		Total Marks:	

Course outcomes	Upo	Upon successful completion of the course, the student will be able to: O1 apply a right material for manufacturing false work and form work suiting specific													
	CO1										vork s	uiting			
	CO2	ana	ılyze	the pre	essure	of co	ncrete	on fo	rm w	ork					
	CO3	eva	luate	the ac	dequa	cy of	deckin	g, for	m wo	rk and	l false	work			
	CO4			the s										ucture	s and
Contributi on of Course		P O 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O 1	PS O 2
Outcomes towards	CO1		1			2	1	1		1	1				2
achieveme nt of	CO2	2	2	1		2								2	
Program Outcomes	CO3	3	3	3			1			1				3	1
(Low – 1, Medium - 2, High – 3)	CO4	1	2			1	2	1		1	1			2	
Course Content		IN' For pla Ma Sys	rmwc nning ATEI ateria tems NIT – DRM rmwc	DUC ork and g and RIAI ls and , Spec	nd fa site of S OI d concial a RK Design	lse veconstractions of the struction of	raints RMV tion of coprie	VOR of the	K com orms	mon	form	work	and	onstru false	work

	ANALYSIS OF FORMWORK Loading and moment of formwork.
	UNIT – III DESIGN OF DECKS Types of beam, decking and column formwork, Design of decking
	FALSE WORKS False work design, Effects of wind load, Foundation and soil on false work design.
	UNIT – IV SPECIAL FORMS The use and applications of special forms.
	CONSTRUCTION SEQUENCE AND SAFETY IN USE OF FORMWORK Sequence of construction, Safety use of formwork and false work.
Text books	[T1] Robert L. Peurifoy and Garold D. Oberiender, "Formwork for Concrete Structures", McGraw-Hill, 1996.[T2] Tudor Dinescu and Constantin Radulescu, "Slip Form Techniques", Abacus Press, Turn Bridge Wells, Kent, 2004.
Reference books	 [R1] Austin, C.K., "Formwork for concrete", Cleaver - Hume Press Ltd., London, 1996 [R2] Michael P. Hurst, "Construction Press", London and New York., 2003
E-resources and other digital material	Open web

20CEH5802A	ENGINEERING ROCK MECHANICS

Course Category:	Honors	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-1-0
Prerequisites:	20ES3102A - Engineering Geology	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcome	s	Upon	success	sful co	mple	tion o	f the c	ourse	, the s	studer	nt will	be ab	le to:		
		CO1	evaluate rock masses based on classification systems												
		CO2	apply the field and laboratory testing on rocks to assess engineering properties												
		CO3	analyze rocks based on the failure criteria under various stress fields												
		CO4		ate th		_	apacit	y of f	founda	ation	on ro	cks an	d und	lerstand	various slope
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2
towards achievement of	CO1	3	2	2			3								1
Program Outcomes	CO2	3	2	2			3								1
(Low – 1, Medium - 2, High – 3)	CO3	3	2	2			3								1
nigii – 3)	CO4	3	2	2			3								1
Course Content			ODUCT ves of	rock n	nechar	nics, F	ields o	of appl	licatio	of ro	ock me	echanic	s. Geo		CKS Classification of
	ROCK Rock (ek Stru	ıcture	Ratir	ng (RS	SR), R	ock M	ass Rat	ing (RMR).	

	UNIT - II LABORATORY TESTS - PHYSICO — MECHANICAL PROPERTIES OF ROCKS Compressive strength, Tensile strength, Direct shear test, Triaxial shear test, Slake durability test, Schmidt rebound hardness test FIELD TESTS - PHYSICO — MECHANICAL PROPERTIES OF ROCKS Uniaxial jacking test- Pressure meter tests Hydraulic fracturing- Flat jack test Stress. Electric resistivity method- Seismic refraction method
	UNIT – III FAILURE CRITERIA FOR ROCK AND ROCK MASSES Mohr-Coulomb Yield Criterion, Hoek-Brown Criterion, STRENGTH AND DEFORMABILITY OF JOINTED ROCK MASS Shear strength of Rock joints, Deformability of Rock joints, Concept of joint compliance
	UNIT - IV FOUNDATION ON ROCKS Estimation of bearing capacity, Settlement in rocks, Pile foundation in rocks. STABILITY OF ROCK SLOPES AND METHODS TO IMPROVE ROCK MASS RESPONSES Modes of failure. Grouting in Rocks, Rock bolting, Rock Anchors.
Text books	 [T1] Goodman-Introduction to Rock mechanics, Willey International (1980). [T2] Ramamurthy, T Engineering in Rocks for slopes, foundations and tunnels, Prenice Hall of India. (2007) [T3] Rock mechanics in engineering practice: Stag and Zienkiewiz, John wiley sons
Reference books	 [R1] Jaeger, J. C. and Cook, N. G. W. — Fundamentals of Rock Mechanics, Chapman and Hall, London.(1979). [R2] Hoek, E. and Brown, E. T. Underground Excavation in Rock, Institution of Mining and Metallurgy, 1982. [R3] Brady, B. H. G. and Brown, E. T Rock Mechanics for Underground Mining, Chapman & Hall, 1993. [R4] Rock mechanics for engineers: Varma, B.P,Khanna Publishers
E-resources and other digital material	

20CEH5801B AI	ADVANCED STEEL DESIGN
---------------	-----------------------

Course Category:	Honors	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3-1-0
Prerequisites:	Design of Steel Structures	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	
			100

Course outcome	S	Upon	Upon successful completion of the course, the student will be able to:												
		CO1		analyse safe section for Tension members with lug angle and Built up Compression Members											
		CO2	analyse safe section for Plate girders												
		CO3	anal	analyse for safe section for gantry girders											
		CO4	anal	yse sat	fe sec	tion fo	or ecc	entric	conne	ection	ıs				
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2
towards achievement of	CO1	2		2		3	1						1	3	
Program Outcomes	CO2	2		2		3	1						1	3	
(Low – 1, Medium - 2,	CO3	2		2		3	1						1	3	
High - 3)	CO4	2		2		3	1						1	3	
Course Content		UNI	Г - І					ı							
		TENS	SION	MEN	ABE l	RS (I	S800	-200	7)						
	Desig	n of te	ension	n mer	nbers	with	Lug	angl	es wi	th bo	lted a	and w	elded o	connections.	
		COM	PRES	SSIO	N MI	ЕМВ	ERS	(IS8	00-20	007)					
	Desig									meml	bers w	vith L	aced a	nd Battened	

	UNIT - II
	INTRODUCTION TO GANTRY GIRDER Introduction, Various loads, Load effects, explanation of how to calculate loads, Calculation of Maximum SF and Maximum BM using influence lines, Deflections
	DESIGN OF GANTRY GIRDER Design of Gantry Girder, Problems on design of gantry girder.
	UNIT - III
	INTRODUCTION TO PLATE GIRDERS
	Introduction to plate girder, Elements eccentric depth, Design of web and flanges, Design of plate girders without stiffeners, Problems
	DESIGN OF PLATE GIRDERS
	Design of plate girders with stiffeners, Design of plate girders with intermediate stiffeners, Problems on plate girders with intermediate stiffeners
	UNIT – IV SEATED CONNECTIONS Introduction to Connections, Unstiffened seated connections-bolted and welded, Stiffened seated connection-bolted and welded BRACKET CONNECTIONS Bracket Connections, type1-bolted and welded, Bracket connection type2-bolted and welded
Text books	[T1] Duggal, S.K., Limit State Design of Steel Structures, McGraw-Hill, NDLS, 2019.[T2] Bhavikatti, S.S., Design of Steel Structures-By Limit State Method as per IS:800-2007, I. K. IBH Pvt. Ltd., NDLS, 2019.
Reference books	 [R1] Subramanian, N., Design of Steel Structures-Limit State Method Oxford University press, HYB, 2018. [R2] Ram, K.S.S., Design of Steel Structures, Pearson Education India, NDLS, 2015. [R3] Chandra, R. and Gehlot, V., Limit State Design of Steel Structures, Scientific Publishers, NDLS, 2010.
E-resources and other digital material	https://nptel.ac.in/courses/105105162 https://nptel.ac.in/courses/105106113

20CEH5804C	GEOSPATIAL DATA PROCESSING
20CE113604C	GEOSI ATTAL DATA I ROCESSING

Course Category:	Honors	Credits:	4
Course Type:	Theory and practical	Lecture - Tutorial - Practice:	3 - 0- 2
Prerequisites:	NIL	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course Outcomes	Upon s	succes	sful c	omple	tion of	the co	urse, t	he stud	lent wi	ll be al	ole to:					
	CO1	understand the concepts of Geographical information systems and apply them in various engineering applications.														
	CO2		valuate appropriate remote sensing data products for mapping, monitoring and nanagement applications.													
	CO3	appl	y vari	ious in	nage p	rocessi	ng tecl	nnique	s and t	heir ap	plicati	ons.				
	CO4	appl	y RS	and G	IS tech	niques	for so	lving l	Engine	ering a	pplica	tions.				
Contributio n of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	
towards achievement	CO1	3	2	3		3									3	
of Program Outcomes	CO2	3	2	3		3									3	
	CO3	3	2	3		3								2		
(Low – 1, Medium - 2, High – 3)	CO4	3	2	3		3								2		
Course Content	Project Project DATA Raster	onents ted co tions, EDI' and	of ordina Geor FING	GIS, Tate system of a system of the system o	Types stem, Noting, I STOI	of Da Maps an Data str RAGE	nta, conduction of scale of the	oordina les, Ty s, GIS ation,	te sys pes of analys	Maps is fund	and sc etions.		rojectio l corre	ns, Ty	pes of	

presentation and generation of thematic maps, spatial database management systems, Data

representation, Data storage, Entity relationship models.

Practise

- 1. Introduction to Arc GIS and Georeferencing, projections and re-projections
- 2. Creating a shape file, clip and attribute data manipulation.

UNIT-II

INTRODUCTION TO REMOTE SENSING

Introduction, Data and Information, Remote sensing data collection, Remote sensing advantages & Limitations, Remote Sensing process. Electromagnetic Spectrum, Energy interactions with atmosphere and with earth surface features (soil, water, and vegetation), Resolution, image registration and elements of visual interpretation techniques.

DATA ACQUISITION AND PLATFORMS

Indian Satellites and Sensors characteristics, Remote Sensing Platforms, Sensors and Properties of Digital Data, Data Formats: Introduction, platforms-IRS, Landsat, Sentinel, SPOT, CARTOSAT, etc. sensors, sensor resolutions (spatial, spectral, radiometric and temporal), Optical, Thermal and Microwave, signal to noise ratio, LiDAR data acquisition and processing.

Practise

3.DataDigitization (Draw, edit, delete and update)

UNIT-III

IMAGE CLASSIFICATION TECHNIQUES

Supervised Classification, Unsupervised classification, ANN and SVM classification techniques

SPECTRAL INDICES

Vegetation indices, water related indices, Digital elevation model, Digital terrain model, Triangulated irregular networks.

Practise

- 4. Data Analysis Overlay, Buffer
- 5. Generation of DEM and DTM using raster data.

UNIT-IV

APPLICATIONS IN SCIENCE DOMAIN

Applications of Remote sensing in various Engineering and Science domains such as Agriculture, Forest, Soil, Geology

APPLICATIONS IN ENGINEERING DOMAIN

LU/LC, Water Resources, Urban, Disaster Management, etc.

	Practise 6. Assignment on Application of Geospatial techniques in Civil Engineering.							
Text books	 [T1] Photogrammetry, GIS & Remote Sensing, SSManugula, VeerannaBommakanti, Educreation Publishing, 2018 [T2] Text Book of Remote Sensing and Geographical Information Systems, M. Anji Reddy, BS Publications/BSP Books, 4th edition, 2012 							
Reference books	[R1] Remote Sensing and Image Interpretation, Lillesand, T.M, R.W. Kiefer and J.W. Chipman, Wiley India Pvt. Ltd., New Delhi,7th Edition 2015 [R2] Remote Sensing and GIS, BasudeBhatta, Oxford UniversityPress,2nd Edition, 2011							
E-resources and other digital material	https://nptel.ac.in/courses/105/103/105103193/ https://nptel.ac.in/courses/105/101/105101206/ https://nptel.ac.in/courses/105/107/105107206/							

20CEH6803A	TRAFFIC ANALYSIS AND DESIGN
200211000311	

Course Category:	Honors	Credits:	4
Course Type:	Program Elective	Lecture - Tutorial - Practice:	3-1-0
Prerequisites:	20CE6302	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon successful completion of the course, the student will be able to:														
	CO 1	unde	understand traffic engineering studies, analyse the data and present the results.												
	CO 2		evaluate traffic and road facilities, and intersection control measures for smooth traffic movement.												
	CO 3	anal	analyse appropriate traffic control and management measures.												
	CO 4		apply the principles of queuing theory to analyse delay at signalized and unsignalized intersections.												
Contributio n of Course Outcomes towards		PO 1	PO 2	PO 3	P O 4	P O 5	PO 6	PO7	PO8	PO9	PO1 0	PO 11	PO1 2	PSO 1	PSO2
achievemen t of Program	CO 1	3	2	1	3	1	1			1					
Outcomes	CO 2	3	3							1				3	
(Low – 1, Medium - 2, High – 3)	CO 3	3			2	2	3			1					3
	CO 4	3	3							1					3
Course Content	TRA San	UNIT – I TRAFFIC ENGINEERING STUDIES AND ANALYSIS Sampling in Traffic Studies, Adequacy of Sample Size; Objectives, Methods of Study, Equipment.													

Data Collection, Analysis and Interpretation

Case Studies of (a) Speed (b) Speed and Delay (c) Volume (d) Origin and Destination (e) Parking (f) Accident & other Studies

UNIT - II

DESIGN OF TRAFFIC ENGINEERING FACILITIES

Control of Traffic Movements through Time Sharing and Space Sharing Concepts.

Design of Islands

Design of Channelising Islands, T, Y, Skewed, Staggered, Roundabout, Mini-roundabout and other forms of AT-Grade Crossings including provision for safe crossing of Pedestrians and Cyclists; Grade Separated Intersections, their Warrants and Design Features; Bus Stop Location and Bus Bay Design

UNIT - III

TRAFFIC REGULATION AND MANAGEMENT

Traffic Signs, Markings and Signals; Principles of Signal Design, Webster's method of Signal Design, Redesign of Existing Signals including Case Studies; Signal System and Coordination.

TRAFFIC MANAGEMENT MEASURES

Speed, vehicle, parking, enforcement regulations, mixed traffic regulation, various management techniques .

UNIT – IV

TRAFFIC STREAM MODELS

Fundamental Equation of Traffic Flow, Speed-Flow-Concentration Relationships, Normalised Relationship, Fluid Flow Analogy Approach, Shock Wave Theory, Platoon Diffusion and Boltzman Like Behaviour of Traffic Flow, Car-Following Theory, Linear and Non-Linear Car-Following Models, Acceleration Noise.

QUEUING ANALYSIS

Fundamentals of Queuing Theory, Demand Service Characteristics, Deterministic Queuing Models, Stochastic Queuing Models, Multiple Service Channels, Models of Delay at Intersections and Pedestrian Crossings.

Text books [T1] Kadiyali, L.R., Traffic Engineering and Transport Planning, Khanna publishers, 2011. [T2] The Institute of Transportation Engineers, Traffic Engineering Handbook, 7th edn, 2016. Reference books [R1] IRC-SP41: Guidelines for the Design of At-Grade Intersections in Rural & Urban Areas [R2] Pignataro, L., Traffic Engineering – Theory & Practice, John Wiley, 1973. [R3] Salter, R J., Highway Traffic Analysis and Design, ELBS, 1996 Nil Nil

20CEH6803B	TRANSPORTATION ECONOMICS

Course Category:	Honors	Credits:	4
Course Type:	Program Elective	Lecture - Tutorial - Practice:	3-1-0
Prerequisites:	20CE6302	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcom	Upon	succe	essful c	ompl	etion (of the	course	, the st	udent v	will be a	ble to:				
	CO1		apply the economic principles and estimating the various cost components in transportation												
	CO2		ply the possible project alternatives for the economic analysis and applying the propriate economic analysis method												
		CO3	anal	yze De	mand	and S	Suppl	y mode	lling						
		CO4	und	understand Knowledge on Regulation and Policy making of Economic Evaluation											
Contribution of Course Outcomes		PO 1	PO 2	PO3	PO 4	PO 5	PO 6	PO7	PO8	PO9	PO10	PO 11	PO12	PSO1	PSO2
towards achievement of Program Outcomes	CO1	3	3	1		1				1		1		3	3
M - Medium, H - High)	CO2	3	3	1	1	3				1		1			
	CO3	3	1	1	3										
	CO4	3							3	1		1			3

UNIT - I

TRANSPORT COSTS AND BENEFITS

Principles of economic analysis, Fixed and variable cost, cost of improvement, maintenance cost, cost estimating methods, accounting for inflation, external costs.

CONSEQUENCES OF TRANSPORT PROJECTS, ROAD USER CONSEQUENCES

Reduced vehicle operation costs, value of travel time savings, value of increased comfort and convenience, cost of accident reduction, reduction in maintenance cost, non-user consequences – travel time.

UNIT – II ECONOMIC ANALYSIS METHODS Generation and screening of project Alternatives DIFFERENT METHODS OF ECONOMIC ANALYSIS annual cost and benefit ratio methods, discounted cash flow methods, shadow pricing techniques, determination of IRR and NPV, examples of economic analysis, application economic theory in traffic assignment problem. UNIT – III TRANSPORT DEMAND The Basic Framework- measuring the demand in a spatial and temporal setting. Traditional Four-Stage Demand Model; modern approaches to modelling demand and practical issues in demand estimation. TRANSPORT SUPPLY The nature of output in transport, output and costs, economies of size, density and scope, empirical estimation of transport cost functions- the approaches and illustrations. UNIT – IV REGULATION AND POLICY Theory of Regulation, Deregulation and Privatisation in Transport. Approaches to privatisation of transport infrastructure and services and a competition policy for transport. Evolution of transport policy in India with focus on case studies regarding different modes. **EVOLUTION OF POLICY** Evolution of transport policy in India with focus on case studies regarding different modes. **Text books** [T1] McCarthy, P. S., Transportation Economics, Massachusetts: Blackwell Publishers. 2001 [T2] Winfrey R, Highway Economic Analysis, International Textbook Company, 1969. [R1] Kenneth J. Button, Transport Economics, Elgar, 2010 Reference books [R2] David A. Hensher, Ann M. Brewer, Transport: An Economics and Management Perspective, Oxford University Press, 2001. [R3] Emile Quinet, Roger Vickerman, Principles of Transport Economics, Edward Elgar Pub, 2005 [R4] Road User Cost Study, Central Road Research Institute [R5] Dickey J.W, Project Appraisal for Developing Countries, John Wiley, 1984 https://www.civil.iitb.ac.in/~dhingra E-resources and other digital material

20CEH6802C	ADVANCED FOUNDATION ENGINEERING

	Credits:	7
Theory	Lecture - Tutorial - Practice:	3-1-0
20CE6404/B Foundation Engineering	Continuous Evaluation:	30
	Semester end Evaluation:	70
	Total Marks:	100
	•	20CE6404/B Foundation Engineering Continuous Evaluation: Semester end Evaluation:

Course outcor	mes	Upon	succe	essful c	omple	etion (of the	course	, the st	udent v	vill be al	ble to:			
	CO1	appl	apply various bearing capacity determination techniques and												
	CO2		analysis for determination of bearing capacity and settlement of shallow coundation												
		СОЗ	eval	uate safe capacity of pile foundation for all types of loads											
	CO4	anal	analyze section for stability of well foundation / caisson.												
Contribution of Course Outcomes		PO 1	PO 2	PO3	PO 4	PO 5	PO 6	PO7	PO8	PO9	PO10	PO 11	PO12	PSO1	PSO2
towards achievement	CO1	3	1	1									2		2
of Program Outcomes	CO2	3	1	1									2		2
(Low – 1, Medium - 2, High – 3)	CO3	3	1	1									2		2
	CO4	3	1	1									2		2

UNIT – I

BEARING CAPACITY OF SHALLOW FOUNDATIONS

Vesic method, IS Code method; Effect of Water Table; Footings with Eccentric or Inclined Loads, Footings on Layered Soils.

ESTIMATION OF BEARING CAPACITY BASED ON FIELD TESTS

Bearing Pressure using SPT& CPT,

UNIT – II

CONCEPT OF SETTLEMENT CLASSIC THEORIES

Immediate Settlement, Consolidation Settlement; Secondary Compression Settlement.

SETTLEMENT ESTIMATION - EMPIRICAL METHODS

Settlement of foundations on Sands-Schmertmann

	UNIT – III PILES IN COMPRESSION Static capacity of piles, Point Bearing Resistance with SPT and CPT; Ultimate Capacity of Pile Groups in Compression, Settlement; Pile Load Test; Negative Skin Friction. SPECIAL PILES AND SETTLEMENTS OF PILE Laterally Loaded Piles -Ultimate Lateral Resistance; Batter Piles; Under Reamed Piles; Mini and Micro Piles, Pullout & Lateral Load; Efficiency; Settlements of Pile Groups;
	UNIT – IV WELL FOUNDATIONS Open wells; Design of pier foundations and well foundations; Lateral stability of well foundations; R.C.C. designs of wells PNEUMATIC CAISSONS Introduction to Pneumatic Caissons, construction of piers;
Text books	[T1] Das, B. M. Principles of Foundation Engineering 5th Edition Nelson Engineering, 2004. [T2] Coduto, D,P. Foundation Design Principles and Practices, 2nd edition, Pearson, Indianedition, 2012. Phi Learning, 2008. [T3] Bowles, J. E. Foundation Analysis & Design 5th Edition McGraw-Hill Companies, Inc,.1996. [T4]Poulos, H. G. & Davis, E. H. Pile Foundation Analysis and Design, John Wiley & Sons Inc, 2008.
Reference books	 [R1] Reese, L. C. & Van Impe, W. F. Single Piles and Pile Groups under Lateral Loading -Taylor &Francis Group (Jan 2000) [R2] Rowe, R. K. Geotechnical & Geo-environmental Engineering Hand Book -Springer ,2001. [R3] Tomlinson, M. J. Foundation Design and Construction, PHI , 2003.
E-resources and other digital material	nptel.ac.in/courses/105107120 nptel.ac.in/courses/105101083

20CEH7802A	GEOSYNTHETICS AND REINFORCED SOIL STRUCTURES

Course Category:	Honors	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3-1-0
Prerequisites:	Geotechnical Engineering	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcor	nes	Upon	succe	essful co	omple	etion c	of the	course,	the stu	ident w	ill be ab	le to:				
		CO1	analyze the properties of geo synthetics													
		CO2	understand functions and applications of geo synthetics													
		CO3	evaluate a typical section for the construction of reinforced earth walls													
		CO4 evaluate reinforced earth slopes and foundations														
Contribution of Course		I														
Outcomes towards achievement	CO1	PO 1	PO 2	PO3	PO 4	PO 5	PO 6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
of Program Outcomes	CO2	2 3 3 3 3 3 3										3				
(Low– 1, Medium - 2,	CO3	3	3 3 3 3 3										3	3		
High – 3)	CO4	3	3	3		3								3	3	

UNIT – I

GEOSYNTHETICS

Introduction to Geosynthetics-Types of geosynthetics- Functions of Geosynthetics-Applications of Geosynthetics- Strength of reinforced soils

MANUFACTURING OF GEOSYNTHETICS

Manufacture of geotextiles- Manufacture of geogrids- Manufacture of geomembranes- Manufacture of geocomposites

UNIT – II

PROPERTIES OF GEOSYNTHETICS

Physical properties-Mechanical Properties-Hydraulic Properties-Endurance Properties-Degradation properties

	TESTING OF GEOSYNTHETICS Need for testing of Geosynthetics-Testing of geogrids-Testing of geomembranes-Testing of GCLs
	UNIT – III EXTERNAL STABILITY ANALYSIS OF REINFORCED SOIL WALLS Different Types of Soil Retaining Structures-Construction Aspects of Geosynthetic Reinforced Soil Retaining Walls-External Stability Analysis of Reinforced Soil Retaining Walls
	INTERNAL STABILITY ANALYSIS OF REINFORCED SOIL WALLS Internal Stability Analysis of Reinforced Soil Walls- Testing requirements for Reinforced Soil Retaining Walls- Design of Gabions.
	UNIT – IV STABILITY ANALYSIS OF REINFORCED SOIL EMBANKMENTS Stability analysis of reinforced soil Embankments resting on soft foundation soils-Stability analysis of reinforced soil slopes- Reinforced soil for supporting shallow foundations-Natural geosynthetics and their applications.
	GEOSYNTHETICS FOR LANDFILLS Geosynthetics for construction of municipal waste landfills-Geosynthetics for construction of hazardous waste landfills
Text books	 [T1] Koerner, R.M. "Designing with Geosynthetics", Prentice Hall, Eaglewood cliffs, NJ, 2005. [T2] Sanjay Kumar Shukla, Jian-Hua Yin, Taylor, "Fundamentals of Geosynthetics Engineering" & Francis, Milton Park, Abingdon, UK, 2010. [T3] Saran, S. "Reinforced Soil and Its Engineering Applications", I.K. International Pvt Ltd, New Delhi, 2005.
Reference books	[R1] Venkatappa Rao, G. and Suryanarayana Raju, GVS. "Engineering with Geosynthetics", Tata McGraw Hill Publishing Company Limited – New Delhi, 2008. [R2] Koerner, R.M. and Welsh, J. P. "Construction and Geotechnical Engineering using Synthetic Fabrics" by. John Willey and Sons, New York, 1993.
E-resources and other digital material	https://nptel.ac.in/courses/105/101/105101143/[J. N. Mandal, Geosynthetics Engineering]

20CEH7803B	INTELLIGENT TRANSPORTATION SYSTEMS

Course Category:	Honors	Credits:	4
Course Type:	Theory	Lecture - Tutorial -Practice:	3 - 1 - 0
Prerequisites:	Transportation Engineering	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

	Upon s	success	ful cor	npletic	n of th	ne cour	se, the	studer	nt will	be able	e to:					
Course Outcomes	CO1	evaluate the need and basics of ITS and data collection techniques														
	CO2	apply ITS for different functional areas														
	CO3	apply	apply ITS for different user needs and services													
	CO4	unde	understand the significance of ITS in developed and developing countries													
Contribution of Course PO P									PO 12	PS O1	PS O2					
Outcomes towards achievement of	CO1	2		2		2									2	
Program	CO2	2				2									2	
Outcomes	CO3	2	2			2									2	
(Low – 1, Medium - 2, High – 3)	CO4	2	2			2							2		2	

UNIT-I

INTRODUCTION TO ITS

Definition of ITS, ITS Objectives, Historical Background, Benefits of ITS - ITS Data collection techniques – Detectors, Automatic Vehicle Location (AVL), Automatic Vehicle Identification (AVI), Geographic Information Systems (GIS), video data collection.

TELECOMMUNICATIONS IN ITS

Importance of telecommunications in the ITS system, Information Management, Traffic Management Centres (TMC). Vehicle – Road side communication – Vehicle Positioning System

UNIT-II

ITS FUNCTIONAL AREAS

Advanced Traffic Management Systems (ATMS), Advanced Traveler Information Systems (ATIS), Commercial Vehicle Operations (CVO),

ITS FUNCTIONAL AREAS IN TRANSPORTATION SYSTEM

Advanced Vehicle Control Systems (AVCS), Advanced Public Transportation Systems (APTS), Advanced Rural Transportation Systems (ARTS).

	UNIT-III ITS USER NEEDS Travel and Traffic management, Public Transportation Management, Electronic Payment, ITS User Services Commercial Vehicle Operations, Emergency Management, Advanced Vehicle safety systems, Information Management.
	UNIT-IV AUTOMATED HIGHWAY SYSTEMS Automated highway system - Vehicles in Platoons — Integration of Automated Highway Systems.
	ITS PROGRAMS IN THE WORLD Overview of ITS implementations in developed countries, ITS in developing countries.
Text books	[T1] Ghosh. S, T. Lee, T.S Lee. "Intelligent Transportation Systems: New Principles and Architectures", 1 st ed, CRC Press, Boca Raton, 2000. [T2] Sussman. J, "Perspective on Intelligent Transport System ITS", 1 st ed, Artech House Publishers, Boston 2005.
Reference Book	[R1] M.A. Chowdhury, & A. Sadek, "Fundamentals of Intelligent Transportation Systems Planning", 1st ed, Artech House Publishers, Boston, 2003. [R2] J. Miles, K. Chen, C.J.C Miles, "ITS Hand Book 2000: Recommendations for World Road Association (PIARC)" 1st ed, Artech House Publishers, Boston, 1999
E-resources and other digital material	https://www.civil.iitb.ac.in/~vmtom/nptel/591_ITS_1/web/web.html https://coeut.iitm.ac.in/ITS_synthesis.pdf [https://ocw.mit.edu/courses/civil-and-environmental-engineering/1-212j-an-introduction-to-intelligent-transportation-systems-spring-2005/lecture-notes/

Course Category:	Honours	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 1- 0
Prerequisites:	17MC4108B – Environmental studies	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course Outcomes	Upon s	successful completion of the course, the student will be able to:													
	CO1	unde	erstan	d the (Concep	ot of EI	A, EIA	A meth	odolog	gies.					
	CO2	analyze the effect on different sources on developmental activities.													
	CO3	analyze the effect of development on flora and fauna.													
	CO4 understand the different acts and case studies.														
Contributio n of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
Outcomes towards	CO1	3					2						1		2
achievement of Program	CO2	3	2							3					2
Outcomes	CO3	3	2										1		2
(Low – 1, Medium - 2, High – 3)	CO4						2								2
Course Content	classifi evaluate environ EIA M Criteria	concestion and the concestion are concestion and the concestion and the concestion are concestion are concestion and the concestion are concestion are concestion and the concestion are concestion.	ept-San and and and all par object of the statement of th	predicanalys analys amete LOGI selection	Feature ction of street ction of street ction of street ction of street ctions are street ctions.	es of of important	EIA, acts -Ention of	EIA P Elemen of env	Procedu ts of I vironm	ire – EIA - iental A met	Analy Factor base	ENT tical furs affect map -	ting E Class c metl	IA – I sificati hods,	Impact on of matrix

UNIT II

ENVIRONMENTAL IMPACT ASSESSMENT ON SOIL AND GROUND WATER Introduction, Prediction and assessment - Soil quality -Methodology for the assessment of soil and groundwater - Delineation of study area - Identification of activities.

ENVIRONMENTAL IMPACT ASSESSMENT OF SURFACE WATER AND AIR Impact prediction - Assessment of impact significance - Identification and incorporation of mitigation measures - EIA in surface water, air and biological environment: Methodology for the assessment of impacts on surface water environment. Air pollution sources, Air pollution effect - Generalized approach for assessment of air pollution Impact.

UNIT III

ASSESSMENT OF IMPACT ON VEGETATION AND WILDLIFE

Assessment of impact of developmental activities on vegetation and wildlife - Environmental impact of deforestation - Causes and effects of deforestation.

ENVIRONMENTAL AUDIT

Environmental audit and environmental legislation - Objectives of environmental audit - Types of environmental audit - Audit protocol - Stages of environmental audit - Onsite activities - Evaluation of audit data and preparation of audit report.

UNIT - IV

ENVIRONMENTAL ACTS

Post audit activities - The Environmental protection act - The water act - The air act - Wild life act.

CASE STUDIES

Case studies and preparation of environmental impact assessment statement for various industries.

Text books

- [T1] Anjaneyulu, VallManickam, "Environmental Impact Assessment Methodologies", 2nd Edition, B.S. Publications, 2007.
- [T2] Glynn. J, and Gary W. Heinke, "Environmental Science and Engineering", PHI, NDLS, 1996.

Reference books

- [R1] Barthwal, R. R., "Environmental Impact Assessment", New Age International Publications
- [R2] Dhameja, S.K., Environmental Engineering and Management, Kataria, NDLS, 2010.
- [R3] Bhatia, H.S., A Text Book of Environmental Pollution and Control, Galgotia NDLS, 2003.

E-resources and other digital material

https://nptel.ac.in/courses/120/108/120108004/

20CE5301	WATER RESOURCES ENGINEERING

Lecture :Tutorial: Category:	Program Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0 - 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	Upon successful completion of the course, the student will be able to:													
	CO1	evaluate various irrigation methods and Irrigation management practices in the field.													
	CO2	analyze the Run-off and estimate the ground water yield.													
	CO3	apply the design principles of various Channel sections.													
	CO4	eval	uate r	eservo	oir cap	acity	and su	ımmar	ize va	rious	types	of hyd	raulic	structure	es
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
towards achievement	CO1	3													
of Program Outcomes	CO2	3		2	2									2	
	CO3	3		2	2									3	
(1 – Low, 2 - Medium, 3 – High)	CO4	3		3		2								3	
Course Content	UNIT		ON·W	VATE	D AD	PI IC	ATIO	N MI	тно	nns		I	ı	I	

IRRIGATION: WATER APPLICATION METHODS

Definition; Necessity; Benefits of irrigation; Ill-effects of irrigation; Types of irrigation and methods of applying water to crops; Uncontrolled or wild flooding; Free flooding; Contour laterals; Border strip method; Check flooding; Basin flooding; Zig zag method; Furrow

method; Contour Farming; Sub-surface irrigation; Sprinkler Irrigation; Drip irrigation

.WATER REQUIREMENT OF CROPS:

Saturation capacity; Field capacity; Wilting point; Available moisture and readily available moisture; Duty and Delta; Base period; Relation between Duty and Delta; Factors affecting duty; Methods of improving duty; Gross command area; Culturable command area; Culturable cultivated and uncultivated area; Kor depth and Kor period; Standards of irrigation water; Assessment of irrigation water.

UNIT - II

HYDROLOGY:

Introduction to Engineering Hydrology and its applications; Hydrologic cycle; Precipitation types; Rain gauges; Computation of average rain fall over a basin; Run off; Factors affecting run off; Computation of run-off. Hydrograph; definition of Unit hydrograph; Limitations and applications of unit hydrograph, construction of a flood hydrograph resulting from rainfall of unit duration; Application of unit hydrograph to construction of a flood hydrograph resulting from two or more periods of rainfall; Construction of unit hydrograph of different unit duration from a unit hydrograph of some given unit duration. S-hydrograph

WELL IRRIGATION:

Introduction; Aquifer; Aquicludes; Aquifuge; Specific yield; Specific retention; Water table; types of aquifers; Dupit's theory for confined and unconfined aquifers; Constant level pumping test, Recuperation test.

UNIT-III

IRRIGATION CHANNELS - SILT THEORIES & DESIGN PROCEDURE:

Classification; Canal alignment; Silt theories–Kennedy's theory, Lacey's regime theory; Kennedy's method of channel design; Silt supporting capacity according to Kennedy's theory; Use of Garret's diagram in channel design; Lacey's theory applied to channel design; Use of Lacey's regime diagrams; Drawbacks in Kennedy's theory; Defects in Lacey's theory; Comparison of Kennedy's theory and Lacey's theory

WATERLOGGING, CANAL LINING

Water logging, causes, effects and remedial measures. Lining of Irrigation canals, Types of lining; Design of lined canal

UNIT-IV

DAMS IN GENERAL:

Classification; Gravity dams, Arch dams, Buttress dams, Steel dams, Timber dams, Earth dams and rock fill dams; factors governing selection of site for a dam.

RESERVOIR PLANNING:

Selection of site for a reservoir; Zones of storage in a reservoir; Storage capacity and yield; Mass inflow curve and demand curve; Calculation of reservoir capacity for a specified yield

	from the mass inflow curve; Determination of safe yield from a reservoir of a given capacity; Life of reservoir;
Text books	 [T1] Irrigation and water power Engineering by Dr. B.C. Punmia& Dr. PandeB.B.Lal; Laxmi Publications Pvt. Ltd., New Delhi., 2006. [T2] Irrigation Engineering and Hydraulic structures by S. K. Garg; Khanna publishers New Delhi, 2006. [T3] Irrigation Engineering and Hydraulic structures by SR Sahasrabudhe, Katson Publishing house.2005
Reference books	[R1] Irrigation, Water Resources & Water Power Engineering by Dr. P.N. Modi; standard Book House, New Delhi.,2006 [R2] Irrigation water power and water resources engineering by K R ARORA, Standard published distributors, New Delhi.,2006. [R3] A text book of hydrology by Dr.P.Jayarami Reddy, published by Laxmi Publications. [R4] Journals in Water resources
E-resources and other digital material	www.nptel.ac.in/couses/105104103

20CE5302	ENVIRONMENTAL ENGINEERING
----------	---------------------------

Course Category:	Programme core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:	20CH1102 - Engineering chemistry 20MC4108B -Environmental studies	Continuous Evaluation:	30
	201110 1100B Environmental stadies	Semester end Evaluation:	70
		Total Marks:	100

Course outcomes		Upon	succes	sful co	omple	tion o	f the c	ourse	, the s	studen	t will b	e able t	o:		
		CO1	evaluate the source of water for water supply scheme with reference to quantity and quality of water.												
		CO2	CO2 apply and design the treatment units for purification of water and to understand the components of distribution systems and its analysis.												
		СОЗ	understand the methods of collection, conveyance, quality and estimate the quantity of sewage.												
		CO4													
Contribution of Course Outcomes		PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO 11	PO12	PSO 1	PSO2
towards achievement	CO1	1											1		1
of Program Outcomes	CO2	3		2	3										1
(1 – Low, 2 - Medium, 3 –	CO3	2	2										1		
High)	CO4	3	2	3	3										3
		INTR Object of der	UNIT – I INTRODUCTIONAND QUANTITYOF WATER Objectives of water supply systems, Per capita consumption; Design period; Types of demands; Fluctuations in demand; Prediction of population. QUALITY OF WATER												
		Impu	ities i	n wat	er; R	outin							ical and orne dise	ases.	

UNIT - II

PURIFICATION OF WATER

Purification of water; Plain sedimentation; coagulation and types of Coagulants; Sedimentation and coagulation tanks; Design aspects; Theory of filtration; Slow sand and rapid sand filters; Construction and Operation; Disinfection methods-chlorination; Miscellaneous treatments-Removal of hardness, De-fluoridation.

DISTRIBUTION SYSTEMS

Methods of supply; Layouts; Distribution reservoirs; Capacity of balancing tank; Methods of analysis of distribution systems; valves. Plumbing-pipes and fittings; Traps; One pipe and Two pipe systems.

UNIT - III

INTRODUCTION TO SANITARY ENGINEERING, QUANTITIES, SEWERS AND SEWER APPURTENANCES

Sanitation; Conservancy and water carriage system; Sewerage systems; Relative merits, Sanitary and storm water sewage; Estimation of their quantities. Sewers-types, design, construction and maintenance; sewer appurtenances-types.

QUALITY OF SEWAGE AND PRIMARY TREATMENT OF SEWAGE

Characteristics of sewage-physical, chemical and biological; decomposition cycles; BOD and COD.

Primary treatment- theoretical concepts of Screens, Grit chamber; Skimming tanks; design aspects of Sedimentation tanks. Septic tank-Design and effluent disposal.

UNIT – IV

SECONDARY TREATMENT OF SEWAGE

Trickling filters and high rate trickling filters at primary level, Principles of action; Recirculation; Operational problems and remedies; Activated sludge process; Principles of action; Methods of aeration; Sludge bulking; Sludge volume index.

SEWAGE DISPOSAL

Methods; Disposal by dilution; Self-purification process; Oxygen sag; Zones of pollution of river; Disposal by irrigation.

Text books

[T1] Duggal K.N., "Elements of public health engineering", S. Chand & Company Ltd., New Delhi, 2014.

[T2] Birdie G.S. and Birdie J. S., "Water Supply and Sanitary Engineering", 9th ed., Dhanpat Rai Publishing Company, New Delhi, 2015.

Reference books

[R1] Garg S. K., "Environmental Engineering Vol. I& II- Water supply engineering", Khanna Publishers, New Delhi, 2017.

[R2] Gurucharan Singh, "Water Supply and Sanitary Engineering", Standard Publishers Distributors, Delhi, 2009.

[R3] CPHEEO and Ministry of Urban Development, "Manual on Water Supply & Treatment", Govt.

	of India, New Delhi,2005.
E-resources and other digital material	www.https://nptel.ac.in/courses/103107084 wwwnptel.ac.in/courses/105105048

20CE5303	DESIGN OF CONCRETE STRUCTURES

Course Category:	Programme Core	Credits:	2
Course Type:	Theory	Lecture - Tutorial - Practice:	2-0-0
Prerequisites:	20CE3305 Concrete Technology	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes		Upon	success	sful co	mple	tion o	f the o	course	, the s	studer	its wi	ll be al	ole to:		
		CO1	analy	analyze for a section for R.C. beams											
		CO2	evalı	evaluate a section for R.C. flanged beam &R.C slabs											
		CO3	analy	analyze for a safe section for R.C columns evaluate a section for Footings											
		CO4	evalı												
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2
towards achievement	CO1	2		3		3								3	
of Program Outcomes	CO2	2		3		3								3	
-	CO3	2		3		3								3	
(1 – Low, 2 - Medium, 3 – High)	CO4	2		3		3				ļ				3	
Course Content		charac	ERAI ng sta cterist State	ndard ics of Meth	conc od (I	rete a	and s	teel, l	Introd n. Ch	duction aract	on to	work	ing st		Strain ethod and ths, Design

	ALL DESIGNS IN LIMIT STATE METHOD: DESIGN OF BEAMS (IS456-2000). Flexural and Shear in R. C. beams; Check for development length. Deflection and cracking. Design of singly reinforced rectangular section, Doubly reinforced rectangular section.
	UNIT – II DESIGN OF FLANGED BEAM (IS456-2000) T-Beams introduction, Analysis and Design of singly reinforced flanged sections.
	DESIGN OF SLABS (IS456-2000). One way and Two-way action of slabs, Choosing slab thickness. Design of one way slab. (only simply supported one way slab) Design of restrained and unrestrained Two way slabs as per I.S. code provision (IS456-2000).
	UNIT – III DESIGN OF COLUMNS FOR AXIAL COMPRESSION (IS456-2000). Define short and long columns, estimation of effective length of a column. Code requirements on slenderness limits, minimum eccentricity and reinforcement. Design of short column under axial compression with lateral ties only.
	DESIGN OF COLUMNS FOR COMBINED ACTION (IS456-2000)
	Design of short columns subjected to combined axial load and uniaxial moment
	UNIT – IV CLASSIFICATION OF FOUNDATIONS Different types of shallow foundations and deep foundations. General aspects of footings.
	DESIGN OF ISOLATED FOOTING (IS456-2000) Design and detailing of Isolated Column footings.
Text books	[T1] Shah H.J., "Reinforced Concrete Vol-1", 11th ed., Charotar Publication House, Gujarat, 2016.
	[T2] Jain A.K, "Reinforced Concrete (Limit State Design)", 7th ed Nem Chand & Bros., Roorkee Uttarakhand, 2012.
Reference books	 [R1] Varghese P.C, "Limit state designed of reinforced concrete", 2nd et., , Printice Hall of India; New Delhi, 2004. [R2] Arther H.Nilson, "Design of concrete structures", 1st ed., Tata McGraw-Hill Publishing Co. Ltd, New Delhi, 2017.
E-resources and other digital material	www.nptel.ac.in/courses/105105105 www.nptel.ac.in/courses/105105104

Course Category:	Programme Elective-1	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:	20CE4302 – Structural Analysis	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes		Upon	success	ful co	mple	tion o	f the c	ourse	, the s	studer	t will	be abl	le to:		
		CO1	analy	analyze arches and cables											
		CO2	evalı	evaluate statically indeterminate beams using flexibility matrix method evaluate statically indeterminate beams and frames by stiffness matrix method											
		CO3	evalı												
		CO4	apply the basic concepts of plastic analysis and finite element method												
Contribution of		PO 1	PO	РО	РО	PO	РО	PO	PO	РО	PO	РО	PO	PSO1	PSO2
Course Outcomes			2	3	4	5	6	7	8	9	10	11	12		
towards achievement of	CO1	3	3	1										3	
Program Outcomes	CO2	3	3	1										3	
	CO3	3	3	1										3	
(1 – Low, 2 - Medium, 3 – High)	CO4	2	2	1										3	
A E		UNIT – I ARCHES													
		Eddy's Static		em; A	nalys	is of 1	three	hinge	d and	two 1	ningeo	l Paral	oolic a	nd Circula	r arches for
	CABI	LES													
													s;Shape of cables.	f the cable	

UNIT - II MATRIX METHODS OF ANALYSIS Static Indeterminacy; Matrix Methods; Flexibility and Stiffness; Flexibility Matrix; Stiffness Matrix; Relationship between Flexibility and Stiffness Matrix. FLEXIBILITY METHOD (FORCE METHOD) Analysis of continuous beams and rigid jointed plane frames (Single bay, single storey with vertical legs only) by flexibility method. UNIT - III STIFFNESS METHOD (DISPLACEMENT METHOD) Notations, Kinematic Indeterminacy, Generating Stiffness Matrices and analysis of continuous beams by Stiffness method. STIFFNESS METHOD FOR PORTAL FRAMES Analysis of rigid Jointed frames by stiffness method with matrix approach. UNIT - IV **PLASTICANALYSISOFSTRUCTURES** Idealized stress - strain curve for mild steel; Ultimate load carrying capacity of members carrying axial forces; Moment - Curvature relationship for flexural members; Evaluation of fully plastic moment; Shape factor; Collapse load factor; Upper and lower bound theorems. **FINITEELEMENTANALYSIS** Equilibrium Conditions; Strain-displacement relations; Linear Constitutive relations; Principle of Virtual work, Energy Principles; Application to finite element method. Element Strains and Stresses; Element Stiffness matrix. Stiffness matrix formulation for bar element, beam element. [T1] Structural Analysis–Amatrix approach by Pandit. G.S&Gupta. S.P., Tata Mc.Graw– **Text books** Hill Publishing Co.Ltd., New Delhi, 2008. [T2] Basic Structural Analysis by Reddy. C. S, Mc Graw Hill Education, 3rd Edition, 2010. [T3] Finite Element Analysis—Theory and Programming by Krishna Murthy. C.S. Tata Mc Graw Hill Publishing Company Ltd., New Delhi, 2013. Reference books [R1] Analysis of structures Vol. 2 by Prof Vazirani. V. N, Ratwani. M. M, Duggal. Sk, 16th Edition, Khanna Publishers, New Delhi, 2016. [R2] Indeterminate Structural Analysis by Wang. C. K, 5th Edn Mc Graw Hill Education, New Delhi, 2014. http://onlinecourses.nptel.ac.in/courses/105106050 E-resources and other

digital material

ZUCES IU I/D	20CE5404/B	TOWN PLANNING & ARCHITECTURE
--------------	------------	------------------------------

Course Category:	Program elective-1	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:	20CE3353 Programe core Lab-2 Computer aided civil engineering	Continuous Evaluation:	30
	Drawing	Semester end Evaluation:	70
		Total Marks:	100

Course outcomes		Upon successful completion of the course, the student will be able to :													
	CO1	apply the principles of urban design													
	CO2	apply the techniques used in Planning of urban infrastructure systems.													
	CO3	analyze the principles of architecture by understanding history													
	CO4	evaluate the concept of sustainable development													
Contribution of Course Outcomes towards achievement of Program Outcomes $(1 - Low, 2-$ Medium, 3 - High)		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2
	CO1	1				1	1						l l		
	CO2	1				1	1							1	
	CO3	1				1	1								
	CO4	1				1	1							1	
Course Content		UNIT – I URBAN DESIGN Concepts and theories of urban design; Urban design interventions for sustainable development and transportation; Historical and modern examples of urban design; Public spaces, spatial qualities and Sense of Place; Elements of urban built environment – urban form, spaces, structure, pattern, etc; Urban renewal and conservation; Site planning; Landscape design													

CITY PLANNING

Evolution of cities; principles of city planning; planning regulations, Development controls – FAR, densities and building byelaws; sustainable development

UNIT - II

TECHNIQUES OF PLANNING

Planning survey techniques; preparation of development plans; site planning principles and design; application of G.I.S and remote sensing techniques in urban and regional planning

CONCEPTS OF CITY MASTER PLANNING AND SATELLITE TOWNS

Definition importance, features, various phases in the preparation of a Master plan and Satellite towns, advantages, Examples -Hyderabad master plan and Noida satellite town

UNIT - III

HISTORY OF ARCHITECTURE

Indian – Indus valley, Vedic, Buddhist, Indo-Aryan, Dravidian and

Mughal periods: European – Egyptian, Greek, Roman, medieval and renaissance periods construction and Architectural styles; vernacular and traditional architecture. Principles of Architecture

ENVIRONMENTAL STUDIES IN BUILDING SCIENCE

Components of Ecosystem; ecological principles concerning environment; energy efficient building design; thermal comfort; solar architecture; principles of lighting and styles for illumination; basic principles of architectural acoustics

UNIT - IV

LANDSCAPE DESIGN:

Principles of landscape design and site planning; history of landscape styles; landscape elements and materials

URBAN INFRASTRUCTURE, SERVICES AND AMENITIES

Green building rating system-GRIHA and LEED

Basic understanding of sustainable Development, green infrastructure; urban rainwater harvesting; power supply and communication systems – guidelines

Text books

[T1] Brown, P. "Indian Architecture (Buddhist and Hindu period)", Taraporevala, CSTM, 2015.

[T2] Bandopadhyay, A." Text book of Town Planning", Books and Allied, HRH, 2000

Reference books	 [R1] Evans.M, "Housing, Climate & Comfort, Architectural", LN, UK, 1980. [R2] Grover,S. "The Architecture of India (Buddhist and Hindu period)", Vikas, NDLS, 2017. [R3] Gurucharan Singh and Jagadish Singh," Building planning designing and scheduling" Standard publishers distributors, Delhi 2011
E-resources and other digital material	https://nptel.ac.in/courses/124/105/124105001/ https://nptel.ac.in/courses/124/105/124105004/ www.european-science.com

20CE5404/C AIRPOLLUTION AND CONTROL

Course Category:	ProgrammeElective-1	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:	NIL	Continuous Evaluation:	30 70
		Semester end Evaluation:	100
		Total Marks:	

Course outcomes	Upon su	icces	sful	con	pleti	ion o	f the	cours	e, the	stude	nt will	be able	e to :			
	CO1		evaluate various types of air pollution and their effects													
	CO2	2	apply the dispersion phenomenon of air pollutants with regard meteorological parameters											regard to		
	CO3	,	ana	analyze the samples, pollutants from chimney stacks and ambient atmosphere												
	CO4		apply as necessary, various types of equipment to control air pollution													
Contribution of Course Outcomes towards achievement of Program		P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2	
	CO1	3													3	
Outcomes	CO2	3													3	
(1 – Low, 2 - Medium, 3 – High)	CO3	3	3		1						1			li:	3	
mgn)	CO4	3		3	1											
Course Content	UNIT – I INTRODUCTION TO AIR POLLUTION AND EFFECTS OF AIR POLLUTION Composition of air, Air pollution-definition, Prominent air pollution disasters episodes, Sources of air pollution-Stationary and mobile sources and Effects of air pollutants on human health; Effects on plants and economic effects. CLASSIFICATION OF AIR POLLUTANTS Classification-Natural Contaminants; Particulate Matter Aerosols and Gaseous pollutants; Primary and secondary pollutants.									sasters of air						

UNIT - II METEOROLOGY AND AIR POLLUTION Meteorological factors influencing dispersion of air pollutants-Wind direction and wind speed, Atmospheric stability, temperature inversions, Mixing height, precipitation and humidity. MEASUREMENT OF METEOROLOGICAL PARAMETERS Wind direction recorder, Wind speed recorder, Humidity Measurement, Temperature measurement; Wind Rose; Plume behavior. UNIT - III STACK SAMPLING: Stack sampler; Sampling Procedure-Sampling point - size - Isokinetic Conditionssampling of Particulate matter and Gases. AMBIENT AIR SAMPLING: Sampling methods- Sedimentation, filtration, impingement methods, electrostatic precipitation and thermal precipitation. Sampling suspended particulates by highvolume sampler. Sampling SO2and NOxand Carbon Monoxide gases. -Indian standard methods of analysis of SO2 and NO_x gases Air Quality and Emission standards. UNIT - IV METHODS OF CONTROLLING AIR POLLUTION: Different means of control of effluent discharges into the atmosphere. Control of Particulate matter by equipment - Settling chamber, inertial separators- fabric filters-wet scrubbers- Electrostatic Precipitators. **CONTROL OF GASEOUS POLLUTANTS:** Controlling methods of Gaseous Emissions- combustion, adsorption, absorption, closed collections and recovery systems – Control of SO₂ and NOx gases Text books [T1] Air Pollution and Control by Rao, M.N and Rao, H.N. Tata McGraw Hill, New Delhi, [T2] Environmental Engineering and Management, (2ndEdition) by Suresh, 1., Kartarai S.K. & Sons, 2005. [R1] An Introduction to Air pollution by Trivedi, R.K., B.S. Publications, 2005. Reference [R2] Air pollution by Wark and Warner, Addison-Wesley Publications, 1998. books http://nptel.ac.in/courses/webcourse-contents/IIT-delhi/Environmental%20Air%20Pollution/ E-resources and other digital material

20CE5404/D	ENVIRONMENTAL GEOTECHNOLOGY

Course Category:	ProgrammeElective-1	Credits:	3
Course Type:	Theory	Lecture-Tutorial-Practice:	3-0-0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcome	Upon	success	sful co	mple	tion o	f the o	course	e, the	studer	nt will	be ab	le to:			
		CO1	appl	apply the principles of environmental geotechnology											
		CO2	containment facility												
		CO3													
		CO4	anal	yze g	eotec	hnica	ıl re-ı	ise of	f was	te					
acmevement		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2
	CO1	3						3							3
of Program Outcomes	CO2	3		3			3								3
(1 – Low, 2 - Medium, 3 –	CO3	3			3	1									
High)	CO4	3				1		1							3
Course Conter	nt .	Intro conta	DAM duction minates RCES	n; ; ; ion; ; S AN harac	Scope Types D CH teriza	e of sof contact of the soft o	f Enontan ACT E	nviron ninan E RIS nviro	nmen ts; In STIC: nmer	tal npact S OF ntal	Geot of su WA con	echno bsurf STES cerns	ology; ace co	ontami	rces of

UNIT-II SOIL-WATER INTERACTION Soil mineralogy characterization and its significance in determining soil behavior; Soil-water interaction and concepts of double layer; Forces of interaction between soil particles. CONTAMINANT TRANSPORT Soil-water-contaminant interactions and its implications; Factors effecting retention and transport of contaminants UNIT-III CONTAMINATED SITE ASSESSMENT Need for contaminated its characterization, Characterization methods-Electromagnetic resistivity; Ground penetrating radar; Electro chemical and electro-optical sensing methods CONTAINMENT FACILITY Concept and principles of waste containment; Site selection criteria for containment facility; Different components of waste containment system; Design of waste containment facilities **UNIT-IV** CONTAMINATED SITE REMEDIATION Remediation methods for subsurface contamination; Selection and planning of remediation methods, bio-remediation, incineration, soil washing, electrokinetics, soil heating. RECYCLING AND REUSE Geotechnical reuse of waste materials; Waste characteristics for soil replacement; Waste materials suitable for geotechnical construction Text books [T1] Sharma, H.D. and Reddy, K.R.. GeoenvironmentalEngineering,JohnWiley.NY,USA,2004. [T2] Gulhati, S.K. and Datta M., Geotechnical Engineering, Mc Graw Hill India, New Delhi, 2005. Reference books [R1] Rowe, R.K.-Geotechnical and Geo environmental Engineering Handbook, Kluwer Academic, AM, Netherland, 2001. [R2]Reddy,L.N.andInyang,H.I.-

USA2000.

E-resources and other

digital material

AM, Netherlands, 1998.

https://nptel.ac.in/courses/105102160/https://nptel.ac.in/courses/105103025/

GeoenvironmentalEngineering:PrinciplesandApplications,CRCPress,FL,

[R3] Mohamed, A.M.O. and Antia, H.E., Geoen vironmental Engineering, Elsevier,

20CE5404/E	FORENSICS IN CIVILENGINEERING

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:	20CE4303- Geotechnical engineering	Continuous Evaluation:	30
	20CE4304- Hydraulics and Hydraulic Machines	Semester end Evaluation:	70
	Wachines	Total Marks:	100

Course outcor	nes	Upon	succes	sful c	omple	etion o	of the	cours	e, the	stude	nt wil	l be al	ole to:		
		CO1	apply forensic engineering to demonstrate structural and geotechnical failures												
		CO2	understand reinforced concrete Structures and steel structure failures through case studies												
		СОЗ	eva	evaluate different geotechnical failures through case studies											
		CO4		analyze reasons for geo-environmental and fluid and hydraulic failures											
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2
towards achievement of Program	CO1	2	1	2			1								2
Outcomes	CO2	2	1	2			1								2
(1 – Low, 2 – Medium,3	CO3	2	1	2			1								2
– High)	CO4	2	1	2			1								2
Course Conte	nt	INT Defi litiga abou	ation, it failu RENS	of a Imporre, D	Forestrant Oata co	legal ollect CTU	term tion, l	is, Ca Hiera INV	uses rchy EST	of fa of for	ilure, rensid	, Preli e inve	mina stigat	ry info	e, Civil rmation

	masonry tests, Metal tests, Wood tests, Weld tests, water and air penetration tests, Heat loss tests.
	UNIT – II REINFORCED CONCRETE STRUCTURES CASE STUDIES The Pentagon Attack, Skyline Plaza in Bailey's Crossroads.
	STEEL STRUCTURES CASE STUDIES Pittsburgh Convention Center Expansion Joint Failure, Minneapolis I - 35W Bridge Collapse.
	UNIT – III FORENSIC GEOTECHNICAL INVESTIGATION Test Pits, Bore hole logs, In-place strength tests, Instrumentation, Dimensional Measurements, Seismic tests.
	CASE STUDIES Vaiont Dam Reservoir Slope Stability Failure, Leaning tower of Pisa.
	UNIT – IV GEO-ENVIRONMENTAL CASE STUDIES Love Canal, Valley of the Drums, Saskatchewan Water Treatment Failure
	FLUID MECHANICS AND HYDRAULICS CASE STUDIES Johnstown Flood, Malpasset Dam, New Orleans Hurricane Katrina Levee Failures.
Text books	 [T1] Robert, W. D., Forensic Geotechnical and Foundation Engineering, Second Edition, McGraw-Hill, NY, US, 2011. [T2] Delatte, N. J., Beyond Failure –Forensic case studies for Civil Engineers, ASCE, US, 2009.
Reference books	 [R1] Kenneth, L. C., Forensic Engineering, CRC Press, 2ndEdition, NY, US, 2000 [R2] Rao,V.V.S.andBabu,G.L.S.,ForensicGeotechnicalEngineering,Develo pments in Geotechnical Engineering series, Springer, SG, 2016. [R3] Paul, A.B., Pamalee, A. B., Norbert, J. D. and Kevin, M. P., Failure case studiesin civil Engineering-Structures, Foundations andGeoenvironment,2ndEdition, ASCE, Virginia, US,2013
E-resources and other digital material	NIL

20CE5205/A	GEOSPATIAL TECHNOLOGIES

Course Category:	Open Elective	Credits:	3
Course Type:	Theory cum Practical	Lecture - Tutorial - Practice:	2 - 0 - 2
Prerequisites:	Nil	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	S	Upon successful completion of the course, the student will be able to													
		CO1		apply the recent advances GIS technology in various fields of Engineering.											
		co2 evaluate the opportunities and available methods for integrations engineering applications.								r integ	grating GIS in				
		CO3	appl	y carto	ograpl	ny tecl	nnique	using	g GIS.						
		CO4	anal	ysis of	f vecto	or map	s by d	ligitiza	ation.						
Contribution		PO	PO	РО	РО	РО	PO	РО	РО	РО	РО	РО	РО	PS	PS
of Course Outcomes		1	2	3	4	5	6	7	8	9	10	11	12	O1	O2
towards achievement of Program	CO1		1		3	3							1	3	
Outcomes	CO2		1		3	3							1	3	
(1 – Low, 2 – Medium, 3 –		1		3	3							1	3		
High)	CO4		3				3								3

Course Content

UNIT I

INTRODUCTION TO GIS

Introduction to GIS, History of GIS, Early developments in GIS, Applications of GIS

MAP AND MAP SCALES

Introduction to Maps, History of Maps, Map Scales, Types of Maps, Map and Globe

Practices:

- 1.Introduction to GIS-Getting familiar with ARCGIS/QGIS interface-Concept of plugin in ARCGIS/QGIS
- 2.Geo-referencing in ARCGIS/QGIS Concept of Geographic and Projection coordinate system.

UNIT II

GEOREFERENCING AND PROJECTION

Understanding Earth ,Coordinate System, Map Projection, Transformation, Geo referencing

SPATIAL DATABASE MANAGEMENT SYSTEMS

Introduction, Data Storage, Database Structure Models, Database Management system, Entity Relationship.

Practices:

- **3.**Point, Line Features Extraction in ARCGIS/QGIS -Vectorisation- Shape file Creation for simple Vector data
- **4.**Manipulation of attribute data-Polygonize- Topology checker, Labelling data and Preparation of Map, Layout

UNIT III

DATA MODELS AND DATA STRUCTURES

Introduction, GIS Data Model, Vector Data Structure, Raster Data structure ,Geo database and metadata.

SPATIAL DATA INPUT AND EDITING

Primary Data, Secondary Data, Data Editing, Data types – Spatial and Non Spatial(attribute) data.

Practices:

- 5. Application of Processing Tools-Vector Analysis-Interpolation
- 6. Application of Processing Tools-Network Analysis
- 7.Demonstration on Data management Tools, Geometry Tools and Analysis Tools.

	UNIT IV
	MODELLING IN GIS:
	Introduction to Web GIS, Digital Terrain Modelling, Digital Elevation Modelling, Triangular Irregular Network.
	APPLICATIONS OF GIS:
	Multidisciplinary applications of GIS.
	Practices: 8.Introduction to Google Earth Interface-Extracting coordinates of an area 9.Digitisation of Transportation Network and Water bodies in QGIS 10.Extraction of contour lines and DEM from Google Earth
Text books	[T1] Anji Reddy M.,Remote Sensing & Geographical Information Systems by,BPS Publications-Hyderabad,4thedition 2011.[T2] BasudebBhatta., Remote Sensing & GIS, Oxford University Press, New Delhi,2011
Reference books	[R1] Lillyand TM ., Kiefer R W., Remote sensing and Image interpretation; John Willeyand sons.7th edition, 2015 [R2] ChandraAM ., Ghosh S K Remote sensing and Geographical information System; Narosa Publishing House, Second Edition New Delhi,2015
E-resources and other digital material	https://nptel.ac.in/courses/105/102/105102015

20	CE	521	15	\mathbb{R}
20	JC . F.	321	וכנו	'n

BUILDING SERVICES ENGINEERING

Course Category:	Open Elective-IV	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	2-0-2
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcon	nes	Upon	succes	sful co	mple	tion o	f the c	course	, the s	studer	t will	be abl	le to:			
		CO1	evalı	evaluate the types, basic planning and specifications of buildings.												
		CO2	appl	apply ventilation and thermal insulation in structures												
		CO3	appl	apply the plumbing and electrical fixtures in structures												
		CO4		analyze the considerations for fire prevention and fighting and termite prevention in buildings.												
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2	
towards achievement of Program	CO1	3						2							2	
Outcomes	CO2	1						2							2	
(1 – Low, 2 - Medium, 3	CO3	1				1	1	2							2	
– High)	CO4	1				1	1	2		2	2				2	
Course Conter	nt	UNI	IT–I									1				
		Types Diffe	renttyp	ructure besofb	s: Loa uildin	ad bea gs:Re	aring v sident	tial,Pu	ıblic,	Assem	bly,H	-	ls,Inst	itutiona	ıletc; eindex.	

BASIC BUILDING PLANNING AND ELEMENTS: Factors effecting the Selection of Site for residential building; Space requirement— Establishing areas for different units - Grouping, Circulation, Orientation, Aspect and prospect, Privacy, Elegance and economy; Basic building elements: Stair cases, doors and windows -Guidelinesforstaircaseplanning; Guidelinesforselectingdoorsandwindows.
UNIT-II
VENTILATION AND AIR CONDITIONING: Ventilation: Necessity of Ventilation, Functional Requirements; Types of ventilation: Natural Ventilation, Artificial Ventilation; Air Conditioning—Systems of Air Conditioning, Essentials of Air Conditioning systems, Protection against fire to becaused by Air Conditioning systems.
THERMAL INSULATION: Heat transfer: Thermal Insulating Materials; Thermal Insulation Methods; Insulation of Walls, Roofs, Doors & Windows.
UNIT-III
PLUMBING SERVICES: Types of plumbing; Plumbing fittings and accessories; Water Meters; Drainage – Sanitary Fittings: Bath tubs, wash basins, sinks, flushing cisterns, water closets; Principles governing design of building drainage; Guidelines for laying of Gas supply systems.
ELECTRICAL INSTALLATION IN BUILDINGS: Electrical Considerations for Office Buildings, School Buildings & Residential Buildings; Lighting, Fannage, Electrical Installation for Air Conditioning/ Heating, Reception and distribution of main supply; Method of internal wiring; Earthing; Lightening arrestors.
 UNIT-IV FIRE SAFETY: Causes of fire in buildings; Planning considerations for fire resistance: Non-combustible materials in construction, fire escapes, Special features required for physically handicapped and elderly people; Heat and smoke detectors, Fire alarm system, snorkel ladder, Fire fighting pump; Dry risers and wet risers, Automatic sprinklers.
ANTI-TERMITE TREATMENT: Pre construction treatment, Post construction treatment; Construction of anti termite groove in buildings for termite prevention.

ConstructionbyB.C.Punmia;AshokKumarJain;ArunKumarJain,2005;LaxmiPublications,New

[T2] Building Construction by Janardhan Jha; S.K. Sinha; 2007; Jain Book Agency, New

Text books

[T1] Building

Delhi

Delhi.

Reference books	 [R1] National Building Code, 2015 [R2] Building Construction by P.C. Varghese, 2005, PHI Publications, New Delhi [R3] Building Services Engineering by David V. Chatterton, Sixth Edition, 2013, Routledge Publications.
E-resources and other digital material	https://nptel.ac.in/courses/105102176/

20CE5351	COMPUTER APPLICATIONS IN CIVIL ENGINEERING LAB-1

Course Category:	Programme Core – Lab -1	Credits:	1.5
Course Type:	Practical	Lecture - Tutorial - Practice:	0-0-3
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes		Upon successful completion of the course, the students will be able to:													
		CO1	col evaluate cross sectional/ reinforcement required and prepare structural drawings for various structural elements by using AUTOCAD												
		CO2	appl	y Mic	rosoft	Exce	l/Mat	Lab to	o exec	cute d	esign	proble	ems		
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2
towards achievement of Program	CO1	2	1			2						3		2	1
Outcomes		2	2			2						3		2	1
(1 – Low, 2 - Medium, 3 – High)	CO2														
Course Content							_			_				ent det ments	
		 Detailed study of architectural plan elevation and section Detailed study of structural drawings of RCC Building Roof/Floor System (Continuous) with flanged beams Doglegged staircase Two way slabs (Simply supported slabs corners held down) Two way slabs (Simply supported slabs corners not held down) 						wn))						

	7. 5.R.C.C Beam - Column joint8. Isolated and Combined footing
	PART - B:PROGRAMMING
	Students are required to write & execute the programs using Microsoft Excel language 1. Design of singly reinforced beam for flexure by LSM. 2. Design of doubly reinforced beam for flexure by LSM. 3. Design of R.C.C column of rectangular section for axial load by LSM.
Text books	 [T1] Venu gopal. K, "Engineering Drawing and Graphics and AUTOCAD",1sted., New Age International Publishers, 2001. [T2] Anand R.K. "Computer Application in Civil Engineering", 1st ed., Vayu education of india, New Delhi, 2013. [T3]Dr. Ritu Agarwal &Khushbu Naruka Dr. Hari Singh Parihar, "Computer Application in Civil Engineering", 1st ed., Neelkanth Publishers, 2012.
Reference books	[R1] Jeya poovan. T, "Engineering Graphics using AUTOCAD",1 st ed., Vikas Publishing House Pvt. Ltd., 2000.
E-resources and other digital material	NIL

Course Category:	Programme core – Lab2	Credits:	1.5
Course Type:	Lab	Lecture - Tutorial - Practice:	0-0-3
Prerequisites:	20BS1151B Engineering chemistry lab	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course		Upon successful completion of the course, the student will be able to:													
outcomes		CO1	CO1 analyze the various parameters and understand their significance and application.												
		CO2	evaluate the suitability of water for various applications by knowing water quality standards.												
Contribution of Course Outcomes		PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO7	PO 8	PO 9	PO1 0	PO1	PO12	PSO 1	PSO 2
towards achievement of Program Outcomes	CO1	1			3		1			1			1		2
(1 – Low, 2 - Medium, 3 – High)	CO2	1			3		1						1		2
Course Conten	 Dete Dete Dete Dete Dete Dete 	ermina ermina ermina ermina ermina	tion o tion o tion o tion o tion o	f total f alkali f acidit f sulph f turbic	suspendinity of variety of variety of variety of ditty of	of water sontent	er samp sample. in a giv r sampl	ole. ven wa	solid:	mple.	er samp				

	8. Determination of chloride concentration of water sample.
	9. Determination of optimum dose of coagulant.
	10. Determination of dissolved oxygen of water sample.
	11. Determination of biochemical oxygen demand (BOD) of waste water.
	12. Determination of chemical oxygen demand (COD) of waste water.
	13. Determination of chlorine demand and residual chlorine.
Text books	[T1] Garg S. K., "Environmental Engineering Vol. I- water supply engineering", 18th ed., Khanna Publishers, New Delhi, 2004.
Reference books	[R1] CPHEEO and Ministry of Urban Development, "Manual on Water Supply & Treatment", Govt. of India, New Delhi,2005. [R2] APHA, AWWA, and WEF, "Standard Methods for the Examination of Water and Wastewater. Standard Methods", Washington DC, 2012.
E-resources and other digital material	https://nptel.ac.in/courses/105104102

20CE5353
/III H 5 4 5 4

ADVANCED SURVEYING LAB

Course Category:	Programme Core	Credits:	1.5
Course Type:	Lab	Lecture - Tutorial - Practice:	0-0-3
Prerequisites:	20CE3303 Surveying & Geomatics, 20CE3352 Surveying Lab	Continuous Evaluation:	30
	200E332 Surveying Eur	Semester end Evaluation:	70
		Total Marks:	100

Course outcor	Upon	success	sful co	mpletio	on of tl	ne cour	se, the	stude	nt will	be at	ole to:				
	CO1		apply the surveying principles for setting boundaries, computing area and elevation using a total station										l elevation		
		CO2	apply setting out for buildings and curves using various instruments												
		CO3	evaluate the contours for any given area												
		CO4	apply	y adva	nced i	nstrum	ents fo	r surve	eying						
Contributio n of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
towards achievement of Program	CO1	2				3					1			1	2
Outcomes	CO2	2				3									2
(1– Low, 2 - Medium, 3 –	CO3	2		2		3					1			1	2
High)	CO4	2				3					1				2
2		2.	 Measure the boundaries of a given tract of land and determine the area using Total Station. Set out a building using chain and tape. Set out a building using total station. 												
		4.	Set ou	ıt a sin	nple ci	rcular	curve u	sing cl	nain ai	nd tap	e.				

	5. Set out a simple circular curve using chain, tape and theodolite.
	6. Set out a simple circular curve using a total station.
	7. Determine the elevation of a remote object.
	8. Plot the contour map for a given area using total station.
	9. Determine the area of a given tract of land using DGPS.
	10. Set out a building using DGPS.
	11. Demonstration of Unmanned Aerial Vehicle (UAV).
Text books	[T1] Duggal S K, "Surveying Volume-1", 2nd ed., Tata Mc Graw Hill Publishing Company Limited, New Delhi, 2004.
	[T2] Dr. Arora K R, "Surveying Volume-2", 15 th ed., Standard Book House, New Delhi, 2018
Reference books	[R1] Satheesh Gopi, Sathi Kumar R, Madhu N, "Advanced Surveying", 2 nd ed., Pearson, 2017
E-resources and other digital material	https://nptel.ac.in/courses/105107158

20TP5106	PERSONALITY DEVELOPMENT

Course Category:	Institutional Core	Credits:	1
Course Type:	PRACTICE	Lecture - Tutorial - Practice:	0-0-2
Prerequisites:		Continuous Evaluation:	100
		Semester end Evaluation:	0
		Total Marks:	100
		Total Marks:	100

Course outcor	nes	Upon	success	sful co	mpleti	on of t	he cour	se, the	stude	nt will	be ab	ole to:			
	CO1	anal	analyze the corporate etiquette.												
		CO2	appl	apply presentation techniques effectively with appropriate body language											
		CO3	apply positive attitude												
		CO4	appl	y the o	core co	mpeter	ncies to	succe	ed in	profes	ssiona	l and p	erson	al life	
Contributio n of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
Outcomes												11			
towards achievement	CO1								2		3				1
of Program Outcomes	CO2									2	3				1
(1 – Low, 2 - Medium, 3 –	CO3										3				1
High)	CO4									2	3				1
Course Content U		UNIT	I												
	ANAI	YTIC	AL TI	HINKI	NG										
		- 1		g Mino ttitude,			y Aziı	n Prei	mji (L	istenii	ng Activi	ty), Self			

	COMMUNICATION SKILLS
	Verbal Communication, Non Verbal Communication (Body Language)
	UNIT II
	SELF-MANAGEMENT SKILLS
	Anger Management, Stress Management, Time Management, Six Thinking Hats, Team Building, Leadership Qualities
	ETIQUETTE
	Social Etiquette, Business Etiquette, Telephone Etiquette, Dining Etiquette
	UNIT III
	STANDARD OPERATION METHODS
	Note Making, Note Taking, Minutes Preparation, Email& Letter Writing
	VERBAL ABILITY
	Synonyms, Antonyms, One Word Substitutes-Correction of Sentences-Analogies, Spotting Errors, Sentence Completion, Course of Action-Sentences Assumptions, Sentence Arguments, Reading Comprehension, Practice work
	UNIT – IV
	CAREER-ORIENTED SKILLS
	Group Discussion, Mock Group Discussions
	INTERVIEW SKILLS Resume Preparation, Interview Skills, Mock Interviews
Text books	[T1] Barun K. Mitra, Personality Development and Soft Skills, Oxford University Press, 2011.
	[T2] Dhanavel, S.P. English and Soft Skills, Orient Blackswan, 2010.
Reference books	 [R1] R.S.Aggarwal, A Modern Approach to Verbal & Non-Verbal Reasoning, S.Chand& Company Ltd., 2018. [R2] Raman, Meenakshi& Sharma, Sangeeta, Technical Communication Principles and Practice, Oxford University Press, 2011.
E-resources and	www. indiabix.com
other digital material	www.freshersworld.com

20CE5354	ENGINEERING PROJECT IN COMMUNITY SERVICES (EPICS)

Course Category:	Project work/ Internship	Credits:	1.5
Course Type:	Practical	Lecture - Tutorial - Practice:	0 - 0 - 3
Prerequisites:		Continuous Evaluation:	30
_		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	Upon successful completion of the course, the student will be able to:													
	CO1		evaluate the societal problem from the villages or towns or local communities with well defined objectives.												
	CO2		analyze and solve the problems by applying modern tools and materials for appropriate solution.												
	CO3	apply	apply team work, communication and presentation skills evaluate the context of the problem and prepare a technical report as per the specified guidelines												
	CO4														
Contribution		PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
of Course Outcomes		1	2	3	4	5	6	7	8	9	10	11	12	1	2
towards achievement of Program	CO1	2			2	2	3	3	2	3	3				1
Outcomes (L – Low(1), M – Medium(2), H – High(3))	CO2	2			2	2	3	3	2	3	3				1
	CO3	2			2	2	3	3	2	3	3				1
	CO4	2			2	2	3	3	2	3	3				1

Course Content

Engineering Project In Community Services (EPICS):

- > Students will go to the society (villages/ towns/ local communities/ hospitals/schools/recreation clubs etc,) to identify the problem and study the relevant articles or journal papers to come up with viable alternative solutions.
- > The work will be carried out during summer vacation after IV semester and submitted the work at the end of the V semester.
- > The student is encouraged to work on real world problems that will lead to the creation of innovative model building.

20CE5607 BUILDING INFORMATION MODELING (BIM)
--

Course Category:	Skill Oriented Course -2	Credits:	2
Course Type:	Lab	Lecture - Tutorial - Practice:	1-0-2
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes		Upon successful completion of the course, the students will be able to:													
		their MEP o		_		nodel	the st	ructur	e wit	h Arch	nitectu	ral, Str	uctural		
	CO2		apply the software commands to create industry standard architectural drawings.												
Contribution of Course Outcomes towards achievement of Program		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PS O2
	CO1			2		3				3	3	3		2	
Outcomes (1 – Low, 2 - Medium, 3 – High)	CO2			2		3				3	3	3		2	

Course Content	 Modelling of Architectural Components for a structure using Revit Architecture. Modelling of Structural Components for a structure using Revit Structures. Modelling of MEP systems using Revit MEP. Generating the walkthrough for the structure. Detailing and creation of Drawings for a structure as per IS Code. Extraction of Bill of Materials from a Model.
	7. Extraction of Bill of Quantities from a Model.8. Preparing a schedule for construction of the structure with model.9. Architectural Rendering, interference checking, and modeling of energy consumption.
Text books	 [T1] Auto desk Rivet structures manual. [T2] Exploring Autodesk Revit 2020 for structures, 10th edition, by Prof. Sham Tickoo, Purdue University Northwest, USA. [T3] Commercial Design using Autodesk Revit Architecture 2015, Daniel John Stine, SDC Publications ISBN #: 978-1-58503-512-0
Reference books	[R1] Autodesk Revit 2021 Structure Fundamentals by By ASCENT publications Published August 10, 2020, ISBN: 978-1-63057-358-4 ISBN 10: 1630573582
E-resources and other digital material	https://www.coursera.org/learn/autodesk-revit-for-structural-design-exam-prep

20MC5108B	INNOVATION, IPR AND ENTREPRENEURSHIP
-----------	--------------------------------------

Course Category:	Mandatory Course	Credits:	0
Course Type:	Theory	Lecture - Tutorial - Practice:	2-0-0
Prerequisites:		Continuous Evaluation:	100
		Total Marks:	100

		Upon	Upon successful completion of the course, the student will be able to												
CO1			understanding the concept of innovation and its importance in organizations.												
	CO2	apply innovation management strategy in new product development.													
		CO3	under	stand	ing th	ne Int	ellect	ual P	roper	ty Rig	ghts and	l the key	legal a	spects	
		CO4	analy	ze the	conc	cept o	f entr	eprer	eursl	nip an	d skills				
Contributio		PO 1	PO2	P	P	P	P	P	P	P	PO	P	P	PS	PS
n of Course				O3	O4	O5	O6	O7	O8	O9	10	0	01	01	O2
Out comes												11	2		
towards	CO1		1						2	2		2			
achievemen	CO2		2						1	2		2			
t of	CO3		2						2	3		3			
Program	-								3	2					
Outcomes	CO4		1)	2		2			
(1-Low, 2- Medium, 3 – High)															
Course Cont	ent	UNIT INNO	VATIO												
		l .											Innovati		
		l		_	izatio	on) -	Sourc	es of	Inno	vatio	n - Tec	hnology	Adopti	on - Ba	arriers
	to Inno														
		UNIT		NI. N	TEXX	DD4	MI	т т	TVE	יו חם	MENT	,			
													on in N	ew Pro	duct
													gy - Or		
												Innovat		<i>C</i>	

	UNIT – III									
	INTELLECTUAL PROPERTY RIGHTS (IPRs)									
	Definition of IPRs - Need for IPRs - Kinds of Intellectual Property Rights: Patents,									
	Copy rights, Trade Marks, Trade Secret, Design, Geographical Indications - Legal									
	Aspects of IPRs - IPRs in India									
	Approx of 11 125 II III III III III III III III III II									
	UNIT – IV									
	ENTREPRENEURSHIP									
	Concept and Nature of Entrepreneurship - Need for Entrepreneurship - Types of									
	Entrepreneurship - Entrepreneurial Skills - Emerging Trends in Entrepreneurship -									
	Environment for Entrepreneurship									
Text Books	[T1] Paul Trott, Innovation Management and New Product Development,									
	Pearson Education Limited, UK, 2017.									
	[T2] Nithyananda, K V., Intellectual Property Rights: Protection and									
	Management, Cengage Learning India Private Limited, 2019.									
	[T3] Dr.S S Khanka, Entrepreneurial Development, S Chand, New Delhi, 2020.									
Reference Books	[R1] Managing innovation: Integrating Technological, Market and									
	Organizational Change, Joe Tidd, John Besant, 2018.									
	[R2] Neeraj, P., &Khusdeep, D, Intellectual Property Rights. PHI learning									
	PrivateLimited, India, 2019.									
	[R3] Vasant Desai, The Dynamics of Entrepreneurial Development and									
	Management, Himalaya Publishing House, India, 2022.									
E-resources and	https://edisciplinas.usp.br/pluginfile.php/5553082/mod_folder/content/0/Trott%20-									
other digital	%202017%20-%20%20roz%20Innovation-Management-and-New-									
material	Product-Development.pdf?forcedownload=1									

20CE6301	DESIGN OF STEEL STRUCTURES
200201	DESIGN OF STEEL STRUCTURES

Course Category:	Programme Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:		Continuous Evaluation: Semester end Evaluation:	30
		Total Marks:	70
			100

Course outco	Upon successful completion of the course, the student will be able to:														
		CO1	analy	analyze the adequacy of bolted& welded connections											
	CO2	_	analyze the adequacy of bolted & welded connections in tension and compression members.												
		CO3	evalu	evaluate the adequacy of laterally supported and unsupported steel beams											
				evaluate the adequacy of steel column bases											
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2
Outcomes towards	CO1	2		3		3	1							3	
achievement of Program	CO2	2		3		3	1							3	
Outcomes	CO3	2		3		3	1							3	
(1 – Low, 2 - Medium, 3 – High)	CO4	2		3		3	1							3	

Course Content

UNIT – I GENERAL

Fundamental Concepts of limit state design of structures, Different types of rolled steel sections available to be used in steel structures. Stress – Strain relationship for mild steel.

SIMPLE CONNECTIONS (IS800-2007)

Bolted connections: Types of joints, Behaviour of bolted joints, Design strength of ordinary black bolts, Simple connections. Design of bolted joints subjected to axial load. Welded Connections: Advantages of welding, Types and properties of welds, Types of joints, weld specifications, Design of welded joints subjected to axial load.

UNIT - II

TENSION MEMBERS (IS800-2007)

Types of tension members, slenderness ratio, displacement of tension members, behaviour of tension members, modes of failure, factors affectingstrength of tension members, design of tension members with bolted and welded connections.

	COMPRESSION MEMBERS (IS800-2007) Possible failure modes, behaviour of compression members, Effective length, radius of gyration and slenderness of compression members, Allowable stresses in compression, Design of axially loaded compression Members with bolted and welded connections.
	UNIT – III BEAMS- LATERALLY SUPPORTED (IS800-2007) Introduction; classification of sections; Lateral stability of beams; web buckling; Web crippling. Design of laterally supported beams. BEAMS- LATERALLY UNSUPPORTED (IS800-2007) Design of laterally unsupported beams.
	UNIT – IV COLUMN BASE (IS800-2007) Introduction to column bases and types of column bases. Allowable stress in Bearing. SLAB BASE Design of slab base with bolted and welded connections.
Text books	 [T1] Subramanian, N. Design of steel structures - Oxford university press, NDLS., 2018. [T2] Duggal S K, Limit state design of steel structures -McGraw Hill (I) Pvt Ltd., 2017. [T3] Ramchandra and Gehlot V, Limit State Design of steel structures - Scientific Publishers (I).,2012.
Reference books	 [R1] Sai Ram K. S, Design of steel structures - Pearson Education India., 2020. [R2] Bhavikatti S.S, Design of steel structures by Limit State Method as per IS: 800-2007 –IK IPHPvt. Ltd., NDLS-2019.
E-resources and other digital material	https://nptel.ac.in/courses/105105162. https://nptel.ac.in/courses/105106112.

20	CE6	3 0′)
<i></i>		711	7 .

TRANSPORTATION ENGINEERING

Course Category:	Programme Core	Credits:	3
Course Type:	Theory and Practice	Lecture - Tutorial - Practice:	3 - 0 - 0
Prerequisites:	NIL	Internal Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succe	ssful c	compl	etion o	of the	course	e, the s	studen	t will	be abl	e to			
		CO1	anal	analyze the best alternative route for highways											
	CO2	appl	apply the studies to regulate traffic control and management												
		CO3	eval	evaluate geometrics and pavement crust											
		CO4	anal	analyze the Construction and Maintenance of Highways											
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
Outcomes towards	CO1	3		3											
achievement of Program Outcomes	CO2				3		1								3
	CO3	3		3										3	
(1 - Low, 2 - Medium, 3 - High)	CO4			3		3		1							
Course UNIT I							•								

Content

HIGHWAY NETWORK PLANNING AND ALIGNMENT

Different Modes of Transportation, Road Classification, Road Patterns, 20 Year Road Development plans. Highway Alignment: Requirements, factors controlling, Engineering Surveys.

HIGHWAY GEOMETRIC DESIGN

Geometric Design: Highway Cross Section Elements Sight Distance Stopping Sight Distance, Overtaking Sight Distance, Intermediate Sight Distance, Design of Horizontal Alignment- Super elevation, transition curves, extra widening, Design of Vertical Alignment-Grades and Grade Compensation.

UNIT II

TRAFFIC STUDIES

Introduction, Road User Characteristics, Vehicle Characteristics, Traffic Volume Studies

	objectives, methods, presentation of data(no numerical), Speed Studies, Methods and presentation of data, various methods of speed and delay studies, Traffic Flow Characteristics, Traffic Capacity and concept of Level of Service. DESIGN OF TRAFFIC CONTROL DEVICES Traffic Operations-Traffic Regulation, Traffic Control Devices- types of Signs, types of traffic signals, types of traffic signal system, design of traffic signal by Webster's method. UNIT III DESIGN OF FLEXIBLE PAVEMENTS Types of Pavement Structures, Design Factors, Design of Flexible Pavements- IRC
	Method DESIGN OF RIGID PAVEMENT Design of Rigid Pavement- Wheel Load stresses, Temperature Stresses, Frictional Stresses.
	UNITIV HIGHWAY CONSTRUCTION Construction Steps of Embankment, earth roads, Granular Sub Base (GSB), Wet Mix Macadam (WMM), Dense Bituminous Macadam (DBM), Bituminous Concrete (BC) as per MORTH. HIGHWAY MAINTENANCE Pavement failures, causes, failures in flexible pavement, failures in rigid pavements, maintenance of Bituminous pavements and concrete pavements.
Text books	 [T1] Khanna, S. K., Justo, C. E. G., Veeraragavan, A." Highway Engineering Revised 10th Edition Nem Chand Bros .Roorkee 2017. [T2] Kadyali, L. R. "Principles and Practices of Highway Engineering", Khanna Publishers, New Delhi, 2004.
Reference books	[R1]Principles of Transportation Engineering by ParthaChakraborthy&Animesh Das; PHI Learning Pvt. Ltd.; New Delhi, Second edition 2017 [R2] Ministry of Road Transport and Highways- Specifications for Roads and Bridge Works, Fifth Revision, IRC, New Delhi, India-2013 [R3] IRC 37:2012- Guidelines for the design of flexible pavements (Third Revision) [R4] IRC58-2015 Guidelines for the Design of Plain Jointed Rigid Pavements for Highway
E-resources and other digital material	https://nptel.ac.in/downloads/105101087/ https://nptel.ac.in/courses/105105107/

20HS6103	ENGINEERING ECONOMICS AND MANAGEMENT

Course Category:	Humanities and Social Sciences	Credits:	2
Course Type:	Theory	Lecture - Tutorial - Practice:	2 - 0 - 0
Prerequisites:	NIL	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	Upon successful completion of the course, the student will be able to:													
outcomes	CO1	under	stand tl	ne princ	iples of	fecono	mics, ii	ncome a	and goo	ds and	service	tax.			
	CO2	apply	apply the concepts of management and demand forecasting.												
	CO3	evalu	ate tim	e value	of mon	ey and	variou	s forms	of dec	ision m	aking.				
	CO4	apply	the co	ncept o	f financ	ial imp	ortance	e in pro	jects an	d budg	eting p	rocess.			
Contribution of Course		PO 1	PO 2	PO3	PO 4	PO 5	PO 6	PO7	PO8	PO9	PO1 0	PO 11	PO1 2	PSO 1	PSO 2
Outcomes towards	CO1	2					1		2						2
achievement of Program	CO2	3	1	2		2				1					2
Outcomes	CO3	2	2			2	2		2				2		2
(1 – Low, 2 - Medium, 3 – High)	CO4	3	2	2		2				1	1	2	2		2

Course Content

UNIT - I

ECONOMICS

Introduction to Engineering Economics, Theory of Demand, Elasticity of Demand, Supply and Law of Supply, Indifference Curves, Budget Line.

MANAGERIAL ECONOMICS, MONEY, NATIONAL INCOME, GOODS AND SERVICE TAX

Introduction to Managerial Economics, Scope of Managerial Economics, Techniques of Managerial Economics, Applications of Managerial Economics, Money, National Income, Goods and Services Tax.

UNIT - II

CONCEPTS IN MANAGEMENT & HUMAN RESOURCE MANAGEMENT

Characteristics of Management, Scope of Management, Functions of Management, Levels of Management, Skills of Management, Managerial Roles, Administration and Management, Human Resource Management, Human Resource Planning, Recruitment and Selection.

DEMAND FORECASTING

Introduction to Demand forecasting, Forecasting Horizons, Steps to Forecasting, Forecasting Methods, Seasonal Adjustments, Forecasting Performance Measures, Break-Even Analysis.

	UNIT – III TIME VALUE OF MONEY Introduction to time value of money, Simple Interest, Compound Interest, Present Worth Analysis, Future Worth Analysis, Annual Cash Flow Analysis, Rate of Return Analysis, Normal and Effective Interest Rate, Perpetual Payment. DECISION MAKING Types of Decision-Making Environments, Decision Tree Analysis, Multiple Criteria Decision Making.
	UNIT – IV FINANCIAL STATEMENT & FINANCIAL RATIOS Financial Analysis, Financial Statement, Trading Account, Profit and Loss Account, Balance Sheet Requirements, Distinction between Profit and Loss Account and Balance Sheet. CAPITAL BUDGETING Capital Financing and Allocation Functions, Sources of Capital Funds, Capital Asset Pricing Model, Weighted Average Cost of Capital, Leasing Decisions, Capital Allocation.
Text books	 [T1] Pravin Kumar, "Engineering Economy and Management", 1st ed., Willey India, New Delhi, 2012. [T2] R. Pannerselvam, "Engineering Economics", 13th ed., PHI Learning Pvt. Ltd., New Delhi, 2012. [T3] M. Mahajan, "Industrial Engineering and Production Management" 2nd ed., Dhanpat Rai Publications.
Reference books	 [R1] Philip Kotler & Gary Armstrong "Principles of Marketing", Pearson Prentice Hall, New Delhi,2012 Edition. [R2] IM Pandey, "Financial Management" 11th ed., Vikas Publications. [R3] B.B Mahapatro, "Human Resource Management", New Age International publishers, 2011.
E-resources and other digital material	https://www.toppr.com/guides/fundamentals-of-economics-andmanagement/supply/supply-function/ https://keydifferences.com/difference-between-personnel-management-and-humanresource- management.html http://productlifecyclestages.com/ https://speechfoodie.com/cash-flow-diagrams/

20CE6404/A	ADVANCED DESIGN OF CONCRETE STRUCTURES
ZUCEUTUT/A	ADVANCED DESIGN OF CONCRETE STRUCTURES

Course Category:	Programme Elective -II	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:	20CE5303 Design of Concrete	Continuous Evaluation:	30
	Structures	Semester end Evaluation:	70
		Total Marks:	100

Course outcomes		Upon successful completion of the course, the students will be able to:													
		CO1	evalı	evaluate sectional details for staircase and flat slab.											
		CO2	analyse foundations and retaining walls for safety.												
		CO3	evaluate safe section for water tanks												
		CO4	analyze for safe composite structures.												
Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2
	CO1	3		2		1								3	
	CO2	3		2		1								3	
	CO3	3		2		1								3	
	CO4	3		2		1								3	

Course Content

UNIT – I

DESIGN OF STAIRCASE

Types; Design and detailing of reinforced concrete doglegged staircase.

DESIGN OF FLAT SLABS

Design of Flat Slab: Direct design method – Distribution of moments in column strips and middle strip-moment and shear transfer from slabs to columns – Shear in Flat slabs-Check for one way and two-way shears, Limitations of Direct design method, Introduction to Equivalent frame method.

UNIT - II

DESIGN OF FOUNDATIONS

Structural Design of Pile Foundations: Types of piles, Load carrying capacity of piles, Structural design of RC piles, Design of pile cap for 2, Reinforcement detailing.

DESIGN OF RETAINING WALLS

Introduction – Types of retaining walls –Active and passive earth pressure- Design principles of cantilever retaining walls with horizontal back fill –With sloping back fill. Reinforcement detailing.

	UNIT – III DESIGN OF RECTANGULAR WATER TANKS Rectangular Water Tanks: Introduction – General design requirements according to Indian standard code of practice – Design of on ground water tanks Design of overhead water tanks- Reinforcement detailing. DESIGN OF CIRCULAR WATER TANKS Introduction – General design requirements according to Indian standard code of practice – Joints in water tanks – Circular tank with flexible joint between floor and wall – Circular tank with rigid joint between floor and wall.
	UNIT – IV DESIGN OF COMPOSITE STRUCURES Introduction – Design principles – Composite action of components- Equivalent section – prefabricated steel and in-situ concrete – composite members DESIGN OF SHEAR CONNECTORS Shear connectors – channel connectors - Spiral connectors - Composite beams and bridge deck
Text books	 [T1] Ramamrutham. S and Narayanan. P, "Design of Reinforced concrete structures", Dhanapat Rai Publishing Co. (P) Ltd., NDLS, 2010 [T2] Punmia, B.C, "Limit state design of Reinforced concrete", Laxmi Publications, NDLS, 2007. [T3] Punmia, B.C, "Reinforced concrete structure design", Laxmi Publications, NDLS, 2010 [T4] Sinha SN, "Reinforced Concrete Design" McGraw Hill, Third edition, 2017
Reference books	 [R1] Shah, V.L. and Karve, S.R., Limit State theory & Design of reinforced concrete Structures, Pune, 2003 [R2] Elliot. K, Precast Concrete Structures, Elsevier, CH, 2002. [R3] Multi-Storey Precast Concrete Framed Structures, Kim S. Elliott, Colin Jolly, Wiley-Blackwell publications, second edition-2013, Wiley-Blackwell. [R4] IS 456:2000- Code of Practice for Plain and Reinforced Concrete [R5] SP16 – Design aids of IS 456:2000 [R6] IS 13920 (1993) Ductile Designing of Reinforced Concrete Structures subjected to Seismic Forces.
E-resources and other digital material	www.nptel.ac.in/courses/105105105 www.nptel.ac.in/courses/105105104

20CE6404/B FOUNDATION ENGINEERING

Course Category:	Program Elective -II	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:		Continuous Evaluation:	30
	20CE4303 - Geotechnical	Semester end Evaluation:	70
	Engineering	Total Marks:	100

Course outcomes		Upon	succe	ssful o	compl	etion o	of the	cours	e, the	stude	nt wil	l be at	ole to		
		CO1				oil pro				•			_	ons; und	derstand
	CO2	anal	yse th	e eart	h press	sures	behin	d retai	ining	walls	and an	alyse	soil slo	pes	
	CO3	eva	luate	the o	capacit	y of s	hallov	w four	ndatio	ns an	d estin	nate s	ettleme	nts	
	CO4	anal	yze th	e cap	acity o	f vari	ous ty	pes o	f deep	foun	dation	S.			
Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2
	CO1	3	3	2	3								2	2	
	CO2	3	3	2	3								2	2	
	CO3	2	2	2	2								2		1
	CO4	3	3	2	3								2		1
		UNIT SUB		L INV	/EST	IGAT	IONS	SANI) SAN	 APLI				1	G :1

Planning of sub-surface exploration program; Methods of exploration; Soil sampling and samplers; Bore hole logging; In-situ tests – Standard penetration test, Static cone penetration test, Dynamic cone penetration test and Vane shear tests.

STRESSES DUE TO APPLIED LOADS

Course Content

Vertical and horizontal stresses due to concentrated loads; Boussinesq and Westergaard solutions; Isobars; Influence diagram; Newmark's influence charts; Contact pressure distribution.

UNIT - II

LATERAL EARTH PRESSURE & RETAINING WALLS

Different types of lateral earth pressure; Rankine's and Coulomb's earth pressure theories; Graphical methods; Types of retaining walls; Proportioning of retaining walls.

	STABILITY OF SLOPES Soil slopes, Types of slope failures; Various factors affecting the stability of slopes; Method of slices; Friction Circle method and Taylor's stability charts; Methods of improving stability of slopes. UNIT – III BEARING CAPACITY OF SHALLOW FOUNDATION Terzaghi's bearing capacity theory; nature of shear failures; effect of water table on bearing capacity; eccentric load and Bearing capacity from insitutests viz., Plate load test. SETTLEMENTANALYSIS
	Settlement of foundations; Immediate and consolidation settlements; Allowable settlement.
	 UNIT – IV PILE FOUNDATIONS Necessity of pile foundation; Classification of piles; Load carrying capacity of single pile from static, Pile capacity from in-situtests viz., Pile load test; Pile group and its efficiency; Settlement of pile foundation; Negative skin friction. WELLFOUNDATION Different shapes of wells; Individual components of well; Forces acting on well foundation, Terzaghi's Concept of design of well foundation; Measures for rectification of tilts and shifts.
Text Books	[T1] Basic and Applied Soil Mechanics, Gopal Ranjanand Rao A.S.R, 8 th Edition, 2018, New Age International (P) Limited Publishers, New Delhi [T2] Soil Mechanics and Foundation Engineering,. Arora K.R, 2011, Standard Publishers and Distributors, NewDelhi.
Reference Books	 [R1] Advanced Foundation Engineering, Murthy V.N.S., 2018, CBS Publishers and Distributors, New Delhi. [R2] Foundation Analysis and Design, Bowles J. E.,4thEdition,1996,McGraw–Hill International Editions, [R3] Relevant Indian Standard Code Books.
E-resources and other digital material	nptel.ac.in/courses/105107120 nptel.ac.in/courses/105101083

20CE6404/C ADVANCE	D ENVIRONMENTAL ENGINEERING
--------------------	-----------------------------

Course Category:	Program Elective-II	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:	20CE5302 - Environmental	Continuous Evaluation:	30
	Engineering	Semester end Evaluation:	70
		Total Marks:	100

Course outcom	Upon	success	ful co	mplet	tion of	f the c	ourse	, the s	studen	t will	be ab	le to:				
		CO1				o t e		n of	wate	r bodi	es aga	ninst co	ontam	ination	on	
	CO2		new ment		epts o	f was	te wat	er tre	atmen	t and	choos	e a sel	ection o	of low cos		
	CO3 evaluate suitable treatment process for selected indus										dustria	rial effluents.				
		CO4										levices f Nois		ution.		
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2	
Outcomes towards	CO1	3		1									1			
achievement of Program Outcomes	CO2	3		3											2	
	CO3	3		2											3	
(1 – Low, 2 - Medium, 3 – High)	CO4	1											1			

UNIT – I

STREAM SANITATION

Introduction; Characteristics of the treatment plant effluents; Pattern of pollution and self purification in a stream; Dissolved oxygen balance in streams; Oxygen Sag Curve Impact of pollutants on stream waters and usage of stream waters with reference to flora and fauna.

DESIGN OF LOW COST WASTE WATER TREATMENT SYSTEMS

Introduction, Biological kinetics of waste water, Stabilization ponds, Aerated lagoons, Oxidation ditch, Extended aeration process.

UNIT – II

INDUSTRIAL WASTE WATER TREATMENT: SUGAR PLANT and DAIRY INDUSTRY

Introduction, Characteristics and treatment of industrial effluents, Difference between Industrial & Domestic wastewater.

Quantity of liquid waste; Characteristics of liquid waste, Processing and Manufacturing Units, Methods of its treatment and disposal.

	PULP AND PAPER INDUSTRY Quantity of liquid waste, Characteristics of liquid waste, Manufacturing Units, Methods of its treatment and disposal.
	UNIT – III NEW CONCEPTS IN BIOLOGICAL WASTE TREATMENT: Introduction; Nitrogen removal by biological nitrification and de-nitrification; Phosphate removal from the activated sludge process; Rotating disc biological contactor; An–aerobic filters; U-tube aeration systems. AIRPOLLUTION and EFFECTSOFAIR POLLUTION: Definition, Stationary and mobile sources, Primary and secondary pollutants, Natural contaminants, Particulate matter, Aerosols, Gases. Effects of air pollutants on human health, Effects on plants and economic effects.
	 UNIT – IV METEOROLOGY AND CONTROL OF AIR POLLUTION BY EQUIPMENT: Atmospheric stability and temperature in versions; Mixing height; Wind direction and speed; Wind direction recorder; Wind speed recorder; Humidity measurement; Temperature measurement; Plume behavior. Objectives; Types of collection equipment; Settling chambers; Inertial separators; Cyclones; Filters; Electrostatic precipitators; Scrubbers. NOISE POLLUTION: Introduction; Levels of noise; Noise rating systems; Measures of noise; Sources of noise and their noise levels; Acceptance of noise levels; Effects of noise; Control of noise.
Text books	[T1] AirPollutionandControlbyRao,M.NandRao,H.N.,TataMcGrawHill,NewDelhi,2007 [T2] EnvironmentalEngineeringandManagement,(2ndEdition)bySuresh,l.Kartarai S.K. &Sons, 2005.
Reference books	[R1] An Introduction to Air pollutionbyTrivedi,R.K.,B.S.Publications,2005. [R2] Air pollution by Warkand Warner, Addison-Wesley Publications, 1998.
E-resources and other digital material	http://nptel.ac.in/courses/webcourse-contents/IIT-delhi/Environmental%20Air%20Pollution/

Course Category:	Program Elective -II	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:	Nil	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outco	mes	Upon	success	sful co	mplet	tion o	f the c	ourse	, the s	tuden	t will	be abl	le to:		
		CO1	evalı	ıate tl	ne cor	npone	ents of	f the r	ailway	y tracl	ζ.				
	CO2	analy	ze the	e geor	netric	section	on of	railwa	y trac	k and	contro	ol mov	ement	of locomotive	
	CO3	analy	analyze the stages in tunnel construction												
	CO4	unde	understand tunnelling methods												
Contributio n of Course		PO 1	PO 2	PO3	PO 4	PO 5	PO 6	PO 7	PO8	PO 9	PO 10	PO 11	PO1 2	PSO 1	PSO2
Outcomes towards	CO1	3				2									3
achievemen t of	CO2	3	3	3		3								3	
Program Outcomes	CO3	3				3									2
		3		2		2									3
(1 – Low, 2 - Medium, 3 – High)	CO4														

UNIT – I

INTRODUCTION TO RAILWAYS

Introduction to Railways, Comparison of railway and highways transportation; Classification of Indian Railways, Gauges in Railway Track, Permanent way-Cross section and functions

COMPONENTS OF RAILWAY TRACK

Rails – Types, Coning of Wheels, Rail failures, Creep of Rails, Rail Joints-Types, Sleepers -Types, Types of Ballast materials, Specifications of Indian Railways, Ballast Profile, Formation; Specifications of Formation

UNIT - II

GEOMETRIC DESIGN OF RAILWAY TRACK

Geometric Design Necessity; Gradients – types, Gradient Compensation; Super elevation- definition, expression for super elevation; Cant deficiency and cant excess; Negative Super elevation concept, Numerical on Negative super elevation

	POINTS AND CROSSINGS & SIGNALLING Types of crossing, Turnouts components and its working principle, Classification of signals, Classification of stations and yards
	UNIT – III GENERAL ASPECTS OF TUNNELLING Definition of Tunnel and Open cut, Comparison of by passing alternatives, advantages and disadvantages of tunnel, classification of tunnels, shapes of tunnel, problems in tunneling STAGES IN TUNNEL CONSTRUCTION Investigations at tunnel site, setting out of tunnel, excavation, safety precautions in tunneling
	UNIT – IV TUNNELLING METHODS Methods of tunneling – for soft soil and rock TUNNEL LINING Objectives, materials for lining, sequence of lining
Text books	[T1] Saxena, S.C. and Arora. S, "Railway Engineering", Dhanpat Rai Publications, NDLS, 2009. [T2] Srinivasan, R "Harbour Dock and Tunnel Engineering", 29th ed., Charotar Publishing House Pvt Ltd, Anand, 2018.
Reference books	[R1] Agarwal.MM, Satish Chandra, "Railway Engineering", 2nd ed., Oxford University Press; New Delhi, 2013.
E-resources and other digital material	https://archive.nptel.ac.in/courses/105/107/105107123/

20CE6404/E	IRRIGATION STRUCTURES

Course Category:	Programme Elective-II	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0 - 0
Prerequisites:	Water Resources Engineering	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon s	Upon successful completion of the course, the student will be able to:													
	CO1	analy	analyze the basics of diversion head works and canal regulation												
	CO2 apply the design principles of various cross drainage works														
	CO3	CO3 evaluate various types of dams and principles of Aurthur cotton technology													
	CO4	CO4 evaluate various types of spill ways.													
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PSO 2
towards achievement of	CO1									3				2	
Program Outcomes	CO2	3	3	3		2								2	
(1 – Low, 2 – Medium, 3 – High)	CO3	3	3	3		2								3	3
	CO4														2

UNIT – I

DIVERSION HEAD WORKS:

Component parts of a Diversion Head works. Types of weirs, causes of failures of weirs and their remedies. – Bligh's Creep Theory, & Khosla's Theory. Canal falls; Necessity location and classification of falls. Silt control at head works.

CANAL REGULATION WORK

Canal regulators; Off-take alignment; Head regulators and cross-Regulators; Canal escape.

UNIT – II

CROSS DRAINAGE WORKS:

Introduction; Types of cross - drainage works; Selection of suitable type of cross - drainage work; Classification of Aqueducts and Syphon Aqueducts; Selection of a suitable type.

COTTONS TECHNOLOGIES

Introduction to Aurthur cotton technologies for present day needs, modern substitutes for Aurthur cottons materials, introduction to design of Krishna anicut, introduction to design of Godavari anicut

	UNIT – III STABILITY ANALYSIS OF GRAVITY DAMS: Introduction; Forces acting on a gravity dam; modes of failure and stability analysis of gravity dams.
	DESIGN OF GRAVITY DAMS Elementary profile of a gravity dam; Practical profile of a gravity dam; Limiting height of a gravity dam; High and low gravity dams; Galleries; Joints; Keys and water seals.
	UNIT – IV EARTH DAMS: Introduction; Types of earth dams; Causes of failure of earth dams; Criteria for safe design of earth dams; Section of an earth dam; Seepage control measures.
	SPILLWAYS: Introduction; Types of spillways; Profile of ogee spillway; Energy dissipation below spillways for relative positions of jump height curve and tail water curve; Stilling basins; Types and description only.
Text books	[T1] Irrigation and Water Power Engineering by Punmia B.C &Pande B.B. Lal; Laxmi Publications pvt. Ltd., New Delhi. 2006. [T2] Water Power Engineering by Dandekar M.M and Sharma K.K; Vikas Publishing House Pvt. Ltd., New Delhi.,2006. [T3] Irrigation Engineering and Hydraulic Structures by SahasraBudhe S.R.,Katson Publishing House, Ludhiana. 2000. [T4] Sir Arthur Cottons Technologies for todaysanicuts, dams, aqueducts, bridges, barrages, kissing reservoirs., by Lakshmana Rao G, Prasad KSR
Reference Books:	 [R1] Irrigation Engineering and Hydraulic Structure by Garg SK; Khanna Publishers, Delhi.,2006 [R2] Irrigation, Water Resources and Waterpower Engineering by Modi PN; Standard Book House, New Delhi. 2006. [R3] Journals in Water Resources Methods of Numerical Analysis, Sastry SS, PHI, 2005.
E-resources and other digital material	www.nptel.ac.in/courses/105105110

Course Category:	Open Elective / Job Oriented Elective-II	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:	Science, Environmental Science	Continuous Evaluation:	30
_		Semester end Evaluation:	70
		Total Marks:	100

		Upon successful completion of the course, the student will be able to:													
	CO1	CO1 understand Green building & sustainable design concepts													
	CO2		evaluate sustainable materials and factors influencing the design of green buildings												
	CO3	anal	analyze construction process and maintenance of green buildings												
		CO4	appl	apply the requirements of IGBC certification.											
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
towards	CO1	1		1			1	3	2					1	
achievement of Program	CO2	1		1			1	3	2						2
Outcomes	CO3	1		1			1	3	2						2
(1 – Low, 2 - Medium, 3 – High)	CO4	1		1			1	3	2						2
Course Content	Green B Requisite energy, 1 ECONO Economic	DUCTI Buildings, es for Comaterial, i OMICS ics of gr s, Project	Globa onstructindoor OF Green bu	ting a air qua REE I uilding	Green ality, co N HO ss, Sel	n Build onstruct MES ecting	ding, stion procession of the control of the contro	sustain rocedu	able ores.	constru	ction	focus	point:	site,	water,

	UNIT – II
	SITE & WATER ISSUES site analysis and design, site development and layout, watershed protection, drainage of concentrated Runoff, water efficiency and conservation, rain water harvesting, water reclamation SUSTAINABLE MATERIALS Reduce / Reuse / Recycle, Natural Sources, concrete, masonry, metals, wood and plastic, finishes
	UNIT – III PASSIVE SOLAR DESIGN Passive solar design, Day lighting, Building envelope, Renewable energy INDOOR ENVIRONMENTAL QUALITY Significance, design principle, ventilation control, occupant activity control, significance of
	UNIT – IV CONSTRUCTION PROCESS AND MAINTENANCE OF GREEN BUILDING Environmental construction guidelines, building operations and maintenance
	INDIAN GREEN BUILDING COUNCIL Introduction to IGBC green homes, Benefits of IGBC, IGBC green home rating system, introduction to USGBC, LEED rating system, procedure to get IGBC certification
Text books	 [T1] "Sustainable building technical manual- Green building design, constructions and operation", Produced by Public Technology Inc., US Green Building Council. [T2] Gautham R K, "Green Homes", BSP Books Private Limited, New Delhi, 2009. [T3] IGBC Green homes rating system Version 3.0 – A bridged reference guide, September 2019
Reference books	[R1] "Green Building A Basic Guide to Building and Remodeling Sustainably", Tree Hugger Consulting [R2] "Green Building Guide – Design Techniques, Construction Practices & Materials for Affordable housing", Published by Rural Community Assistance Corporation (RCAC)
E-resources and other digital material	https://onlinecourses.nptel.ac.in/noc19_ce40/

20CE6205/B	ADVANCED CONSTRUCTION MATERIALS
------------	---------------------------------

Course Category:	Open Elective-II	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outco	mes	Upon	success	sful co	mple	tion o	f the c	ourse	, the s	studen	t will	have a	an abi	lity to:	
		CO1		evaluate different types of modern materials, Paints, Enamels and Varnishes that are used in construction.											
		CO2		analyze the importance of special concretes and glass materials used in Building Construction.											
		CO3		understand the classification and usage of materials like plastics, bitumen and sound absorbent materials											
		CO4	evalı	iate bi	uildin	g mat	erial l	ike gy	psum	and v	variou	s adhe	sives.		
Contributio n of Course Outcomes towards		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2
achievemen t of	CO1	1	1				2								2
Program Outcomes	CO2	1	1				2								2
(1 – Low, 2 - Medium,	CO3	1	1				2								2
3 – High)	CO4	1	1				2								2
Course Conte	ent	UNIT MOD Ceram ories-o	DERN nics,Secompo	ealant ositem NAM ,rubb	sforjo nateri IELS erpai	oints, als,G SANI nts,p	fibreg eosyr	ntheti RNIS	cs. SHE	S:				amelpa	ints,texturep

	UNIT-II
	SPECIAL CONCRETES: Light Weight concrete, High density concrete, Fiber reinforced concrete, polymer concrete. GLASS: Composition, classification, properties and types of glass.
	UNIT-III
	PLASTICS, BITUMEN: Composition, polymerization, Classification of plastics, biodegradable plastic, Grades of Bitumen.
	SOUND ABSORBENT MATERIALS: Porous materials, porous-cum-elastic materials, perforated materials, Baffle materials.
	UNIT-IV
	GYPSUM: Introduction, plaster of Paris, gypsum wall plasters, gypsum plaster boards, Non-load bearing Gypsum partition blocks.
	MISCELLANEOUS MATERIALS: Adhesives-advantages and disadvantages, properties, types of Adhesives; Different types of Building faced cladding materials; heat insulating materials; water proofing materials.
Text books	 [T1] Engineering Materials by Rangwala S.C; Charotar Publishing House, 33rd Edn 2017. [T2] Building materials by Duggal SK; New Age International publishers, 3rd Edn, 2009.
Reference books	[R1] BuildingmaterialsbyP.CVarghese;PHILearning,2 nd Edn2005.
E-resources and other digital material	www:http://nptel.ac.in/courses/105102088/

20CE6205/C	QUALITY CONTROL AND QUALITY ASSURANCE

Course Category:	Open Elective-II	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcor	Upon	Jpon successful completion of the course, the student will be able to:													
	CO1	unde	understand meaning of quality, TQM and Quality Circles												
	CO2	appl	apply quality monitoring procedures												
	СОЗ	appl	apply statistical QC techniques and quality assurance techniques												
	CO4	O4 analyze bad quality of work and contents of quality manual													
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
Outcomes towards	CO1	3													3
achievement of Program Outcomes (1 – Low, 2 - Medium, 3– High)	CO2														3
	CO3	3	3			3							3		3
	CO4	3	3												3

UNIT – I

QUALITY MANAGEMENT

Introduction – Definitions and objectives – Factors influencing construction quality – Responsibilities and authority – Quality Management , TQM Concept

QUALITY SYSTEMS

Introduction - Quality system - ISO 9000 family of standards — Quality related training - Implementing a Quality system - case study of Third party Certification. Quality circles.

UNIT - II

QUALITY PLANNING

Quality Policy, Consumers feedback &satisfaction, Ergonomics, Discussion on IS code on sampling, sampling plans, acceptance criteria, quality inspection.

QUALITY PROCEDURES

Develop, schedule and implement procedures. The Three-Phase Control

	System: Preparatory Phase, Initial Phase and Follow-up Phase. Notify appropriate personnel of time, date and agenda.
	UNIT – III QUALITY CONTROL Definition, Objectives, Regulatory agencies, statically tolerances, Taguchi concept, Statistical methods: Mean, variance, standard deviation, coefficient correlation, coefficient regression, control charts, Numerical on the above concepts, Contractor Quality Control, Quality Control Personnel, Safety considerations and Activity Hazard Analyses (AHAs).
	QUALITY ASSURANCE Quality Characteristics of QA process. Methods used in QA, Non functional testing, Factors influencing construction quality, Quality Assurance Personnel and their role, Quality Management Record Keeping, The Contractor Quality Control Report,
	UNIT – IV QUALITY IMPROVEMENT TECHNIQUES Definition, objectives, quality appraisal, techniques of quality assurance, Quality manual, specification for few construction items/ construction techniques.
	FORENSIC ANALYSIS FOR BAD QUALITY Pareto analysis, cause effect diagram and its application in construction industry and day to day life.
Text Books	 [T1] Juran Frank, J.M. and Gryna, F.M. "Quality Planning and Analysis", McGraw Hill,2001 [T2] ThomsPyzdec; Rozeer W. Berger, "Quality Engineering Hand Book", TATA MC GRAW- HILL, New Delhi, 1995. [T3] Statistical Quality Control 7th Edition, Eugene L Grant, McGraw-Hill Series, 1980.
Reference Books	 [R1] Dale Besterfield, Carl Besterfield-Michner, Glan Besterfield, MaryBesterfield-Sacre, 2nd edition, Total Quality Management, Printice Hall, 1999. [R2] ShridharaBhat, "Total Quality Management- Cases", Himalaya Publihing House, Mumbai, 2009.
E-resources and other digital material	http://nptel.ac.in/courses/

20CE6351	TRANSPORTATION ENGINEERING LABORATORY
----------	---------------------------------------

Course Category:	Program Core Laboratory	Credits:	1.5
Course Type:	Laboratory	Lecture - Tutorial - Practice:	0-0-3
Prerequisites:	Nil	Continuous Evaluation:	30
_		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes			ssful c	omple	etion o	of the	cours	e, the	stude	nt wil	l be al	ole to:		
				analyze the suitability of aggregates and bitumen in pavement construction.										
	CO 2	under	rstand	the i	mport	ance	of traf	fic stu	ıdies	at mic	l block	section	on	
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO7	PO8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO 1	2		3	3			2		3	3				3
CO 2	2		3	3			2		3	3				3
	CO 1	CO 1 PO 1 CO 2	CO analy 1 CO under 2 PO PO 1 2 CO 2	CO analyze the CO understand PO PO PO 3 CO 1 2 3 CO 2 3 CO 2 3 CO 3 CO 2 3 CO CO	CO analyze the suital CO understand the in PO PO PO PO 1 2 3 4 CO 1 2 3 3 CO 2 3 3 3	CO analyze the suitability CO understand the import PO PO PO PO PO 1 2 3 4 5 CO 1 2 3 3 3	CO analyze the suitability of agg 1 CO understand the importance of the suitability of agg PO 1 2 3 4 5 6 CO 1 2 3 3 3	CO analyze the suitability of aggregated analyze the suitability of ag	CO analyze the suitability of aggregates and a contract of traffic structures and the importance of traffic structures and traffic structures and traffic struct	CO analyze the suitability of aggregates and bitured and the importance of traffic studies and bitured and the importance of traffic studies are considered as a constant of the suitability of aggregates and bitured and the importance of traffic studies are constant of the suitability of aggregates and bitured and constant of the suitability of aggregates and constant of the suitability of	CO analyze the suitability of aggregates and bitumen in 1 CO understand the importance of traffic studies at mid 2 PO 10 CO 1 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	CO analyze the suitability of aggregates and bitumen in pave 1 CO understand the importance of traffic studies at mid block 2 PO 1 2 3 4 5 6 9 10 11 CO 1 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	CO analyze the suitability of aggregates and bitumen in pavement of traffic studies at mid block sections and block sections are suitability of aggregates and bitumen in pavement of traffic studies at mid block sections are suitability of aggregates and bitumen in pavement of traffic studies at mid block sections are suitability of aggregates and bitumen in pavement of traffic studies at mid block sections are suitability of aggregates and bitumen in pavement of traffic studies at mid block sections are suitability of aggregates and bitumen in pavement of traffic studies at mid block sections are suitability of aggregates and bitumen in pavement of traffic studies at mid block sections are suitability of aggregates and bitumen in pavement of traffic studies at mid block sections are suitability of aggregates and bitumen in pavement of traffic studies at mid block sections are suitability of aggregates and bitumen in pavement of traffic studies at mid block sections are suitability of aggregates and bitumen in pavement of traffic studies at mid block sections are suitability of aggregates and bitumen in pavement of traffic studies at mid block sections are suitability of aggregates and bitumen in pavement of traffic studies at mid block sections are suitability of aggregates and bitumen in pavement of traffic studies at mid block sections are suitability of aggregates and bitumen in pavement of traffic studies at mid block sections are suitability of aggregates and bitumen in pavement of traffic studies at mid block sections are suitability of aggregates and bitumen in pavement of traffic studies at mid block sections are suitability of aggregates are suitability of aggregates and bitumen in pavement of traffic studies at mid block sections are suitability of aggregates and bitumen in pavement of traffic studies at mid block sections are suitability of aggregates are suitability of aggregates and block sections are suitability of aggregates are suitability of aggregates are suitability of aggregates are suitabil	CO analyze the suitability of aggregates and bitumen in pavement construction CO understand the importance of traffic studies at mid block section PO P

A. TESTS ON AGGREGATES:

- 1. Determine the strength of aggregate and discuss the suitability in pavement construction.
- 2. Determine the toughness of aggregate and discuss the suitability in pavement construction.
- 3. Determine the hardness of aggregate and discuss the suitability in pavement construction.
- 4. Determine the flakiness and elongation index of aggregate and discuss the suitability in pavement construction.
- 5. Perform gradation of aggregate, analyze and discuss its importance in pavement layers
- 6. Determine the Specific gravity Test of aggregate and discuss its application in pavement layers

B. TESTS ON BITUMINOUS MATERIALS:

- 1. Determine the grade of bitumen using different methods (penetration test and viscosity test)
- 2. Perform different tests on bitumen and discuss the suitability of bitumen in flexible pavement construction.

C.TESTS ON SOIL

1. Determine the CBR of soil.

E-resources and other digital material	https://www.iitk.ac.in/ce/test/IS-codes/is.2386.4.1963.pdf https://www.iitk.ac.in/ce/test/IS-codes/is.2386.1.1963.pdf https://www.iitk.ac.in/ce/test/IS-codes/is.2386.3.1963.pdf https://www.iitk.ac.in/ce/test/IS-codes/is.1201-1220.1978.pdf https://ia803004.us.archive.org/5/items/gov.in.is.2720.16.1987/is.2720.16.1987.pdf
Reference books	[R1] Ministry of Road Transport and Highways- Specifications for Roads and Bridge Works, Fifth Revision, IRC, New Delhi, India-2013
Text books	[T1] Khanna, S. K., C. E. G. Justo, A.Veeraragavan" Highway Engineering Revised 10th Edition Nem Chand Bros .Roorkee 2017.
	 D. TEST ON BITUMINOUS MIXES 1. Analyze and determine the optimum Binder content for construction of flexible pavement construction – (demo) E. TRAFFIC VOLUME STUDIES 1. Traffic volume study at mid block section 2. Traffic volume study at intersection 3. Speed study
	2. Plate bearing test – (demo)

20CE6352	COMPUTER APPLICATIONS IN CIVIL ENGINEERING LAB-2

Course Category:	Programme Core -Lab-2	Credits:	1.5
Course Type:	Practical	Lecture - Tutorial - Practice:	0-0-3
Prerequisites:	20CE3503 Design of Concrete	Continuous Evaluation:	30
	Structures	Semester end Evaluation:	70
		Total Marks:	100

Course outco	Upon s	Upon successful completion of the course, the students will be able to:													
	CO1	analysis for cross section and requirement of reinforcements of various structural elements by using STAAD.Pro/ ETABS.													
		CO2	CO2 analyse for rates and quantities and prepare rate analysis for various works in construction of a building using Spread Sheets												
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2
Outcomes towards achievement	CO1	2		2	1	3		2		2	1			3	1
of Program Outcomes (1 – Low, 2 - Medium, 3 – High)	CO2	3		1	2	1		2		1	2			1	3
Course Conto	ETAB 1. Des 3. Des 4. De Assign 5. Des 6. De 7. Des PART	sis of \mathbf{SS} Softign of sign of sign of sign of sign of \mathbf{SS} sign of \mathbf{SS} and \mathbf{SS} sign of \mathbf{SS} and \mathbf{SS} sign of \mathbf{SS} sign of sign of sign of sign of sign of \mathbf{SS} sign of sign of sign of \mathbf{SS} sign of sign of sign of \mathbf{SS} sign of sig	tware f cont f spac f G+4 oads f G+4 f Roo & We build	e. cinuor ee fra 4 Res and 1 Res 4 Res f Tru	us beame. sident Load ident sident ss	am; 2 tial by Com ial bu tial by	. Des uildir binat ildin uildir	sign on the sign of the sign o	of pla reating epara repara	ne france in the second	ame odel fr of deta of De	om thail dra	ne give awing Docum	n drawing, ents	
Text books [T1] Sarma T.S, "Staad Pro V8i for Beginners 1st Edition", 1 st ed., Notion Pres Delhi, 2014. [T2] Sarma. T.S., "Design of R C C Buildings using Staad Pro V8i with Indian ", 1 st ed., Educreation Publishing, New Delhi, 2017.															
References															
e-Resources	esources														

20HS	6153	ENG	LISH AND COMMUNICATION SKILLS	LAB
Course Category:	HS		Credits:	1
Course Type:	Lab		Lecture - Tutorial - Practice:	0-0-2
Prerequisites:			Continuous Evaluation:	30
			Semester end Evaluation:	70
			Total Marks:	100

Course outcon	Jpon successful completion of the course, the student will be able to:														
СО		CO1		evaluate elements of listening and spoken skills complemented by the abilities of argumentation and skills of public speaking											
CO2 apply the nuances of requisite Advanced Reading Skills and his communication required for administrative and corporate compila						_									
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2
Outcomes towards	CO1						1		1	2	3	2	2		
achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)	CO2				1		1			2	3	2	1		

TED TALKS (Advanced Listening Skills)

Listening involving 5R Method

ELEVATOR PITCH (Advanced Listening Skills): Pitches for technical audience and administrators- exposure through soft components and illustrations

INTERPERSONAL COMMUNICATION (Advanced Spoken Communication Skills)

Individual and Group - Pyramid discussion- Conceptual framework and practice

DYNAMICS OF TECHNICAL AND PROFESSIONAL PRESENTATIONS(Advanced Spoken Communication Skills)

Illustrations and Practice including paralinguistic elements

EFFECTIVE READING(Advanced Reading and interpretation skills)

SQ3R Method, ERRQ Method and SPE Method with textual practice

LOGICAL READING(Advanced Reading and interpretation skills)

Syllogisms -illustrations and practice

ADVANCED COMPILATION AND DRAFTING SKILLS(Advanced Writing and other professional communication skills)

Minuets, Résumé& Video profile, Review and case writing

	LIFE SKILLS FOR WORK PLACE COMMUNICATION(Advanced Writing and other professional communication skills) Sensitivity towards gender and diversity in communication- Multi-genre Activity
Text books	 [T1] LokeshMehra, Sanjiva Dubey, S. P. Singh (Ed.) "Corporate Employability skills", 1st edition, CEGR, New Delhi, 2016 [T2] Brent C. Oberg.C., Interpersonal Communication, 1st Impression, Jaico Publishing, Mumbai, 2005 [T3] Eclectic materials offered by the Department of English
Reference books	 [R1] Chauhan, Gajendra Singh, SmithaKashiramka, "Technical Communication", Cengage, Delhi, 1st Impression, 2018 [R2] Quintanilla Kelly M, Shan T Wahl, "Business and Professional Communication: Keys for Workplace Excellence", SAGE, New Delhi, 2nd Impression 2012 [R3] Selinkar, Larry et al, English for Academic and Technical Purposes, I edition, Newbury House Publishers, 1981. [R4] John Langan, College Writing Skills, McGraw Hill, IX Edition, 2014 [R5] Martin Cutts, Oxford Guide to Plain English, 7th Impression, OUP, 2011
E-resources and other digital material	www.britishcouncil.org/learning-english-gateway.

20TP1606	QUANTITATIVE APTITUDE

Course Category:	Soft Skill Core	Credits:	1
Course Type:	Learning by Doing	Lecture - Tutorial -	0 - 0 - 2
		Practice:	
Prerequisites:		Continuous Evaluation:	100
		Semester end Evaluation:	0
		Total Marks:	100

Course outco	mes	Upon	succe	ssful	compl	etion	of the	cour	se, the	estud	ent wi	ll be a	ble to		
		CO1	appl	y var	ious Ba	asic M	athen	natics	proble	ems by	y follo	wing o	lifferen	nt metho	ds
	CO2		apply shortcut methods to solve problems and follow strategies in minimizing time consumption in problem solving												
		CO3	analyze any mathematical problems and utilize these mathematical skills both in their professional as well as personal life.												
		CO4		evaluation information in quantitative forms including table, graphs and formulas											
Contributio n of Course Outcomes		PO 1	PO 2	P O 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
towards achieveme	CO1	2							3	3	3				
nt of Program	CO2		2						3	3	3				
Outcomes (1 – Low, 2	CO3	2							3	3	3				
- Medium, 3 - High)	CO4				2				3	3	3				

Course Content	UNIT I NUMERICAL ABILITY I Number system, HCF & LCM, Average, Simplification, Problems on numbers NUMERICAL ABILITY II Ratio & Proportion, Partnership, Percentages, Profit & Loss
	UNIT II ARITHMETICAL ABILITY I Problems on ages, Time & Work, Pipes & Cistern, Chain Rule. ARITHMETICAL ABILITY II Time & Distance, Problems on boats & Steams, Problems on Trains

	UNIT III ARITHMETICAL ABILITY III Allegation, Simple interest and compound interest, Races & Games of skills, Calendar and Clock, LOGICAL ABILITY Permutations and Combination, and Probability.
	UNIT IV MENSURATION Geometry, Areas, Volumes, DATA INTERPRETATION Tabulation, Bar graphs, Pie charts, line graphs
Text books	[T1] R. S. Aggarwal "Quantitative Aptitude", Revised., S Chand publication, New Delhi, 2017, ISBN:8121924987
Reference books	
E-resources and other digital material	

20MC6107B BIOLOGY FOR ENGINEERS

Course Category:	Mandatory Core	Credits:	
Course Type:	Theory	Lecture - Tutorial -	2-0-0
		Practice:	
Prerequisites:		Continuous Evaluation:	100
		Semester end Evaluation:	0
		Total Marks:	100

Course outco	upon s	upon successful completion of the course, the student will be able to:													
CO1			eval	evaluate the fundamental principles and methods of engineering											
CO2			anal	analyse the functions of different types in bio-molecules											
	CO3				apply mechanisms underlying the working of molecular biological process including enzyme catalysis, metabolic pathways, gene expression										
(()4					analyze biological processes using Excel, MATLAB and other computational tools										
Contributio n of Course Outcomes		PO 1	PO 2	P O 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
towards achieveme	CO1	2	3				3	3		3	3				
nt of Program	CO2		3				3	3		3	3				
Outcomes	CO3		2		3		3	3		3	3				
(1 – Low, 2 - Medium, 3 – High)	CO4		1		2	3	3	3		3	3				

UNIT – I

INTRODUCTION AND CLASSIFICATION OF LIVING ORGANISMS

Fundamental differences between science and engineering by drawing a comparison between eye and camera, Bird flying and aircraft. Biology as an independent scientific discipline. Discuss how biological observations of 18th century that lead to major discoveries. Examples from Brownian motion and the origin of thermodynamics by referring to the original observation of Robert Brown and Julius Mayor.

CLASSIFICATION

Classification of living organisms based on (a) Cellularity- Unicellular or multicellular (b) Ultrastructure- prokaryotes or eukaryotes. (c) Energy and Carbon utilization —Autotrophs, heterotrophs, lithotrophs (d) Ammonia excretion — aminotelic, uricotelic, ureotelic (e) Habitat-acquatic, terrestrial (e) Molecular taxonomy- three major kingdoms of life.

UNIT – II

BIOMOLECULES

Biomolecules: Structures of sugars (Glucose and Fructose), starch and cellulose. Nucleotides and DNA/RNA. Amino acids and lipids. Proteins- structure and functions- as enzymes, transporters, receptors and structural elements.

ENZYMES

Enzyme classification. Mechanism of enzyme action.

Enzyme kinetics and kinetic parameters

UNIT – III GENETICS

"Genetics is to biology what Newton's laws are to Physical Sciences" Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Concepts of recessiveness and dominance. Gene interaction, Epistasis. Meiosis and Mitosis be taught as a part of genetics. Emphasis to be give not to the mechanics of cell division nor the phases but how genetic material passes from parent to offspring.

INFORMATION TRANSFER

DNA as a genetic material. Hierarchy of DNA structure- from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Define gene in terms of complementation and recombination.

UNIT – IV

METABOLISM

Exothermic and endothermic versus endergonic and exergonic reactions. Concept of Keq and its relation to standard free energy. ATP as an energy currency. Breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) and synthesis of glucose from CO2 and H2O (photosynthesis). Energy yielding and energy consuming reactions.

MICROBIOLOGY

Concept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Growth kinetics. Ecological aspects of single celled organisms. Microscopy.

Text books	[T1] Biology: A global approach: Campbell, N.A.; Reece, J.B.;Urry, Lisa; Cain,M,L.; Wasserman, S.A.; Minorsky, P.V.; Jackson, R.B. Pearason Education Ltd [T2] Outlines of Biochemistry, Conn, E.E; Stumpf, P.K; Bruening, G; Doi, R.H., John Wiley and Sons
Reference books	[R1] Principles of Biochemistry (V Edition), By Nelson, D.L.; and Cox, M.M.W.H. Freeman and Company [R2] Molecular Genetics (Second Edition), Stent, G.S.; and Calender, R.W.H. Freeman and Company, Distributed by Satish Kumar Jain for CBS publisher Microbiology. [R3] Prescott, L.M J.P. Harley and C.A.Klein 1995. 2 nd edition Wm, C.Brown publishers
E-resources and other digital material	International Standard Book Number-13: 978-1-4398-9402-6 (eBook - PDF)

20CE7301	ESTIMATION AND COSTING

Course Category:	Programme Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3 - 0 - 0
Prerequisites:	20CE3353- Computer	Continuous Evaluation:	30
	Aided Civil	Semester end Evaluation:	70
	Engineering Drawing,	Total Marks:	100
	20CE5303 – Design of		
	Concrete structures		

Course Outco	omes	Upon successful completion of the course, the student will be able to:														
	CO 1															
		CO 2											Steel			
		CO 3		. •	•	ficatio vorks		for	deter	minir	ng ra	ate a	nalys	is for	civil	
		CO 4			Buil	_	Valu	ation	based	d on	rental	meth	nod ar	nd unde	rstand	
Contributio n of Course Outcomes		P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	P O 11	P O 12	PSO 1	PSO 2	
towards achievement of Program	CO 1	1		3		1	1					2		2		
•	CO 2	1		3		1	1					2		2		
3 – High)	CO 3	1		3		1	1					2		2		
	CO 4	1		3		1	1					2		2		
Course Content UNIT - I METHODS AND PROCEDURE OF BUILDING ESTIMATE Introduction, Units of measurement, Main items of work, Deduction for openings, Comparison of Individual wall method and Centre line method for a single room building. RCC BUILDINGESTIMATE							with									

	Types of Canal Cross Sections, Estimate of earthwork in irrigation channel both in banking and cutting with longitudinal and cross sections data. ESTIMATE OF STEEL SANCHION AND RCC BRIDGE COMPONENTS Detailed estimate of Steel sanchion with base plate gusset plate and connections, Detailed estimate of RCC T-Beam Decking: T-Beams, Fillets, Deck Slab, Railing posts and Kerbs.
	UNIT - III DETAILED SPECIFICATIONS Purpose and method of writing Detailed specifications, Procedure of Detailed Specifications for the following: Brick work and R.C.C slab work.
	ANALYSIS OF RATES Introduction, Task or outturn work, Labor and materials required for different works, Rates of various materials and different types of Labor, Preparing analysis of rates for the following items of work: RCC slab Works, Plastering for super structure walls, Hands on exercise using EZ construction estimator.
	UNIT – IV PWD ACCOUNTS AND PROCEDURE OF WORKS Organization of Engineering department, Contract and various types, condition of contract, contract Document, Tender notice, Tender procedure- Earnest money, Security money, Measurement book, Revised Estimate, Supplementary estimate, Penalty.
	VALUATION OF BUILDINGS Introduction, Methods of valuation, Valuation of building based on rental method problem - Out goings, Depreciation, Gross income, Net income, Scrap value, Salvage value, Obsolescence, sinking fund, Capitalized value, Years purchase.
Text Books	[T1]Estimating & Costing in Civil Engineering by B N Dutta, UBS Publishers Pvt Ltd. New Delhi, 2018.[T2]Estimating, Costing & Valuation by Rangwala, Universal Publications, New Delhi, 2017.
Reference Books	[R1]Estimating and Costing by D. D. Kohli and R. C. Kohli., S. Chand Publications-New Delhi-2013[R2]M. Estimating & costing by Chakrborthy, Variuos, New Delhi,2012.
E-resources and other digital material	http://nptel.ac.in/courses/105103093/15

CE7402A EARTHQUAKE RESISTANT DESIGN

Course Category:	Program Elective 3	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:	20BS3101A - Mechanics of	Continuous Evaluation:	30
	Solids, 20CE4302 - Structural	Semester end Evaluation:	70
	Analysis, 20CE5303 - Design	Total Marks:	100
	of Concrete Structures		

Course Outcon	ies	Upor	ı succe	ssful co	omple	tion o	of the	cours	se, th	e stud	dent v	vill be	able	to:	
		CO 1		rstand ents of						g Sei	smol	ogy a	nd uı	nderstan	nd the
		CO 2	TVINTALION INCLUDING PARINGUIAKP AND UNDERSTAND THE CONCENTS OF SEISMIC-												
		CO 3	I IXVX_7007/Part_Dand annly the concent of ductile detailing in earthquake 1												
	analyze and design a single storey and single building subjected to an Earthquake						ingle	bay l	RCC	plane f	ramed				
Contribution of Course Outcomes		P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	P O 11	P O 12	PSO 1	PSO 2
towards achievement of Program	CO 1	3													3
Outcomes (1 – Low,	CO 2	3	3	2	2	1				l				3	
2 –Medium, 3 – High)	CO 3	2	3	3						P				3	
	CO 4	2	3	3						P				3	
Course Conten	UNIT – I ENGINEERING SEISMOLOGY: Introduction, Internal Structure of Earth, Continental Drift Theory, Plate Tectonics, Faults, Causes of Earthquakes. ELEMENTS OF EARTHQUAKE ENGINEERING Earthquake magnitude and intensity, Focus and Epicenter, Seismic waves,														
		Earth	iquake		uring	Inst	rume	nts,	Caus	es a	nd E			Earthqu	

	UNIT – II DYNAMICS FOR EARTHQUAKE ANALYSIS Equations of Motion for SDOF and MDOF Systems; Undamped Free Vibration of SDOF and MDOF Systems, Mode Shapes and Frequencies of MDOF System. SEISMIC-RESISTANT BUILDING ARCHITECTURE Introduction; Lateral load resisting systems- Moment Resisting Frame, Building with shear wall or Bearing wall system, Building with dual system; Building configuration – Problems and solutions; Building characteristics – Mode shape and fundamental period, Building frequency and ground period, Damping, Ductility, foundation soil/ liquefaction. UNIT – III DESIGN FORCES FOR BUILDINGS Introduction; Equivalent static method; Mode superposition technique; Dynamic inelastic time history analysis; Advantages and disadvantages of these methods; Determination of lateral forces as per IS 1893(Part 1) – Equivalent static method, Model analysis using response spectrum. DUCTILITY CONSIDERATIONS IN EARTHQUAKE RESISTANT DESIGN OF RCC BUILDINGS Introduction; Impact of ductility; Requirements for ductility; Assessment of ductility— Member/element ductility, Structural ductility; Factor affecting ductility; Ductility factors; Ductility considerations as per IS13920. UNIT – IV ANALYSIS OF SINGLE STOREY AND SINGLE BAY RCC PLANE FRAME (COLUMNS VERTICAL) (AS PER IS:1893(PART-I)-2002) Calculation of lateral force due to earthquake using Equivalent Static Method; Analysis for different load combinations; Design forces and moments in beam and columns. DESIGN OF SINGLE STOREY AND SINGLE BAY RCC PLANE FRAMES (COLUMNS VERTICAL) (AS PER IS:456-2000 AND IS:13920-1993) Design of column; Design of beam; Design of footing; Detailing of entire frame
Text Books	 [T1]Pankaj Agarwal and Manish Shrikande, "Earthquake Resistant Design of Structures", 2nd ed., Prentice Hall of India Publications, 2014. [T2]Anil Chopra, "Dynamics of Structures", 3rd ed., Prentice Hall India Publications, 2015. [T3]S.K. Duggal, "Earthquake Resistant Design of Structures", 2nd ed., New Delhi, Oxford University Press, 2013.
Reference Books	 [R1]Jaikrishna, Chandarsekaran and Brijesh Chandra, "Elements of Earthquake Engineering, 1st ed., New Delhi: South Asian Publishers, 1994. [R2] R.W. Clough and J. Penzien, "Dynamics of Structures", 3rd ed., McGraw Hill Civil Engineering Series, 2015. [R3]Relevant Latest Revisions of IS codes - IS1893, IS456, IS13920, IS13827, IS13828, IS13935
E-resources and other digital material	"www.nptel.ac.in / courses/ 105101004/" "www.nptel.ac.in / courses/ 105/107/105107204/"

20CE7402B SOLID WASTE MANAGEMENT

Course Category:	Program Elective 3	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:	20CE5302-Environmental	Continuous Evaluation:	30
	Engineering	Semester end Evaluation:	70
		Total Marks:	100

Course Outcor	mes	Upoi	ı su	cces	sful c	compl	letion	of th	e cou	ırse,	the st	ıdent	will b	e able to	o:
		CO 1	un	ders	stand	the so	ource	s and	com	posit	ion of	Mun	icipal	Solid W	Vaste.
		CO 2	analyze methods of collection, transport and disposal of Municipal Solid Waste.												
		CO 3		ply aste		ods	of se	epara	tion	and	recyc	ling (of Mu	ınicipal	Solid
		CO 4	un	ders	stand	hand	ling c	of Bio	-med	lical,	plasti	c and	e-was	ste.	
Contribution of Course Outcomes towards	P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	P O 11	P O 12	PSO 1	PSO 2	
of Program Outcomes	CO 1	3		1		1	2	1				1			2
(1– Low, 2-Medium, 3 – High)	CO 2	3		3		3	2	1				1			2
3 – 11igii)	CO 3	3		1		1	2	1				1			2
	CO 4	3		1		1	2	1				1			2
Course Content UNIT – I SOURCES WASTE Sources, T disposal of recovered fr WASTE H site handlir waste, option					pes, solid om M NDI g and	Comd was SW.	nposit iste, S. SE l aratio	ion publi PAR on at	of S ic he ATI(olid ealth DN A l was	Wast effec	te, Efects, T	ffects Types AGE	of import of ma	proper terials

	UNIT – II COLLECTION OF MUNCIPAL SOLID WASTE Methods of collection, equipment, types of vehicles, man power requirement. TRANSFER AND TRANSPORT OF MUNCIPAL SOLID WASTE Need for Transfer operations, Transfer Stations, Selection of Location of Transfer Stations, Transport means and methods.
	UNIT – III OFF-SITE PROCESSING, SEPARATION, TRANSFORMATION: Size Reduction, Separation, Density separation, Magnetic Separation, Pyrolysis, Composting, Incineration.
	DISPOSAL OF SOLID WASTE Disposal of Solid Waste – Sanitary land Fills, Site selection, Planning, Design and operation of Sanitary land fills, Leachate collection
	UNIT – IV BIO-MEDICAL WASTE MANAGEMENT Sources & generation of Bio-medical Waste, Biomedical Waste Management.
	PLASTIC AND E-WASTE MANAGEMENT Dangers of Plastics, Recycling of Plastic waste, Disposal of plastic waste. Health Hazards of E- waste, E- waste Management
Text Books	 [T1] Goerge, T. Hilary, T. & Samuel, A.V. Integrated Solid waste management, McGraw Hill Indian Edition, 2014. [T2] Amalendu, B. Design of Land Fills and Integrated Solid waste management John Wiley & Sons 3RD Edition, 2004
Reference Books	[R1] CPCB Manual on solid waste Management, NDLS, 2016. [R2] Sasi kumar, K. Sanoop, G. Solid waste management, PHI, NDLS, 2009 [R3] Urvashi, D. Solid waste management in India, NDLS, 2014
E-resources and other digital material	https://nptel.ac.in/courses/105103205" https://www.coursera.org/learn/solid-waste-management#instructors"

20CE7402C	GROUND IMPROVEMENT TECHNIQUES

Course Category:	Program Elective 3	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:	20CE4303 - Geotechnical	Continuous Evaluation:	30
	Engineering	Semester end Evaluation:	70
		Total Marks:	100

Course Outco	Upor	Upon successful completion of the course, the student will be able to:													
		CO 1	understand need and methods of ground improvement techniques												
		CO 2	app	ly su	itable	grou	nd in	nprov	emer	nt tecl	nniqu	e for	a giv	en site	
	CO 3	apply different grouting techniques, geotextiles and their functions													
	CO 4	exp	ansiv		ls an								undation ues bas		
Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)	P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	P O 11	P O 12	PSO 1	PSO 2	
		1	2	2		2	1					1			2
		1		2		2	1					1			2
		1	2	2			1					1			2
	CO 4	1	2	2	2	2	1								2
Course Content UNIT - I: INTRODUCTION:								o-che RAN action	emica ULA	l, Elec	L S				

	UNIT – II DENSIFICATION METHOD IN COHESIVE SOILS Introduction, Preloading, Vacuum dewatering, Sand Drains, Stone columns, Prefabricated vertical drains. GROUTING TECHNIQUES Grouting in soil, Desirable characteristics, Grouting pressure, Grouting methods. UNIT – III GEOSYNTHETICS Introduction – Type of geosynthetics: Functions and their applications, geogrid – functions. REINFORCED EARTH Principles – Components of reinforced earth – factors – governing design of reinforced earth walls – design principles of reinforced earth walls. UNIT – IV EXPANSIVE SOILS Problems of expansive soils, Identification tests for expansive soils, I.S. test methods for swelling – pressure of a soil, Improvement methods for expansive soils. SOIL STABILIZATION Types of soil stabilization, Lime stabilization - Base exchange mechanism, Pozzolanic reaction, lime-soil interaction. Lime stabilization mix design,
Text Books	Cement stabilization: Mechanism, amount, age and curing. [T1]Hausmann, M.R., Engineering Principles of Ground Modification, Mc Graw-Hill International Editions, NY, US, 1990. [T2]Purushothama, R. P., Ground Improvement Techniques, Tata Mc GrawHill, NDLS, 1995.
Reference Books	 [R1]Chattopadhyay, B. C. and Maity, J., Ground Control and Improvement Techniques, PEEDOT, HWH, 2011. [R2] Korner, R. M., Design with Geosynthetics, Prentice Hall, NJ, US, 2002 [R3] Han, J., Principles and Practice of Ground Improvement, John Wiley, NJ, US 2015.
E-resources and other digital material	https://nptel.ac.in/courses/105108075/

|--|

Course Category:	Program Elective 3	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0 - 0
Prerequisites:	20CE6302- Transportation	Continuous Evaluation:	30
	Engineering	Semester end Evaluation:	70
		Total Marks:	100

Course Outcome	Upor	succe	essful	com	pletio	n of t	he co	ourse,	, the s	studer	nt will	be ab	le to:		
		CO 1	unde syste		d the	facto	ors a	ffecti	ng p	avem	ent d	lesign	and	analyze	layer
		CO 2													
		CO 3													
		CO 4	analy	ze ar	nd des	sign p	aven	nent o	overla	ays					
Contribution of Course Outcomes towards achievement of Program Outcomes (1– Low, 2–Medium, 3– High)		P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	P O 11	P O 12	PSO 1	PSO 2
			2	2											2
			2	3										3	
						3									2
	CO 4		2	3										3	
Course Content UNIT – I FLEXIBLE PAVEMENT - INTRODUCTION Requirements of highway pavement, Types of pavement struct pavement components and functions, factors affecting performance of flexible pavements, stresses in flexible pave layer system, two layer system. DESIGN OF FLEXIBLE PAVEMENT CBR method, Flexible pavements design as per IRC guidelines AASHTO Method- basis for AASHTO method, performance of and material inputs, pavement design as per AASTHO criteria.								designement-	and single:2012,						

UNIT – II RIGID PAVEMENT - INTRODUCTION Rigid pavement components and functions, Types of joints, factors affecting design and performance of CC pavement, stresses in rigid pavement (numerical). **DESIGN OF RIGID PAVEMENTS** Design of rigid pavement as per IRC guidelines, design of joints, design of dowel bars, design of tie bars UNIT - III CONSTRUCTION OF FLEXIBLE PAVEMENTS Construction of highway embankment - material, construction steps, QC checks, Construction of subgrade - material, construction steps, QC checks, Construction of GSB - material, construction, QC checks, Construction of Base course- WMM material, construction steps, QC checks, Preparations before constructing bituminous layer over GSB, Preparations before laying bituminous pavement layer over existing bituminous layer, Prime coat, tack coat, Construction of bituminous macadam – materials, construction steps, QC checks, Dense graded bituminous mixes – materials, construction steps, OC checks. CONSTRUCTION OF RIGID PAVEMENTS Construction of CC pavement- construction of supporting layers, construction of cc pavement slab, construction of joints, QC checks, Interlocking concrete block pavements. UNIT - IV PAVEMENT EVALUATION Pavement deterioration, objectives of maintenance, classification of maintenance, structural evaluation of flexible pavement- principle of FWD method, Evaluation by Benkelman beam method (no numerical). **PAVEMENT OVERLAYS** Design of flexible pavement overlay using BBD data, strengthening of existing flexible pavement by overlays, strengthening of cc pavements by overlays. [T1] SK Khanna, CEG Justo & A Veeraragavan, "Highway Engineering", 10th ed., **Text Books** Nem Chand & Bros, Roorkee, 2017. [T2] AASHTO Guide for Design of Pavement Structures, American Association of State Highway and Transportation Officials (AASHTO), 1993 [R1] H HYang, "Pavement Analysis and Design", 2nd ed., Pearson, NJ, 2003. Reference Books [R2] E J Yoder & M W Witczak, "Principles of Pavement Design", 2nd ed., Wiley India Pvt Ltd, New Delhi, 2012 [R3] R L Brocken brough & K J Boedecker, "Highway Engineering Handbook", 2nded... McGraw hill, New Delhi, 2003 [R4] Guidelines for the design of flexible pavements, IRC: 37, Indian Roads Congress, 2012 [R5]Guidelines for the Design of Plain Jointed Rigid Pavements for Highways, IRC 58, Indian Roads Congress, 2015 [R6]Guidelines for Strengthening of flexible road pavements using Benkelman

Beam Deflection Technique, IRC 81, Indian Roads Congress, 1997.

	[R7]Guidelines for Structural Evaluation and Strengthening of Flexible Road Pavements Using Falling Weight Deflectometer (FWD) Technique, IRC 115, Indian Roads Congress, 2014
E-resources and other digital material	"https://nptel.ac.in/courses/105/105/105105107/" "https://nptel.ac.in/courses/105/101/105101087/"

20CE7402E	OPEN CHANNEL FLOW AND RIVER ENGINEERING

Course Category:	Program Elective 3	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3- 0- 0
Prerequisites:	20CE4304 – Hydraulics	Continuous Evaluation:	30
_	&Hydraulic Machines	Semester end Evaluation:	70
	20CE5301- Water	Total Marks:	100
	resources Engineering		

Course Outcom	Upon	Upon successful completion of the course, the student will be able to:													
		CO 1													
		CO 2	1 1												
		CO 3	\mathcal{E}												
		CO 4													
Contribution of Course Outcomes towards achievement of Program Outcomes (1– Low, 2–Medium, 3– High)		P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	P O 11	P O 12	PSO 1	PSO 2
			3	2										3	
			3	2										3	
			3	2											2
	CO 4		3	2											2
Course Content	UNIT I: OPEN CHANNEL FLOW: Basic concepts of free surface flow; Velocity and Pressure distribution; Differential form of continuity and momentum equations; Energy principles and applications; Energy equation; energy and momentum correction coefficients. STEADY UNIFORMFLOW: Shear stress on the boundary; chezy's equation and Manning's formula; Resistance formulae for practical use; Equivalent roughness; Uniform flow computations; Computation of Normal depth; Compound Sections														

	UNIT II: GRADUALLY VARIED FLOW: Gradually varied flow; Governing equations; Classification of surface profiles; Computation of gradually varied flow in Prismatic and Non-Prismatic channels – Graphical and Direct integration methods.
	RAPIDLY VARIED FLOW: Application of Momentum equation; Hydraulic Jump in horizontal and sloping rectangular channels, Basic characteristics of the Jump; location and length of jump; Jump as energy dissipater; Control of Jump by Sills.
	UNIT – III FLOW THROUGH NON-PRISMATIC CHANNELS: Sudden Transitions; Subcritical flow through sudden Transitions; Contractions and Expansions in Supercritical flow; constrictions; Subcritical flow through Constrictions; Backwater effect due to Constriction.
	RAPIDLY VARIED UNSTEADY FLOW: Waves and classification; Celerity of waves; Moving Hydraulic Jump; Surges; Equations of motion; Method of Characteristics.
	UNIT IV: FLUVIAL HYDRAULICS: Basic characteristics of river beds and sediments, Initiation of motion; regimes of flow; Resistance to flow in alluvial streams; Theories of Bed Load, Suspended Load and Total Load.
	RIVER ENGINEERING: Classification of Rivers; Meandering - Causes; Features of Meandering - Factors controlling process of Meandering; Cutoffs; Guide Banks; Groynes; River training and its objectives; Classification of river training works; Methods river training works.
Text Books	 [T1]K. Subramanya, "Flow in Open Channels", 5th edition, Tata McGraw Hill Education Private Limited, New Delhi, 2019. [T2]Dr. B.C. Punmia and Dr. Pande B.B. Lal, "Irrigation and Water Power Engineering", Laxmi Publications, New Delhi, 2005.
Reference Books	 [R1] V.T. Chow, "Open Channel Hydraulics", Mc Graw Hill Book Company, Inc. London, Reprint, Blackburn Press, 2009. [R2] Garde and Ranga Raju, K.G., "Mechanics of Sediment Transportation and Alluvial Stream Problems", 3rd edition, New Age Publishers, New Delhi, 2000.
E-resources and other digital material	www.nptel.ac.in/courses/105105110/ www.nptel.ac.in/courses/105107059/

20CE7402F	ANALYSIS AND DESIGN OF HIGH RISE BUILDINGS

Course Category:	Program Elective 3	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:	20CE4302-Structural	Continuous Evaluation:	30
	Analysis;	Semester end Evaluation:	70
	20CE3601- Design of	Total Marks:	100
	Reinforced Concrete		
	Structures		

Course Outco	Upor	ı suc	cessf	ful co	mple	tion o	of the	cour	se, th	ie stu	dent v	vill be	able to	:	
	understand structural systems of High Rise buildings.														
		CO 2	1 1 7												
		CO 3	8												
		CO 4	ana	alyze	and o	desigi	n of 1	high	rise b	uildi	ngs				
Contributio n of Course Outcomes		P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	P O 11	P O 12	PSO 1	PSO 2
towards achievement of Program	CO 1		3	2										3	
Outcomes (1 – Low, 2 - Medium,	CO 2	2	3	3										3	
3 – High)	CO 3	2	3	2										2	
	CO 4	2	3	3										3	
Course Conte	utior al lo ria fo nt - I N STI mbly	OUCT n of a ads l or str Devel	tall blike Voluments opme TION Build	Wind cal deent of	ngs – load esign high	- Intr s, Ea of T rise	roduc arthqu all b archit	tion aake uildi tectui	- Cla loads ng - re.	issific s & F Conce	Blast 1 ept of	of Buil oads- I premin	Design im for		

	TIMITE II
	UNIT – II ENVIRONMENTAL REQUIREMENTS: Industrialization & Robotics in Construction - Introduction to safety and Health Management System - Stages of site Investigation - Site Reconnaissance & Ground investigation-Field tests & Laboratory tests. FOUNDATION SYSTEMS: Material handling and Mechanization - Material handling considerations - Earthmoving equipment's - Horizontal and vertical movements - Selection & Utility of Cranes (Tower Cranes & Climbing Cranes).
	UNIT – III WIND & SEISMIC EFFECTS ON BEHAVIOR OF TALL STRUCTURES: Outlook of Design considerations and Characteristics of wind - Codal wind loads and cladding pressures on behavior of tall buildings - Introduction to Tall building behavior during earthquakes and seismic design philosophy.
	STRUCTURAL FORMS & FLOORING SYSTEMS: Introduction of Various structural forms and their importance to high rise architecture - Introduction to various Flooring Systems in concrete & steel.
	UNIT – IV METHODS OF ANALYSIS: Structural behavior of Rigid frames – Simplified methods of analysis – Substitute frame method & Portal method.
	MODELING FOR ANALYSIS: Approaches for analysis - Assumptions involved in modeling - Reduction techniques - Application using Structural engineering Software.
Text Books	 [T1]Taranath B, Steel, "Concrete and Composite Design of Tall Buildings", 2nd Edition, McGraw Hill, 2016. [T2]White and Salmon, "Building Structural Design Handbook", John Wiley &Sons, 1987. [T3]Wolfgang Schueller, "The Design of Building Structures", Prentice Hall, 1996.
Reference Books	 [R1]Kazimi, S. M. A. "The analysis of shear-wall buildings." Building Science 1, no. 4 (2015): 271-276. [R2]Gere, James M., and William Weaver. Analysis of framed structures. Van Nostrand, 2009. [R3]Mohraz, Bijan. "Review of The Design of Building Structures by Wolfgang Schueller." Journal of Architectural Engineering 2.2 (1996): 82-83.
E-resources and other digital material	"www.nptel.ac.in / courses/ 105101082/".

20CE7403A PREFAB ST

Course Category:	Program Elective 4	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:	20CE5303 - Design of	Continuous Evaluation:	30
	concrete structures	Semester end Evaluation:	70
	20CE6301 - Design of steel	Total Marks:	100
	structures		

Course Outcor	Upor	Upon successful completion of the course, the student will be able to:													
		understand the plant prefabricated and production													
		analyse the prefabricated load carrying members													
		CO 3	analyze the production technology of prefabrication												
		CO 4	II.	ate and le fram		iling	of pr	ecast	UNI	T for	facto	ries w	ith sir	ngle stoi	rey
Contribution of Course Outcomes		P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	P O 11	P O 12	PSO 1	PSO 2
towards achievement of Program	CO 1	2	1	2	3	2	1							2	2
Outcomes (1 – Low,	CO 2	2	1	1	3	2	1							2	2
2 - Medium, 3 - High)	CO 3	2	1	2	3	2	1							2	2
	CO 4	2	1	1	3	3	1							2	2
Course Content U		UNIT	Γ–I RODU												

Need for prefabrication - General Principles of Prefabrication - Comparison with monolithic construction, types of prefabrication.

PLANT FABRICATION

Site and Plant prefabrication, economy of prefabrication, modular coordination, standardization - Materials - Modular coordination - Systems - Production -Transportation – Erection.

UNIT - II

PREFABRICATED COMPONENTS

Prefabricated Load Carrying Members-Planning for components prefabricated structures, disuniting of structures, design of simple rectangular beams and I-beams, handling and erection stresses, elimination of erection stresses, beams, columns, symmetric frames.

BEHAVIOUR OF STRUCTURAL COMPONENTS

E-resources and other digital material	[R4]CBRI, Building materials and components, India, 1990 https://archive.nptel.ac.in/courses/124/105/124105013/- "https://www.youtube.com/watch=FdbHC4sfqBo"
Reference Books	 [R1]Koncz T., "Manual of precast concrete construction", Vol. I, II and III, Bauverlag, GMBH, 1976. [R2] "Handbook on Precast Concrete Buildings", Indian Concrete Institute, 2016. [R3] "Structural design manual", Precast concrete connection details, Society for the studies in the use of precast concrete, Netherland Betor Verlag, 2009.
Text Books	 [T1]Bruggeling A.S. G and Huyghe G.F. "Prefabrication with Concrete", A.A. Balkema Publishers, USA,1991. [T2]Lewitt, M. " Precast Concrete- Materials, Manufacture, Properties And Usage", Applied Science Publishers, London And New Jersey, 1982. [T3]Bachmann, H. and Steinle, A. "Precast Concrete Structures", Ernst &Sohn, Berlin, 2011. [T4]Gerostiza C.Z., Hendrikson C. and Rehat D.R., Knowledge based process planning for construction and manufacturing, Academic Press Inc., 1994
	UNIT – IV APPLICATIONS Applications - Designing and detailing of precast UNIT for factory structures, purlins, principal rafters, roof trusses, lattice girders, gable frames, singe span single storied simple frames, single storied buildings, slabs, beams and columns. DESIGN FOR ABNORMAL LOADS Progressive collapse – Code provisions – Equivalent design loads for considering abnormal effects such as earthquakes, cyclones, etc., - Importance of avoidance of progressive collapse.
	UNIT – III PRODUCTION TECHNOLOGY Production Technology - Choice of production setup, manufacturing methods, stationary and mobile production, planning of production setup, storage of precast elements, dimension altolerances, acceleration of concrete hardening. HOISTING TECHNOLOGY Hoisting Technology - Equipment for hoisting and erection, techniques for erection of different types of members like beams, slabs, wall panels and columns, vacuum lifting pads.
	Behaviour of structural components – Large panel constructions – Construction of roof and floor slabs – Wall panels – Columns – Shear walls. Joints - Joints for different structural connections, effective sealing of joints for water proofing, provisions for non-structural fastenings, expansion joints in precast construction.

20CE7403B	CONSTRUCTION EQUIPMENT AND AUTOMATION

Course Category:	Program Elective 4	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:		Continuous Evaluation:	30
_		Semester end Evaluation:	70
		Total Marks:	100

Course Outco	mes	Upon	suc	ccess	ful co	mple	tion o	of the	cour	se, th	ne stu	dent v	vill be	able to:	:
	analyze the feasibility of specific equipment by understanding their working principles to be used in different construction activities														
	understand the procedures of concrete production and procedure of dewatering and grouting														
	CO 3	apply the concept and procedure of automation in construction sector													
		CO 4	apply the latest techniques of automation in construction sector												
Contributio n of Course Outcomes		P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	P O 11	P O 12	PSO 1	PSO 2
towards achievement of Program	CO 1	2				2									1
Outcomes (1 – Low, 2 - Medium, 3 – High)	CO 2	2				2									2
	CO 3	3		2		2							1		2
	CO 4	3		2		2							1		2

UNIT – I

INTRODUCTION:

Unique features of construction equipment; Need of construction Equipment; Past history.

CONSTRUCTION EQUIPMENT:

Capacity, Feasibility, Productivity of Different Equipment: Excavators, Pavers, Plastering machines; Pre-stressing jacks and grouting equipment; Cranes and Hoists, etc.

UNIT - II

CONCRETE BATCHING PLANTS:

Crushers and crushing plants; Compressors; Feeders; Screening equipment; Handling equipment; Batching and Mixing equipment; Hauling; Pouring and Pumping equipment; Transporters.

GROUTING AND DE-WATERING EQUIPMENTS:

Foundation and pile driving equipment; Grouting; Special concrete

	for repairs and pumping equipment; Types of pumps; Dewatering principle and technique;
	UNIT – III INTRODUCTION TO AUTOMATION IN CONSTRUCTION SECTOR Concept and application of Building Automation Systems (BAS); Requirements and design considerations and its effect on functional efficiency; Architecture and components of BAS. AUTOMATION IN CONSTRUCTION INDUSTRY:
	Need and Benefit of automation; Automation in Canal lining; Automation in Construction of Highway; Automation in concrete technology.
	UNIT – IV ROBOTICS IN CONSTRUCTION: Introduction; Benefits of robots in construction industry with respect to time, cost, quality, safety; Use of robots for construction activities like Brick laying, Demolition, Material Handling, Structural steel cutting, Rebar tying/bending.
	3D PRINTING: Printer components; Types of printers — Robotic arm, Gantry Printer; layered parts and objects of homes, buildings, bridges and roads; Form work mould making.
Text Books	 [T1] Construction Equipment and Management, Sharma S.C., Khanna Publishing; First edition, 2019. [T2] Automation in Construction Management, Javad Majrouhi Sardroud, Scholars' Press, 2014. [T3] Construction Planning, Methods and Equipment, R.L Peurifoy, McGraw Hill, 2011.
Reference Books	[R1]Construction Equipment and its planning and application, Varma. M., Metropolitan, NDLS, 1983.[R2] Robotics and Automation in Construction, Open access peer- reviewed edited volume.
E-resources and other digital material	http://buildingsolutions.honeywell.com/en-US/Pages/default.aspx http://www.isa.org https://www.youtube.com/watch?v=T_CMr2KFSd4

Course Category:	Program Elective 4	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:	20CE5301 - Water Resources	Continuous Evaluation:	30
	Engineering	Semester end Evaluation:	70

GROUND WATER HYDROLOGY

Total Marks:

100

Course Outco	mes	Upon successful completion of the course, the student will be able to:											:		
C				understand components, fluctuations, flow rate and measurement of velocity of ground water.											
C			evaluate the storage capacity, ground water potential and the methods for assessment of ground water.												
		CO 3	app	oly the	e desig	gn prii	nciple	s of w	ells a	nd ass	sessm	ent of	ground	water q	uality.
		CO 4	und	lersta	nd sea	water	r intru	sion a	and ar	tificia	ıl grou	nd wa	ter recl	harge.	
Contributio n of Course Outcomes		P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	P O 11	P O 12	PSO 1	PSO 2
towards achievement of Program	CO 1	3				2									2
Outcomes (1 – Low, 2 - Medium,	CO 2	3		2											2
3 – High)	CO 3	3	2	2											3
	CO 4	3		3		2		3			2				3

Course Content

20CE4703C

UNIT – I

INTRODUCTION TO GROUND WATER HYDROLOGY:

General Water Balance, Regional Ground Water Balance, Distribution of subsurface water, Components of ground water studies. Ground water level fluctuations.

OCCURRENCE AND MOVEMENT OF GROUND WATER:

Origin & age of ground water, ground water flow rates and flow directions. Ground Water velocity measurement- Preliminary and chemical methods.

UNIT – II

METHODS OF LOCATING GROUND WATER:

General-Investigations- Geologic maps- Field Procedures, Depth Sounding Curve.

GROUND WATER ASSESSMENT:

Discharge by wells, Safe yield & overdraft, Calculation of safe yield-Simpson's method, calculation of Ground Water Storage capacity and ground water potential.

	UNIT – III METHODS OF WELL DESIGN General – Steps involved in the design of a tube well- Mechanical Analysis- Methodology- Effective grain size- Well Screen length-Well screen slot openings well screen diameter. GRAVEL PACKING AND GROUND WATER QUALITY: Head losses through the screens-gravel packing and formation, stabilization. Ground Water quality Standards for drinking, irrigation and Industrial purpose. UNIT – IV SEA WATER INTRUSION IN COSTAL AQUIFERS: Physical characteristics of water intrusion, causes of salinity, recognition of sea water in ground water, relationship between salt water and fresh water. ARTIFICIAL RECHARGE:
	Direct benefits of artificial recharge, principles adopted in recharge, factors to be considered in selection of artificial recharge sites, Artificial recharge techniques.
Text Books	[T1]Ground water by S. Ramakrishna, SCITECH Publications India Pvt, Ltd, 2011.
Reference Books	 [R1]Numerical Groundwater Hydrology by A.K.Rastogi, Penram International Publishing India Pvt. Ltd, 2007 [R2]Ground water by HM Raghunath, New Age International Publishers, 2011. [R3] Journals in Ground Water.
E-resources and other digital material	http://nptel.ac.in

20CE7403D	INSTRUMENTATION AND SENSORTECHNOLOGY IN CIVIL
	ENGINEERING

Course Category:	Program Elective 4	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course Outco	mes	Upon successful completion of the course, the student will be able to:														
	CO 1					apply various strain gauges in given conditions										
		CO 2	apply various piezoelectric sensors in given conditions													
		CO 3														
		CO 4			and v		ıs sen	sors	used	in flo	w, pr	essure	e, leve	1		
Contributio n of Course Outcomes		P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	P O 11	P O 12	PSO 1	PSO 2	
towards achievement of Program	CO 1	2			1	2							l		2	
Outcomes (1 – Low, 2 - Medium, 3 – High)	CO 2	2			1	2									2	
	CO 3	2			1	2									2	
	CO 4	2			1	2									2	
Course Content UNIT																

STRAIN GAUGES

Various types of strain gauges, principles & performance- Electrical resistance strain gauges - Gauge sensitivity - gauge factor - Simple strain gauge circuits – application.

WHEAT STONE BRIDGE

Balanced Wheatstone bridge condition derivation using Kirchhoff's Rules – Wheatstone bridge and Meter Bridge. Application of Meter Bridge

UNIT – II LVDT

Characteristics of structural vibrations - Linear variable differential transformer (LVDT), Digital data acquisition systems- principles and applications, vibration meter – Seismographs.

	PIEZOELECTRIC SENSORS Piezoelectric sensors and their application in maturity of concrete & corrosion aspects.
	UNIT – III INTERNET OF THINGS Introduction to Internet of Things (IoT), working phenomenon, various applications IoT in CE(Concrete technology and crack detection).
	TEMPERATURE MEASUREMENT Introduction, Principles of Temperature measurement, Thermoelectric effect sensors, Varying resistance devices, Radiation thermometers, thermography, Thermal expansion methods, Intelligent temperature measuring instruments, thermal imaging camera
	UNIT – IV PRESSURE MEASUREMENT Introduction, Diaphragms, Capacitive Pressure sensor, Fibre-Optic Pressure sensor, Bellows, Bourbon tube, Manometers, Resonant Wide devices, Dead-weight gauge, Special measurement devices for low pressures, high-pressure measurement, Intelligent pressure transducers
	FLOW MEASUREMENT & LEVEL MEASUREMENT Introduction, Mass flow rate, Volume flow rate, Intelligent flow meters, Introduction to level measurement, Dipsticks, float systems, ultrasonic level gauge, radar methods, radiation methods, intelligent level measuring systems
Text Books	 [T1] L. S. Srinath, "Experimental Stress Analysis", Tata McGraw Hill, 2004. [T2] Alan S Morris, "Measurement and Instrumentation Principles", 3rd /e, Butterworth Hienemann, 2001. [T3] Wang, M.L., Lynch, J.P. and Sohn, H. eds., "Sensor technologies for civil infrastructures", Woodhead publications, 2014. [T4] Dalley. J.W and Riley. W.F, "Experimental Stress Analysis", Tata Mc Graw Hill company Ltd, New York, 1991.
Reference Books	[R1]Sirohi .R.S, Radha Krishna .H.C, "Mechanical Measurements", New Age International (P) Limited, 1997.
E-resources and other digital material	https://www.sensy.com/en/blog/instrumentation-for-civil-engineering applications-b38 https://onlinecourses.nptel.ac.in/noc21_me02/preview

20CE7403E	AIRPORT PLANNING AND HARBOUR PLANNING

Course Category:	Program Elective 4	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course Outco	mes	Upon s	successfi	ıl coı	nplet	ion (of the	e cour	se, th	e stu	dent v	will be	able	to:	
	understand airport and aircraft characteristics.														
	CO 2	analyse various obstructions at airport.													
		CO 3	evalua	evaluate airport runway pavement.											
	CO 4	unders	understand components of docks and harbors.												
Contributio n of Course Outcomes		P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	P O 11	P O 12	PSO 1	PSO 2
towards achievement of Program	CO 1		3												2
Outcomes (1 – Low,	CO 2	3		2											2
2 - Medium, 3 - High)	CO 3	3	3	2							1		1	3	
	CO 4					3					1		1		2

UNIT – I

AIR TRANSPORT

Different modes of transportation, Introduction to NAA, IAAI, AAI and ICAO.

AIRPORT PLANNING AND CHARACTERISTICS

Airport classification based on ICAO, airport components, Aero plane components; Air-craft characteristics; Selection of site for airport; Surveys for site selection.

UNIT - II

AIRPORT OBSTRUCTIONS

Zoning laws, Imaginary surfaces, Approach zone, turning zone.

RUNWAY DESIGN

Runway orientation- cross wind component, wind rose diagram, types of wind rose; Basic runway length; Corrections for elevation, Temperature and gradient; Runway geometric design. Runway configurations, geometric design standards of taxiway design.

	UNIT – III STRUCTURAL DESIGN OF AIRFIELD PAVEMENT FLEXIBLE PAVEMENT Various design factors, Design methods for flexible airfield PavementCBR Method, Mcleod Method and Burmister's Method. RIGID PAVEMENT rigid pavement Design- PCA Method; LCN Method of pavement design. UNIT – IV
	DOCKS Dry Docks, Wet Docks and Slipways. HARBOR Harbor Layout: types of harbors, port terms, site selection, Break Waters, Piers and wharves.
Text Books	 [T1]Airport Planning and Design by S. K. Khanna ,M. G. Arora& SS Jain; Nemchand & Bros, Roorkee- 2012 [T2]Airport Engineering: Planning and Design, Subhash C Saxena, CBS Publisher, 2012 [T3]Hasmukh P. Oza, Gautam H. Oza , Dock And Harbour Engineering, Charotar, Anand, GJ, 2016.
Reference Books	 [R1] Airport Engineering – Rangwala, Charotar Publishing House Pvt. Ltd., 2012 [R2]Virender Kumar and Satish Chandra, "Airport Planning and Design"- Galgotia Publication Pvt Ltd 2012
E-resources and other digital material	https://nptel.ac.in/courses/105107123

20CE7403F	DESIGN AND DRAFTING USING REVIT

Course Category:	Program Elective 4	Credits:	3
Course Type:	Laboratory	Lecture - Tutorial - Practice:	2-0-2
Prerequisites:	20CE4607- Autodesk Revit	Continuous Evaluation:	30
	& Excel for Engineers	Semester end Evaluation:	70
	20CE5607- Building	Total Marks:	100
	Information Modeling (BIM)		

Course Outcome	es	Upor	ı suc	cessi	ful co	mple	etion	of th	e cou	urse, 1	the stu	dent v	will b	e able to)	
					CO understand the Revit Software and its user interface.											
		CO 2														
		CO 3														
		CO 4	unc	lerst	and t	he pr	epara	ition	of co	onstru	iction	drawi	ngs in	n detail.		
Contribution of Course Outcomes		P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	P O 11	P O 12	PSO 1	PSO 2	
towards achievement of Program	CO 1		2	3		3				1				3		
Outcomes (1 – Low, 2 - Medium,	CO 2		2	3		3				1				3		
3 – High)	CO 3		2	3		3				1				3		
	CO 4		2	3		3				1				3		
Course Content	UNIT – I INTRODUCTION TO AUTODESK REVIT Autodesk Revit, Building Information Modeling (BIM), Understanding Rev Terms, Parametric, element behavior in Parametric Modeler, Elemen Properties, User Interface- Ribbon, quick access toolbar, Project Browse drawing area, properties palette, view control bar, Families- system familie loadable families, in-place families. CREATING A PROJECT Creating a project using template, grids and levels, import from other format defining named positions, creating solar studies, rotating a view to true Nortl site design -topo surfaces, Cut/Fill Volumes, Building pads, parkin components.									Element Browser, n families, er formats, rue North,						

	UNIT – II ARCHITECTURAL MODELLING- WALLS, DOORS, WINDOWS, COMPONENTS & CIRCULATIONS Walls, Doors, windows, components- types, placing, modifying, type & Instance Properties. Circulations- Stairs, Ramps, railings. ARCHITECTURAL MODELLING- COLUMNS, FLOOR, ROOF Columns- adding, attaching, detaching, modifying, properties. Floor- adding, changing type, editing, sloped floors. Roof- Creating, modifying, adding elements, roof slope. Openings in walls, floors & roof.
	UNIT – III STRUCTURAL MODELLING Structural Template, Structural columns, Beams, Structural walls, Floors, Slabs, Trusses – Creating, Placing, modifying, Properties. FOUNDATIONS & REINFORCEMENT Wall Foundations, Isolated foundations, Foundations slabs. Rebar- cover,
	shapes, hooks, sets, Area & Path reinforcement. UNIT – IV DOCUMENTING THE PROJECT 2D & 3D Views, legend views, Schedules, Project Phasing, annotating, Detailing, Preparing Construction Documents, Rendering, walk through.
	ANALYZE THE DESIGN Structural Analytical Model, Analysis visualization, Analysis display styles and analysis results.
Text Books	[T1] Autodesk Rivet structures 2011- Users guide
Reference Books	[R1] Eric Wing, "Autodesk Revit 2017 for Architecture- No Experience required", Autodesk.
E-resources and other digital material	https://www.youtube.com/channel/UCxOAhTBLD4AltcVULZmHH3g/videoshttps://www.coursera.org/learn/autodesk-revit-architectural-design

20CE7404A	DESIGN OF PRESTRESSED CONCRETE

Course Category:	Program Elective 5	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:	20CE5303 - Design of	Continuous Evaluation:	30
_	Concrete structures	Semester end Evaluation:	70
		Total Marks:	100

Course Outco	Course Outcomes				Upon successful completion of the course, the student will be able to:											
	CO 1															
		CO 2	apply the various Losses in Prestressed concrete													
		CO 3	analyse the resultant stresses, moments and shear forces in members and design by using appropriate methods.													
		CO 4														
		CO 5	eval met		the st	resse	s at ei	nd zo	ne a	nd De	esign	of En	d bloo	ck as pe	er IS	
Contributio n of Course Outcomes		P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	P O 11	P O 12	PSO 1	PSO 2	
towards achievement of Program	CO 1	1		1			1							1		
Outcomes (1 – Low,	CO 2	1		1	1									2		
2 - Medium, 3 – High)	CO 3	1		2	2		1	1	1		1		1	3		
	CO 4	1		1					1					2		
	CO 5	1		1	2		1		1		1		1	3		
Course Content UNIT – I INTRODUCTION AND SYSTEMS Basic concepts of prestresseing; Historical development; Need for H strength steel and High strength concrete; Advantages prestressedconcrete. Tensioning devices; Hoyer's long line system pretensioning; Post tensioning systems; Detailed study of Freys system and Gifford – Udall system; Thermo – electric prestressi Chemical prestressing, Precast Concrete – types, advantages manfacturing. LOSSES OF PRESTRESS Types of losses in pre and post tensioning; Loss due to elastic deformat of concrete, shrinkage of concrete, creep of concrete, relaxation of stress								s of m of vssinet essing; s and								

	steel, friction and anchorage slip; Total losses allowed for in design.
	UNIT – II ANALYSIS OF PRESTRESS AND BENDING STRESSES Basic assumptions; Analysis of prestress; Resultant stresses at a section; Pressure (Thrust) line and internal resisting couple; Concept of Load balancing.
	DESIGN OF FLEXURAL STRENGTH OF PRESTRESSED CONCRETE SECTIONS Basic assumptions of flexural design, Ultimate moment resistance .Check for flexural capacity based on I.S. 1343 Code.
	UNIT – III ELASTIC DESIGN OF PRESTRESSED CONCRETE SECTIONS FOR FLEXURE Permissible compressive stresses in concrete as per IS 1343; Elastic design of rectangular and I – sections of TYPE 1, TYPE 2 members. LINs approach.
	SHEAR RESISTANCE Shear and Principal stresses; Ultimate shear resistance of prestress concrete members; Design of shear reinforcement
	UNIT – IV DEFLECTIONS OF PRESTRESSED CONCRETE MEMBERS Importance of control of deflections; Factors influencing deflections; Short term deflections of un cracked members.
	TRANSFER OF PRESTRESS IN PRE-TENSIONED MEMBERS&ANCHORAGE ZONE STRESSES IN POST-TENSIONED MEMBERS Transmission length; Bond stresses; Transverse tensile stresses; End zone reinforcement; Stress distribution in end block; Design of anchorage and end block.
Text Books	 [T1] N. Krishna Raju "Prestressed Concrete",5th ed., Tata McGraw- Hill Publishing Company Limited, New Delhi, 2012. [T2]N.Raja Gopalan, "Prestressed Concrete",2nd ed.,Narosa Publishing House,2002
Reference Books	 [R1] Lin T.Y. and Ned.H.Burns, "Design of prestressed Concrete Structures", Third Edition, Wiley India Pvt. Ltd., New Delhi, 2013. [R2]Dayaratnam.P., "Prestressed Concrete Structures", Oxford and IBH, 2013. [R3]IS 1343:1980, Code of Practice for Prestressed Concrete, Bureau of Indian Standards, New Delhi, 2012
E-resources and other digital material	Dr. Amlan Kumar Sengupta, Prof. Devdas Menon IIT/Madras – Prestressed concrete structures – "www.nptel.ac.in/courses/105106117"

20CE7404B	REPAIR AND REHABILITATION OF STRUCTURES	

Course Category:	Program Elective 5	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:	20CE3305 - Concrete	Continuous Evaluation:	30
	Technology and	Semester end Evaluation:	70
	20CE5303 - Design of	Total Marks:	100
	Concrete structures		

Course Outco	Upor	ı suc	cessf	ul co	mple	tion o	of the	cour	se, th	ne stu	dent v	will be	able to	:	
				CO understand the mechanisms of deterioration of structures and diagnosis of failure											
		CO 2	E												
		CO 3													
		CO 4		oly di actur		nt typ	es of	strer	ngthe	ning	techn	iques	used	for exist	ting
Contributio n of Course Outcomes towards		P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	P O 11	P O 12	PSO 1	PSO 2
achievement of Program Outcomes	CO 1	1					1								1
(1 – Low, 2 - Medium, 3 – High)	CO 2	1				1		1		1	2				2
3 – 11igii)	CO 3	1					2		1		1		1		2
	CO 4	1					1	1	1	1					2
Course Conte	Main Diffe Face CAU Caus of S	duction ductin duction duction duction duction duction duction duction duction	ion: nce, to bet Main S OF f Dist tures,	Deterepair tweer ntena DAN tress	eriora r, retr n repa nce. MAG in str pes	ofitti air an E TO tuctur of d	ng and reh	d rehabilit	tation FUR ic an effec	tation Imp ES d Int ts of	n, Nee portan rinsic f dan	ed for a ce of Causenages;	Definition rehability Mainter es for da Asses f constr	amage sment	

	UNIT – II DAMAGE ASSESSMENT AND EVALUATION METHODS Damage testing methods; Semi –destructive (CORE,LOK and CAPO test) Non-destructive testing methods(Rebound Hammer ,Ultrasonic pulse velocity and Electrical resistivity test). REINFORCEMENT PROTECTION Methods of corrosion prevention –Corrosion coatings, Inhibitors, Cathodic protection and Corrosion resistant steel. UNIT – III REPAIR MATERIALS Essential parameters for selection of repair materials, Polymer concrete, Fibre reinforced concrete, High strength concrete, Ferrocement concrete, Polymer mortar ,Epoxy mortar and Bonding agents. TECHNIQUES FOR REPAIR AND PROTECTION METHODS Crack repair techniques-crack stiching,Mortar and dry pack, Epoxy injection, routing and sealing ,overlays, Gunite and Shotcrete. Repair to dormant cracks. UNIT – IV METHODS FOR STRENGTHENING Repairs to overcome Low member strength-Jacketing (Concrete and Steel),FRP Confinement. CASE-STUDIES Repair of structures distressed due to corrosion, fire, leakage, Earthquake, Transportation of Structures from one place to other -Case studies.
Text Books	 [T1]Vidivelli. B Rehabilitation of Concrete Structures Standard Publishes Distribution.1st edition 2009. [T2]Hand book on Seismic Retrofit of Buildings, CPWD and Indian Buildings Congress, Narosa Publishers, 2008
Reference Books	 [R1]Shetty. M. S. Concrete Technology-Theory and Practice, S. Chand and Company, 2008. [R2]Varghese. P.C Maintenance Repair and Rehabilitation & Minor works of building, Prentice Hall India Pvt Ltd 2014. [R3]Diagnosis and treatment of structures in distress by R.N.Raikar, Published by R&D Centre of Structural Designers & Consultants Pvt.Ltd., Mumbai, 19.
E-resources and other digital material	"www.nptel.ac.in/courses/105106202"

20CE7404C	DISASTER PREPARDENESS AND PLANNING MANAGEMENT
-----------	---

Course Category:	Program Elective 5	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course Outco	mes	Upor	Upon successful completion of the course, the student will be able to:												
CO 1			unc	understand the Concept of Disaster to Management											
CO 2			ana	analyze the relationship between development and disasters											
CO 3			unc	understand Categories of Disasters											
CO 4			app	apply the responsibilities to society											
Contributio n of Course Outcomes		P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	P O 11	P O 12	PSO 1	PSO 2
towards achievement of Program	CO 1	2				1						1	li .		1
Outcomes (1 – Low,	CO 2	2										1			1
2 - Medium, 3 - High)	CO 3	2					2					1			1
	CO 4	2										1			1

UNIT – I

INTRODUCTION

Concepts and definitions: disaster, hazard, vulnerability, resilience, risks severity, frequency and details, capacity, impact, prevention, mitigation.

DISASTERS

Disasters classification; natural disasters (floods, draught, cyclones, volcanoes, earthquakes, tsunami, landslides, coastal erosion, soil erosion, forest fires etc.); manmade disasters (industrial pollution, artificial flooding in urban areas, nuclear radiation, chemical spills, transportation accidents, terrorist strikes, etc.); hazard and vulnerability profile of India, mountain and coastal areas, ecological fragility.

UNIT – II

DISASTER IMPACTS-1

Environmental, physical, social, ecological, economic, political, etc.

	DISASTER IMPACTS-2 Health, psycho-social issues; demographic aspects (gender, age, special needs); hazard locations; global and national disaster trends; climate change and urban disasters.
	UNIT – III DISASTER RISK REDUCTION (DRR) Disaster management cycle – its phases; prevention, mitigation, preparedness, relief and recovery; structural and non-structural measures; risk analysis, vulnerability and capacity assessment; early warning systems, Post disaster environmental response (water, sanitation, food safety, waste management, disease control, security, communications). ROLES AND RESPONSIBILITIES
	Government, community, local institutions, NGOs and other stakeholders; Policies and legislation for disaster risk reduction, DRR programmes in India and the activities of National Disaster Management Authority.
	UNIT – IV DISASTERS, ENVIRONMENT Factors affecting vulnerability such as impact of developmental projects and environmental modifications (including of dams, land use changes, urbanization etc.) sustainable and environmental friendly recovery; reconstruction and development methods.
	DEVELOPMENT METHODS Sustainable and environmental friendly recovery; reconstruction and development methods.
Text Books	 [T1] PradeepSahni, 2004, Disaster Risk Reduction in South Asia, Prentice Hall [T2]Singh B.K., 2008, Handbook o0f Disaster Management: Techniques & Guidelines, Rajat Publication [T3] Ghosh G.K., 2006, Disaster Management, APH Publishing Corporation
Reference Books	 [R1] Disaster Medical Systems Guidelines. Emergency Medical Services Authority, State of California, EMSA no.214, June 2003 [R2] Inter-Agency Standing Committee (IASC) (Feb. 2007). IASC Guidelines on Mental Health and Psychosocial Support in Emergency Settings. Geneva: IASC
E-resources and other digital material	http://ndma.gov.in/ (Home page of National Disaster Management Authority) http://www.ndmindia.nic.in/ (National Disaster management in India, Ministry of Home Affairs).

20CE7404D	URBAN TRANSPORT PLANNING
-----------	--------------------------

Course Category:	Program Elective 5	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course Outco	omes	Upoi	n suc	cessf	ful co	mple	tion c	of the	cour	se, t	he stu	ıdent	will be	able to	:
	CO 1														
		CO 2	apply various methods for data collection												
		CO 3	apply and finalize the route choice and network design												
		CO 4	eva	aluate	e trai	isport	proj	ects v	with t	he h	elp o	f vari	ous me	thods	
Contributio n of Course Outcomes		P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	P O 11	P O 12	PSO 1	PSO 2
towards achievement of Program	CO 1			3											2
Outcomes (1 – Low, 2 - Medium,	CO 2	3	3									3		2	2
3 – High)	CO 3	3	3	3		3								2	
	CO 4	3							3						2
Course Content UNIT – I TRANSPORT PLANNING PROCESS Systems Approach to Transport Planning, Stages in Transport Plan Survey and analysis of Existing Conditions, Forecast Analysis of F Conditions and plan synthesis, Evaluation, Program Adoption Implementation, Continuing Study, Citizen Participation, Difficulti- the Transport Planning Process. TRANSPORTATION SURVEY Study Area, Zoning, Type of Surveys, Home Interview Sur Commercial Vehicle Surveys, Road Side Interview Surveys, P Transport Surveys, Inventory of Transport Facilities, Expansion of from Samples.								Future and ties in arveys, Public							

	UNIT – II TRIP GENERATION Factors governing trip generation and attraction rates - Multiple linear regression analysis, Category analysis - Critical appraisal of techniques. TRIP DISTRIBUTION Uniform factor method, average factor methods - Gravity model and its calibration – opportunity model. UNIT – III TRIP ASSIGNMENT Traffic assignment - General principles - Assignment techniques - Multiple root assignment Capacity - Restraint assignment - Diversion curves. MODAL SPLIT
	Modal split - Advantages and limitations, Earlier Modal split models, trip end type models, trip interchange models, logit model, Multinomiallogit model.
	UNIT – IV ECONOMIC EVALUATION OF TRANSPORTATION PLANS Economic evaluation techniques – Road user cost, Benefit cost ratio method.
	RETURN METHODS Net present value method, internal rate of return method, comparison of various methods.
Text Books	 [T1] Kadiyali, L.R., Traffic Engineering and Transport Planning, Khanna, NDLS, 2006. [T2]Paque, J.R., Ashford, N.J. Wright, P.L.H. Transportation Engineering Planning and Design, NY, 2000
Reference Books	[R1] Dicky,J.W. Metropolitan Transportation Planning, Tata McGraw, NDLS, 2000 [R2] Bruton, M.J. An Introduction to Transportation Planning, LN,UK, 2001.
E-resources and other digital material	[1] http://nptel.ac.in/courses/105106058/ [2] http://nptel.ac.in/courses/105107067/ [3]https://ocw.mit.edu/courses/urban-studies-and-planning/11-540j urbantransportation-planning-fall-2006/ [4] http://nptel.ac.in/courses/105104098/

20CE7404E	RURAL WATER SUPPLY AND SANITATION

Course Category:	Program Elective 5	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:	20CE5302 - Environmental	Continuous Evaluation:	30
	Engineering,	Semester end Evaluation:	70
	20CE7402/B - Solid Waste	Total Marks:	100
	Management		

Course Outco	Course Outcomes				comp	etion	of th	ie coi	ırse,	the st	uden	t will	be abl	le to:	
	CO 1	understand various rural water supply programs in India.													
		CO 2	apply various low cost sanitation methods in India.												
		CO 3	understand the methods used for wastewater treatment.												
		CO 4	apply	the m	nethoo	ds of	low c	ost s	anita	tion.					
Contributio n of Course Outcomes		P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	P O 11	P O 12	PSO 1	PSO 2
towards achievement of Program	CO 1		1		2										
Outcomes (1 – Low, 2 - Medium,	CO 2		1	3	2										2
3 – High)	CO 3		1		2		1								
	CO 4		1	3			1								1
Course Conte	UNIT – I RURAL WATER SUPPLY PROGRAMS IN INDIA Need for a protected water supply, Issues of rural water supply –Various techniques for rural water supply- merits- National rural drinking water program- rural water quality monitoring and surveillance- operation and maintenance of rural water supplies. SOURCES OF WATER Investigation and Selection water sources, springs, dug wells, infiltration wells etc., Collection, Protection of well waters, Drinking water quality standards. UNIT – II PROBLEMS AND WATERBORNE DISEASES														
Introduction – Epidemiological aspects of water quality, waterborne Diseased of treatment, methods for water treatment - Specific contamination removal systems,															

	LOW COSTWATER TREATMENT METHODS
	Specific problem in rural water supply and treatment e.g. iron, manganese, fluorides, arsenic for drinking water, surface water treatment, slow sand filtration, Disinfection in RWS etc.
	UNIT – III RURAL SANITATION Introduction to rural sanitation- Need, Objectives, Community and sanitary systems - Planning of wastewater collection system in rural areas, sanitation schemes in India.
	TREATMENT Wastewater - Compact and simple wastewater treatment units and systems in rural areas stabilization ponds - Effluent disposal.
	UNIT – IV WASTE DISPOSAL Low Cost Sanitation Methods, Centralised and Decentralised Methods of Rural Sanitation, Pit Privy, Aqua Privy, Water Seal Latrine, Bore-hole Latrine, Trench Latrine, Overhung Latrine, Compost Privy, Double Pit Latrine, Pour Flush Latrine, Improved Double Pit Pour Flush Latrine, Septic Tank, design of Septic Tank, disposal of Septic tank effluent.
	WASTE MANAGEMENT Disposal of Solid Wastes- Composting- land filling incineration- Biogas plants - Rural health - Other specific issues and problems encountered in rural sanitation.
Text Books	 [T1]S. K. Garg, "Environmental Engineering – II", Standard Publication 2002. [T2]S. K. Garg, "Water Supply Engineering: Environmental Engineering (Vol I)", Khanna Publishers, New Delhi, 2012 [T3]Kapoor, B. S.," Environmental Sanitation", S.Chand and company, New Delhi, 2001 [T4]Manual of water supply and treatment, 3rd edition, CPHEEO, GOI, New Delhi. [T5]Murali Krishna, KVSG, "Rural, Municipal and Industrial Water Management", Reem Publications Pvt. Ltd., 2008
Reference Books	 [R1]Low cost on site sanitation option, Hoffman & Heijno Occasional Nov.1981 paper No. 21. [R2]Wagner, E.G. and Lanoik, J.N. Water supply for rural areas and small communities, Geneva: W.H.O., 1959. [R3]Wright, F. B. Rural water supply and sanitation, Robert E. Kriegier Publishing company, 3rdEdition, new York, 1977.
E-resources and other digital material	"https://nptel.ac.in/courses/105101215"

20CE7404F	ANALYSIS AND DESIGN OF INDUSTRIAL STRUCTURES
-----------	--

Course Category:	Program Elective 5	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:	20CE5303- Design of	Continuous Evaluation:	30
_	Concrete Structures,	Semester end Evaluation:	70
	20CE6301- Design of Steel	Total Marks:	100
	Structures		

Course Outco	mes	Upor	ı suc	cessf	ful co	omple	etion	of the	cou	rse, th	ne stu	dent w	ill be	able to:	
	CO 1	1													
		CO 2													
		CO 3													
		CO 4	eva	luate	e the	desig	gn pri	ncipl	es of	indus	strial	floorin	gs		
Contributio n of Course Outcomes		P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	P O 11	P O 12	PSO 1	PSO 2
towards achievement of Program	CO 1														2
Outcomes (1 – Low, 2 - Medium,	CO 2		1	1										3	
3 – High)	CO 3		2	2										2	
	CO 4		1	3										2	
Course Conte	ent	UNIT INRO Class	ODU												
	FUNCTIONAL REQUIREMENTS FOR FRAMED BUILDINGS Planning for Layout requirements regarding lighting, ventilation and fi safety - Protection against noise and vibration.														
	UNIT – II GANTRY GIRDERS (INDUSTRIAL STRUCTURES) Loads, fatigue effects, specifications, design procedure.														
			tion (of the	type	of t	russ, t	ypes o	of me	mber	section	,		roof trus	s, load

	UNIT – III BUNKERS (STORAGE STRUCTURES): Design of Rectangular Bunkers, Design of Circular Bunkers. SILOS(STORAGE STRUCTURES): Design of Silos, Janssen's Theory, Airy's Theory. UNIT – IV MATERIALS AND CONSTRUCTION DETAILS(INDUSTRIAL FLOORINGS): Sub base, Slip membrane, Concrete quality and admixtures, Joints, Monolithic finishes, Weld mesh reinforcement, Fibres. DESIGN(INDUSTRIAL FLOORINGS): Ground conditions, Performance requirements, Loadings, Robustness, Flatness and levelness. The design principles: The large-pour weld mesh models, The traditional model: stress regimes and structural model The large-pour steel fibre hybrid model. The steel fibrejointless model.
Text Books	 [T1] S.K.Duggal "Limit State Design of Steel Structures", 3rded., McGraw Hill Publishers, Chennai, 2019 [T2] S.S.Bhavikatti, "Advanced RCC Design"2nd ed., New Age Publishers, New Delhi, 2012. [T3] Frank R. Neal, "ICE design and practice guide Concrete industrial ground floors", 2rded., Thomas Telford Publishing, Thomas Telford Ltd, 1 Heron Quay, London, 2002
Reference Books	 [R1] Subramanian, N. Design of steel structures - Oxford university press, NDLS., 2018. [R2] B. C. Punmia"RCC Designs", Vol-3, Standard Publishers Distributors, Delhi [R3] National Building Code 2016, Bereau of Indian Standards [R4]Concrete Industrial Ground Floors, Report of Concrete Society, 3rd ed, The concrete Society, 2003
E-resources and other digital material	http://www.thomastelford.com

20CE7205	LAND SURVEYING
----------	----------------

Course Category:	Job Oriented Elective - 3	Credits:	3
Course Type:	Theory/Practical	Lecture - Tutorial - Practice	1-0-3
Prerequisites:	Surveying & Geomatics,	Continuous Evaluation:	30
_	Surveying Lab-I,	Semester end Evaluation:	70
	Advanced Surveying lab	Total Marks:	100

Course outcom	Course outcomes					Upon successful completion of the course, the student will be able to:											
CO 1				prepare a base map of the area													
CO 2				assess the area of the given attribute by cadastral survey													
CO 3				analyse & design the stake out of curves in a road													
CO 4			eva	evaluate the earthwork quantities in a project													
Contribution of Course Outcomes		P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	P O 11	P O 12	PSO 1	PSO 2		
towards achievement of Program	CO 1	2				3	1			2	1			1			
Outcomes (1 – Low, 2 - Medium, 3 – High)	CO 2	2	2	1		3	1			2	1			1			
	CO 3	2				3	1			2	1			1			
	CO 4	2	2	1		3	1			2	1			1			

UNIT – I

TOPOGRAPHICAL SURVEY & DRAWING

Title, Legend, Compass, Scale, Symbols, other details; GO No 119 Govt of AP: Size of Drawing Sheets, Notation for Coloring of Plans, Dimensions, Details of Plans to be submitted.

LABORATORY TESTS

- Survey and prepare a detailed topographical map of an existing site using Total Station
- Draw a building plan in the base map as per byelaws and set out in the field using a Total Station

UNIT - II

CADASTRAL SURVEY

Meebhoomi, Bhunaksha, Adangal, Passbook, Village Map, FMB, RS Number, Sub Divisions, Enjoyment Area, Tolerance.

	 LABORATORY TESTS Draw a FMB sketch using AutoCAD Measure the existing field using Total Station and compare with the FMB dimensions Stake out the boundaries of a field as per the FMB using Total Station UNIT – III HIGHWAY ALIGNMENT Geometric Design: Highway Cross Section Elements, Horizontal Alignment, Vertical Alignment, Types of Curves, Elements of curves, curves designation
	LABORATORY TESTS • Set out a curve using Total Station
	UNIT – IV EARTH WORK Profile leveling, Cross sectioning, Contouring, Cutting & filling
	 LABORATORY TESTS Estimate the cutting and filling quantities of earthwork in a site using Total Station. Estimate the cutting and filling quantities of earthwork in a site using Drone survey.
Text books	[T1]Surveying, Volume-1 by K. R. Arora; Standard Book House. [T2]Advanced Surveying by Satheesh Gopi, R. Sathikumar, N. Madhu; Pearson Education
Reference books	[R1]Surveying, Volime-1 by B.C.Punmia; McGraw Hill Education (India) Private Limited
E-resources and other digital material	http://meebhoomi.ap.gov.in/ https://bhunaksha.ap.gov.in/bhunakshalpm/

20CE7206	CONSTRUCTION QUALITY CONTROL & MONITORING
----------	---

Course Category:	Job Oriented Elective-4	Credits:	3
Course Type:	Theory/Practical	Lecture - Tutorial - Practice:	1-0-3
Prerequisites:	ConcreteTechnology,	Continuous Evaluation:	30
	Estimation and Costing,	Semester end Evaluation:	70
		Total Marks:	100

Course Outcom	ies	Upor	Upon successful completion of the course, the student will be able to:												
	CO 1	exp	lain f	eatur	es of	TQN	Л								
		CO 2													
		CO 3	identify the payment quality.												
		CO 4	design energy efficient buildings												
Contribution of Course Outcomes towards		P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	P O 11	P O 12	PSO 1	PSO 2
achievement of Program	CO 1	2		1								1			1
Outcomes (1 – Low, 2 –Medium,	CO 2	2		1		1						1			1
3 – High)	CO 3	2	2	1								1			1
	CO 4	2	1	2				3					1		1
Course Content UNIT - I TOTALQUALITY CONSTRUCTION Concept of quality cor of TQM, Developme calculation, finding are LABORATORY TES Based on the						controment area,	ol, Quand and volu	uality des me.	sign	rance Conc	e, Qua	of TÇ	nanag (M, A	Accurac	cy in
UNIT-II: CONSTRUCTION QUALITY CONTROL INSPECTION PROGRAM Duties, responsibilities, qualification of staff in organization Checklists for - Quality of Materials - Masonry - Plastering, - Concrete construction Batching, Mixing, Transporting, Placing, Compaction, Finishing, Curing								sts for							

	Reinforcement Work - Formwork - Timber & steel construction, - Doors & windows, - Plumbing & drainage.										
	 LABORATORY TESTS By studying the unique requirements of high-rise building recommend appropriate quality control measures 										
	UNIT – III CONSTRUCTION QUALITY CONTROL AND ROAD INSPECTION Optimum Binder Content Determination (Marshall Mix Design), Pavement Evaluation-Benklemen Beam Method, FWD Method.										
	LABORATORY TESTS • Assesses the payment quality material and recommend their suitability for flexible and rigid payment										
	UNIT-IV: SUSTAINABLE BUILT ENVIRONMENT GREEN BUILDING Green building, Definition – Green Building, Green Construction, Sustainable building, Goals of Green building, Advantages and disadvantages, Introduction to Life cycle assessment (LCA).										
	 LABORATORY TESTS Asses the building rating (as per IGBC) with different building materials and components. 										
Text Books	[T1]Total Quality Management G.Kanji Springer Science & Business Media [T2]Fundamentals of Quality Control and Improvement Amitva Mitra Wiley India Private Limited .										
Reference Books	[R1]Manual on Quality Control Gujarat Engineering Research Institute [R2]Ambuja Technical Literature Series Ambuja Cements										
E-resources and other digital material	https://archive.nptel.ac.in/courses/110/104/110104080 https://onlinecourses.nptel.ac.in/noc20_mg18/preview										

	20CE7607	COMPUTER AIDED CONSTRUCTION MANAGEMENT
--	----------	--

Course Category:	Advanced Skill Course	Credits:	2
Course Type:	Theory cum Practice	Lecture - Tutorial - Practice:	1-0-2
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcon	Upon successful completion of the course, the student will be able to:														
	CO 1		understand the planning and scheduling. networking methods, resource optimization techniques in various construction projects												
	CO 2		apply EPS in a project and Create a Work Breakdown Structure (WBS)												
	CO 3	analyse Network Diagram with the identification of activities and their underlying relationships													
		CO 4	apply various resources like labor,non-labor,material												
	CO 5		analyse critical path, forward/backward pass, resource leveling and base lining												
	CO 6	ana	lyse t	he pro	oject p	olan a	nd m	easure	varia	nces a	nd rep	ort per	formanc	es	
of Program Outcomes (1 – Low,		P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	P O 11	P O 12	PSO 1	PSO 2
	CO 1	1	2	2	2	3	3		2			3	2		3
	CO 2	1	2	2	2	3	3		2			3	2		3
2 - Medium, 3 - High)	CO 3	1	2	2	2	3	3		2			3	2		3
	CO 4	1	2	2	2	3	3		2			3	2		3
CO 5		1	2	2	2	3	3		2			3	2		3
	CO 6	1	2	2	2	3	3		2			3	2		3
Course Conte	Proje Mana Netw Gant	ROI ect agem orks t Ch	,Proj nent, s, Cri nart,	ect Sche itical Proje	Man dule Path ect M	agen and i Met Ianag	nent, ts Ir hod, geme	nporta PER	e P ince, Γ for indan	Proje Sch nenta	ect Maded of the control of the cont	ıg, Ün	of I ment Th derstan ation o	nrough ding a	

LABORATORY TESTS INTRODUCTION TO MS PROJECT

- Tools in MS Project
- MS Project Interface and Preferences

UNIT – II LABORATORY TESTS

• Organizational Breakdown Structure.

ENTERPRISE ENVIRONMENT IN MS PROJECT

- Enterprise Project Structure,
- Work Breakdown Structure,
- Access Control in MS Project

UNIT – III LABORATORY TESTS

PLANNING AND CREATING A NEW PROJECT

- Planning your Project Schedule,
- Understanding a Sample Project,
- Creating a New Project in MS Project,
- Project Window Options,
- Total Float and Project Must Finish Date

CALENDARS

- Role of Calendars in Scheduling,
- Adding and Assigning Calendars

UNIT - IV

LABORATORY TESTS

WBS AND BASIC FORMATTING

- Creating WBS in MS Project
- Formatting Columns and Timescale
- Percentage Complete Types in MS Project

FORMULATING ACTIVITIES

- Activity Types in MS Project
- Setting Defaults for New Activities
- Adding Activities
- Estimating Duration of Activities
- Adding Duration of Activities
- Recourses & how to create S-curve & Manpower histogram
- Import, Export & Print

Text Books	 [T1]Feigenbaum, L., "Construction Scheduling with Primavera Project Planner" Prentice Hall Inc., 2002. [T2]Software Project Management, 6th Edition, Bob Hughes, Mike Cotterel, Rajib Mall, McGraw-Hill, 2018 [T3]Seetharaman. S, Construction Engineering and Management, Umesh, NDLS, 2006 [T4]Peurifoy R Construction Planning, Equipment & Methods; McGraw Hill, LN, UK, 2010.
Reference Books	 [R1]Bhattacharjee, S.K. Fundamentals of PERT/CPM and Project Management, Khanna, NDLS, 1996. [R2] Paulson, B.R., "Computer Applications in Construction", McGraw Hill, 1995.
E-resources and other digital material	https://onlinecourses.nptel.ac.in/noc19_cs70/preview https://archive.nptel.ac.in/courses/105/102/105102199/

20CE7551	MINI PROJECT II

Lecture :	0	Internal Assessment:	30 Marks
Tutorial:	0	Semester End Examination:	70 Marks
Practical:	3 hrs/Week	Credits:	1.5

Course Outco	mes	Upor	suc	cessf	ul co	omple	etion	of the	cou	rse, tł	ne stu	dent wi	ill be	able to:	
	CO 1												to solv		
	CO 2	illustrate the concepts, methods, techniques and using modern tools to address the problems of the society and suggest a feasible solution.													
	CO 3	prepare a technical report ethically - as per guidelines.													
		CO 4	der ski		strate	e tea	m wo	ork, c	omn	nunic	ation	and p	reser	ntation	
Contributio n of Course Outcomes		P O 1	0 0 0 0 0 0 0 0 0 0 0 0 1										PSO 2		
towards achievement of Program	CO 1	1		2	1		2	1	1				1	2	
Outcomes (1 – Low,	CO 2	2	3	3	3	3	2	1		1			1	3	3
2 - Medium, 3 - High)	CO 3	1	2			1			2		3				1
	CO 4	1 2 3 3 1 1													
Course Conte	2.De of 3.Dis pro 4.Pro gu ma	npler velo ferin scus esen epare ideli ateri d ref nbibe	ment op a g re s th tatio e a ines als a ferer e tea	ationapproliable resons. a et (IE) and nees) m sp	hica birit a bus E	ough ate lutior s an l to form nodo amor Evalu Two	avaimodens. d suechniat)(Alogy, ationrevie	mma ical im resu ident i:Day ws (otal =	repo and alts a to d 10+1 = 30	the rt for object on the ay as 0 = 70	findir findir filowir ctives, liscuss he pro	techn exp ngs t ng th liter ions, ject v ent =	10;	tation oral ulated study,	

MINORS

20CEM 4701	INTRODUCTION TO CIVIL ENGINEERING- CONCEPTS AND
	MATERIALS.

Course Category:	Minors	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 1- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course Outco	mes	Upon	Upon successful completion of the course, the student will be able to:														
CO 1			understand evaluation of civil engineering materials and use of stone as a primary component.														
CO 2			eva	evaluate the quality of bricks and timber.													
		CO 3	app	apply test on cement and understand varieties of concrete.													
	CO anal						analyse the quality of steel and paints.										
Contributio n of Course Outcomes		P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	P O 11	P O 12	PSO 1	PSO 2		
towards achievement of Program	CO 1	3						2							3		
Outcomes (1 – Low, 2 - Medium,	CO 2	3						2							3		
3 – High) CO	3						2							3			
	CO 4	3						2							3		

UNIT – I

INTRODUCTION:

General Introduction to Civil Engineering; History of Civil Engineering; Relevance of Civil Engineering in the overall infrastructural development of the country.

STONES:

Classification of rocks; Qualities of a good building stone; Uses of Stones; Stone quarrying; Tools for blasting; Common building stones of India.

UNIT – II

BRICKS:

Composition of good brick earth; Qualities of good bricks; Tests for bricks; Classification of bricks; Size and weight of bricks.

	TIMBER: Definition; Structure of a tree; Qualities of good timber; Preservation of timber; Seasoning of timber; Advantages of timber construction; Use of timber.
	UNIT – III CEMENT: Basic Ingredients; Grades of cement; Properties of cement; Field tests on cement.
	CONCRETE: Definition; properties; Special Concretes-Light weight concrete, High density concrete, Fibre reinforced concrete, Polymer concrete.
	UNIT – IV STEEL: General; Manufacture of steel; Uses of steel; Market forms of steel; Properties of mild steel; Properties of hard steel.
	PAINTS, VARNISHES AND DISTEMPERS: General; Painting; Varnishing; Distempering; Wall paper; White washing; Colour washing.
Text Books	[T1] Engineering Materials by S. C. Rangwala; CharotarPublishing House. [T2] Building construction by B. C. Punmia -Laxmi Publications, New Delhi.
Reference Books	[R1] Building construction and construction materials by G.S.Birdie and T.D.Ahuja, Dhanpathrai publishing company, Newdelhi
E-resources and other digital material	http://nptel.ac.in/courses/105102088/

20CEM5702	METHODOLOGY FOR CIVIL ENGINEERING
	CONSTRUCTION

Course Category:	Minors	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3-1-0
Prerequisites:		Continuous Evaluation:	30
_		Semester end Evaluation:	70
		Total Marks:	100

Course Outcom	_				Jpon successful completion of the course, the student will have an bility to:										
		CO 1	eva	evaluate the feasibility of the construction project											
CO 2				understand planning and construction contracts											
		CO 3	un	understand construction finance and organization structure											
		CO 4	un	understand the materials and adopt the quality control procedures											
Contribution		P	P	P	P	P	P	P	P	P	P	P	P	PSO	PSO
of Course		O	0	O	O	O	O	O	O	O	0	0	O	1	2
Outcomes		1	2	3	4	5	6	7	8	9	10	11	12		
towards achievement of Program	CO 1	1	1	1							1	2			1
Outcomes (1 – Low, 2		1	1	1							1	2			1
2 - Medium, 3 - High)	1	1	1						1	1	2			1	
	CO 4	1		1							1	2			1

UNIT – I

INTRODUCTION

Role of government and construction agencies, classification of construction works, various stages in construction of a project, the construction team.

PROJECT FEASIBILITY REPORTS

Introduction, technical analysis, financial analysis, economic analysis, ecological analysis, schematic diagram for feasibility study.

UNIT - II

PLANNING FOR CONSTRUCTION PROJECTS

General, steps involved in planning, objectives, principles, advantages of planning, limitations, stages and types of planning, stages of planning by different agencies.

CONSTRUCTION CONTRACTS & TENDERS

General, contract documents, types of contract, tender notice, types of tenders, tender documents, Earnest money deposit and security deposit.

	UNIT – III CONSTRUCTION FINANCING AND CONTROL Introduction, costs associated with constructed facilities, estimates, effect of scale on construction cost, means of financing, application of financial assistance, cost control. ORGANISING FOR CONSTRUCTION Importance, general principles, types of organization structures, forms of business organizations.
	UNIT – IV MATERIALS MANAGEMENT Importance, Objectives, Costs, functions of material management, uses, stores management, material procurement, maintaining stocks, material handling. QUALITY CONTROL IN CONSTRUCTION Elements of quality, Organisation for quality control, Quality assurance techniques, Documentation, Quality control circles, variation.
Text Books	[T1]Dr.S.Seetharaman, "Construction Engineering and Management", 5 th Edition,Umesh Publications, New Delhi
Reference Books	[R1]Kumar Neeraj Jha, "Construction Project Management", 2nd Edition, Pearson Education India, New Delhi, 2015
E-resources and other digital material	

20CEM6703A	SYSTEM DESIGN FOR SUSTAINABILITY

Course Category:	Minors	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3-1-0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

_				Upon successful completion of the course, the student will have an ability to:											
		CO 1	un	understand selection of resources with low environmental impact;											
CO 2				apply design of products with low environmental impact;											
		CO 3	ana	analyse product-Service System Design for eco-efficiency;											
		CO 4	eva	evaluate design for social equity and cohesion.											
Contribution of Course Outcomes		P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	P O 11	P O 12	PSO 1	PSO 2
towards achievement of Program	CO 1	1		1			2	3	3	2	2		1		2
Outcomes (1 – Low, 2 - Medium, 3 – High) CO 3		1		1			2	3	3	2	2		1		2
		1		1			2	3	3	2	2		1		2
	CO 4	1		1			2	3	3	2	2		1		2

UNIT – I

INTRODUCTION

Addressing Sustainability by design; An Introduction to Sustainable Product-Service Systems Applied to Distributed Renewable Energy; United Nations Sustainability Energy for All (SE4A) Agenda.

DISTRIBUTED ENERGY SYSTEMS

Distributed Renewable Energy Systems and Integrating S.PSS with DE.

UNIT - II

SUSTAINABLE PRODUCT-SERVICE SYSTEM (SPSS)

Introduction to SPSS; Types; Sustainability Benefits; Barriers and Limits.

SUSTAINABLE PRODUCT - SERVICE SYSTEM APPLIED TO DISTRIBUTED RENEWABLE ENERGIES

A Win-Win Opportunity; Scenario for S.PSS applied to Distributed Renewable Energy(DRE); S.PSS Applied to DRE: Sustainability Potential Benefits.

	UNIT – III DESIGN FOR SUSTAINABILITY: AN INTRODUCTION Evolution of Design for Sustainability; Product Life Cycle Design or Eco-Design; Design for Eco-Efficient Product-Service Systems; Design for Social Equity and Cohesion; Design for Socio-Technical Transitions; State of the Art of Design for Sustainability Human-Centred and Universal Design. SYSTEM DESIGN FOR SUSTAINABLE ENERGY FOR ALL: A NEW ROLE FOR DESIGNERS System Design for Sustainable Energy for All (SD4SEA); SDSEA Design Criteria, Guidelines and Examples.
	UNIT – IV METHOD AND TOOLS FOR SYSTEM DESIGN FOR SUSTAINABLE ENERGY FOR ALL(SD4SEA) Method for System Design for Sustainable Energy; for All; Sustainability Design Orienting Scenario; (SDOS) on S.PSS&DRE Sustainable Energy for All Idea Tables and Cards; E.DRE—Estimator for Distributed Renewable Energy; PSS + DRE Innovation Map, SPSS + DRE Design Framework &Cards The Energy System Map, Innovation Diagram for S.PSS&DRE Concept Description Form for S.PSS and DRE Stakeholder Motivation and Sustainability Table.
	PRACTICAL EXAMPLES OF APPLICATION OF SDSEA APPROACH/TOOLS AND OTHER METHODS TO ACHIEVE SUSTAINABILITY Solar Energy Company, Botswana; SMEs for Energy, Uganda; Summary and Considerations; green design; emotionally durable design; cradle to cradle design, biomimicry design; design for base of a pyramid design; design for social innovation.
Text Books	 [T1]Fabrizio Ceschin , İdil Gaziulusoy, Design for Sustainability A Multi- level Framework from Products to Socio- technical Systems , Taylor and Francis, 2020. [T2]Carlo Vezzoli; Fabrizio Ceschin; Lilac Osanjo; Mugendi K. M'Rithaa; Richie Moalosi; Venny Nakazibwe; Jan Carel Diehl, Designing Sustainable Energy for All Sustainable Product-Service System Design Applied to Distributed Renewable Energy; Green Energy and Technology, Springer, 2018.
Reference Books	 [R1]Ceschin, F., and Gaziulusoy, I. (2016) Design for Sustainability: An Evolutionary Review, in Lloyd, P. and Bohemia, E. (eds.), Future Focused Thinking - DRS International Conference 2016, 27 - 30 June, Brighton, United Kingdom. [R2]Elisa Bacchetti, Towards sustainable energy for All Designing Sustainable Product-Service System applied to Distributed Renewable Energy, Politecnico di Milano, Milano, Italy 2017
E-resources and other digital material	Quality as Driver for Sustainable Construction—Holistic Quality Model and Assessment.pdf

20CEM6703B	ECOLOGY AND ENVIRONMENT

Course Category:	Minors	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3-1-0
Prerequisites:	20CH1102 - Engineering	Continuous Evaluation:	30
	chemistry 20MC4108B -	Semester end Evaluation:	70
	Environmental studies	Total Marks:	100

Course Outco	omes	Upon successful completion of the course, the student will be able to:									:				
CO 1			analyze the issues concerned with ecology, environment and sustainability.												
CO 2			evaluate the quantity and quality of water based on the available natural sources.												
		CO 3	understand the water purification units and components of the distribution systems.												
		CO 4	eval	uate 1	the e	ffect o	of var	ious at	ttribu	tes of	envir	onmen	ital po	llution	
Contributio		P	P	P	P	P	P	P	P	P	P	P	P	PSO	PSO
n of Course		O	О	O	O	O	О	O	O	O	O	O	О	1	2
Outcomes		1	2	3	4	5	6	7	8	9	10	11	12		
towards achievemen t of	CO 1	1					2	2		1			2		
Program Outcomes	2	3		2		1	2			1		1		2	
(1 – Low, 2 - Medium, 3 – High)	CO 3	2	1 3 1 1								3				
	CO 4	1	1	2	1		2			1	1		2		2

UNIT – I

INTRODUCTION TO ECOLOGY AND ENVIRONMENT

Definition, scope & importance, need for public awareness- environment - definition, ecology, eco system - balanced ecosystem, human activities - food, shelter, economic and social security.

SUSTAINABILITY

Sustainability – definition, significance, sustainability goals, impacts of climate change, Case Studies.

UNIT – II

WATER SUPPLY - QUANTITYOF WATER

Sources of water, objectives of water supply systems, Per capita consumption; Types of demands; Fluctuations in demand.

QUALITY OF WATER

Impurities in water; routine water analysis - physical, chemical and bacteriological tests; Standards for drinking water; Water borne diseases.

	UNIT – III WATER TREATMENT Fundamentals of purification of water; plain sedimentation; coagulation and types of coagulants; sedimentation and coagulation tanks; theory of filtration; slow sand and rapid sand filters; operation; disinfection. DISTRIBUTIONSYSTEMS Methods of supply; Layouts, Plumbing-pipes and fittings; Traps; One pipe and Two pipe systems.								
	UNIT – IV ENVIRONMENTAL POLLUTION Environmental Pollution and their effects. Water pollution, Land pollution, Air pollution, Public Health aspects.								
	SOLID WASTE MANAGEMENT Solid waste characteristics—basics of on-site handling and collection—separation and processing — Incineration—Composting-Solid waste disposal methods — fundamentals of land filling.								
Text Books	 [T1] Benny Joseph, "Environmental Studies", Tata McGraw Hill, 2005 [T2] Ignaci Muthu S, "Ecology and Environment", Eastern Book Corporation, 2007 [T3] Birdie G.S. and Birdie J. S., "Water Supply and Sanitary Engineering", 9th ed., Dhanpat Rai Publishing Company, New Delhi, 2015. 								
Reference Books	 [R1]Garg S. K., "Environmental Engineering Vol. I& II- Water supply engineering", Khanna Publishers, New Delhi, 2017. [R2]Gurucharan Singh, "Water Supply and Sanitary Engineering", Standard Publishers Distributors, Delhi, 2009. [R3] Anjaneyulu Y. "Introduction to Environmental sciences", B S Publications PVT Ltd, Hyderabad 2004. 								
E-resources and other digital material	https://nptel.ac.in/courses/127106004 (Ecology and environment by Dr. Abhijit P. Deshpande, IIT Madras).								

20CEM7704A	INFRASTRUCTURE AND TRANSPORTATION SYSTEM
	PLANNING

Course Category:	Minors	Credits:	4
Course Type:	Theory	Lecture - Tutorial -Practice:	3 - 1 - 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course Outco	omes	Upon	Upon successful completion of the course, the studen							lent w	ill be	able to	:		
CO 1			und	understand different pavement structures											
CO 2			und	understand materials and methods used for construction											
	CO 3	und	understand the components of the Railway Track.												
CO 4			ana	analyse geometric features of railway track											
Contributio n of Course Outcomes		P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	P O 11	P O 12	PSO 1	PSO 2
towards achievemen t of	CO 1	3					3	3		3	3			3	
Program Outcomes	CO 2	3					3	3		3	3			3	
(1 – Low, 2 - Medium, 3 – High)	CO 3	3					3	3		3	3			3	
	CO 4	3					3	3		3	3			3	

UNIT-I

INTRODUCTION TO ROADWAYS:

Different Modes of Transportation, Road development in India during twentieth century, Classification of different types of roads, Highway cross section elements.

PAVEMENTS:

Different types of pavements – Cross section, functions of pavement layers, Need for design, importance of drainage.

UNIT-II

MATERIALS FOR PAVEMENTS:

Materials used in highway construction- soil, fine and coarse aggregate, bituminous binders, cement, water.

	CONSTRUCTION OF PAVEMENTS: Construction of flexible pavement, Construction of rigid pavement, Equipment for excavation, equipment for compaction.
	UNIT-III RAILWAYS: INTRODUCTION TO RAILWAYS: Historic development of railways in India, Classification of Indian Railways, Different gauges in Indian Railways.
	COMPONENTS OF RAILWAY TRACK Permanent way cross section and functions, Types of rails, Types of Sleepers, Types of ballast, cross section of ballast, coning of wheels, sleeper density, length of rails.
	UNIT-IV GEOMETRIC FEATURES AND OPERATION: Super elevation or cant, cant deficiency, cant excess, negative super elevation concept, types of transition curves, gradient types.
	POINTS AND CROSSINGS: Switches, crossings, working principle of turnout, classification of signals, interlocking.
Text Books	 [T1]Sk Khanna, CEG Justo, A Veeraragavan, Highway Engineering, Nem Chand & Bros, 10th Edition, 2018 [T2]Satish Chandra, MM Agarwal, Railway Engineering, Oxford University Press, 2nd Edition 2013
Reference Books	[R1]Saxena, S.C. and Arora. S, Railway Engineering, Dhanpat Rai, NDLS, 2009
E-resources and other digital material	[1]Dr. K.S. Reddy, Dr. Bharga b Maitra, IIT Kharagpur- Introduction to TransportationEngineering— "https://nptel.ac.in/courses/105/105/105105107/" [2]Dr Tom V Mathew, IIT Bombay- Transportation Engineering I - "https://nptel.ac.in/courses/105/101/105101087/" [3]Prof Rajat Rastogi, IIT/Roorke – Transportation Engineering II— "https://archive.nptel.ac.in/courses/105/107/105107123/"

20CEM7704B	CONSTRUCTION PLANNING AND EXECUTION

Course Category:	Minors	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3-1-0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course Outco	omes	Upo:	Upon successful completion of the course, the student will have an ability to:									ability			
CC			evaluate planning process of various construction projects and apply various software in various construction process												
CC 2			T J												
		CO 3	apply the various types of construction contracts and understand the elements of quality planning and the implication												
							analyse the various legal requirements and understand the various safety concepts and requirements applied to construction projects.								
Contributio n of Course Outcomes towards		P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	P O 11	P O 12	PSO 1	PSO 2
achievemen t of Program	CO 1	2	2	2	2					2	2	3	2		2
Outcomes (1– Low, 2 2-Medium, 3 – High) CO 3	2	2	2						2	3	3	2		2	
		2	2					2	2	2	2	3			2
	CO 4	2	2					2	2	2	2	3			2

UNIT – I

PLANNING:

Steps involved in Planning; Objectives; Principles; Advantages; Limitations; Stages of planning.

IT APPLICATIONS IN CONSTRUCTION:

Construction process – Computerization in Construction – Computer aided Cost Estimation – Developing application with database software.

UNIT – II SCHEDULING:

Preparation of construction schedules; Methods of scheduling; Bar charts; Mile stone charts; Controlling; Job layout; Factors affecting job layout; Project work break down.

	PERT AND CPM: Advanced planning and scheduling concepts – Computer applications – Case study.
	UNIT – III CONSTRUCTION CONTRACTS: Indian Contracts Act – Elements of Contracts – Types of Contracts – Features – Suitability – Design of Contract Documents – International Contract Document – Standard Contract Document – Law of Torts.
	QUALITY MANAGEMENT: Introduction – Definitions and objectives – Factor influencing construction quality - Responsibilities and authority.
	UNIT – IV LEGAL REQUIREMENTS: Insurance and Bonding – Laws Governing Sale, Purchase and Use of Urban and Rural Land – Land Revenue Codes – Tax Laws – Income Tax, Sales Tax, Excise and Custom Duties and their Influence on Construction Costs – Legal Requirements for Planning, Local Government Laws for Approval.
	SAFETY MANAGEMENT: Accidents and their Causes – Human Factors in Construction Safety - Costs of Construction Injuries – Occupational and Safety Hazard Assessment – Legal Implications, Owners responsibility and safety – owners responsibility clause.
Text Books	 [T1]Ming Sun and Rob Howard, "Understanding I.T. in Construction, Spon Press, Taylor and Francis Group, 2004. [T2]Feigenbaum,L., "Construction Scheduling with Primavera Project Planner: Prentice Hall Inc., 2002. [T3]George J.Ritz, "Total Construction Project Management", McGraw-Hill Inc, 1994.
Reference Books	 [R1]Gajaria G.T., "Laws Relating to Building and Engineering Contracts in India",4th Edition, M.M.Tripathi Private Ltd., Bombay, 2000. [R2] Jimmie Hinze, "Construction Contracts", 3 rd Edition, McGraw Hill, 2010. [R3] Joseph T. Bockrath, "Contracts and the Legal Environment for Engineers and Architects", 7 th Edition McGraw Hill, 2010. [R4] Paulson, B.R., "Computer Applications in Construction", McGraw Hill, 1995.
E-resources and other digital material	 [1]Prof. Arbind Kumar Singh - Construction Planning and Management, IIT Guwahati, https://nptel.ac.in/courses/105103093 [2] Dr.SudhirMisra - NOC: Principles of Construction Management, IIT Kanpur https://nptel.ac.in/courses/105104161

HONORS

20CEH4801A	STABILITY OF STRUCTURES

Course Category:	Honors	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3-1-0
Prerequisites:	20CE5404/A – Advanced	Continuous Evaluation:	30
	Structural Analysis.	Semester end Evaluation:	70
		Total Marks:	100

Course outco	mes	Upon	Upon successful completion of the course, the student will have:												
		CO 1		analyze the buckling of columns, beam-columns and find critical loads using energy and non-energy methods											
CO 2				analyze the lateral buckling of beams by energy and non-energy methods											
CO 3				analyze the buckling of rectangular plates and find critical compressive loads for various boundary conditions											
		CO 4	ana	ılyz	e the	buck	ling o	of axi	ally l	oade	ed cyl	indri	cal shel	lls	
Contributio n of Course Outcomes		P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	P O 11	P O 12	PSO 1	PSO 2
towards achievemen t of	CO 1	3	2		1	1				1				3	
Program Outcomes	CO 2	3	2		1	1				1				3	
(1 – Low, 2 - Medium, 3 – High) CO	3	2		1	1				1				3		
	CO 4	3	2		1	1				1				3	

UNIT – I

BUCKLING OF COLUMNS

Introduction; Methods of finding critical loads; Critical loads for straight columns with different end conditions and loading; Inelastic buckling of axially loaded columns; Energy methods; Prismatic and non-prismatic columns under discrete and distributed loading.

BEAM COLUMNS

Theory of Beam column – Stability analysis of beam column with different types of loads.

UNIT - II

BEAMS UNDER PURE BENDING

Cantilever and simply supported beams of rectangular and I sections.

	BEAMS UNDER TRANSVERSE LOADING Energy methods; Solution of simple problems. UNIT – III PLATES SIMPLY SUPPORTED ON ALL EDGES Plates simply supported on all edges and subjected to constant compression in one or two directions. PLATES SIMPLY SUPPORTED ALONG TWO OPPOSITE SIDES Plates simply supported along two opposite sides perpendicular to the direction of compression and having various edge conditions along the other two sides.
	UNIT – IV BUCKLING OF AXIALLY COMPRESSED CYLINDRICAL SHELLS Introduction to buckling of axially compressed cylindrical shells, failure of axially compressed cylindrical shells. CRITICAL LOAD OF AN AXIALLY LOADED CYLINDER Linear theory of cylindrical shells-donnell equations, critical load of an
Text books	axially loaded cylinder. [T1] Theory of elastic stability by Timoshenko & Gere, McGraw Hill, 1961. [T2] Background to buckling by Allen and Bulson, McGrawHill, 1980.
Reference books	[R1] Elastic stability of structural elements by N.G.R.Iyengar, Macmillan India Ltd., 2007.[R2] Principles of Structural stability theory by AlexandarChajes, 1974.
E-resources and other digital material	https://nptel.ac.in/courses/105105166 https://youtu.be/ZSQ_51Rj5gI https://nptel.ac.in/courses/105108141

20CEH4804B SUS	TAINABLE CONSTRUCTION METHODS
----------------	-------------------------------

Course Category:	Honors	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3-1-0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcom	Upon to:	Upon successful completion of the course, the student will have an ability to:													
	CO 1			understand the green buildings and sustainable design aspects											
C			uno	understand the water conservation and energy efficiency											
		CO 3	eva	evaluate the sustainable materials and wellbeing of residents											
		CO 4	арр	apply principles of green rating systems in construction											
Contribution		P	P	P	P	P	P	P	P	P	P	P	P	PSO	PSO
of Course		O	O	О	O	O	O	O	O	O	0	O	O	1	2
Outcomes		1	2	3	4	5	6	7	8	9	10	11	12		
towards achievement of Program	CO 1	1		1				2	1						1
Outcomes (1 – Low, 2 - Medium,	CO 2	1		1				2	1						1
	CO 3	1		1			2	2	1						2
	CO 4	1		1				2	1						2

UNIT – I

INTRODUCTION

Green building, Global warming, requirement of Green Building, Benefits of green buildings.

SUSTAINABLE DESIGN

Local building requirements, soil erosion control, natural topography, vegetation, heat island effect, roof & non-roof, passive architecture, basic house hold amenities, green education & awareness.

UNIT – II

WATER CONSERVATION

Water efficient plumbing fixtures, rain water harvesting, landscape design, management of irrigation system, recycle and reuse of waste water, water quality.

ENERGY EFFICIENCY

HCFC free equipment, minimum energy performance, enhance energy

	performance, alternate water heating systems, on-site renewable energy – common lighting, energy efficiency in common area equipment, integrated energy monitoring system.
	UNIT – III MATERIALS & RESOURCES Separation of house-hold waste, green procurement policy, local materials, eco friendly wood based materials, alternate construction material, handling of construction & demolition material.
	RESIDENT HEALTH & WELLBEING Minimum day lighting, Ventilation design, no smoking policy, enhanced day lighting, enhanced ventilation design, cross ventilation.
	UNIT-IV CONSTRUCTION AND OPERATIONS Construction, Occupancy & Operations.
	GREEN RATING SYSTEMS IGBC, LEED, GRIHA, BEE, benefits of rating systems, procedure to get IGBC certification.
Text books	 [T1] IGBC Green homes rating system Version 3.0 – A bridged reference guide, September 2019 [T2] Jerry Yudelson, "Green building through Integrated design", McGraw Hill, 2009 [T3]Gautham R K, "Green Homes", BSP Books Private Limited, New Delhi, 2009.
Reference books	[R1] "Sustainable building technical manual- Green building design, constructions and operation", Produced by Public Technology Inc., USGreen Building Council
E-resources and other digital material	

20CEH4801C	DESIGN OF FORMWORK
------------	--------------------

Course Category:	Honors	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3-1-0
Prerequisites:		Continuous Evaluation:	30
_		Semester end Evaluation:	70
		Total Marks:	100

Course outcom	Upon to:	succ	cess	ful c	ompl	etion	of th	e cou	ırse,	the st	tuden	t will h	ave an a	ability	
	CO 1														
		CO 2													
		CO 3	evaluate the adequacy of decking, form work and false work.												
		CO 4	l etructures and satety steps involved in the design of torm work												
Contribution of Course Outcomes		P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	P O 11	P O 12	PSO 1	PSO 2
towards achievement of Program	CO 1		1			2	1	1		1	1				2
Outcomes (1 – Low, 2 - Medium,	CO 2	2	2	1		2								2	
3 – High)	CO 3	3	3	3			1			1				3	1
	CO 4	1	2			1	2	1		1	1			2	
Course Content UNIT – I INTRODUCTION Formwork and false work, Temporary work systems, Construction planning and site constraints. MATERIALS OF FORMWORK Materials and construction of the common formwork and false work															
systems, Special and proprietary forms. UNIT – II FORM WORK Formwork – Design: Concrete pressure on forms, Design of timber and steel forms								er and							

ANALYSIS OF FORMWORK Loading and moment of formwork.

	UNIT – III DESIGN OF DECKS Types of beam, decking and column formwork, Design of decking FALSE WORKS False work design, Effects of wind load, Foundation and soil on false work design.								
	UNIT – IV SPECIAL FORMS The use and applications of special forms.								
	CONSTRUCTION SEQUENCE AND SAFETY IN USE OF FORMWORK Sequence of construction, Safety use of formwork and false work.								
Text books	 [T1] Robert L. Peurifoy and Garold D. Oberiender, "Formwork for Concrete Structures", McGraw-Hill, 1996. [T2] TudorDinescu and ConstantinRadulescu, "Slip Form Techniques", Abacus Press, Turn Bridge Wells, Kent, 2004. 								
Reference books	 [R1] Austin, C.K., "Formwork for concrete", Cleaver - Hume Press Ltd., London, 1996 [R2] Michael P. Hurst, "Construction Press", London and New York., 2003 								
E-resources and other digital material	Open web								

20CEH5802A	ENGINEERING ROCK MECHANICS

Course Category:	Honors	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-1-0
Prerequisites:	20ES3102A - Engineering	Continuous Evaluation:	30
-	Geology	Semester end Evaluation:	70
		Total Marks:	100

Course outco	mes	Upon successful completion of the course, the student will have an a to:								ability					
	CO 1				evaluate rock masses based on classification systems										
		CO 2	apply the field and laboratory testing on rocks to evaluate engineering properties												
		CO 3	analyze rocks based on the failure criteria of rocks under various stress fields											arious	
		CO 4					aring us slo						ion on	rocks	and
Contributio n of Course Outcomes		P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	P O 11	P O 12	PSO 1	PSO 2
towards achievemen t of	CO 1	3	2	2			3		3		3				1
Program Outcomes (1 – Low,	CO 2	3	2	2			3		3		3				1
2 - Medium, 3 - High)	CO 3	3	2	2			3		3		3				1
	CO 4	3	2	2			3		3		3				1
Course Conte	Course Content UNIT – I INTRODUCTION TO ROCK MECHANICS AND CLASSIFICATION ROCKS Objectives of rock mechanics, Fields of application of rock mechanics Geological Classification of igneous, sedimentary and metamorphic robased on texture and stratification ROCK MASS CLASSIFICATIONS Rock Quality Designation (RQD), Rock Structure Rating (RSR), Rock Rating (RMR).								anics. rocks						

	UNIT – II LABORATORY TESTS - PHYSICO —MECHANICAL PROPERTIES OF ROCKS -Compressive strength, Tensile strength, Direct shear test, Triaxial shear test, Slake durability test, Schmidt rebound hardness test FIELD TESTS - PHYSICO —MECHANICAL PROPERTIES OF ROCKS Uniaxial jacking test- Pressure meter tests Hydraulic fracturing- Flat jack test Stress. Electric resistivity method- Seismic refraction method UNIT – III FAILURE CRITERIA FOR ROCK AND ROCK MASSES Mohr-Coulomb Yield Criterion, Hoek-Brown Criterion, STRENGTH AND DEFORMABILITY OF JOINTED ROCK MASS Shear strength of Rock joints, Deformability of Rock joints,
	UNIT – IV FOUNDATION ON ROCKS Estimation of bearing capacity, Settlement in rocks, Pile foundation in rocks. STABILITY OF ROCK SLOPES AND METHODS TO IMPROVE ROCK MASS RESPONSES Modes of failure. Groutingin Rocks, Rock bolting, Rock Anchors.
Text books	 [T1]Goodman-Introduction to Rock mechanics, Willey International(1980). [T2]Ramamurthy, T Engineering in Rocks for slopes, foundations and tunnels, Prenice Hall of India.(2007) [T3] Rock mechanics in engineering practice: Stag and Zienkiewiz, John wiley & sons
Reference books	 [R1] Jaeger, J. C. and Cook, N. G. W. — Fundamentals of Rock Mechanics, Chapman and Hall, London. (1979). [R2] Hoek, E. and Brown, E. T. Underground Excavation in Rock, Institution of Mining and Metallurgy, 1982. [R3]Brady, B. H. G. and Brown, E. T Rock Mechanics for Underground Mining, Chapman & Hall, 1993. [R4] Rock mechanics for engineers: Varma, B.P, Khanna Publishers
E-resources and other digital material	Nil

20CEH5801B ADVANCED	STEEL DESIGN
---------------------	--------------

Course Category:	Honors	Credits:	4
Course Type:	Theory	Lecture - Tutorial -	3-1-0
		Practice:	
Prerequisites:	Design of Steel Structures	Continuous Evaluation:	30
_		Semester end Evaluation:	70
		Total Marks:	100

Course outco	Upon to:	succ	cess	ful co	omple	etion	of th	e cou	rse,	the st	tuden	t will h	ave an	ability	
CO 1			analyse safe section for Tension members with lug angle and Built up Compression Members												
CO 2			ana	analyse safe section for Plate girders											
		CO 3	ana	alys	e for	safe	sectio	n for	gant	ry gi	irders				
CC 4			ana	alys	e safe	e sect	ion fo	or eco	entri	c co	nnect	ions			
Contributio n of Course Outcomes		P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	P O 11	P O 12	PSO 1	PSO 2
towards achievemen t of	CO 1	2		2		3	1				1		1	3	
Program Outcomes	CO 2	2		2		3	1				1		1	3	
(1 – Low, 2- Medium, 3 – High)	CO 3	2		2		3	1				1		1	3	
	CO 4	2		2		3	1				1		1	3	
Course Conte	TINIT	T													

UNIT - I

TENSION MEMBERS (IS800-2007)

Design of tension members with Lug angles with bolted and welded connections.

COMPRESSION MEMBERS (IS800-2007)

Design of axially loaded built up compression members with Laced and Battened columns with bolted and welded connections.

UNIT - II

INTRODUCTION TO GANTRY GIRDER

Introduction, Various loads, Load effects, explanation of how to calculate loads, Calculation of Maximum SF and Maximum BM using influence lines, Deflections

	DESIGN OF GANTRY GIRDER Design of Gantry Girder, Problems on design of gantry girder.
	UNIT - III INTRODUCTION TO PLATE GIRDERS Introduction to plate girder, Elements eccentric depth, Design of web and flanges, Design of plate girders without stiffeners, Problems
	DESIGN OF PLATE GIRDERS Design of plate girders with stiffeners, Design of plate girders with intermediate stiffeners, Problems on plate girders with intermediate stiffeners
	UNIT - IV SEATED CONNECTIONS Introduction to Connections, Unstiffened seated connections-bolted and welded, Stiffened seated connection-bolted and welded
	BRACKET CONNECTIONS Bracket Connections, type1-bolted and welded, Bracket connection type2-bolted and welded.
Text books	 [T1] Duggal, S.K., Limit State Design of Steel Structures, McGraw-Hill, NDLS, 2019. [T2] Bhavikatti, S.S., Design of Steel Structures-By Limit State Method as per IS:800-2007, I. K. IBH Pvt. Ltd., NDLS, 2019.
Reference books	 [R1] Subramanian, N., Design of Steel Structures-Limit State Method OxfordUniversity press, HYB, 2018. [R2] Ram, K.S.S., Design of Steel Structures, Pearson Education India, NDLS, 2015. [R3] Chandra, R. and Gehlot, V., Limit State Design of Steel Structures, ScientificPublishers, NDLS, 2010.
E-resources and other digital material	https://nptel.ac.in/courses/105105162 https://nptel.ac.in/courses/105106113

20CEH5804C	GEOSPATIAL DATA PROCESSING	
------------	----------------------------	--

Course Category:	Honors	Credits:	4
Course Type:	Theory and practical	Lecture - Tutorial -	3-0-2
		Practice:	
Prerequisites:	NIL	Continuous Evaluation:	30
_		Semester end Evaluation:	70
		Total Marks:	100

Course outco	mes	Upon to:	Upon successful completion of the course, the student will have an ability to:												
CO 1				understand the concepts of Geographical information systems and apply them in various engineering applications.											
		CO 2		evaluate appropriate remote sensing data products for mapping, monitoring and management applications.											
		CO 3	app	oly v	vario	us im	age p	roces	ssing	tech	nique	es and	l their a	ıpplicati	ons.
		CO 4	app	oly l	RS ar	nd GI	S tecl	hniqu	ies fo	r sol	ving	Engii	neering	applica	tions.
Contributio n of Course Outcomes		P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	P O 11	P O 12	PSO 1	PSO 2
towards achievemen t of	CO 1	3	2	3		3	3	3		3	3		3		3
Program Outcomes (1 – Low,	CO 2	3	2	3		3	3	3		3	3		3		3
2- Medium, 3 – High)	CO 3	3	2	3		3	3	3		3	3		3	2	
	CO 4	3	2	3		3	3	3		3	3		3	2	

UNIT-I

GEOGRAPHICAL INFORMATION SYSTEM

Components of GIS, Types of Data, coordinate systems, Geographic coordinate system, Projected coordinate system, Maps and scales, Types of Maps and scales, Projections, Types of Projections, Georeferencing, Data structures, GIS analysis functions.

DATA EDITING AND STORAGE

Raster and vector data models, Digitization, Data editing, Errors and corrections, data presentation and generation of thematic maps, spatial database management systems, Data representation, Data storage, Entity relationship models.

PRACTICE

1. Introduction to Arc GIS and Georeferencing, projections and reprojections

	2. Creating a shape file, clip and attribute data manipulation.
	UNIT-II INTRODUCTION TO REMOTE SENSING Introduction, Data and Information, Remote sensing data collection, Remote sensing advantages & Limitations, Remote Sensing process. Electromagnetic Spectrum, Energy interactions with atmosphere and with earth surface features (soil, water, and vegetation), Resolution, image registration and elements of visual interpretation techniques.
	DATA ACQUISITION AND PLATFORMS Indian Satellites and Sensors characteristics, Remote Sensing Platforms, Sensors and Properties of Digital Data, Data Formats: Introduction, platforms-IRS, Landsat, Sentinel, SPOT, CARTOSAT, etc. sensors, sensor resolutions (spatial, spectral, radiometric and temporal), Optical, Thermal and Microwave, signal to noise ratio, LiDAR data acquisition and processing. PRACTICE 3.DataDigitization (Draw, edit, delete and update)
	UNIT-III IMAGE CLASSIFICATION TECHNIQUES Supervised Classification, Unsupervised classification, ANN and SVM classification techniques
	SPECTRAL INDICES Vegetation indices, water related indices, Digital elevation model, Digital terrain model, Triangulated irregular networks. PRACTICE 4. Data Analysis – Overlay, Buffer 5. Generation of DEM and DTM using raster data.
	UNIT-IV APPLICATIONS IN SCIENCE DOMAIN Applications of Remote sensing in various Engineering and Science domains such as Agriculture, Forest, Soil, Geology
	APPLICATIONS IN ENGINEERING DOMAIN LU/LC, Water Resources, Urban, Disaster Management, etc. PRACTICE 6.Assignment on Application of Geospatial techniques in Civil Engineering.
Text books	 [T1]Photogrammetry, GIS & Remote Sensing, SSManugula, VeerannaBommakanti, Educreation Publishing, 2018 [T2]Text Book of Remote Sensing and Geographical Information Systems, M.Anji Reddy, BS Publications/BSP Books, 4th edition, 2012
Reference books	 [R1]Remote Sensing and Image Interpretation, Lillesand, T.M, R.W. Kiefer and J.W. Chipman, Wiley India Pvt. Ltd., New Delhi,7th Edition 2015 [R2]Remote Sensing and GIS, BasudebBhatta, Oxford UniversityPress,2nd Edition, 2011
L	l

E-resources and other digital	https://nptel.ac.in/courses/105/103/105103193/ https://nptel.ac.in/courses/105/101/105101206/
material	https://nptel.ac.in/courses/105/107/105107206/

20CEH6803A TRAFFIC ANALYSIS AND DESIGN	
--	--

Course Category:	Honors	Credits:	4
Course Type:	Program Elective	Lecture - Tutorial - Practice:	3-1-0
Prerequisites:	20CE6302	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes		Upon successful completion of the course, the student will have:													
		CO 1			tand ults.	traffi	c eng	ginee	ring	studi	es, aı	nalys	e the da	ıta and	present
		CO 2	evaluate traffic and road facilities, and intersection control measures for smooth traffic movement.												
		CO 3	analyse appropriate traffic control and management measures.												
		CO 4		apply the principles of queuing theory to analyse delay at signalized and unsignalized intersections.											
Contribution of Course Outcomes		P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	P O 11	P O 12	PSO 1	PSO 2
towards achievement of Program	CO 1	3			3					1					
Outcomes (1 – Low, 2 - Medium,	CO 2	3	3								1			3	
3 – High)	CO 3	3					3								3
	CO 4	3	3							1					3
Course Conten	UNIT – I TRAFFIC ENGINEERING STUDIES AND ANALYSIS Sampling in Traffic Studies, Adequacy of Sample Size; Objectives, Methods of Study, Equipment. DATA COLLECTION, ANALYSIS AND INTERPRETATION Case Studies of (a) Speed (b) Speed and Delay (c) Volume (d) Origin and Destination (e) Parking (f) Accident & other Studies														
		UNIT – II DESIGN OF TRAFFIC ENGINEERING FACILITIES Control of Traffic Movements through Time Sharing and Space Sharing Concepts.										Sharing			
		rounda	n of abouting of	Cha and Pec	anneli d oth lestria	ising er for ans an	Island ms of d Cyc	AT-G	Grade Grad	Cro e Sep	ssings parate	includ Inter	iding pr	ovision	t, Mini- for safe Warrants

	UNIT – III TRAFFIC REGULATION AND MANAGEMENT Traffic Signs, Markings and Signals; Principles of Signal Design, Webster's method of Signal Design, Redesign of Existing Signals including Case Studies; Signal System and Coordination. TRAFFIC MANAGEMENT MEASURES Speed, vehicle, parking, enforcement regulations, mixed traffic regulation, various management techniques.
	UNIT – IV TRAFFIC STREAM MODELS Fundamental Equation of Traffic Flow, Speed-Flow-Concentration Relationships, Normalised Relationship, Fluid Flow Analogy Approach, Shock Wave Theory, Platoon Diffusion and Boltzman Like Behaviour of Traffic Flow, Car-Following Theory, Linear and Non-Linear Car- Following Models, Acceleration Noise.
	QUEUING ANALYSIS Fundamentals of Queuing Theory, Demand Service Characteristics, Deterministic Queuing Models, Stochastic Queuing Models, Multiple Service Channels, Models of Delay at Intersections and Pedestrian Crossings.
Text books	[T1] Kadiyali, L.R., Traffic Engineering and Transport Planning, Khanna publishers, 2011.[T2] The Institute of Transportation Engineers, Traffic Engineering Handbook, 7th edn, 2016.
Reference books	 [R1].IRC-SP41: Guidelines for the Design of At-Grade Intersections in Rural & Urban Areas [R2].Pignataro, L., Traffic Engineering – Theory & Practice, John Wiley, 1973. [R3].Salter, R J., Highway Traffic Analysis and Design, ELBS, 1996
E-resources and other digital material	Nil

20СЕН6803В	TRANSPORTATION ECONOMICS

Course Category:	Honors	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3-1-0
Prerequisites:	20CE6302	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outco	Upon	Upon successful completion of the course, the student will have:													
	understanding the economic principles and estimating the various cost components in transportation														
	apply the possible project alternatives for the economic analysis and applying the appropriate economic analysis method														
CO 3				analysing Demand and Supply modelling											
		CO 4		attaining Knowledge on Regulation and Policy making of Economic Evaluation											
Contributio n of Course Outcomes		P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	P O 11	P O 12	PSO 1	PSO 2
towards achievemen t of	CO 1	3	3											3	3
Program CO Outcomes 2		3	3			3				1					
(1 – Low, 2- Medium, 3 – High)	CO 3	3			3										
	CO 4	3							3		1				3

UNIT – I

TRANSPORT COSTS AND BENEFITS

Principles of economic analysis, Fixed and variable cost, cost of improvement, maintenance cost, cost estimating methods, accounting for inflation, external costs.

CONSEQUENCES OF TRANSPORT PROJECTS, ROAD USER CONSEQUENCES

Reduced vehicle operation costs, value of travel time savings, value of increased comfort and convenience, cost of accident reduction, reduction in maintenance cost, non-user consequences – travel time.

UNIT – II

ECONOMIC ANALYSIS METHODS

Generation and screening of project Alternatives

	DIFFERENT METHODS OF ECONOMIC ANALYSIS annual cost and benefit ratio methods, discounted cash flow methods, shadow pricing techniques, determination of IRR and NPV, examples of economic analysis, application economic theory in traffic assignment problem.
	UNIT – III TRANSPORT DEMAND The Basic Framework- measuring the demand in a spatial and temporal setting. Traditional Four-Stage Demand Model; modern approaches to modelling demand and practical issues in demand estimation. TRANSPORT SUPPLY The nature of output in transport, output and costs, economies of size, density and scope, empirical estimation of transport cost functions- the approaches and illustrations.
	UNIT – IV REGULATION AND POLICY Theory of Regulation, Deregulation and Privatisation in Transport. Approaches to privatisation of transport infrastructure and services and a competition policy for transport. Evolution of transport policy in India with focus on case studies regarding different modes. EVOLUTION OF POLICY Evolution of transport policy in India with focus on case studies regarding different modes.
Text books	[T1] McCarthy, P. S., Transportation Economics, Massachusetts: Blackwell Publishers. 2001 [T2] Winfrey R, Highway Economic Analysis, International Textbook Company, 1969.
Reference books	 [R1] Kenneth J. Button, Transport Economics, Elgar, 2010 [R2] David A. Hensher, Ann M. Brewer, Transport: An Economics and Management Perspective, Oxford University Press, 2001. [R3] Emile Quinet, Roger Vickerman, Principles of Transport Economics, Edward Elgar Pub, 2005 [R4] Road User Cost Study, Central Road Research Institute [R5] Dickey J.W, Project Appraisal for Developing Countries, John Wiley, 1984
E-resources and other digital material	https://www.civil.iitb.ac.in/~dhingra

20CEH6802C ADVANCED FOUNDATION ENGINEERING
--

Course Category:	Honors	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3-1-0
Prerequisites:	20CE6404/B Foundation	Continuous Evaluation:	30
	Engineering	Semester end Evaluation:	70
		Total Marks:	100

Course outco	Upon to:	Upon successful completion of the course, the student will have an ability to:													
	CO 1	app	oly	vario	us be	aring	capa	city (deterr	ninati	on tec	hniqu	ies and		
		CO 2													
		CO 3													
		CO 4													
Contributio n of Course Outcomes		P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	P O 11	P O 12	PSO 1	PSO 2
towards achievemen t of	CO 1	3	3				2			1	2		2		2
Program Outcomes (1 – Low,	CO 2	3	3				2			1	2		2		2
2 - Medium, 3 - High)	CO 3	3	3				2			1	2		2		2
	CO 4	3	3				2			1	2		2		2
Course Conte	Incline	RING meth ed Lo	od, ads,	IS Co , Foot	ode m ings o	ethod; on Lay	Effect ered S	ct of V Soils.	Water	Table;	Footi	ngs wi	ith Ecce		
	Bearin UNIT		essu	re usi	ng SP	T& C	PT								
		CEPT liate	Se							IEORI ment;		ndary	Comp	ression	
		SETT Settler										ГНОГ	OS		

	UNIT – III PILES IN COMPRESSION Static capacity of piles, Point Bearing Resistance with SPT and CPT; Ultimate Capacity of Pile Groups in Compression, Settlement; Pile Load Test; Negative Skin Friction. SPECIAL PILES AND SETTLEMENTS OF PILE Laterally Loaded Piles -Ultimate Lateral Resistance; Batter Piles; Under Reamed Piles; Mini and Micro Piles, Pullout& Lateral Load; Efficiency; Settlements of Pile Groups; UNIT – IV WELL FOUNDATIONS Open wells; Design of pier foundations and well foundations; Lateral stability of well foundations; R.C.C. designs of wells PNEUMATIC CAISSONS Introduction to Pneumatic Caissons, construction of piers;
Text books	 [T1] Das, B. M. Principles of Foundation Engineering 5th Edition Nelson Engineering, 2004. [T2] Coduto, D,P. Foundation Design Principles and Practices, 2nd edition, Pearson, Indianedition, 2012. Phi Learning, 2008. [T3] Bowles, J. E. Foundation Analysis & Design 5th Edition McGraw-Hill Companies, Inc, 1996. [T4]Poulos, H. G. & Davis, E. H. Pile Foundation Analysis and Design, John Wiley & Sons Inc, 2008.
Reference books	[R1] Reese, L. C. & Van Impe, W. F. Single Piles and Pile Groups under Lateral Loading -Taylor &Francis Group (Jan 2000) [R2]Rowe, R. K. Geotechnical & Geo-environmental Engineering Hand Book -Springer ,2001. [R3] Tomlinson, M. J. Foundation Design and Construction,PHI , 2003.
E-resources and other digital material	nptel.ac.in/courses/105107120 nptel.ac.in/courses/105101083

20CEH7802A	GEOSYNTHETICS AND REINFORCED SOIL STRUCTURES

Course Category:	Honors	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3-1-0
Prerequisites:	Geotechnical Engineering	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outco	Upon to:	Upon successful completion of the course, the student will have an ability to:													
	CO 1	analyze the properties of geosynthetics													
		CO 2	understand functions and applications of geosynthetics												
		CO 3													
		CO 4	eva	aluat	e rei	nforc	ed ea	rth sl	opes	and	foun	dation	ıs		
Contributio n of Course Outcomes	P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	P O 11	P O 12	PSO 1	PSO 2	
towards achievemen t of	CO 1	3	3	3		3						3		3	3
Program Outcomes (1 – Low,	Program CO Outcomes 2	3	3	3		3						3		3	3
2 - Medium, CO 3 - High)		3	3	3		3						3		3	3
	CO 4	3	3	3		3						3		3	3
G		UNIT GEO Introd	SYN				nthet	ics-T	ypes	of	geo	synth	etics-	Functio	ons of

Introduction to Geosynthetics-Types of geosynthetics- Functions of Geosynthetics-Applications of Geosynthetics- Strength of reinforced soils

MANUFACTURING OF GEOSYNTHETICS

Manufacture of geotextiles- Manufacture of geogrids- Manufacture of geonets- Manufacture of geomembranes- Manufacture of geocomposites

UNIT - II

PROPERTIES OF GEOSYNTHETICS

Physical properties-Mechanical Properties-Hydraulic Properties-Endurance Properties-Degradation properties

TESTING OF GEOSYNTHETICS

Need for testing of Geosynthetics-Testing of geogrids-Testing of geomets-Testing of geomembranes-Testing of GCLs

	UNIT – III EXTERNAL STABILITY ANALYSIS OF REINFORCED SOIL WALLS Different Types of Soil Retaining Structures-Construction Aspects of Geosynthetic Reinforced Soil Retaining Walls-External Stability Analysis of Reinforced Soil Retaining Walls INTERNAL STABILITY ANALYSIS OF REINFORCED SOIL WALLS Internal Stability Analysis of Reinforced Soil Walls- Testing requirements for Reinforced Soil Retaining Walls- Design of Gabions.
	UNIT – IV STABILITY ANALYSIS OF REINFORCED SOIL EMBANKMENTS Stability analysis of reinforced soil Embankments resting on soft foundation soils-Stability analysis of reinforced soil slopes- Reinforced soil for supporting shallow foundations-Natural geosynthetics and their applications. GEOSYNTHETICS FOR LANDFILLS Geosynthetics for construction of municipal waste landfills-Geosynthetics
Text books	for construction of hazardous waste landfills [T1] Koerner, R.M. "Designing with Geosynthetics", Prentice Hall, Eaglewood cliffs, NJ, 2005. [T2]Sanjay Kumar Shukla, Jian-Hua Yin, Taylor, "Fundamentals of Geosynthetics Engineering" & Francis, Milton Park, Abingdon, UK, 2010. [T3] Saran, S. "Reinforced Soil and Its Engineering Applications", I.K. International Pvt Ltd, New Delhi, 2005.
Reference books	 [R1] VenkatappaRao, G. and SuryanarayanaRaju, GVS. "Engineering with Geosynthetics", Tata McGraw Hill Publishing Company Limited – New Delhi, 2008. [R2] Koerner, R.M. and Welsh, J. P. "Construction and Geotechnical Engineering using Synthetic Fabrics" by. John Willey and Sons, New York, 1993.
E-resources and other digital material	https://nptel.ac.in/courses/105/101/105101143/ [J. N. Mandal, Geosynthetics Engineering]

20CEH7803B	INTELLIGENT TRANSPORTATION SYSTEMS

Course Category:	Honors	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3-1-0
Prerequisites:	Transportation Engineering	Continuous Evaluation:	30
_		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes Upon to:				pon successful completion of the course, the student will have an ability:											
	une	understand the basics of ITS and data collection techniques													
CO 2				apply ITS for different functional areas											
		CO 3	apj	oly I'	TS f	or dif	feren	t use	r nee	ds ar	nd ser	vices	,		
		CO 4		derst untri		the s	signif	icanc	e of	ITS	in d	evelo	ped an	d deve	loping
Contributio n of Course Outcomes		P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	P O 11	P O 12	PSO 1	PSO 2
towards achievemen t of	CO 1	2		2		2									2
Program Outcomes	CO 2	2				2		2			2				2
(1 – Low, 2 - Medium, 3 – High)	CO 3	2	2			2		2			2				2
	CO 4	2	2			2				2			2		2

UNIT-I INTRODUCTION TO ITS:

Definition of ITS, ITS Objectives, Historical Background, Benefits of ITS - ITS Data collection techniques – Detectors, Automatic Vehicle Location (AVL), Automatic Vehicle Identification (AVI), Geographic Information Systems (GIS), video data collection.

TELECOMMUNICATIONS IN ITS:

Importance of telecommunications in the ITS system, Information Management, Traffic Management Centres (TMC). Vehicle – Road side communication – Vehicle Positioning System

UNIT-II

ITS FUNCTIONAL AREAS

Advanced Traffic Management Systems (ATMS), Advanced Traveler Information Systems (ATIS), Commercial Vehicle Operations (CVO),

	ITS FUNCTIONAL AREAS IN TRANSPORTATION SYSTEM: Advanced Vehicle Control Systems (AVCS), Advanced Public Transportation Systems (APTS), Advanced Rural Transportation Systems (ARTS).
	UNIT-III ITS USER NEEDS Travel and Traffic management, Public Transportation Management, Electronic Payment,
	ITS User Services Commercial Vehicle Operations, Emergency Management, Advanced Vehicle safety systems, Information Management.
	UNIT-IV AUTOMATED HIGHWAY SYSTEMS: Automated highway system - Vehicles in Platoons - Integration of Automated Highway Systems.
	ITS PROGRAMS IN THE WORLD: Overview of ITS implementations in developed countries, ITS in developing countries.
Text books	 [T1]Ghosh. S, T. Lee, T.S Lee. "Intelligent Transportation Systems: New Principles and Architectures", 1sted, CRC Press, Boca Raton, 2000. [T2]Sussman. J, "Perspective on Intelligent Transport System ITS", 1sted, Artech House Publishers, Boston 2005.
Reference books	 [R1]M.A. Chowdhury, & A. Sadek, "Fundamentals of Intelligent Transportation Systems Planning", 1st ed, Artech House Publishers, Boston, 2003. [R2]J.Miles, K.Chen, C.J.C Miles, "ITS Hand Book 2000: Recommendations for World Road Association (PIARC)" 1st ed, Artech House Publishers, Boston, 1999
E-resources and other digital material	[1] Prof Tom V Mathew, IIT Bombay-https://www.civil.iitb.ac.in/~vmtom/nptel/591_ITS_1/web/web.html [2] LelithaVanajakshi, GitakrishnanRamdurai, AshaAnand, IIT Madras-https://coeut.iitm.ac.in/ITS_synthesis.pdf [3]Prof Sussman J, MIT open Course ware-https://ocw.mit.edu/courses/civil-and-environmental-engineering/1-212j an-introduction-to-intelligent-transportation-systems-spring-2005/lecture-notes/

20CEH7804C	ENVIRONMENTAL IMPACT ASSESSMENT
•	

Course Category:	Honors	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 1- 0
Prerequisites:	17MC4108B -	Continuous Evaluation:	30
	Environmental studies	Semester end Evaluation:	70
		Total Marks:	100

Course outco	Upon successful completion of the course, the student will have an ability to:														
		CO 1	un	derst	and	the C	once	pt of	EIA,	EIA	meth	nodol	ogies.		
	CO 2														
		CO 3	3												
		CO 4	understand the different acts and case studies.												
Contributio n of Course Outcomes		P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	P O 11	P O 12	PSO 1	PSO 2
towards achievemen t of	CO 1	3					2			1	1		1		2
Program Outcomes (1 – Low,	CO 2	3	2				2	3		3	1				2
2 - Medium, 3 - High)	CO 3	3	2					3			1		1		2
	CO 4						3	3		1	3		2		2
Course Conte	ent	functi EIA Prepa param EIA I Criter metho	consons rational foods, y incomplete	of Eactor of of Sactor of of Sactor of Sactor of Sactor of Sactor of the materials of the materials of the original original ori	Tt-Sal IA - rs a env DO e se rix	ient - clas ffecti ironn LOG lection	esification in the second seco	ires ation EIA I base EIA netw	of E and — In e ma Met	EIA, pred mpac p - 0 hode meth	ictior ct ev Classi ology nod -	Proo of i aluat ificati – El Env	cedure mpacts ion an ion of e	– Ana -Eleme d analy environi	ents of ysis - mental

Introduction, Prediction and assessment - Soil quality -Methodology for

GROUND WATER

	the assessment of soil and groundwater - Delineation of study area - Identification of activities.
	ENVIRONMENTAL IMPACT ASSESSMENT OF SURFACE WATER AND AIR Impact prediction - Assessment of impact significance - Identification and incorporation of mitigation measures - EIA in surface water, air and biological environment: Methodology for the assessment of impacts on surface water environment. Air pollution sources, Air pollution effect - Generalized approach for assessment of air pollution Impact.
	UNIT III ASSESSMENT OF IMPACT ON VEGETATION AND WILDLIFE Assessment of impact of developmental activities on vegetation and wildlife - Environmental impact of deforestation - Causes and effects of deforestation.
	ENVIRONMENTAL AUDIT Environmental audit and environmental legislation - Objectives of environmental audit - Types of environmental audit - Audit protocol - Stages of environmental audit - Onsite activities - Evaluation of audit data and preparation of audit report.
	UNIT – IV ENVIRONMENTAL ACTS Post audit activities - The Environmental protection act - The water act - The air act - Wild life act.
	CASE STUDIES Case studies and preparation of environmental impact assessment statement for various industries.
Text books	 [T1]Anjaneyulu, VallManickam, "Environmental Impact Assessment Methodologies", 2nd Edition, B.S. Publications, 2007. [T2]Glynn. J, and Gary W. Heinke, "Environmental Science and Engineering", PHI, NDLS, 1996.
Reference books	 [R1]Barthwal, R. R., "Environmental Impact Assessment", New Age International Publications [R2]Dhameja,S.K., Environmental Engineering and Management, Kataria, NDLS, 2010. [R3]Bhatia,H.S., A Text Book of Environmental Pollution and Control, Galgotia NDLS, 2003.
E-resources and other digital material	[1] https://nptel.ac.in/courses/120/108/120108004/