VELAGAPUDI RAMAKRISHNA SIDDHARTHA ENGINEERING COLLEGE

CIVIL ENGINEERING [VR23]

SCHEME OF INSTRUCTIONS B.Tech. PROGRAMME [VR23]

B.Tech. Degree Programs Applicable for the batch of students admitted from the Academic Year 2023-24

VELAGAPUDI RAMAKRISHNA SIDDHARTHA ENGINEERING COLLEGE

(Autonomous, Accredited with 'A+' grade by NAAC)
Affiliated to Jawaharlal Nehru Technological University Kakinada
Approved by AICTE & ISO 21001: 2018 Certified
Kanuru, Vijayawada -520 007, Andhra Pradesh

□: 0866 2582333

www.vrsiddhartha.ac.in

VELAGAPUDIRAMAKRISHNASIDDHARTHAENGINEERINGCOLLEGESCHE MEOF INSTRUCTIONFOR FOURYEAR UG PROGRAMME [VR23]

GROUP-A(AI&DS, AI&ML,CSE,IT)(with effect from 2023-24)

SEMESTER I

CONTACTHOURS:27

S. No	Course Code	Course Category	Course Name	L	T	P	Credits
1.	23BS1101	Basic Science	Linear Algebra & Calculus	3	0	0	3
2.	23BS1102	Basic Science	Engineering Physics	3	0	0	3
3.	23ES1103A	Engineering Science	Basic Civil and Mechanical Engineering	3	0	0	3
4.	23ES1104	Engineering Science	Introduction to Programming	3	0	0	3
5.	23HS1105	Humanities and Social Science	Communicative English	2	0	0	2
6.	23BS1151	Basic Science	Engineering Physics Lab	0	0	2	1
7.	23ES1152	Engineering Science	Computer Programming Lab	0	0	3	1.5
8.	23HS1153	Humanities and Social Science	Communicative English Lab	0	0	2	1
9.	23ES1154	Engineering Science	Engineering Workshop	0	0	3	1.5
10.	23ES1155	Engineering Science	IT Workshop	0	0	2	1
11.	23BS1156	Basic Science	NSS/NCC/Community Service	-	-	1	0.5
			Total:	14	0	13	20.5
12.	23MC1106	Mandatory Course	Induction Program				

Category	Credits
Basic Science Courses	3 +3+1 + 0.5 = 7.5
Engineering Science Courses	3 + 3 + 1.5 + 1.5 + 1 = 10
Humanities and Social Science Courses	2+1=3
Mandatory Courses	0
TOTALCREDITS	20.5

SEMESTER II

CONTACTHOURS:26

S.No	Course	Course Category	Course Name	L	T	P	Credits
	Code						
1.	23BS2101	Basic Science	Differential Equations & Vector Calculus	3	0	0	3
2.	23BS2102B	Basic Science	Chemistry	3	0	0	3
3.	23ES2103B	Engineering Science	Basic Electrical and Electronics Engineering	3	0	0	3
4.	23PC2104A	Professional Core	Data Structures	3	0	0	3
5.	23ES2105	Engineering	Engineering Graphics	1	0	4	3
		Science					
6.	23BS2151B	Basic Science	Chemistry Lab	0	0	2	1
7.	23PC2152A	Professional Core	Data Structures Lab	0	0	3	1.5
8.	23ES2153	Engineering	Basic Electrical and Electronics Workshop	0	0	3	1.5
		Science					
9.	23BS2154B	Basic Science	Health and wellness, Yoga and Sports	-	-	1	0.5
			Total	13	0	13	19.5

Category	Credits
Basic Science Courses	3+3+1+0.5=7.5
Engineering Science Courses	3+3+1.5=7.5
Professional Courses	3+1.5 = 4.5
Humanities and Social Science Courses	0
Mandatory Courses	0
TOTALCREDITS	19.5

VELAGAPUDIRAMAKRISHNASIDDHARTHAENGINEERINGCOLLEGESCHE MEOF INSTRUCTIONFOR FOURYEAR UG PROGRAMME [VR23]

GROUP-B (CE,ME, ECE,EEE, EIE) (with effect from 2023-24)

SEMESTER I CONTACTHOURS: 26

S.No	Course Code	Course Category	Course Name	L	T	P	Credits
1.	23BS1101	Basic Science	Linear Algebra & Calculus	3	0	0	3
2.	23BS1102A	Basic Science	Engineering Chemistry (CE,ME)	3	0	0	3
	23BS1102B	Dasic Science	Chemistry (ECE, EEE, EIE)				
3.	23ES1103B	Engineering Science	Basic Electrical and Electronics	3	0	0	3
			Engineering				
4.	23ES1104	Engineering Science	Introduction to Programming	3	0	0	3
5.	23ES1105	Engineering Science	Engineering Graphics	1	0	4	3
6.	23BS1151A	Basic Science	Engineering Chemistry Lab (CE,ME)	0	0	2	1
0.	23BS1151B	Dasic Science	Chemistry Lab (ECE, EEE, EIE)				
7.	23ES1152	Engineering Science	Computer Programming Lab	0	0	3	1.5
8.	23ES1153	Engineering Science	Basic Electrical and Electronics Workshop	0	0	3	1.5
9.	23BS1154B	Basic Science	Health and wellness, Yoga and Sports	-	-	1	0.5
			Total:	13	0	13	19.5
10.	23MC1106	Mandatory Course	Induction Program				

Category	Credits
Basic Science Courses	3 +3+1 + 0.5=7.5
Engineering Science Courses	3+3+3+1.5 + 1.5= 12
Humanities and Social Science Courses	0
Mandatory Courses	0
TOTALCREDITS	19.5

SEMESTER II CONTACTHOURS: 27

S.No	Course Code	Course Category	Course Name	L	T	P	Credits
1.	23BS2101	Basic Science	Differential Equations & Vector Calculus	3	0	0	3
2.	23BS2102	Basic Science	Engineering Physics	3	0	0	3
3.	23ES2103A	Engineering Science	Basic Civil and Mechanical Engineering	3	0	0	3
4.	23PC2104B		Engineering Mechanics (CE, ME)	3	0	0	3
	23PC2104C	Professional Core	Network Analysis (ECE, EIE)				
	23PC2104D		Electrical Circuit Analysis - I (EEE)				
5.	23HS2105	Basic Science	Communicative English	2	0	0	2
6.	23BS2151	Basic Science	Engineering Physics Lab	0	0	2	1
7.	23PC2152B		Engineering Mechanics & Building Practices (CE)	0	0	3	1.5
	23PC2152C	Professional Core	Network Analysis & Simulation Lab (ECE, EIE)				
	23PC2152D	Professional Core	Electrical Circuit Analysis Lab (EEE)				
	23PC2152E		Engineering Mechanics Lab (ME)				
8.	23HS2153	Basic Science	Communicative English Lab	0	0	2	1
9.	23ES2154	Engineering Science	Engineering Workshop	0	0	3	1.5
10.	23ES2155	Engineering Science	IT Work shop	0	0	2	1
11.	23BS2156	Basic Science	NSS/NCC/Community Service	-	-	1	0.5
			Total:	14	0	13	20.5

Category	Credits
Basic Science Courses	3 +3+ 1+0.5=7.5
Engineering Science Courses	3 +1.5+ 1= 5.5
Humanities and Social Sciences	2+1=3
Mandatory Courses	0
Professional Core	3 + 1.5 = 4.5
TOTALCREDITS	20.5

VELAGAPUDI RAMAKRISHNA SIDDHARTHA ENGINEERING COLLEGE SCHEME OF INSTRUCTION FOR FOUR YEAR UG PROGRAMME [VR23]

Department of Civil Engineering

SEMESTER III CONTACT HOURS: 27

S.No	Course Code	Course Category	Course Name	L	T	P	Credits
1	23BS3101A	BS	Mechanics of Solids	3	0	0	3
2	23HS3102	BS & H	Universal Human Values 2	2	1	0	3
			Understanding Harmony				
3	23ES3103A	ES	Engineering Geology	1	0	2	2
4	23CE3304	PC	Surveying and Geomatics	3	0	2	4
5	23CE3305	PC	Fluid Mechanics	3	0	0	3
6	23TP3106	Soft Skills-1	Logic and Reasoning	0	0	2	1
7	23MC3107B	Audit Course	Environmental Science	2	0	0	-
8	23CE3308	PC	Concrete Technology	2	0	2	3
9	23CE3651	Skill Enhancement	Computer Aided Civil	0	0	2	1
		Course	Engineering Drawing				
	Total					10	20

Category	Credits
Basic Science Courses	3
Engineering Science Courses	2
Humanities and Social Sciences	3
Mandatory Courses	0
Skill Enhancement Courses	2
Professional Core	4+3+3
TOTALCREDITS	20

SEMESTER IV CONTACT HOURS: 29

S.No	Course Code	Course Category	Course Name	L	T	P	Credits
1	23HS4101	Management Course	Engineering Economics and	2	0	0	2
			Management				
2	23BS4102A	ES/BS	Probability and Statistics for	3	0	0	3
			Engineers				
3	23CE4303	PC	Structural Analysis	3	0	0	3
4	23CE4304	PC	Geotechnical Engineering	3	0	2	4
5	23CE4305	PC	Hydraulics and Hydraulic	3	0	2	4
			Machines				
6	23TP4106	Soft Skills-2	English for Professionals	0	0	2	1
7	23MC4107A	MC	Building Materials and	2	0	0	-
			Construction				
8	23CE4651	Skill Enhancement	Autodesk, Rivet and Excel for	0	0	2	1
		Course	Engineers				
9	23ES4152	ES	Design Thinking & Innovation	1	0	2	2
10	23CE4353	PC Lab 1	Strength of Materials Lab	0	0	2	1
Total					0	12	21

Mandatory Community Service Project Internship of 08 weeks duration during summer vacation

Category	Credits
Basic Science Courses	3
Engineering Science Courses	2
Management Courses	2
Mandatory Courses	0
Skill Enhancement Courses	1+1
Professional Core	3+4+4+1
TOTALCREDITS	21

VELAGAPUDI RAMAKRISHNA SIDDHARTHA ENGINEERING COLLEGE SCHEME OF INSTRUCTION FOR FOUR YEAR UG PROGRAMME [VR23] Department of Civil Engineering

SEMESTER V CONTACTHOURS: 33

S.No	Course Code	Course Category	Course Name	L	T	P	Credits
1	23CE5301	Program Core	Water Resources	3	0	0	3
		-	Engineering				
2	23CE5302	Program Core	Environmental Engineering	2	0	2	3
3	23CE5303	Program Core(Group B)	Design of Concrete	3	0	0	3
			Structures				
4	23CE5404	ProgramElective1		3	0	0	3
5	23CE5205	Open Elective/Job oriented	A) Geospatial Technologies	2	0	2	3
		elective-1	B) Building Services				
			Engineering				
6	23CE5351	ProgramCoreLab1	Computer Applications in	0	0	3	1.5
			Civil Engineering Lab1				
7	23CE5352	Program Core Lab 2	Advanced Surveying Lab	0	0	3	1.5
8	23TP5106	SoftSkills–3	Personality Development	0	0	2	1
9	23CE5354	Internship/Project(6weeks)	EPICS/Internship	0	0	4	2.0
10	23CE5607	SkillOrientedcourse-2	Building Information Modeling(BIM)	0	0	2	1.0
11	23MC5108 B	Mandatory Course (AICTE	Biology for Engineers /				
		suggested)	Foreign Languages	2	0	0	_
			(German/French)/Law for				
			Engineers/Sanskrit Bhasa/				
			Yoga & Meditation/				
			Psychology	15	0		
	Total					18	22
Honors/Minor Courses					0	0	3

Category	Credits
Program Core Courses	12.0
Humanities and Social Sciences	0
Program Elective Courses	3
Open Elective Courses	3
Skill Oriented courses	2
Internship/Project	2.0
Mandatory Course	0
TOTALCREDITS	22

VELAGAPUDI RAMAKRISHNA SIDDHARTHA ENGINEERING COLLEGE SCHEME OF INSTRUCTION FOR FOUR YEAR UG PROGRAMME [VR23] Department of Civil Engineering

SEMESTER VI CONTACTHOURS: 30

S. No	Course Code	Course Category	Course Name	L	Т	P	Credits
1	23CE6301	Program Core	Design of Steel Structures	3	0	0	3
2	23CE6302	Program Core	Transportation Engineering	3	0	2	4
3	23CE6403	ProgramElective2		3	0	0	3
4	23CE6404	Program Elective 3		3	0	0	3
5	23CE6205	Open Elective /Job oriented elective-2 (NPTEL)		3	0	0	3
6	23CE6408	Program Elective 4		3	0	0	3
7	23CE6351	ProgramCoreLab1	STAAD and ETABS	0	0	2	1
8	23HS6152	Humanities & Social Science	English and Communication Skills Lab	0	0	2	1
9	23TP6106	SoftSkills-4	Quantitative Aptitude	0	0	2	1
10	23CE6554	Internship/Project	Mini Project–I	0	0	2	1
11	23MC6107 B	Mandatory Course (AICTE suggested)	Technical Paper Writing & IPR	2	0	0	0
			Total	20	0	10	23

Industrial/Research Internship six weeks(Mandatory) during summer vacation									
Honors/Minor Courses	3	0	0	3					

Note: Open Elective Courses 2 is self-learning. Students may opt from any MOOCS platform. They have to submit the certificate before the last instruction day of VI Semester.

Category	Credits
Program Core Courses	8
Humanities and Social Sciences	0
Program Elective Courses	9
Open Elective Courses	3
Skill Oriented courses	2
Mandatory Course	0
Internship/Project	1
TOTALCREDITS	23

VELAGAPUDI RAMAKRISHNA SIDDHARTHA ENGINEERING COLLEGE SCHEME OF INSTRUCTION FOR FOUR YEAR UG PROGRAMME [VR23] Department of Civil Engineering

SEMESTER VII CONTACTHOURS: 29

S.No	Course Code	Course Category	Course Name	L	T	P	Credits
1.	23CE7301	Program Core	Estimation, Specifications and Contracts	3	0	2	4
2.	23CE7302	Program Core	Foundation Engineering	3	0	0	3
3.	23CE7403	ProgramElective5		3	0	0	3
4.	23CE7205	Open Elective/ Job Oriented Elective-3	A) Green Buildings and Sustainability B) Advanced Construction Materials C) Quality Control and Quality Assurance	3	0	0	3
5.	23CE7206	Open Elective/ Job Oriented Elective-4 (NPTEL/ SELF LEARNING)	-	3	0	0	3
6.	23CE7607	Advanced Skill Course	Computer Aided Construction Management	2	0	2	3
7.	23CE7551	Internship/Project	Mini Project-II	0	0	3	1.5
8.	23CE7552	Internship/ Project	Industrial/Research Internship	0	0	3	1.5
9.	23MC7108B	Audit Course	Constitution of India	2	0	0	0
			Total	19	0	10	22

Note: Open Elective Courses 4 is self—learning. Students may opt from any MOOCS platform. They have to submit the certificate before the last instruction day of VII Semester.

Category	Credits
Program Core	7
Program Electives	3
Open Electives	6
Skill Oriented Courses	3
Internship/Project	3
TOTALCREDITS	22

SEMESTER VIII

CONTACTHOURS:24

S.No	Course Code	Course Category	Course Name	L	T	P	Credits
1.	23CE8551	Internship/Project	Major Project and Internships (6 Months)	0	0	24	12
			Total	0	0	24	12

LIST OF OPEN ELECTIVES:

SEMESTER - V

23CE5205: Open Elective/Job oriented elective - 1

- A) Geospatial Technologies
- B) Building Services Engineering

SEMESTER – VI

23CE6205: Open Elective /Job oriented elective - 2

SEMESTER - VII

23CE7205: Open Elective /Job oriented elective – 3

- A) Green Buildings and Sustainability
- B) Advanced Construction Materials
- C) Quality Control and Quality Assurance

23CE7206: Open Elective /Job oriented elective – 4

Note: Open Elective Courses 2 is self-learning. Students may opt from any MOOCS platform. They have to submit the certificate before the last instruction day of VI Semester.

Note: Open Elective Courses 4 is self-learning. Students may opt from any MOOCS platform. They have to submit the certificate before the last instruction day of VII Semester.

DEPARTMENT OF CIVIL ENGINEERING

V. R. SIDDHARTHA ENGINEERING COLLEGE

(Autonomous) VIJAYAWADA – 520 007

LIST OF COURSES OFFERED UNDER MINORS

S.No	Course Code	Course Name	L	T	P	Credits
Fourt	h Semester					
1 23CEM4701 Introduction to Civil Engineering – Concepts and Materials				0	0	3
Fifth	Semester					
2	23CEM5701	Methodology for Civil Engineering Construction	3	0	0	3
Sixth	Semester					
3	23CEM6701	System Design For Sustainability	3	0	0	3
4	23CEM6702	Ecology And Environment	3	0	0	3
Seven	th Semester					
5	23CEM7701	Infrastructure And Transportation System Planning	3	0	0	3
6	23CEM7702B	NPTEL-Mandatory (Course Based on Availability)	3	0	0	3

Note: 5 courses, 5x3=15 credits, **One Mandatory NPTEL Course-** 3 credits, total 18 credits

LIST OF COURSES OFFERED UNDER HONORS

S. No.	Course Code	COURSE NAME		T	P	Credits
FOURT	TH SEMESTER					
1	23CEH4801A	Stability of Structures	3	0	0	3
2	23CEH4801B	Sustainable Construction Methods	3	0	0	3
3	23CEH4801C	Design of Formwork	3	0	0	3
FIFTH	SEMESTER					
4	23CEH5801A	Engineering Rock Mechanics	3	0	0	3
5	23CEH5801B	Advanced Steel Design	3	0	0	3
6	23CEH5801C	Geospatial Data Processing	3	0	0	3
SIXTH	SEMESTER					
7	23CEH6801A	Traffic Analysis and Design	3	0	0	3
8	23CEH6801B	Transportation Economics	3	0	0	3
9	23CEH6801C	Advanced Foundation Engineering	3	0	0	3
10	23CEH6801B1	NPTEL Mandatory (Course Based on Availability)	3	0	0	3
SEVEN	TH SEMESTER					
11	23CEH7801A	Geo Synthetics and Reinforced Soil Structures	3	0	0	3
12	23CEH7801B	ntelligent Transportation Systems		0	0	3
13	23CEH7801C	Environmental Impact Assessment	3	0	0	3
14	23CEH6802B1	NPTEL Mandatory (Course Based on Availability)	3	0	0	3

Note:

Can opt One course in Each Semester, 4x3=12 Credits, additionally **2 Mandatory NPTEL Courses**, 2x3=6 Credits, total 18 Credits. For Eligibility & Registration: Must follow all the academic regulations related to Honors & Minors

PROGRAMELECTIVES:

SEMESTER V(P.E-I)

S.No	Course Code	Course	Subject	L	T	P	Credits
1	23CE5404/A	ProgramElective-1	Advanced structural analysis	3	0	0	3
2	23CE5404/B	ProgramElective-1	Town planning & Architecture	3	0	0	3
3	23CE5404/C	ProgramElective-1	Air pollution and Control	3	0	0	3
4	23CE5404/D	ProgramElective-1	Environmental Geotechnology	3	0	0	3
5	23CE5404/E	ProgramElective-1	Forensics in Civil Engineering	3	0	0	3

SEMESTER VI(P.E-II)

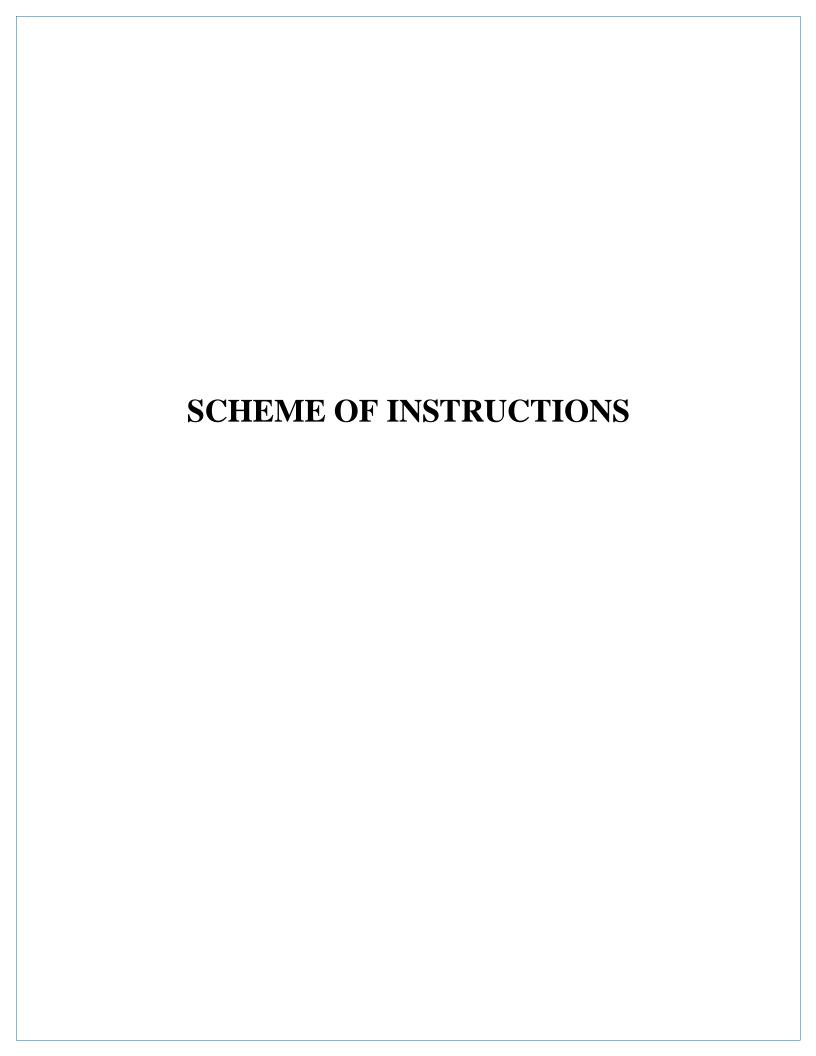
S.No	Course Code	Course	Subject	L	T	P	Credits
1	23CE6403/A	ProgramElective-2	Advanced Design of concrete	3	0	0	3
			structures				
2	23CE6403/B	ProgramElective-2	Advanced Environmental	3	0	0	3
			Engineering				
3	23CE6403/C	ProgramElective-2	Railway and Tunnel Engineering	3	0	0	3
4	23CE6403/D	ProgramElective-2	Groundwater Hydrology	3	0	0	3
5	23CE6403/E	ProgramElective-2	Plumbing - Water and Sanitation	3	0	0	3

SEMESTER VI (P.E-III)

S.No	Course Code	Course	Subject	L	T	P	Credits
1	23CE6404/A	ProgramElective-3	Analysis and Design of High Rise Building	3	0	0	3
2	23CE6404/B	ProgramElective-3	Solid Waste Management	3	0	0	3
3	23CE6404/C	ProgramElective-3	3	0	0	3	
4	23CE6404/D	ProgramElective-3	Urban Transport Planning		0	0	3
5	23CE6404/E	ProgramElective-3	Open channel flow & River Engineering	3	0	0	3

SEMESTER VI(P.E-IV)

S.No	Course Code	Course	Subject	L	T	P	Credits		
1	23CE6408/A	ProgramElective-4	Prefabricated Structures	3	0	0	3		
2	23CE6408/B	ProgramElective-4	Construction Equipment and Automation	3	0	0	3		
3	23CE6408/C	ProgramElective-4	ProgramElective-4 Instrumentation and Sensor Technology in Civil Engineering						
4	23CE6408/D	ProgramElective-4	Airport and Harbour Planning	3	0	0	3		
5	23CE6408/E	ProgramElective-4	Design and Drafting using REVIT	3	0	0	3		


SEMESTERVII–(PE-V)

S.No	Course Code	Course	Subject	L	T	P	Credits
1	23CE7403/A	ProgramElective-5	Design of Prestressed Concrete	3	0	0	3
2	23CE7403/B	ProgramElective-5	Repair and Rehabilitation of	3	0	0	3
			Structures				
3	23CE7403/C	ProgramElective-5	Disaster Preparedness & Planning		0	0	3
			Management				
4	23CE7403/D	ProgramElective-5	Pavement design and	3	0	0	3
			Construction				
5	23CE7403/E	ProgramElective-5	Rural Water Supply and		0	0	3
			Sanitation				

S.No	Specialization]	Program Electiv	ves .	
		Elective1	Elective2	Elective3	Elective4	Elective5
1	Structural Engineering	Advanced Structural Analysis	Advanced Design of Concrete Structures		Prefabricated Structures	Design of Prestressed Concrete
2	Geotechnical Engineering	Environmental Geotechnology		Ground Improvement Techniques		
3	Environmental Engineering	Air pollution and Control	Advanced Environmental Engineering	Solid Waste Management		Rural Water Supply and Sanitation
4	Transportation Engineering		Railway and Tunnel Engineering	Urban Transport Planning	Airport and Harbour Planning	Pavement Design and Construction
5	Hydrology &Water Resources Engineering		Groundwater Hydrology	Open channel flow & River Engineering		
6	Industry Oriented Courses			Analysis and Design of High Rise Buildings	Design and Drafting using REVIT	
7	Miscellaneous	Town planning &Architecture	Plumbing - Water and Sanitation		Construction Equipment and Automation	Repair and Rehabilitation Of Structures
8		Forensics in Civil Engineering			Instrumentation and Sensor Technology in Civil Engineering	Disaster Preparedness & Planning Management

CREDIT DISTRIBUTION - Category wise and Semester wise

	BS	ES	HS	PC	PE	OE	SC/SO	PROJ	Total
Sem-1	7.5	12	0	0	0	0	0	0	19.5
Sem-2	7.5	5.5	3.0	4.5	0	0	0	0	20.5
Sem-3	3	2.0	3.0	10	0	0	2	0	20
Sem-4	3	4	0	12.0	0	0	2	0	21
Sem-5	0	0	0	12.0	3	3	2	2.0	22
Sem-6	0	0	0	8.0	9	3	2	1	23
Sem-7	0	0	0	7	3	6	3	3	22
Sem-8	0	0	0	0	0	0	0	12	12
Total	21	23.5	6.0	53.5	15	12	11	18	160

23BS3101A	MECHANICS OF SOLIDS

Basic Science	Credits:	3
Theory	Lecture - Tutorial - Practice:	3-0-0
Engineering Mechanics	Continuous Evaluation:	30
	Semester end Evaluation:	70
	Total Marks:	100
	Theory	Theory Lecture - Tutorial - Practice: Engineering Mechanics Continuous Evaluation: Semester end Evaluation:

Course outcom	es	Opon	Succe	essiui (comple	enon o	i the co	ourse, 1	me stu	uent w	iii be a	ible to	•			
		CO1	Und	Understand the concepts of stresses, strains and principles stresses and strains.												
		CO2	Dete	Determine the shear forces and bending moments												
		CO3	3 Determine the bending stresses and deflection at any point subjected to loads.													
		CO4	Det	ermin	e the sl	hear st	ress in	ı beam	ıs, tors	ion in	shafts	, straiı	n enei	gy.		
		CO5	Determine the compound stresses and behavior of columns.													
Contribution of Course Outcomes towards		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	P O 12	PSO 1	PSC 2	
achievement of Program	CO1	3	2	2		3						2		1	3	
Outcomes	CO2	3	2	2		3						1		1	3	
(1 – Low, 2 - Medium, 3– High)	CO3	3	2	2		3						1		1	3	
	CO4	3	2	2		3						1		1	3	
	CO5	3	2	2		3						1		1	3	
Course Content			ESSES		STRA		law	-tensio	on -cc	omnres	sion a	and sh	ear-I	ateral	strain	

Stress and strain - Hooke's law -tension -compression and shear-Lateral strain, Poisson's ratio and volumetric strain - Elastic moduli and the relationship between them - Bars of varying section -composite bars - Temperature stresses- Simple problems. Concept of Principal Stresses and Strains.

SHEAR FORCE AND BENDING MOMENT

Shear Force and Bending Moment diagrams of statically determinate beams.

	UNIT – II FLEXURAL STRESSES Theory of simple bending – Assumptions – Derivation of bending equation - Neutral axis –Determination of bending stresses – Section modulus of across various beam sections.
	SLOPE AND DEFLECTION Relationship between moment; slope and deflection; Macaulay's method; Moment area method; Use of these methods to calculate slope and deflection for determinant beams—Simple problems; Castigliano's theorem.
	UNIT – III SHEAR STRESSES AND TORSION Derivation of formula of shear stress— Shear stress distribution across various beam sections - Derivation of torsion equation and its assumptions; Applications of the equation of the hollow and solid circular shafts; Torsional rigidity; Simple problems.
	STRAIN ENERGY Introduction; Derivation of expressions for elastic strain energy in uni -axial stress; elastic strain energy in pure bending; elastic strain energy for shearing stresses; elastic strain energy of a bar in pure torsion.
	UNIT – IV COMPOUND STRESSES Introduction; Principle of superposition and its limitation; Stress distribution on various cross sections of members due to eccentric loads; Middle third rule; Core or Kernel of a section.
	COLUMNS Introduction, Stability of equilibrium; The Euler's formula for columns with different end restraints; Limitations of the Euler's formulas; Generalized Euler buckling – load formulas;
Text books	 [T1] Er.R.K.Rajput, "Strength of Materials(Mechanics of solids)", S.Chand& Company Ltd, New Delhi. [T2] S.Ramamrutham& R Narayan, "Strength of Materials", DhanpatRai Publishing Co.(P) Ltd, New Delhi.
Reference books	 [R1] S SBhavikatti, "Structural Analysis", V K Publishers. [R2] S P Timoshenki& D H Young, "Theory of structures". [R3] E P Popov, "Mechanics of materials", Prentice-hall of India Pvt. Ltd., New Delhi.
E-resources and other digital material	http://nptel.ac.in/courses/105105108/

23HS3102	UNIVERSAL HUMAN VALUES 2: UNDERSTANDING HARMONY

Course Category:	Humanities and Social Sciences	Credits:	3
Course Type:	Mandatory course (suggested by AICTE)	Lecture - Tutorial - Practice:	2-1-0
Prerequisites:	None. Universal Human Values 1	Continuous Evaluation:	50
	desirable.	Semester end Evaluation:	50
		Total Marks:	100

Course outcom	es	Upon	succe	ssful c	Upon successful completion of the course, the students will be able to:												
		CO1	unde		and a	ıware	of ther	nselve	s and	their s	urroun	dings(1	amily	, socie	ty and		
		CO2		andle problems with sustainable solutions, while keeping human relationships a uman nature in mind.													
		CO3	exhibit critical ability and become sensitive to their commitment towards their understanding of human values, human relationship and human society.														
		CO4	apply	apply what they have learnt to their own self in different day-to-day settings in real life.													
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2		
towards achievement	CO1						1			2							
of Program Outcomes	CO2			3													
(1 – Low, 2 - Medium, 3 –	CO3						2										
High)	CO4								3				2				

Course Content

UNIT – I:

COURSE INTRODUCTION, NEED, BASIC GUIDELINES, CONTENT AND PROCESS FOR VALUE EDUCATION:

PART-1: Purpose and motivation for the course, recapitulation from UHV-I, Self-exploration: what is it?, its content and process, 'Natural acceptance' and experiential validation- as the process for self-exploration. Continuous Happiness and Prosperity – A look at basic Human Aspirations.

PART-2: Right understanding, Relationship and Physical Facility – the basic requirements for fulfillment of aspirations of every human being with their correct priority, Understanding Happiness and Prosperity correctly – A critical appraisal of the current scenario, Method to fulfill the above human aspirations: understanding and living in harmony at various levels.

(Practice sessions are to be included to discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and co-existence) rather than as arbitrariness in choice based on liking-disliking).

UNIT – II:

UNDERSTANDING HARMONY IN THE HUMAN BEING - HARMONY IN MYSELF:

PART-1: Understanding human being as a co-existence of the sentient 'I' and the material 'Body'. Understanding the needs of Self ('I') and 'Body' – happiness and physical facility, Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer).

PART-2: Understanding the characteristics and activities of 'I' and harmony in 'I'. Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail, Programs to ensure Sanyam and Health.

(Practice sessions are to be included to discuss the role others have played in making material goods available to me. Identifying from one's own life. Differentiate between prosperity and accumulation. Discuss program for ensuring health vs. dealing with disease).

UNIT – III:

UNDERSTANDING HARMONY IN THE FAMILY AND SOCIETY – HARMONY IN HUMAN-HUMAN RELATIONSHIP:

PART-1: Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfillment to ensure mutual happiness; Trust and Respect as the foundational values of relationship, Understanding the meaning of Trust; Difference between intention and competence, Understanding the meaning of Respect, Difference between respect and differentiation; the other salient values in relationship.

PART-2: Understanding the harmony in the society (society being an extension of family); Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals, Visualizing a universal harmonious order in society—Undivided Society, Universal Order—from family to world family.

(Practice sessions are to be included to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education, etc. Gratitude as a universal value in relationships. Discuss with scenarios. Elicit examples from students' lives).

UNIT – IV:

PART-1:UNDERSTANDING HARMONY IN NATURE & EXISTENCE – WHOLE EXISTENCE AS COEXISTENCE: Understanding the harmony in the Nature, Interconnectedness and mutual fulfillment among the four orders of Nature – recyclability and self-regulation in nature, Understanding Existence as Co-existence of mutually interacting units in all-pervasive space, Holistic perception of harmony at all levels of existence.

PART-2: IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL ETHICS: Natural acceptance of human values, Definitiveness of ethical human conduct, Basis for humanistic education, humanistic constitution and humanistic universal order, Competence in professional ethics: a) ability to utilize the professional competence for augmenting universal human order, b) ability to identify the scope and

	characteristics of people-friendly and eco-friendly production systems, c) ability to identify and develop appropriate technologies and management patterns for above production systems, Case studies of typical holistic technologies, management models and production systems, Strategy for transition from the present state to Universal Human Order: a) at the level of individual: as socially and ecologically responsible engineers, technologists and managers, b) at the level of society: as mutually enriching institutions and organizations. (Part-1:Practice sessions are to be included to discuss human being as cause of imbalance in nature (film "Home" can be used), pollution, depletion of resources and role of technology, etc. Part-2: Practice exercises and case studies are to be taken up in practice (tutorial) sessions eg. to discuss the conduct as an engineer or scientist, etc.)
Text books	[T1] Human values and professional ethics, R. R. Gaur, R. Sangal and G. P. Bagaria, Excel Books Private Limited, New Delhi (2010).
Reference books	[R1] JeevanVidya: EkParichaya, A. Nagaraj, JeevanVidyaPrakashan, Amarkantak (1999). [R2] Human Values, A. N. Tripathi, New Age International Publishers, New Delhi (2004). [R3] The Story of Stuff: The impact of overconsumption on the planet, our communities, and our health and how we can make it better, Annie Leonard, Free Press, New York (2010). [R4] The story of my experiments with truth: Mahatma Gandhi Autobiography, Mohandas Karamchand Gandhi, B. N. Publishing (2008). [R5] Small is beautiful: A study of economics as if people mattered, E. F. Schumacher, Vintage Books, London (1993). [R6] Slow is beautiful: New Visions of Community, Cecile Andrews, New Society Publishers, Canada (2006). [R7] Economy of Permanence, J. C. Kumarappa, Sarva-Seva-SanghPrakashan, Varanasi (2017). [R8] Bharat Mein Angreji Raj, PanditSunderlal, PrabhathPrakashan, Delhi (2018). [R9] Rediscovering India, Dharampal, Society for Integrated Development of Himilayas (2003). [R10] Hind Swaraj or Indian Home Rule, M. K. Gandhi, Navajivan Publishing House, Ahmedabad (1909). [R11] India Wins Freedom: The Complete Version, MaulanaAbulKalam Azad, Orient Blackswan(1988). [R12] The Life of Vivekananda and the Universal gospel, Romain Rolland, AdvaithaAshrama, India (2010). [R13] Mahatma Gandhi: The Man who become one with the Universal Being, Romain Rolland, Srishti Publishers & Distributors, New Delhi (2002).
E-resources and other digital material	https://www.youtube.com/channel/UCo8MpJB_aaVwB4LWLAx6AhQ https://fdp-si.aicte-india.org/download.php#1

23ES3103A	ENGINEERING GEOLOGY

	2
Lecture - Tutorial - Practice:	1-0-2
Continuous Evaluation:	30
Semester end Evaluation:	70
Total Marks:	100
	Continuous Evaluation: Semester end Evaluation:

Course outcomes		Upon	succes	sful co	mplet	ion of	the co	ourse,	the stu	dent w	ill be a	ble to	:		
		CO1	analyze and classify various minerals and rocks on the basis of their engineering properties.												
		CO2	apply quantitative skills and frame work for solving basic engineering geology problems related to geological features and geological hazards												
		CO3	understand the importance of geo physical methods making engineering decisions specially site selection of engineering projects.												
		CO4	co4 evaluate geological problems for a meaningful solution in the context of major civil engineering projects and their environmental impact.												
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
towards achievement	CO1	3													3
of Program Outcomes	CO2	3													3
(1 – Low, 2 - Medium, 3–	CO3	3	3		3										3
High)	CO4	3	3		3										3
		UNIT	'-I												
Course Content		1. INT	rrodi vai	rious	N TC	ENG Civil	INEE	engin	eering		- Scop projectal	cts;	N	gical stu Mineral Phy	

LAB EXCERCISE-I. Identification of Common Rock forming group of Minerals a. Quartz Group b. Feldspar group c. Mica Group d. Carbonate Group

properties of rock forming minerals

2. PETROLOGY -Rock cycle Igneous rocks – Formation –Classification and Textures

Sedimentary rocks – Formation –Classification and Textures, Metamorphic rocks and metamorphism – Formation –Classification and Texture, Engineering concerns of rocks

LAB EXCERSISE- II Identification of common rocks

- a) Granite b) Basalt c) Diorite d) Sandston e Shale f) Limestone g) Gneiss h) Schist
- i) Marble

UNIT-II

EARTH PROCESS

- 1. INTRODUCTION: Weathering, Engineering classification of weathered rocks: Importance of weathering in Civil Engineering. Earth quakes Causes and effects of earthquakes Earthquake Magnitude and intensity scales. seismic zones of India: Landslides -Classification -Preventive measures
- 2.Structural geology Stress –strain behavior of rock, Concept of rock deformation Rock outcrops- Types- strike and Dip; Folds- Types-Effects on construction; Faults-Types-Effects on construction: Joints-Types- Effects on construction

LAB EXCERSISE-III- Identification of structural features on Models.

UNIT-III

GEOLOGICAL AND GEOPHYSICAL INVESTIGATION METHODS

- 1. MAPS AND THEIR INTERPRETATION- Topographic Map and Geological Map
- LAB EXCERSISE-IV- Practicing topographic map cross section, Practicing geological maps and cross section
- 2. GEOPHYSICAL METHODS- Principles of exploration geophysical Methods Electrical Resistivity method- Interpretation, Seismic refraction method- Interpretation

LAB EXCERSISE-V-Electrical Resistivity survey for civil engineering application

UNIT-IV

GEOLOGICAL INVESTIGATIONS FOR MAJOR PROJECTS

- 1. DAMS Types and purpose of Dams , Geological investigation methods for dams:Reservoirs- Failure of reservoirs, Reservoir suitable rocks, Reservoir induced seismicity Tunnels- Site selection for tunnels, Geological investigation methods for Tunnels.
- 2.ENVIRONMENTAL GEOLOGY—Environmental impact on mining construction materials- aggregate waste disposal- Impact of environment on the construction of dams, reservoirs.

Text books	[T1] F.G. Bell, Fundamental of Engineering Geology, BS Publications PVT Ltd, Hyderabad.
	[T2] Parbin Singh, "Engineering and General Geology", Katson Publication House, 1987.
	[T3] Principals of Engineering Geology by K.V.G.K. Gokhale – B.S publications
	[T4] Engineering Geology by N.Chennkesavulu, Mc-Millan, India Ltd. 2005.
	[T5] Environmental Geology by K.S Valdia, TaTaMcGraHill, NewDelhi
Reference books	[R1] Krynine and Judd, "Engineering Geology and Geo techniques "McGraw Hill
	Book Company, 1990. [R2] Legeet, "Geology and Engineering ", McGraw Hill Book Company, 1998.
	[R3] Blyth, "Geology for Engineers", ELBS, 1995.
	[R4] GoodmanR.F-Introduction to rockmechanics, JohnWiley, Chichestor
	[R5] S.K Duggal et.al Engineering Geology –McGraw Hill Education, 2002.
	[R6] E.A Keller-Environmental Geology- Prientice Hall .N.Jercy
E-resources and other digital material	NPTEL Courses

23CE3304

SURVEYING & GEOMETICS

Course Category:	8						Credits:							4			
Course Type	:	Theory					Lecture - Tutorial - Practice:								3 - 0- 2		
Prerequisites	:	Basic N	Iathe	matics					C	ontinu	ous Ev	aluati	ion:	30			
									Sen	iester (end Ev	aluati	ion:	70			
											Tota	al Mai	rks:	100			
Course outcor	mes	Upon	succes	ssful co	omplet	ion of	the cou	rse, th	e stude	nt will	be able	e to:					
		CO1					inciple s surve		rveying	g and n	neasure	e linea	r dista	nces an	d areas		
		CO2		erstanc	l and	apply	the co	ncept	of leve	elling	to dete	ermine	the	elevatio	ns and		
	CO3		Understand the principles of theodolite survey and measure horizontal and vertical angles using theodolite survey.														
	CO4	Evaluate areas and volumes of various sections															
		CO5	Und	erstanc	l vario	ıs mod	lern fie	ld equi	pments	S							
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2		
towards achievement	CO1	2	2	1	1	3			1	3	3	1	1	2	2		
of Program Outcomes (1– Low, 2- Medium, 3	CO2	2	2	1	1	3			1	3	3	1	1	2	2		
	СОЗ	2	2	1	1	3			1	3	3	1	1	2	2		
– High)	CO4	2	2			2			1	3	3	1	1	2	2		
	CO5	1				2							3				

Course Content

UNIT – I

BASICS OF SURVEYING:

Surveying definition; Primary divisions; Classification; Principles; Plan and map; Scales used for maps and plans; Accuracy; Precision; Sources of errors; Types of errors.

CHAIN SURVEYING:

Principles of chain surveying; Basic definitions; Different methods; Instruments for Chaining and taping; ranging out; Chaining a line on a flat ground; Chaining on an uneven or a sloping ground; Chain & Tape corrections.

LABORATORY TESTS:

Determine the area of a given parcel of land by using cross staff and chain survey

• Determine the distance between two points with obstacles in between

UNIT – II LEVELLING:

Basic definitions; Bench marks; Different methods of leveling; Classification of direct leveling methods; Auto level; Leveling staff; Terms used in levelling; Theory of differential Levelling; Levelling field book; Missing entities; Height of Instrument and rise and fall method; Profile leveling; Cross sectioning; Sources of errors in leveling.

CONTOURING:

Contouring; contour interval; Characteristics of contours; Methods of locating contours; Interpolation and Sketching of contours; Uses of contour maps.

LABORATORY TESTS:

- Determination of elevations of various points remote from each other
 - (Differential leveling)
 - Survey and plot the longitudinal and cross sections of a given embankment
 - Prepare a contour map of existing ground using an auto level.

UNIT - III

THEODOLITE SURVEYING:

Main parts of a vernier theodolite; Basic definitions; Fundamental lines; Temporary adjustments; Measurement of a horizontal angle by repetition and reiteration. Measurement of vertical angle; Errors in theodolite surveying.

CIRCULAR CURVES:

Basic definitions; Designation of a curve; Relationship between radius and degree of curve; Elements of a simple curves; setting out of simple curve

LABORATORY TESTS:

- Measurement of horizontal angle by using Repetition method.
- Measurement of horizontal angles by using Reiteration method.
- Measurement of vertical angles using a Vernier theodolite.

UNIT - IV

AREAS & VOLUMES:

Introduction; Area of a tract with straight irregular boundaries; Boundaries with offsets at irregular intervals; Coordinates method; Planimeter: working; Area of cross sections: two level sections only; Volume of a prismoid: Trapezoidal rule; Prismoidal formula; Capacity of a reservoir.

MODERN FIELD SURVEY SYSTEMS EDM:

Principle, Types of EDM instruments; Total Station: Fundamental parameters, Field equipment, Setup, Advantages, Uses; GPS: Functioning, Applications in Civil Engineering.

	 LABORATORY TESTS: Measurement of bearings of an open traverse with prismatic compass and computation of correct included angles. Measurement of bearings of a closed traverse with prismatic compass and computation of area.
Text books	[T1] Surveying, Volume-1 by K. R. Arora; Standard Book House.[T2] Advanced Surveying by SatheeshGopi, R. Sathikumar, N. Madhu; Pearson Education
Reference books	[R1] Surveying, Volime-1 by B.C.Punmia; McGraw Hill Education (India) Private Limited
E-resources and other digital material	https://nptel.ac.in/courses/105/107/105107122/

~~	$\alpha \mathbf{r} \cdot$	200	
7.4	CE3	6 4114	٠

FLUID MECHANICS

Course Categ	Pro	gram	me Co	ore								edits:	3		
Course Type:		eory								ıtorial			3 - 0-	0	
Prerequisites:				Engine lechan	eering ics	Physic	es	Continuous Evaluation: Semester end Evaluation: Total Marks:					30 70 100		
Course Outcomes	Upon s	succes	sful c	omple	tion of	the co	ourse, t	he stud	dent wi	ll be a					
	CO1	Eval	luate 1	the pre	essure (of the f	lowing	g fluid	•						
	CO2	Und	erstar	nd the	kinema	atic and	d dyna	mic be	chavior	of flo	w.				
	CO3	App	ly the	princi	iples to	meas	ure the	flow	of fluid	l throu	gh pipe	es and	Orific	es.	
	CO4	Ana	lyze t	he flov	w throu	ıgh pip	es.								
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
Outcomes towards achievement of Program	CO1	3	2	3											3
	CO2	3	2	3											3
Outcomes	CO3	3	2	3										2	3
(1 – Low, 2 - Medium, 3 – High)	CO4	3	2	3										2	3
Course	UNIT	I:		l .											
Content	PROPI Contin												measu	rement	; Flui
	FLUID Law; A	Atmos	pheri	c, Abs	solute a		-								
	UNIT	II:													
	_	, unste nensio	eady, nal f	unifor lows;	m and Irrotat	non-u ional a	niform and ro	flows	; Lami l flow	nar an s; Stre	d turbu	lent f	lows; 🛚	cation of Three, to the; Strea	wo an

	DYNAMICS OF FLUID FLOW: Euler's equation of motion; Bernoulli's equation; Momentum principle; Application of Momentum equation; Force exerted on a pipe bend.
	UNIT III:
	MEASUREMENT OF FLOW THROUGH PIPES: Measurement of flow through Pipes – methods and various devices; Discharge through Venturi meter; Discharge through orifice meter; Measurement of velocity by Pitot tube.
	MEASUREMENT OF FLOW THROUGH ORIFICES: Flow through orifices; Determination of coefficients for an orifice; Flow through small orifice and large rectangular orifice.
	UNIT – IV
	ANALYSIS OF FLOW THROUGH PIPES: Energy losses in pipelines; Darcy – Weishbach equation; Minor losses in pipelines; Pipes in series and parallel.
	LAMINAR FLOW: Relation between shear and Pressure Gradients in Laminar Flow; Reynold's experiment; Critical velocity; Steady laminar flow through a circular pipe – Hagen Poiseuille's Law; Laminar Flow between Parallel Plates – Both plates at rest.
Text books	 [T1] P.N. Modi& S.N. Seth, "Hydraulics & Fluid Mechanics", 18th ed., Standard Book House, New Delhi, 2015. [T2] A.K. Jain, "Fluid Mechanics", 11th ed., Khanna Publishers, New Delhi, 2014.
Reference books	 [R1] R. K. Bansal, "Fluid Mechanics and Hydraulic Machines", 9thet.,Laxmi Publications; New Delhi, 2015. [R2] Rajput R.K., "Fluid Mechanics and Hydraulic Machines", 3rd ed., S.Chand and Company Ltd., New Delhi, 2014. [R3] K. Subramanya, "Theory and Applications of Fluid Mechanics", 3rd ed., Tata McGraw Hill Publishing Company, New Delhi, 2013.
E-resources and other digital material	www.nptel.ac.in/courses/105101082/ www.nptel.ac.in/courses/105103095/

23CE3308	CONCRETE TECHNOLOGY

Course Category:	Programme Core	Credits:	3
Course Type:	Theory & Practice	Lecture - Tutorial - Practice:	2-0-2
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcome	es	Upor	succe	essful	comp	letion	of the	course	e, the s	tudent	will be	e able t	Upon successful completion of the course, the student will be able to:													
		CO1				ne ma		_	-	ss of	cemei	nt, typ	es of	cemen	ts and											
		CO2	Apply properties of the constituent materials in concrete																							
		CO3	CO3 Analyze and Compare the Properties of fresh and hardened concrete.																							
		CO4	CO4 Understand effects of various chemical actions on concrete.																							
		CO5	CO5 Evaluate various special concretes and concreting methods based on the scenario.																							
		CO6	CO6 Evaluate an appropriate concrete mix deign using Indian Standard.																							
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2											
towards achievement	CO1							2						1	3											
of Program Outcomes	CO2	1					1	2						1	3											
	CO3			2										1	3											
(1 – Low, 2 – Medium, 3 – High)	CO4				2		1	2						2	2											
	CO5						2	2						2	2											
	CO6	1	3	3	2		3	3	2		1		1	2	2											

Course Content

UNIT – I

CEMENT: Introduction to concrete as a structural material, Uses of cement, Chemical Composition of Ordinary Portland Cement, Functions of cement ingredients; Manufacturing process of cement(wetandDry Processes), Hydration of Cement, Heat of Hydration, Water requirements for hydration, Types of cements --Ordinary, Rapid hardening, low-heat, sulphate resisting, Portland slag, Portland pozzolana, High alumina cement, white cement and colored cement properties and their applications; Storage of cement; Field tests for cement.

LABORATORY TESTS (As per IS Specifications): Fineness of cement, consistency, initial and final setting time, Specific gravity and compressive strength of cement.

AGGREGATES: Classification of Aggregates; Properties of aggregates Grading of Aggregates; IS: 383 requirements for aggregates; Alkali – Aggregate reaction.

LABORATORY TESTS (As per IS Specifications): Sieve analysis, specific gravity, bulk density of both fine and coarse aggregate, bulking of sand.

UNIT - II

WATER: General; Quality of water; Use of sea water; IS: 456 requirements.

MORTAR: Functions of sand in mortar; Classification of mortars; Uses of mortar; Properties of good mortar mix and mortar; Selection of mortar.

ADMIXTURES IN CONCRETE: General; Air—entraining agents; Plasticizers; Accelerators; Retarders; Miscellaneous admixtures for damp proofing and Surface hardening; Introduction to mineral admixtures.

CONCRETE: Definition; Future demand of concrete - advantages of concrete structures; Proportioning of concrete; Water - cement ratio; Properties of Fresh Concrete - Workability, Factors Affecting Workability, Segregation; Bleeding; Yield of Concrete.

LABORATORY TESTS (As per IS Specifications): workability tests on fresh concrete: slump cone, compaction factor.

UNIT – III

MANUFACTURE OF CONCRETE: Batching of concrete; Mixing; Transporting Concrete; Placing concrete; Compaction of concrete; Curing of concrete; Finishing.

HARDENED CONCRETE: General; Gel / space ratio; Gain of strength with age; Maturity concept of concrete; Elastic properties of concrete; Relation between modulus of Elasticity and strength; Factors affecting modulus of elasticity; Creep; Factors affecting creep; Shrinkage; Plastic shrinkage; Mechanism of shrinkage; Factors affecting shrinkage.

LABORATORY TESTS (As per IS Specifications): Compressive strength, Effect of height / diameter ratio on strength and failure patterns, flexural strength, split tensile test, Relation between Compressive and Tensile Strength; Introduction to Non-Destructive Tests(Demo on Rebound Hammer Test, Ultrasonic Pulse Velocity Test).

UNIT - IV

DURABILITY OF CONCRETE: Permeability of concrete; Sulphate attack; Methods of controlling sulphate attack; Durability of concrete in sea water; Corrosion mechanism of reinforcement in concrete, Environmental considerations, concrete durability and sustainability, technology for sustainable development.

	SPECIAL CONCRETES & CONCRETING METHODS: Light weight concrete and No fines concrete; High strength and high performance of concrete; Polymer concrete and Fiber reinforced concrete; Gunite or shotcrete; Ferro cement; Vacuum concrete, Vacuum Dewatered Concrete, Self compacting concrete, Self healing Concrete. CONCRETE MIX DESIGN: Concept of mix design; List of Mix design methods; Indian standard method of mix design (IS10262-2019).
Text books	[T1] Concrete Technology by M. S. Shetty; S. Chand & Company (Pvt.) Ltd., New Delhi. [T2] Properties of Concrete by A. M. Neville; Published by Dorling Kindersley (India) Pvt. Ltd. Licensees of Pearson Education in south Asia, New Delhi.
Reference books	[R1] Concrete Technology by A.R.Santhakumar; Oxford University press,New Delhi [R2] Concrete Technology by M. L. Gambhir; Tata McGraw – Hill Publishing Company Ltd., New Delhi.
E-resources and other digital material	http://nptel.ac.in/courses/105102012

23CE3651	COMPUTER AIDED CIVIL ENGINEERING DRAWING

Course Category:	Skill Enhancement Course	Credits:	1
Course Type:	Laboratory	Lecture - Tutorial -	0-0-2
	-	Practice:	
Prerequisites:	Engineering Graphics	Continuous	30
		Evaluation:	70
		Semester end	100
		Evaluation:	
		Total Marks:	

Course outcomes	Upon s	uccess	sful co	mplet	ion of	the co	ourse,	the stu	udent	will b	e able	to:			
	CO1		apply the knowledgeofVariousmeasurementsand dimensionsofa building components												
	CO2	understandprinciplesofplanning,principlesofarchitectureandbuildin g Bye-laws.													
	CO3	app	apply the principles of planning to secure building plansasper Building bye-laws												
	CO4		analyze the requirements of user to draw the plan, elevation, sectional view of the building as per principles of planning and NBC												
Contribution of Course Outcomes towards achievement		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
	CO1	1		2											
of Program Outcomes	CO2	1		2											
(1 – Low, 2- Medium, 3–	CO3	1		2										2	2
High)	CO4	1		2										2	
Course Content	PARTA INTRODUCTION AND THEORY CONCEPTS EXPLANATION FOR														
	THE F	OLL	OWIN	NG:											
	Princip	lesofp	lanniı	ng&ar	chitec	ture									
	Buildir	igbye-	laws	&Nati	onalB	uildin	gCod	e							

 $Standard dimensions of Doors, windows \ and measurements of different rooms \ and \ various$

Conventionalsigns and Symbols &Line diagrams Plan, Elevation, Section of a Building and site plan

structural components

	(MANUALDRAWING)
	1. Drawing practice of conventional signs and symbols
	2. Drawing practice of Door, window and ventilator (Elevations only with standard measurements
	3. Drawing practice of section of a wall including foundation with specifications
	DESIGN LINE DIAGRAMS AND DRAW PLAN, ELEVATION & SECTION OF THE FOLLOWING:
	4.Residentialbuilding Drawing- Single bedroom, Living room, Kitchen(Load bearingwall structure)
	5. Elevations of various types of Buildings in explanation
	PART-B
	AUTOCAD DRAWING 1. AutoCAD Commands introduction and practice
	Design Line Diagrams and Prepare the approval drawings for local authority with setbacks by drawing Plan, Elevation, Sectionofthefollowing
	 Single storied ResidentialDoublebedroom building (Load bearing structure) Dog legged Stair case RCC Two storied framedstructurebuildingwithstaircase Single storied Rural hospital building/school building Plan
Text books	[T1] Buildingplanning, designing and scheduling by Gurucharan Singh and Jagdish Singh —Standard Publishers-Delhi.
	[T2] BuildingDrawingbyM.G. Shah, C.M. Kale andS.Y.Patki; TataMcGrawHillPublishingCo.Ltd., New Delhi.
Reference books	[R1] National Building Code, Bureau of Indian Standards, New Delhi, 2005. [R2] Planning & Designing Buildings by Yashwant S. Sane; Allies Book Stall, Pune [R3]Residential Interior Design: A Guide To Planning Spaces 3rd Edition by Maureen Mitton (Author), Courtney Nystuen (Author)
E-resources and other digital material	www.floorplanner.com

23TP3106	LOGIC & REASONING

Course Category:	Institutional Core	Credits:	1
Course Type:	Learning by Doing	Lecture - Tutorial - Practice:	0- 0- 2
Prerequisites:		Continuous Evaluation:	100
-		Semester end Evaluation:	0
		Total Marks:	100

Course outcor	nes	Upon	succe	ssful c	omple	tion o	f the c	ourse,	the stu	ıdent v	vill be	able to):		
		CO1	Think reason logically in any critical situation												
		CO2	Anal	Analyze given information to find correct solution											
		CO3	Tore	To reduce the mistakes in day to day activities in practical life											
		CO4	Deve	Develop time management skills by approaching different shortcut methods											
		CO5	Use	Use mathematical based reasoning to make decisions											
		CO6	companies and in other competitive exams												
Contributio n of Course Outcomes towards achievemen		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
	CO1						2								
t of Program	CO2		2												
Outcomes $(1 - Low, 2)$	CO3								2						
- Medium, 3– High)	CO4									2					
	CO5	2													
	CO6	1													
Course Content U		UNIT	UNIT-I												
			1. Series Completion, 2. Coding-Decoding, 3. Blood Relation, 4. Puzzles test												

	UNIT-II
	 Direction sense test, Logical Venn diagrams, Number test, ranking test, Mathematical operations
	UNIT-III 1. Arithmetical Reasoning, 2. Inserting missing character, 3. Syllogism. 4. Binary logic. 5. Data sufficiency
	UNIT-IV 1. Water images, 2. Mirror images, 3. Paper folding, 4. Paper cutting, 5. Embedded Figures, 6. Dot situation, 7. Cubes & Dice
Text books	 [T1] R. S. Aggarwal, "Verbal and non-verbal reasoning", Revised Edition, S Chand publication, 2017 ISBN:81-219-0551-6, [T2] Reasoning Guru Verbal & Non-Verbal Reasoning by Vikramjeeth, Multilingual Edition-2023. ISBN:978-9358706000
Reference books	
E-resources and other digital material	

Course Category:	Mand	atory	Cours	e			Credit	s:				-						
Course Type:	Theor	· y					Lectur Practio		orial-		2-	2-0-0						
Prerequisites :		ciousne it a be	-			to	Contin	uous	Evalu	ation:	40	40+40+3+17						
							Semest	ter en	d Eval	luation	1:							
						,	Total N	Marks	5:		10	100						
Course Outcomes	Upon CO1 CO2	successful completion of the course, the student will be able to: identify various factors causing degradation of natural resource, (remember, understand, apply) identify various ecosystem and need for biodiversity(apply)													tand,			
	CO3		realize and explore the problems related to environmental pollution and its															
	CO4	management(analyze, evaluate) apply the information and technology to analyze social issues, use acts associated with environment (create)																
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2			
Outcomes towards	CO1	1							1					1				
achievement of Program	CO2		1	1							1			1				
Outcomes	CO3				1	1							1	1				
(1-Low, Medium-2, 3-	CO4						1	1	1					1				

ENVIRONMENTAL SCIENCE

23MC3107B

High)

Course Content

UNIT I

The Multidisciplinary Nature of Environmental StudiesDefinition, scope and importanceNeed for public awareness.

NATURAL RESOURCES:

RENEWABLE AND NON-RENEWABLE RESOURCES: Natural resources and associated problems.

- (a)FOREST RESOURCES: Use and over-exploitation, deforestation. Timber extraction, mining, dams and their effects on forests and tribal people.
- (b)WATER RESOURCES: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems.
- (c)MINERAL RESOURCES: Use and exploitation, environmental effects of extracting and using mineral resources.
- (d)FOOD RESOURCES: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity.
- (e)ENERGY RESOURCES: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources.
- (f)LAND RESOURCES: Land as a resource, land degradation, man induced landslides, soil erosion and desertification. Role of an individual in conservation of natural resources. Equitable use of resources for sustainable lifestyles.

UNIT II

ECOSYSTEMS

Concept of an ecosystem. Structure and function of an ecosystem. Producers, consumers and decomposers. Energy flow in the ecosystem. Ecological succession. Food chains, food webs and ecological pyramids. Introduction, types, characteristic features, structure and function of the following ecosystem: (a) Forest ecosystem (b)Grassland ecosystem (c)Desert ecosystem

(d)Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

BIODIVERSITY AND ITS CONSERVATION

Introduction, definition: genetic, species and ecosystem diversity. Biogeographically classification of India. Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values. Biodiversity at global, National and local levels. India as a mega-diversity nation. Hot-spots of biodiversity. Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts. Endangered and endemic species of India. Conservation of biodiversity: in-situ and exsitu conservation of biodiversity.

UNIT III ENVIRONMENTAL POLLUTION Definition, Causes, effects and control measures of (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards SOLID WASTE MANAGEMENT: Causes, effects and control measures of urban and industrial wastes. Role of an individual in prevention of pollution. DISASTER MANAGEMENT: Floods, earthquake, cyclone and landslides. **UNIT IV** SOCIAL ISSUES AND THE ENVIRONMENT: From unsustainable to sustainable development. Urban problems related to energy. Water conservation, rain water harvesting, watershed management. Resettlement and rehabilitation of people; its problems and concerns. ENVIRONMENTAL ETHICS Issues and possible solutions. Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Wasteland reclamation. Consumerism and waste products. **ENVIRONMENT PROTECTION ACT** Air (Prevention and Control of Pollution) Act. Water (Prevention and Control of Pollution) Act. Wildlife Protection Act. Forest Conservation Act. Issues involved in enforcement of environmental legislation. **PUBLIC AWARENESS** Human Population and the Environment, Population growth, variation among nations, Population explosion—Family Welfare Programme. ENVIRONMENT AND HUMAN HEALTH Human rights, Value education, HIV/AIDS, Women and Child Welfare.

Role of Information Technology in environment and human health.

FIELD WORK/ CASE STUDIES

Visit to a local area to document environmental assets—river/forest/grassland/hill/ mountain. Visit to a local polluted site—Urban/Rural/Industrial/Agricultural. Study of common plants, insects, birds. Study of simple ecosystems—pond, river, hill slopes, etc.

Self-Study Water resources, soil resources, mineral resource: radioactive elements, Threats to biodiversity, Solid waste management, Role of Information Technology in environment and human health.

Text books [T1] Erach Bharucha. 2004, Environmental Studies for undergraduate courses, University Grants Commission, New Delhi, Bharati Vidyapeeth Institute of Environment Education and Research.

Reference	[R1] AnjaneyuluY. Introduction to Environmental sciences, B S Publications PVT Ltd,
books	Hyderabad
	[R2] Anjireddy.M Environmental science & Technology, BS Publications PVT Ltd, Hyderabad.
	[R3] Benny Joseph, 2005, Environmental Studies, The Tata McGraw- Hill publishing company limited, New Delhi.
	[R4] Principles of Environmental Science. & Engg. P. Venu Gopala Rao, 2006, Prentice-Hall of India Pvt. Ltd., New Delhi.
	[R5] Ecological and Environmental Studies – Santosh Kumar Garg, Rajeswari Garg (or) Rajani Garg, 2006, Khanna Publishers, New Delhi.
	[R6] Essentials of Environmental Studies, Kurian Joseph & R Nagendran, Pearson Education publishers, 2005.
	[R7] A.K Dee – Environmental Chemistry, New Age India Publications.
	[R8] BharuchaErach- Biodiversity of India, Mapin Publishing Pvt.Ltd
E-resources	https://www.ugc.ac.in/oldpdf/modelcurriculum/env.pdf
and other	
digital	
material	

23HS4101	ENGINEERING ECONOMICS AND MANAGEMENT

Course Category:	Management Course	Credits:	2
Course Type:	Theory	Lecture - Tutorial - Practice:	2 - 0 - 0
Prerequisites:	NIL	Continuous Evaluation:	30
_		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succes	ssful co	omplet	ion of	the cou	ırse, th	e stude	nt will	be abl	le to:				
	CO1	unde	understand the principles of economics, income and goods and service tax.												
	CO2	appl	apply the concepts of management and demand forecasting.												
	CO3	eval	evaluate time value of money and various forms of decision making.												
	CO4	appl	y the	concep	t of fin	ancial	import	ance in	n proje	cts and	budge	eting pr	ocess.		
Contributio n of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
Outcomes towards	CO1	2					1		2						2
achievement of Program	CO2	3	1	2		2				1					2
Outcomes	CO3	2	2			2	2		2				2		2
(1 – Low, 2 - Medium, 3 – High)	CO4	3	2	2		2				1	1	2	2		2
Course	UNIT	– I	ı	ı	ı	ı	ı	ı	ı	ı	1	1	I	ı	ı

Content

ECONOMICS

Introduction to Engineering Economics, Theory of Demand, Elasticity of Demand, Supply and Law of Supply, Indifference Curves, Budget Line.

MANAGERIAL ECONOMICS, MONEY, NATIONAL INCOME, GOODS AND SERVICE TAX

Introduction to Managerial Economics, Scope of Managerial Economics, Techniques of Managerial Economics, Applications of Managerial Economics, Money, National Income, Goods and Services Tax.

UNIT - II

CONCEPTS IN MANAGEMENT & HUMAN RESOURCE MANAGEMENT

Characteristics of Management, Scope of Management, Functions of Management, Levels of Management, Skills of Management, Managerial Roles, Administration and Management, Human Resource Management, Human Resource Planning, Recruitment and Selection.

DEMAND FORECASTING

Introduction to Demand forecasting, Forecasting Horizons, Steps to Forecasting, Forecasting Methods, Seasonal Adjustments, Forecasting Performance Measures, Break-Even Analysis.

	UNIT – III TIME VALUE OF MONEY Introduction to time value of money, Simple Interest, Compound Interest, Present Worth Analysis, Future Worth Analysis, Annual Cash Flow Analysis, Rate of Return Analysis, Normal and Effective Interest Rate, Perpetual Payment. DECISION MAKING Types of Decision-Making Environments, Decision Tree Analysis, Multiple Criteria Decision Making.
	UNIT – IV FINANCIAL STATEMENT & FINANCIAL RATIOS Financial Analysis, Financial Statement, Trading Account, Profit and Loss Account, Balance Sheet Requirements, Distinction between Profit and Loss Account and Balance Sheet. CAPITAL BUDGETING Capital Financing and Allocation Functions, Sources of Capital Funds, Capital Asset Pricing Model, Weighted Average Cost of Capital, Leasing Decisions, Capital Allocation.
Text books Reference books	 [T1] Pravin Kumar, "Engineering Economy and Management", 1st ed., Willey India, New Delhi, 2012. [T2] R. Pannerselvam, "Engineering Economics", 13th ed., PHI Learning Pvt. Ltd., New Delhi, 2012. [T3] M. Mahajan, "Industrial Engineering and Production Management" 2nd ed., Dhanpat Rai Publications. [R1] Philip Kotler & Gary Armstrong "Principles of Marketing", Pearson Prentice Hall, New Delhi, 2012 Edition.
E-resources and other	[R2] IM Pandey, "Financial Management" 11th ed., Vikas Publications. [R3] B.B Mahapatro, "Human Resource Management", New Age International publishers, 2011. https://www.toppr.com/guides/fundamentals-of-economics-andmanagement/supply/supply-function/
digital material	https://keydifferences.com/difference-between-personnel-management-and-humanresource-management.html http://productlifecyclestages.com/ https://speechfoodie.com/cash-flow-diagrams/

23BS4102A	PROBABILITY AND STATISTICS FOR ENGINEERS

Course Category:	Basic Science									Credits:						
Course Type:	Theory								Lecture-Tutorial-Practice:							
Prerequisites:												uation			30	
									Seme	ster e	nd Ev	aluati	on:		70	
									Total	Mark	KS:				100	
								<u>'</u>								
Course	Upon	succe	essful	compl	etion	of the	course	e, the	studen	t will	be ab	le to:				
Outcomes	CO1	find	proba	bilitie	s usin	g axio	ms an	d und	erstan	d rand	om va	riable	S.			
	CO2	estir	nate P	robab	ility d	ensity	functi	ions.								
	CO3	O3 apply random phenomena of sample to estimate errors														
	CO4	analyze correlation, regression and quality improvement, control charts.														
Contribution of		РО	РО	РО	РО	РО	РО	PO	PO	РО	РО	РО	PO	PSO	PSO	
Course Outcomes		1	2	3	4	5	6	7	8	9	10	11	12	1	2	
towards	CO1	3	2			1								1		
achievement of	CO2	3	2			1								1		
Program																
Outcomes	CO3	3	2			1								1		
(3-HIGH,	CO4	3	2			1								1		
2-MEDIUM,																
1-LOW)																
Course Content	UNIT	' I:														
	PROE Addit Bayes	BABII ion ru	le of porem.	probab	oility,	Condi	tional	proba	bility,	Multi	plicat	ion rul	-	obabili		
												-		Varian on distri		

	UNIT II:
	PROBABILITY DENSITIES: ContinuousRandom Variable, Expectation, Variance and Standard deviation of continuous random variable, Normal distribution, Normal approximation to the Binomial distribution.
	OTHER PROBABILITY DENSITIES - Uniform distribution, Log normal distribution, Gamma distribution, Beta distribution, Weibull distribution.
	UNIT III:
	SAMPLING DISTRIBUTIONS: Introduction, Populations and Samples, Sampling distribution of the mean (SD known and SD unknown) – Sampling distribution of the variance.
	ESTIMATION OF MEAN: Point Estimation, Maximum error of estimate, Interval Estimation.
	UNIT IV:
	REGRESSION AND CORRELATION: Types of Correlation, Scatter diagram, Karl Pearson's coefficient of correlation, Rank Correlation, Regression analysis.
	THE STATISTICAL CONTENT OF QUALITY IMPROVEMENT PROGRAMS: Quality Control- Control Charts for Measurements - Control Charts for Attributes.
Text books	[T1] Probability and Statistics for Engineers ,Eighth edition by Richard A. Johnson Prentice Hall of India.
	[T2] Probability and statistics by K.Murugesan, P.Guruswamy, AnuRadha Publications.
Reference books	[R1] Probability & Statistics for Engineers & Scientist by R.E. Walpole,
	R.H.Myers&S.L.Myers, Sixth Edition, Prentice Hall of India / Pearson Education.
	[R2] Probability and Statistics, Purna Chandra Biswal, Pearson Education Prentice Hall of India 2007.
	[R3] Probability and Statistics by T.K.V.Iyengar, B.Krishna Gandhi, S.Ranganatham, M.V.S.S.N.PrasadS.Chand.
E-resources and other digital	https://onlinecourses.nptel.ac.in/noc22 mg31/preview
material digital	https://nptel.ac.in/courses/111105041

STRUCTURAL ANALYSIS

Course Category:	Program	Core	Credits:	3						
Course Type:	Theory		Lecture - Tutorial - Practice:	3-0-0						
Prerequisites:	Mechanic	s of Solids	Continuous Evaluation:	30						
	20BS3101	A	Semester end Evaluation:							
			Total Marks:	100						
Course outcomes	Upon	successful completion of the c	f the course, the student will be able to:							
	CO1	1 understand, draw and interpret influence line diagrams.								
	CO2	apply energy methods for an	alysis of indeterminate beams and fran	nes.						
	CO3	analyze statically indeterm	inate structures using force and di-	splacem						

			metno	oas.											
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
towards achievement	CO1	3				2							2	2	
of Program Outcomes	CO2	3	1			2							2	2	
(1 – Low, 2 - Medium, 3	CO3	3	1			2							2	2	
- High)	CO4	3	1	Ì		2							2	2	

Course Content

UNIT – I

CO4

INFLUENCE LINES FOR STATICALLY DETERMINATE STRUCTURES

: EQUILIBRIUM PRINCIPLES AND ITS APPLICATION

Influence line for beam reaction; Shearing forces; Bending moment; Calculation of maximum and absolute maximum bending moment for rolling loads.

evaluate multistory frames for vertical and horizontal loads by approximate

INFLUENCE LINES FOR STATICALLY DETERMINATE STRUCTURES

: MULLER BRESLAU PRINCIPLES AND ITS APPLICATION

Muller Breslau Principle; Concept and Its Application.

UNIT - II

ANALYSIS OF INDETERMINATE STRUCTURES USING ENERGY METHODS

	: BEAMS
	Strain Energy Method for analysis of continuous beams up to two spans.
	ANALYSIS OF INDETERMINATE STRUCTURES USING ENERGY METHODS: :FRAMES
	Analysis of rigid frames up to first degree of redundancy.
	UNIT – III
	ANALYSIS OF INDETERMINATE STRUCTURES: FORCE METHOD Propped cantilever by consistent deformation method; Fixed beams for different loadings.
	ANALYSIS OF INDETERMINATE STRUCTURES:DISPLACEMENT METHODS Slope deflection method for continuous beam (two span) and portal frames without side sway. Moment distribution method for continuous (two span) and portal frame without side sway.
	UNIT – IV APPROXIMATEMETHODSOFANALYSISFORMULTISTORYFRAMES: KANI'SMETHOD Introduction and principles of the kani's method; Application of the method to continuous beams; Application of method to the analysis of portal frames without side sway.
	APPROXIMATEMETHODSOFANALYSISFORMULTISTORYFRAMES: ANALYSIS OF LATERAL LOADS Portal method and cantilever method.
Text books	[T1] Analysis of structures by Volume I –17 th Edition by Vazirani&Ratwani &
	Volume –II 16 th Edition by Vazirani&Ratwani, Khanna Publications; Delhi,2015.
	[T2] Structural Analysis by S.S. Bhavikatti, Volume-I and II, 4 th Edition, Vikas Publishing house PVT Ltd,2014.
Reference books	[R1] Structural analysis by Hibbeler, 6 th Edition, Pearson India Education Services PvtLtd.2015
	 [R2] Structural Analysis by R. Vaidyanathan Volume-I and II, 3rdEdition, Laxmi Publications (P) Ltd,2012. [R3] Theory of structures by S. Ramamrutham, 9thEdition, DhanapatRai Publications,2014. [R4] Basic Structural Engineering by C.S Reddy, Tata McGraw Hill, ThirdEdition. [R5] Theory of structuresVol—IbyG.S. Panditand S.P. Gupta and R.Gupta by Tata McGraw Hill Ltd., New Delhi.
E-resources and other digital material	Structural Analysis—I - http://nptel.ac.in/courses/105101085 Structural Analysis - I - http://nptel.ac.in/courses/105105166 Structural Analysis - II - http://nptel.ac.in/courses/105101086

23CE4304	GEOTECHNICAL ENGINEERING

Course Category:	Program Core	Credits:	4
Course Type:	Theory & Practice	Lecture - Tutorial - Practice:	3-0-2
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcom	nes	Upon	Upon successful completion of the course, the student will be able to:												
	CO1	Understand the origin of soil and basic inter-relationships of soil components													
	CO2	Determine the index properties of soil and classify the soil based on the index properties													
		CO3	Unde	rstand	the So	oil-Wa	ater Ir	iteraci	tions						
		CO4	Under	rstand	and d	eterm	ine co	mpre	ssibili	ty and	l shea	r stren	gth cha	aracteris	stics of
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
Outcomes towards achievement	CO1	3	3												
of Program Outcomes	CO2	3	3		2						1			3	3
(1 – Low, 2 -	CO3	3	3		2	3					1			3	3
Medium, 3 – High)	CO4	3	3		2	3					1			3	3

Course Content

UNIT – I

INTRODUCTION, BASIC DEFINITIONS AND RELATIONS:

Scope of Geotechnical Engineering; Origin of Soils; Formation of soils; Types of soils; Transportation of soils; Major soil deposits of India.

Phase diagrams; Volumetric relationships; Weight relationship; Volume-weight relationships; Specific gravity of soils; Three phase diagram in terms of void ratio; Inter-relationships

INDEX PROPERTIES AND SOIL CLASSIFICATION:

Index Properties – Introduction, Particle Size Distribution Curve and its uses, Relative Density, Plasticity of soils, Consistency Limits and uses, Plastic, consistency and liquidity indices; Flow index & toughness index; Sensitivity; Thixotropy; Activity of soils. Unified soil classification system; Indian standard soil classification system

Experiments:

1. Determination of water content by oven drying method

- 2. Determination of specific gravity by Density bottle & Pycnometer
- 3. Grain Size analysis Mechanical analysis wet and dry soil
- 4. Determination of liquid limit and plastic limit of soil
- 5. Determination of in-situ dry density of soil by Core cutter method and by sand replacement method

UNIT - II

SOIL MOISTURE AND PERMEABILITY:

Flow of water in soils; Darcy's law; Validity of Darcy's law by Reynolds number; Determination of coefficient of permeability by constant head and variable head methods & Indirect methods; Seepage velocity; Factors affecting permeability; Permeability of stratified soil deposits.

EFFECTIVE STRESS PRINCIPLE:

Effective stress principle; Effective stress in a soil mass under different loading conditions – effect of depth of water table, surcharge loading, capillary water

Experiments:

6. Determination of permeability by Constant head and Variable head methods

UNIT – III

SEEPAGE THROUGH SOILS

Quick sand conditions; Characteristics of flow net; Uses of flow nets; Seepage through earth dams with horizontal filter; Uplift pressure; Flow net for anisotropic soils.

COMPACTION OF SOILS:

Introduction; Standard proctor test and modified proctor test; Compaction of clayey soil and sand; Factors affecting compaction; Effect of compaction on properties of soils; Field compaction of soils and field compaction control.

Experiments:

7. Standard proctor compaction test- Determination of OMC, MOD

UNIT - IV

CONSOLIDATION OF SOILS:

Introduction; Initial and secondary consolidation; Spring analogy for primary consolidation; Terazaghi's theory of consolidation; Solution of basic differential equation; Consolidation test; Determination of void ratio at various load increments-height of solids and change in voids ratio methods; Consolidation test results; Determination of coefficient of consolidation-square root of time and logarithmic time fitting methods

SHEAR STRENGTH OF SOILS:

Introduction; Mohr – coulomb theory; Different types laboratory of shear strength tests; Different drainage conditions and their field applicability; Mohr - coulomb failure criterion; Shear characteristic of cohesive and cohesion less soils

Experiments:

- 8. Determination of shear parameters (C and φ) of soil by direct shear test
- 9. Unconfined compression test- Determination of C and ϕ
- 10. Determination of Shear strength of soil by Vane shear test

Text books	 [T1] Soil Mechanics and Foundation Engineering by K.R. Arora; Standard Publishers & Distributors, NaiSarak, New Delhi. [T2] Basic and Applied Soil Mechanics by GopalRanjan and A.S.R. Rao; New Age International Ltd., New Delhi.
Reference books	 [R1] Geotechnical Engineering by C. Venkata Ramaiah; published by New Age International Ltd., New Delhi. [R2] Geotechnical Engineering by V. N. S. Murthy; Marcel Dekker Inc., New York. [R3] Soil Mechanics and Foundation Engineering by B. C. Punmia; Laxmi Publications, Delhi. [R4] Relevant Indian Standard Code Books – IS2720 series; SP 36-part 1.
E-resources and other digital material	Introduction to Soil Mechanics - http://nptel.ac.in/courses/105103097/ Soil Mechanics - http://nptel.ac.in/courses/105101084/ Geotechnical Engineering Laboratory - https://nptel.ac.in/courses/105101160/

23CE 4305	HYDRAULICS & HYDRAULIC MACHINES

Programme Core	Credits:	4
Theory & Practice	Lecture - Tutorial - Practice:	3 - 0 - 2
20CE 3304 – Fluid Mechanics	Continuous Evaluation:	30
	Semester end Evaluation:	70
	Total Marks:	100
	Theory & Practice	Theory & Practice Lecture - Tutorial - Practice:

Course Outcomes	Upon	succe	essful c	omple	tion of	the co	urse, t	he stud	lent wi	ll be at	ole to:				
	CO1	eval	evaluate the most economical dimensions of different channel sections.												
	CO2	eval	valuate the flow through pipes and open channel.												
	CO3	eval	uate ar	n equat	ion for	a phe	nomen	on usir	ng dim	ension	al anal	ysis.			
	CO4	anal	yze the	e perfo	rmanc	e of va	rious F	Iydrau	lic mad	chines	•				
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
towards achievement	CO1	3	2	3										3	
of Program Outcomes	CO2	3	3	3											3
(1–Low, 2 -	CO3	3	2	3											3
Medium, 3 – High)	CO4	3	3	3										2	3
Course	chann section NON- Critic	N CH lels; (ms - R -UNII al fl	Chezy' lectang FORM	s, Ma gular, T FLOV n a	nning' Trapezo W: Co	s, Baz oidal ai ncept	in's, land Circonforce	Kutter's cular cl cific e	s Equa hannel nergy;	ations; s. Speci	Hydr fic en	aulical	ly effi urves;	of flow cient cl Critical e cond	flow;

Laboratory tests:

- 1. Determine Chezy's and Manning's coefficient for free surface flow in a rough/smooth surfaced rectangular channel.
- 2. Characterise the state of fluid flow by Reynolds's Number
- 3. Determination of flow-rate in an open channel using V Notch.

UNIT II:

GRADUALLY VARIED FLOW: Dynamic equation; Types of Surface Profiles; Computation of surface profiles by single step method; Back water Curves and Draw down curves.

RAPIDLY VARIED FLOW: Hydraulic jump; Elements and characteristics of hydraulic jump; Types of hydraulic jumps; Applications of hydraulic jump; Energy loss in a hydraulic jump.

Laboratory tests:

- 4. Validate Bernoulli's energy principle experimentally along a conduit.
- 5. Determine the coefficient of discharge for a Venturimeter/ Orificemeter
- 6. Workout the flow rate of a liquid using Orifice/Mouthpiece for steady flow in water tanks.

UNIT III:

DIMENSIONAL ANALYSIS AND SIMILITUDE: Dimensional homogeneity; Rayleigh's method; Buckingham – Pi theorem; Geometric, Kinematic and dynamic similarities; Scale effect.

IMPACT OF JETS: Force exerted by fluid jet on stationary and moving flat plates and curved plates; Force exerted by fluid jet on series of flat vanes; Angular momentum principle; Torque exerted on a wheel with radial curved vanes.

Laboratory tests:

- 7. Measurement of force due to impact of jet on Flat/Curved vanes used in Hydropower projects.
- 8. Determination of minor loss of head in pipes a) Due to bends b) Sudden contractions
 - c) Sudden expansion.
- 9. Estimation of friction factor and major head loss for a given pipe system

UNIT - IV

HYDRAULIC TURBINES: Classification; Impulse; Reaction; Radial, Axial, mixed and tangential flow turbines; Pelton, Francis and Kaplan turbines; Velocity triangles; Head and efficiency; Draft tube theory; Concept of specific speed; Cavitation.

CENTRIFUGAL PUMPS: Types of pumps, Manometric head; Losses and efficiencies; Working Principle and Work done; Priming; Velocity triangles; Multistage pumps; Specific speed; Cavitation.

Laboratory tests:

- 10. Find the overall efficiency of single stage centrifugal pump.
- 11. Find the Performance studies on Reciprocating pump.
- 12. Conduct Performance test for Francis turbine at constant head and determine efficiency. Demonstration Experiments:

Conduct Performance test for Kaplan / Pelton at constant head and determine efficiency

Text books

[T1] P.N. Modi& S.N. Seth, "Hydraulics & Fluid Mechanics", 18th ed., Standard Book House, New Delhi, 2015.

[T2] A.K. Jain, "Fluid Mechanics", 11th ed., Khanna Publishers, New Delhi, 2014.

Reference

[R1] Jagadhishlal, "Hydraulic Machines",9th ed., Metropoliton Company, New Delhi, 2012.

books	 [R2] R. K. Bansal, "Fluid Mechanics and Hydraulic Machines", 9th ed., Laxmi Publications; New Delhi, 2015. [R3] Rajput R.K., "Fluid Mechanics and Hydraulic Machines", 3rd ed., S.Chand and Company Ltd., New Delhi, 2014. [R4] K. Subramanya, "Flow in Open Channels" – 3rd ed., Tata McGraw Hill Publishing Company, New Delhi, 2013.
E-resources and other digital material	www.nptel.ac.in / courses/ 105103096/ www.nptel.ac.in / courses/ 105106114/

23CE4353	STRENGTH OF MATERIALS LAB

Course Category:	Programme core lab	Credits:	1
Course Type:	Laboratory	Lecture - Tutorial - Practice:	0-0-2
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcor	nes	Upon	succes	sful co	mple	ion o	f the c	course	, the s	studen	t will	be abl	e to:		
		CO1		rstand de pro			ies of	woo	d, stee	el and	othe	r build	ing m	aterials	as per
		CO2	analyse the behaviour in stress-strain, deflection, flexure/bending and tor of building components									corsion,			
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
Outcomes towards achievement of Program Outcomes	CO1	3	3		3	1				2	2		1		2
(1 – Low, 2 - Medium, 3 – High)	CO2	3	3		3	1				2	2		1		2
Course Content	5. Find the beam 6. Find the Impact 7. Find the Reserved Properties 9. Determed 10. Tests 11. Strain 12. Continuation 13. Torsi	nine the ne Brinn ne Youn ng test on testing ne impact testing ne modu nine the on timb n gauge nuous b	ultima el's ha: g's mo n simp g's mo pped ca et resis machi lus of: modul ductili per. applica eam — on Bea	te sheardness dulus of antileventance of ine. Trigidity dus of rectangles of a deflectance and	nr stre numb of the ported of the er. of the v by c igidity teel w	ngth over and given bean given given onducy of the ire.	of miled Rock matern. mater mater tring to me matern.	d steekwell rial (V rial by orsion terial c	I rod in a rod in test of the	n sing dness Steel/ lucting lucting on sol- spring	gle an numb Alum g ben g Cha id circ g.	d doub er of the inum) ding te rpy tes cular sh	le she he give by const once the tand haft.	ar. enmate nducting antileve	rial. g er est on

	14. Deflection Test on Beams: Load deformation characteristics, Young's Modulus, Maxwell's Reciprocal law verification.
Text books	[T1] Strength of Materials by S Ramamrutham& R Narayan; DhanpatRai Publishing Co.(P) Ltd, New Delhi.
Reference books	[R1] Material science and metallurgy for engineers by V D Kodgire and S V Kodgire, Everest publishing house, Pune.
E-resources and other digital material	https://home.iitm.ac.in/kramesh/Strength%20of%20Materials%20Laboratory%20Manual.pdf

ENGLISH FOR PROFESSIONALS

Course Category:	Programme Core	Credits:	1
Course Type:	Practice	Lecture - Tutorial - Practice:	0-0-2
Prerequisites:	Basic understanding of the language	Continuous Evaluation:	100
	skills viz Listening, Speaking, Reading and Writing.	Semester end Evaluation:	0
		Total Marks:	100

Course outcor	Upon	succe	essful o	comple	etion o	of the	course,	the st	udent v	vill be	able to	:			
	CO1	Und	Understand how to listen, reflect, and speak while communicating with others.												
	CO2		Recall the fundamentals of language in terms of grammar and vocabulary in communication.												
		CO3		Apply English language skills in various speaking contexts to present ideas with clarity and accuracy.											
		CO4	Ana	Analyze the different parts in Versant Test and answer them.											
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
towards achievement	CO1	2									3				
of Program Outcomes	CO2	2									3				
(1 – Low, 2 - Medium, 3– High)	CO3	2								2	3				
	CO4	2									3				

Course Content

COURSE CONTENT

1. CONVERSATION STARTERS

 $\label{lem:convergence} Introduction - Seeking \ Permissions - Asking \ for \ Directions - Making \ Requests - Offering \ Help - Expressing \ Thanks - Conveying \ Apologies - Starting \ a \ Conversation \ with \ a \ Stranger - Practice.$

2. FUNCTIONAL CONVERSATIONS

 $\label{lem:condition} Introducing \ Self-Introducing \ Others-Starting \ a \ Group \ Introduction-Introducing \ a \ Formal \ Setting-Practice \ Exercises.$

	3. GRAMMAR Verbs – Tenses – Sentence Structures – Spotting the Errors.
	verbs – Tenses – Sentence Structures – Spotting the Errors.
	4. JUST A MINUTE Introduction — Significance — Fluency — Coherence — Avoiding Errors — Communication Skills — Confidence — Practice.
	5. VOCABULARY Idioms – Phrases – Significance – Meanings – Usage – Practice.
	6. ELOCUTION Definition – Importance – Key Components – Voice Modulation – Articulation – Posture and Gestures – Practice.
	7. EXTEMPORE Introduction – Significance – Developing Quick Thinking – Communication Skills – Confidence – Practice.
	8. DEBATE Introduction – Understanding the Structure – Purpose of a Debate – Developing Basic Debating skills – Do's and Don'ts – Practice.
	9. VERSANT TEST Overview of the Versant Test – Purpose and Importance – Format of the Test – Types of Questions – Practice.
	10. STORY TELLING
	Know Your Audience – Choose a Story – Set the Scene – Introduce the Characters – Build Suspense – Describe the Conflict – Show the Resolution – Share the moral/message – Use Vivid Language – Practice Delivery – Invite Reflection/Discussion – Follow Up.
Text books	[T1] English for Professionals Lab Manual
Reference books	 [R1] Wren & Martin. English Grammar and Composition. S.Chand & Company, 2023. [R2] Dale Carnegie. The Quick and Easy way to Effective Speaking. Rupa Publications, 2016. [R3] Richard A. Spears. McGraw-Hill's Dictionary of American Idioms and Phrasal Verbs. McGraw Hill, 2005.
	[R4] Kamalesh Sadanand. A Spoken English. VOL 1&2, Orient BlackSwan, Second Edition, 2014.
E-resources and other digital material	[1] https://www.pearson.com/languages/hr-professionals/versant.htmlSoftx [2] https://www.ted.com/talks [3] https://shortstoryproject.com/

Course Category:	Skill Enhancement Course	Credits:	1
Course Type:	Laboratory	Lecture - Tutorial - Practice:	0-0-2
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcor	mes	Upon su	ccessfu	l comp	oletion	of the	cour	se, the	stude	nt will	be ab	le to:			
		CO1	analyze 3D Structural elements using Autodesk Revit and develop drawings with the necessary details for construction												
		CO2	apply spreadsheet techniques to solve different engineering problems.												
Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 – Medium, 3 – High)		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
	CO1	2	1			2						3		2	1
	CO2	2	2			2						3		2	1
Course Conte	nt	PART-A: AUTODESK RIVET STRUCTURES													
	Design and Drawing the details of the following 3D Structural elements. 1. Create additional grids and levels, family content 2. Working with Structural Columns, Beams, walls, floors, foundations 3. Creating and managing Call out views, duplicating views, Annotations 4. Demonstrate the Skills and knowledge required to convert Autocadd 2D drawing to 3D model using Autodesk Rivet Structures 5. Modelling Steel truss frame and design connections 6. Demonstration on sheets Creation and managing materials, Cost analysis of whole structure, walkway through and sun path analysis														
		2. (xcel a gineeri owled	s a en ng. ge in e	xcel aı	nd vis	ual ba	asics fo	or appl	ication	ıs.		ems rel	ated to

	4. Utilize excel engineering for optimization and uncertainty analysis.5. Introduce user forms and user controls for overall project control
Text books	 [T1] Auto desk Rivet structures manual. [T2] Exploring Autodesk Revit 2020 for structures, 10thedition, byProf. Sham Tickoo, Purdue University Northwest, USA [T3] MS Excel user manual.
Reference books	[R1] Autodesk Revit 2021 Structure Fundamentals by By <u>ASCENT</u> publications Published August 10, 2020, ISBN: 978-1-63057-358-4 ISBN 10: 1630573582
E-resources and other digital material	https://www.coursera.org/learn/autodesk-revit-for-structural-design-exam-prep

Course Category:	Mandatory Course	Credits:	-
Course Type:	Theory	Lecture - Tutorial -	2-0-0
		Practice:	
Prerequisites:		Continuous Evaluation:	40+40+3+17
		Semester end Evaluation:	
		Total Marks:	100

Building Materials and Construction

Course	On successful completion of the course, the student will be able to:														
Outcomes	CO1	Understand physical properties, manufacturing processes and benefits of building materials that are used in structural and non-structural components.													
	CO2		Understand application of protective materials for structural members.												
	CO3		Distinguish different types of constructional procedures for different components of a building.												
	CO4	App	ly the	know	ledge	of diff	erent s	upport	syste	ms for	constru	ction ar	nd repai	rs.	
Contributio		РО	PO	РО	РО	PO	PO	PO	PO	РО	PO1	PO1	PO1	PSO	PSO
n of Course		1	2	3	4	5	6	7	8	9	0	1	2	1	2
Outcomes	CO1	L		M		L		M	L						Н
Towards	CO2	L		L				M							M
achievement	CO3	L		M		M	M								Н
of Program	CO4	L		M		M	Н					`			Н
Outcomes															
(L-Low,															
M- Medium,H–															
High)															
Course	UNIT	- I				1				1					
Content	STON	IES:													
	Qualit	ties of	f a go	od bu	ilding	stone	; Stone	e quar	rying;	Tools	for bla	sting; N	Material	s for b	lasting;
	Proces	ss of t	olastir	ıg; Coı	mmon	buildi	ng sto	nes of	India.			_			_

BRICKS:

23MC4107A

Composition of good brick earth; Manufacture of bricks; Qualities of good bricks; Tests for bricks; Classification of bricks;

STEEL:

General; Manufacture of steel; Uses of steel; Market forms of steel;

UNIT – II

TIMBER:

Definition; Structure of a tree; Qualities of good timber; Decay of timber; Preservation of timber; Seasoning of timber; Advantages of timber construction; Indian timber trees.

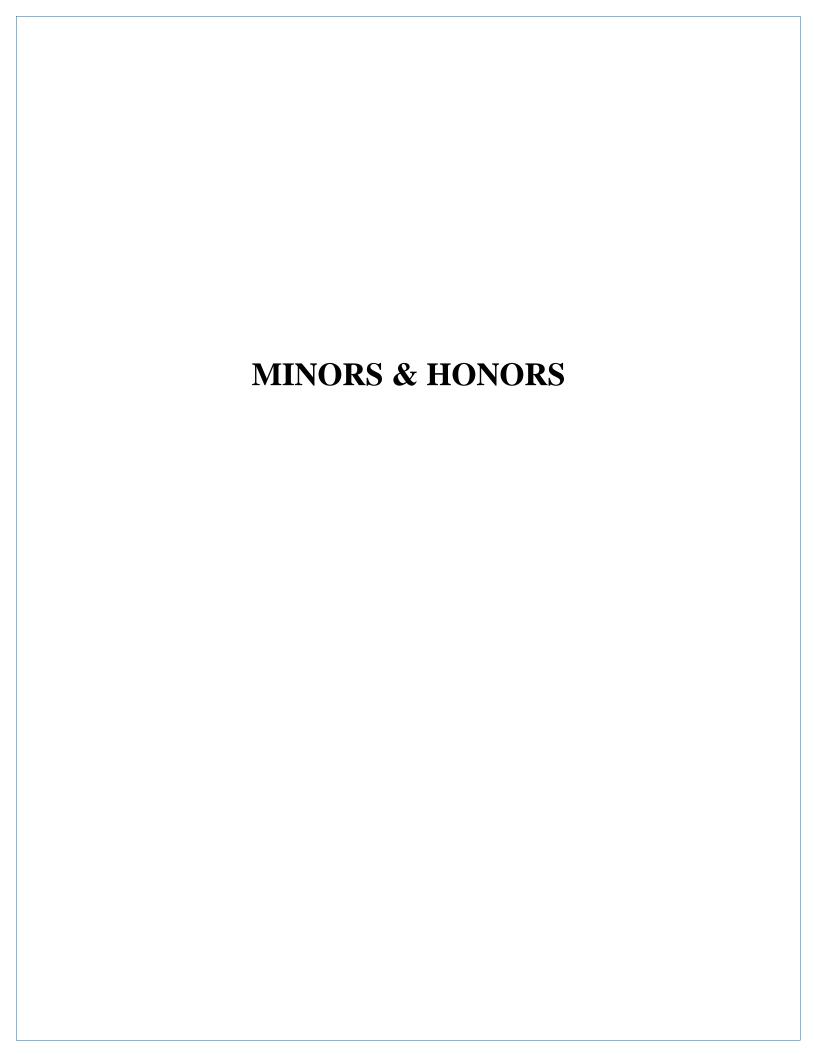
PAINTS, VARNISHES AND DISTEMPERS:

General; Painting; Varnishing; Distempering; Wall paper; White washing; Colour washing; Emulsion Paints.

	UNIT – III BRICK MASONRY: Technical terms; Types of bonds in brickwork- Stretcher, header, English, Flemish. STONE MASONRY: Technical terms; Classification of stone masonry. WALLS AND LINTELS: Classification of walls, Classification of Lintels- timber, stone, brick, steel, reinforced concrete lintels.
	UNIT – IV
	DAMPNESS AND DAMP PROOFING:
	Causes of dampness; Methods of preventing dampness; Damp proofing materials
	FLOORS:
	Technical terms; Types of flooring materials. ROOFS:
	Technical terms; Types of roofs; Trusses- king post, queen post, combination of king post & queen post trusses, mansard roof truss; Steel sloping roofs; Roof covering materials; Types of flat roofs;
	SCAFFOLDING, SHORING, UNDER PINNING AND FORM WORK:
	Types of scaffolding; Types of shoring; Methods of underpinning; Types of form work;
Text books	[T1] Engineering Materials by S. C. Rangwala; Charotar Publishing House. [T2] Building construction by B. C. Punmia -Laxmi Publications, New Delhi.
Reference	[R1] Building construction and construction materials by G.S.Birdie and T.D.Ahuja,
books	Dhanpathrai publishing company, New Delhi.
E-resources	
and other	
digital	
material	

23ES4152	DESIGN THINKING AND INNOVATION

Course Category:	Engineering Science lab	Credits:	1.5
Course Type:	Laboratory	Lecture - Tutorial - Practice:	0-0-3
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100


Course outcomes		Upon	succes	sful co	mplet	ion o	Upon successful completion of the course, the student will be able to:												
		CO1		ze con			_						ely wi	th the	use of				
		CO2	apply	vario	ıs pov	ver to	ols fo	r cons	structi	on									
Contribution		РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO				
of Course		1	2	3	4	5	6	7	8	9	10	11	12	1	2				
Outcomes towards achievement of Program Outcomes	CO1	2	2	2	2	2				2		2	2		2				
(1 – Low, 2 - Medium, 3 – High)	CO2	3	2	3	3	1				2		2	2		2				

Course Content

1 DESIGN THINKING

- a. Introduction to Design Thinking: An insight into Design, origin of Design thinking, Design thinking and its process models, application of Design thinking.
- b. Empathize In Design Thinking: Role of Empathy in design thinking, methods and tools of empathy, understanding empathy tools. Explore define phase state users' needs and problems using empathy method.
- *Carry out the detailed questionnaire to arrive at the problem of the selected theme. The empathy report shall be prepared based on the response of the stake holders.
- c. Prototyping and Testing: Methods and tools of ideations, prototyping and methods of prototyping, user testing methods, Advantages and disadvantages of user Testing/ Validation.
- * For the problem identified, the team needs to give solution through thinking out of the box innovatively to complete the ideation stage of DTL.
- *Once the idea of the solution is ready, detailed design has to be formulated in the Design stage considering the practical feasibility.
- *If the Design of the problem is approved, the team should implement the design and come out with prototype of the system.

	*Conduct thorough testing of all the modules in the prototype developed and carry out integrated testing.	
	*Demonstrate the functioning of the prototype along with presentations of the same.	
	d. Product Innovation: Innovation towards product design Case studies.	
	* Prepare a Digital poster indicating all the stages of DTL separately. A Detailed project report also should be submitted covering the difficulties and challenges faced in each stage of DTL. Methods of testing and validation should be clearly defined both in the Digital poster as well as the report.	
	e. Ideation, Prototyping And Testing of an Innovative Model Based on the Topics Learnt – (Class may be divided in to groups. some marks may be allotted for the submission of innovation. Better innovations may lead to exhibition in NITs, IITs / patents / may be useful to Atal innovation ranking).	
	2. Calculate the length, area, volume, area of a built-up space and a small parcel of land - use digital distance measuring devices and To set horizontal, vertical and angle lines using different types of laser instruments.	
	3. (a) To find out the different materials present in the wall using wall scanner. (b) To view the objects using an inspection camera which are not accessible &visible. (c) To set different angles to a ramp or staircase using Inclinometer.	
	4. (a) To cut shapes and curves in wood with its narrow blade using Jigsaw. (b) To cut through	
	wood and other soft materials using Saber saw. (c) Polish the concrete using concrete grinder.	
	5. Painting – Paint a given surface in this order - putty, primer and painting.	
	6. Flooring – Suggest a suitable flooring and install in the given space.	
	7. Plumbing – Design pipeline layout for the given plan and utilize proper fittings.	
	8. Formwork – Suggest proper formwork for footings, stair case,	
	9. Apply basic techniques for masonry and concreting works – different types of brick bonds, plumb, alignment, brick quantity estimation	
	10. Estimation of material contents for cement mortar and plastering.	
Text books	[T1] Building construction by B. C. Punmia -Laxmi Publications, New Delhi	-
	[T2] Design thinking for strategic Innovation, IdrisMootee, 2013, John Wiley & Design thinking – The guidebook – Facilitated by the Royal Civil Service Commission,	
	Bhutan	
Reference books	[R1] Design Methods: A Structured Approach for Driving Innovation in Your Organization, Vijay Kumar, First Edition, 2012, Wiley	-
	[R2] Human-Centered Design Toolkit: An Open-Source Toolkit to Inspire New Solutions in the Developing World, IDEO, Second Edition, 2011, IDEO.	
E-resources and other digital material		

23CEM 4701

INTRODUCTION TO CIVIL ENGINEERING- CONCEPTS AND MATERIALS

Course Category:	Minor	Credits: 3
Course Type:	Theory	Lecture - Tutorial - Practice: 3 - 0- 0
Prerequisites:		Continuous Evaluation: 30
_		Semester end Evaluation: 70
		Total Marks: 100

Course Outcomes	Upon s	succes	sful c	omple	tion of	the co	urse, t	he stud	dent v	vill be	able to):				
	CO1		understand evaluation of civil engineering materials and use of stone as a primary component.													
	CO2	eval	evaluate the quality of bricks and timber.													
	CO3	apply test on cement and understand varieties of concrete.														
	CO4	anal	analyze the quality of steel and paints.													
Contribution of Course Outcomes towards achievement		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	
	CO1	3						2							3	
of Program Outcomes	CO2	3						2							3	
(1 – Low, 2 -	CO3	3						2							3	
Medium, 3 – High)	CO4	3						2							3	
Course Content	UNIT – I INTRODUCTION General Introduction to Civil Engineering; History of Civil Engineering in the overall infrastructural development of the count STONES: Classification of rocks; Qualities of a good building stone; Uses Tools for blasting; Common building stones ofIndia.										country	у.				

	UNIT – II
	BRICKS: Composition of good brick earth; Qualities of good bricks; Tests for bricks; Classification of bricks; Size and weight of bricks.
	TIMBER: Definition; Structure of a tree; Qualities of good timber; Preservation of timber; Seasoning of timber; Advantages of timber construction; Use of timber.
	UNIT – III
	CEMENT Basic Ingredients; Grades of cement; Properties of cement; Field tests on cement. CONCRETE Definition; properties; Special Concretes-Light weight concrete, High density concrete, Fibre reinforced concrete, Polymer concrete.
	UNIT – IV STEEL General; Manufacture of steel; Uses of steel; Market forms of steel; Properties of mild steel; Properties of hard steel;
	PAINTS, VARNISHES AND DISTEMPERS General; Painting; Varnishing; Distempering; Wall paper; White washing; Colour washing.
Text books	[T1] Engineering Materials by S. C. Rangwala; Charotar Publishing House.[T2] Building construction by B. C. Punmia -Laxmi Publications, New Delhi.
Reference books	[R1]Building construction and construction materials by G.S.Birdie and T.D.Ahuja, Dhanpathrai publishing company, New Delhi.
E-resource and other digital material	http://nptel.ac.in/courses/105102088/

23CEM5701	METHODOLOGY FOR CIVIL ENGINEERING
	CONSTRUCTION

Course Category:	Minor	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100
		Total Walks.	100

Course outcom	es	Upon s	succes	sful co	mpleti	ion of	the cou	ırse, tl	ne stud	lent w	ill be a	able to	:		
		CO1	eval	uate th	e feasi	bility	of the	constr	uction	proje	ct				
СО			apply planning and construction contracts												
	CO3	3 analyse construction finance and organization structure													
		CO4	eval	uate tl	ne mat	erials a	and ad	opt the	e quali	ty con	trol p	rocedu	res		
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
towards achievement	CO1	1	1	1							1	2			1
of Program Outcomes	CO2	1	1	1							1	2			1
(1 – Low, 2 - Medium, 3 –	CO3	1	1	1						1	1	2			1
High)	CO4	1		1							1	2			1
Course Content		INIT	т т	•	•	•		•			•		•	•	

Course Content

UNIT – I

INTRODUCTION

Role of government and construction agencies, classification of construction works, various stages in construction of a project, the construction team.

PROJECT FEASIBILITY REPORTS

Introduction, technical analysis, financial analysis, economic analysis, ecological analysis, schematic diagram for feasibility study.

	UNIT – II PLANNING FOR CONSTRUCTION PROJECTS General, steps involved in planning, objectives, principles, advantages of planning, limitations, stages and types of planning, stages of planning by different agencies. CONSTRUCTION CONTRACTS & TENDERS General, contract documents, types of contract, tender notice, types of tenders, tender documents, Earnest money deposit and security deposit.
	UNIT – III CONSTRUCTION FINANCING AND CONTROL Introduction, costs associated with constructed facilities, estimates, effect of scale on construction cost, means of financing, application of financial assistance, cost control. ORGANISING FOR CONSTRUCTION Importance, general principles, types of organization structures, forms of business organizations.
	UNIT – IV MATERIALS MANAGEMENT Importance, Objectives, Costs, functions of material management, uses, stores management, material procurement, maintaining stocks, material handling. QUALITY CONTROL IN CONSTRUCTION Elements of quality, Organisation for quality control, Quality assurance techniques, Documentation, Quality control circles, variation.
Text books	[T1] Dr.S.Seetharaman, "Construction Engineering and Management", 5 th Edition, Umesh Publications, New Delhi,
Reference books	[R1] Kumar Neeraj Jha, "Construction Project Management", 2nd Edition, Pearson Education India, New Delhi, 2015
E-resources and other digital material	

23CEM6701	SYSTEM DESIGN FOR SUSTAINABILITY

Course Category:	Minor	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

	- 1 - 11			r				,							
	CO1 understand selection of resources with low environmental imp											pact;			
	CO2	apply	apply design of products with low environmental impact;												
	CO3	analy	analyse product-Service System Design for eco-efficiency;												
	CO4	evalu	evaluate design for social equity and cohesion.												
	PO 1	PO 2	P O3	P O 4	P O 5	P O 6	P O7	P O8	P 09	P O1 0	PO 11	P O1 2	PSO 1	PSO2	
CO1	1		1			2	3					1		2	
CO2	1		1			2	3					1		2	
CO3	1		1			2	3					1		2	
CO4	1		1			2	3					1		2	
	CO2	CO1 CO2 CO3 CO4 PO 1 CO2 1 CO3 1	CO1 under CO2 apply CO3 analy CO4 evalue PO 1 PO 2 CO1 1 CO2 1 CO3 1	CO1 understand CO2 apply design CO3 analyse pro evaluate do PO 1 PO P 2 PO3 CO1 1 1 1 CO2 1 1 1 CO3 1 1	CO1	CO1	CO1 understand selection of resolution of resolution apply design of products with CO3 analyse product-Service Syluate design for social evaluate design for	CO1 understand selection of resources CO2 apply design of products with low CO3 analyse product-Service System CO4 evaluate design for social equity PO 1 PO 2 PO 3 PO 0 O O O O O O O O O O O O O O O O O O	CO1 understand selection of resources with CO2 apply design of products with low environments. CO3 analyse product-Service System Designers. CO4 evaluate design for social equity and color. PO 1 PO 2 PO 3 PO 1 O O O O O O O O O O O O O O O O O O	CO1 understand selection of resources with low enderstand selection of resources with low environments. CO2 apply design of products with low environments. CO3 analyse product-Service System Design for evaluate design for social equity and cohesion. PO 1 PO 2 PO 3 PO 1 OO OO OO OO OOO OOOOOOOOOOOOOOOOOO	CO1 understand selection of resources with low environmental CO2 apply design of products with low environmental CO3 analyse product-Service System Design for eco-est CO4 evaluate design for social equity and cohesion. PO 1 PO 2 PO 3 PO 9 PO 9 </td <td>CO1 understand selection of resources with low environment CO2 apply design of products with low environmental impact CO3 analyse product-Service System Design for eco-efficien CO4 evaluate design for social equity and cohesion. PO 1 PO P P P P P P P P P P P P P P P P</td> <td>CO2 apply design of products with low environmental impact; CO3 analyse product-Service System Design for eco-efficiency; CO4 evaluate design for social equity and cohesion. PO 1 PO 2 PO 3 PO 4 PO 5 PO 7 PO 7 PO 8 PO 9 PO 11 11 PO 12 CO1 1 1 2 3 1 1 CO2 1 1 2 3 1 1 CO3 1 1 2 3 1 1</td> <td>CO1 understand selection of resources with low environmental impact; CO2 apply design of products with low environmental impact; CO3 analyse product-Service System Design for eco-efficiency; CO4 evaluate design for social equity and cohesion. PO 1 PO P</td>	CO1 understand selection of resources with low environment CO2 apply design of products with low environmental impact CO3 analyse product-Service System Design for eco-efficien CO4 evaluate design for social equity and cohesion. PO 1 PO P P P P P P P P P P P P P P P P	CO2 apply design of products with low environmental impact; CO3 analyse product-Service System Design for eco-efficiency; CO4 evaluate design for social equity and cohesion. PO 1 PO 2 PO 3 PO 4 PO 5 PO 7 PO 7 PO 8 PO 9 PO 11 11 PO 12 CO1 1 1 2 3 1 1 CO2 1 1 2 3 1 1 CO3 1 1 2 3 1 1	CO1 understand selection of resources with low environmental impact; CO2 apply design of products with low environmental impact; CO3 analyse product-Service System Design for eco-efficiency; CO4 evaluate design for social equity and cohesion. PO 1 PO P	

Addressing Sustainability by design; An Introduction to Sustainable Product-Service Systems Applied to Distributed Renewable Energy; United Nations Sustainability Energy for All (SE4A) Agenda.

DISTRIBUTED ENERGY SYSTEMS

Distributed Renewable Energy Systems and Integrating S.PSS with DE

UNIT - II

SUSTAINABLE PRODUCT-SERVICE SYSTEM (S.PSS)

Introduction to S.PSS; Types; Sustainability Benefits; Barriers and Limits

SUSTAINABLE PRODUCT-SERVICE SYSTEM APPLIED TO DISTRIBUTED RENEWABLE ENERGIES

A Win-Win Opportunity; Scenario for S.PSS applied to Distributed Renewable Energy(DRE); S.PSS Applied to DRE: Sustainability Potential Benefits; S.PSS Applied to DRE: Sustainability Potential Benefits

UNIT - III

DESIGN FOR SUSTAINABILITY: AN INTRODUCTION

Evolution of Design for Sustainability; Product Life Cycle Design or Eco-Design; Design for Eco-Efficient Product-Service Systems; Design for Social Equity and Cohesion; Design for Socio-Technical Transitions; State of the Art of Design for Sustainability Human-Centred and Universal Design

SYSTEM DESIGN FOR SUSTAINABLE ENERGY FOR ALL: A NEW ROLE FOR DESIGNERS

System Design for Sustainable Energy for All (SD4SEA); SDSEA Design Criteria, Guidelines and Examples

UNIT - IV

METHOD AND TOOLS FOR SYSTEM DESIGN FOR SUSTAINABLE ENERGY FOR ALL(SD4SEA)

Method for System Design for Sustainable Energy; for All; Sustainability Design Orienting Scenario; (SDOS) on S.PSS&DRE; Sustainable Energy for All Idea Tables and Cards; E.DRE—Estimator for Distributed Renewable Energy; PSS + DRE Innovation Map

S.PSS + DRE Design Framework & Cards; The Energy System Map Innovation Diagram for S.PSS&DRE; Concept Description Form for S.PSS and DRE Stakeholder Motivation and Sustainability Table

PRACTICAL EXAMPLES OF APPLICATION OF SDSEA APPROACH/TOOLS AND OTHER METHODS TO ACHIEVE SUSTAINABILITY

Solar Energy Company, Botswana; SMEs for Energy, Uganda; Summary and Considerations; green design; emotionally durable design; cradle to cradle design, biomimicry design; design for base of a pyramid design; design for social innovation

Text books

- [T1] FabrizioCeschin, İdilGaziulusoy, Design for Sustainability A Multi-level Framework from Products to Socio- technical Systems, Taylor and Francis, 2020.
- [T2] Carlo Vezzoli; FabrizioCeschin; Lilac Osanjo; Mugendi K. M'Rithaa; Richie Moalosi; VennyNakazibwe; Jan Carel Diehl, Designing Sustainable Energy for All

Sustainable Product-Service System Design Applied to Distributed Renewable Energy; Green Energy and Technology, Springer, 2018.

Reference books	 [R1] Ceschin, F., and Gaziulusoy, I. (2016) Design for Sustainability: An Evolutionary Review, in Lloyd, P. and Bohemia, E. (eds.), Future Focused Thinking - DRS International Conference 2016, 27 - 30 June, Brighton, United Kingdom. [R2] Elisa Bacchetti, Towards sustainable energy for All Designing Sustainable Product-Service System applied to Distributed Renewable Energy, Politecnico di Milano, Milano, Italy 2017
E-resources and other digital material	Quality as Driver for Sustainable Construction—Holistic Quality Model and Assessment.pdf

~~	CEN	. AT / P	$7 \mathbf{\Lambda} \mathbf{\Lambda}$
, 4		/I 6	/ 4 6 7
4.1			1112

ECOLOGY AND ENVIRONMENT

Minor	Credits:	3
Theory	Lecture - Tutorial - Practice:	3-0-0
	Continuous Evaluation:	30
	Semester end Evaluation:	70
	Total Marks:	100
		Theory Lecture - Tutorial - Practice: Continuous Evaluation: Semester end Evaluation:

Course outcom	ies	Upon s	uccess	ful cor	npleti	on of	the co	ourse, t	he stud	dent wi	ill be a	ble to:			
		CO1	ana	lyze th	e issu	es con	cerne	d with	ecolo	gy, env	ironm	ent and	l susta	inabilit	y.
		CO2		luate th	ne qua	ntity a	andqu	alityo	fwater	based	on the	availa	ble na	atural	
		CO3		luate t	he wa	ter pu	rifica	tion u	nits an	nd com	nponen	ts of the	e distr	ibution	
		CO4	ana	lyse th	ne eff	ect of	vario	us attr	ibutes	of envi	ironme	ntal po	llutio	n	
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
towards achievement	CO1	1						2					2		
of Program Outcomes	CO2	2	3		3		1						1		2
(1 – Low, 2 - Medium, 3 –	CO3	2	1	3			1								3
High))	CO4	1	1	2	1										2
Carrage Comtant		LINIT	т	1	1	1	1	1	1	1	1	-1	1	1	1

Course Content

UNIT – I

INTRODUCTION TO ECOLOGY AND ENVIRONMENT

Definition, scope & importance, need for public awareness- environment - definition, ecology, eco system - balanced ecosystem, human activities - food, shelter, economic and social security.

SUSTAINABILITY

Sustainability – definition, significance, sustainability goals, impacts of climate change, Case Studies.

	T
	UNIT – II WATER SUPPLY - QUANTITYOF WATER Sources of water, objectives of water supply systems, Per capita consumption; Types of demands; Fluctuations in demand.
	QUALITY OF WATER
	Impurities in water; routine water analysis - physical, chemical and bacteriological tests; Standards for drinking water; Water borne diseases.
	UNIT – III WATER TREATMENT
	Fundamentals of purification of water; plain sedimentation; coagulation and types of coagulants; sedimentation and coagulation tanks; theory of filtration; slow sand and rapid sand filters; operation; disinfection.
	DISTRIBUTIONSYSTEMS Methods of supply; Layouts, Plumbing-pipes and fittings; Traps; One pipe and Two pipe systems.
	UNIT – IV ENVIRONMENTAL POLLUTION Environmental Pollution and their effects. Water pollution, Land pollution, Air pollution, Public Health aspects.
	SOLID WASTE MANAGEMENT
	Solid waste characteristics—basics of on-site handling and collection—separation and processing — Incineration—Composting-Solid waste disposal methods — fundamentals of land filling.
Text books	[T1] Benny Joseph, "Environmental Studies", Tata Mc Graw Hill, 2005 [T2] IgnaciMuthu S, "Ecology and Environment", Eastern Book Corporation, 2007 [T3] Birdie G.S. and Birdie J. S., "Water Supply and Sanitary Engineering", 9 th ed., Dhanpat Rai Publishing Company, New Delhi, 2015.
Reference books	 [R1] Garg S. K., "Environmental Engineering Vol. I& II- Water supply engineering", Khanna Publishers, New Delhi, 2017. [R2] Gurucharan Singh, "Water Supply and Sanitary Engineering", Standard Publishers
	Distributors, Delhi, 2009. [R3] Anjaneyulu Y. "Introduction to Environmental sciences", B S Publications PVT Ltd, Hyderabad 2004.
	https://nptel.ac.in/courses/127106004
E-resources and other	1100 500 111 110

23CEM7701	INFRASTRUCTURE AND TRANSPORTATION SYSTEM PLANNING

Course Category:	Minor	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3 - 0 - 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

	Upon s	ucces	sful co	mpleti	on of t	he cou	rse, th	e stude	ent will	be ab	le to:				
	CO1	unde	erstand	differ	ent pav	vement	tstruct	ures							
Course	CO2	unde	understand materials and methods used for construction												
Outcomes	CO3	unde	anderstand the components of the Railway Track.												
	CO4	anal	yse geo	ometri	c featu	res of	railway	y track							
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
Outcomes towards achievement of	CO1	3						1						3	
Program Outcomes	CO2	3						1					1	3	
	CO3	3												3	
(1 – Low, 2 - Medium, 3 – High)	CO4	3												3	

Course Content

UNIT-I

INTRODUCTION TO ROADWAYS

Different Modes of Transportation, Road development in India during twentieth century, Classification of different types of roads, Highway cross section elements,

PAVEMENTS

Different types of pavements – Cross section, functions of pavement layers, Need for design, importance of drainage

UNIT-II

MATERIALS FOR PAVEMENTS

Materials used in highway construction- soil, fine and coarse aggregate, bituminous binders, cement, water.

CONSTRUCTION OF PAVEMENTS

Construction of flexible pavement, Construction of rigid pavement, Equipment for excavation, equipment for compaction.

	UNIT-III INTRODUCTION TO RAILWAYS Historic development of railways in India, Classification of Indian Railways, Different gauges in Indian Railways
	COMPONENTS OF RAILWAY TRACK Permanent way cross section and functions, Types of rails, Types of Sleepers, Types of ballast, cross section of ballast, coning of wheels, sleeper density, length of rails.
	UNIT-IV
	GEOMETRIC FEATURES AND OPERATION Super elevation or cant, cant deficiency, cant excess, negative super elevation concept, types of transition curves, gradient types.
	POINTS AND CROSSINGS Switches, crossings, working principle of turnout, classification of signals, interlocking.
Text books	 [T1] Sk Khanna, CEG Justo, A Veeraragavan, Highway Engineering, Nem Chand & Bros, 10th Edition, 2018 [T2] Satish Chandra, MM Agarwal, Railway Engineering, Oxford University Press, 2nd Edition 2013
Reference Book	[R1] Saxena, S.C. and Arora. S, Railway Engineering, Dhanpat Rai, NDLS, 2009
E-resources and other digital material	https://nptel.ac.in/courses/105/105/105105107/ https://nptel.ac.in/courses/105/101/105101087/ https://archive.nptel.ac.in/courses/105/107/105107123/

23CEM7702B	NPTEL-Mandatory (Course Based on Availability)	

23CEH4801A	STABILITY OF STRUCTURES

Course Category:	Honors	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:	23CE5404/A – Advanced Structural	Continuous Evaluation:	30
	Analysis.	Semester end Evaluation:	70
		Total Marks:	100

Course outcome	Course outcomes		Upon successful completion of the course, the student will be able to:												
	CO1		analyze the buckling of columns, beam-columns and find critical loads using energy and non-energy methods												
		CO2	analy	ze the	latera	al buc	kling	of bea	ams b	y ene	rgy aı	nd non	-energy	method	ds
		CO3	-	analyze the buckling of rectangular plates and find critical compressive loads for various boundary conditions										re loads	
		CO4	analy	analyze the buckling of axially loaded cylindrical shells											
Contribution		PO	PO	P	P	P	P	P	P	P	P	РО	РО	PSO	PSO
of Course		1	2	O3	O	O	O	O7	O8	O9	O1	11	12	1	2
Outcomes					4	5	6				0				
towards achievement	CO1	3	2		1	1								3	
of Program Outcomes	CO2	3	2		1	1								3	
(L-1, M-2, H-3)	CO3	3	2		1	1								3	
	CO4	3	2		1	1				Ì				3	
Course Content UNIT – I															

Course Content

UNIT – I

BUCKLING OF COLUMNS

Introduction; Methods of finding critical loads; Critical loads for straight columns with different end conditions and loading; Inelastic buckling of axially loaded columns; Energy methods; Prismatic and non-prismatic columns under discrete and distributed loading.

BEAM COLUMNS

Theory of Beam column – Stability analysis of beam column with different types of loads.

	UNIT – II
	BEAMS UNDER PURE BENDING
	Cantilever and simply supported beams of rectangular and I sections.
	BEAMS UNDER TRANSVERSE LOADING
	Energy methods; Solution of simple problems.
	UNIT – III
	PLATES SIMPLY SUPPORTED ON ALL EDGES
	Plates simply supported on all edges and subjected to constant compression in one or two directions.
	PLATES SIMPLY SUPPORTED ALONG TWO OPPOSITE SIDES
	Plates simply supported along two opposite sides perpendicular to the direction of compression and having various edge conditions along the other two sides.
	UNIT – IV
	BUCKLING OF AXIALLY COMPRESSED CYLINDRICAL SHELLS Introduction to buckling of axially compressed cylindrical shells, failure of axially compressed cylindrical shells.
	CRITICAL LOAD OF AN AXIALLY LOADED CYLINDER Linear theory of cylindrical shells-donnell equations, critical load of an axially loaded cylinder.
Text books	[T1] Theory of elastic stability by Timoshenko & Gere, McGraw Hill, 1961. [T2] Background to buckling by Allen and Bulson, McGrawHill, 1980.
Reference books	[R1] Elastic stability of structural elements by N.G.R.Iyengar, Macmillan India Ltd., 2007.
	[R2] Principles of Structural stability theory by AlexandarChajes, 1974.
E-resources and other	https://nptel.ac.in/courses/105105166
digital material	https://youtu.be/ZSQ_5lRj5gI
	https://nptel.ac.in/courses/105108141

SUSTAINABLE CONSTRUCTION METHODS

Course Category:	Honors	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes			ssful c	omplet	ion of	the co	ourse, t	he stu	dent w	ill be	able to):		
	CO1	apply the green buildings and sustainable design aspects												
	CO2	analy												
	CO3	evalu												
	CO4	apply	y princ	iples o	of gree	n ratin	g syste	ems in	const	ruction	1			
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	P O1 2	PSO 1	PSO 2
CO1	1		1				2	1						1
CO2	1		1				2	1						1
CO3	1		1			2	2	1						2
CO4	1		1				2	1						2
•	CO1 CO2 CO3	CO1 CO2 CO3 CO4 PO 1 CO2 1 CO3 1	CO1 apply CO2 analy CO3 evaluation CO4 apply PO	CO1 apply the g CO2 analyze the g CO3 evaluate the g CO4 apply prince g PO	CO1 apply the green by	CO1 apply the green building CO2 analyze the water consect CO3 evaluate the sustainable CO4 apply principles of gree PO PO PO PO PO PO S 1 2 3 4 5 CO1 1 1 1 CO2 1 1 1 CO3 1 1 1	CO1 apply the green buildings and CO2 analyze the water conservation CO3 evaluate the sustainable mater CO4 apply principles of green ratin PO PO PO PO PO PO PO PO 6 CO1 1 1 1 1	CO1 apply the green buildings and sustain CO2 analyze the water conservation and experience of green rating systems. CO3 evaluate the sustainable materials and code apply principles of green rating systems. CO4 apply principles of green rating systems. CO5 PO	CO1 apply the green buildings and sustainable of CO2 analyze the water conservation and energy CO3 evaluate the sustainable materials and well CO4 apply principles of green rating systems in CO4 apply principles of green r	CO1 apply the green buildings and sustainable design CO2 analyze the water conservation and energy effici CO3 evaluate the sustainable materials and wellbeing CO4 apply principles of green rating systems in construction PO P	CO1 apply the green buildings and sustainable design aspect CO2 analyze the water conservation and energy efficiency CO3 evaluate the sustainable materials and wellbeing of resi CO4 apply principles of green rating systems in construction PO P	CO1 apply the green buildings and sustainable design aspects CO2 analyze the water conservation and energy efficiency CO3 evaluate the sustainable materials and wellbeing of residents CO4 apply principles of green rating systems in construction PO 11 2 3 4 5 6 7 8 9 10 11 CO1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1	CO1 apply the green buildings and sustainable design aspects CO2 analyze the water conservation and energy efficiency CO3 evaluate the sustainable materials and wellbeing of residents CO4 apply principles of green rating systems in construction PO P	CO1 apply the green buildings and sustainable design aspects CO2 analyze the water conservation and energy efficiency CO3 evaluate the sustainable materials and wellbeing of residents CO4 apply principles of green rating systems in construction PO P

INTRODUCTION

Green building, Global warming, requirement of Green Building, Benefits of green buildings

SUSTAINABLE DESIGN

Local building requirements, soil erosion control, natural topography, vegetation, heat island effect, roof & non-roof, passive architecture, basic house hold amenities, green education & awareness

	UNIT – II
	WATER CONSERVATION Water efficient plumbing fixtures, rain water harvesting, landscape design, management of irrigation system, recycle and reuse of waste water, water quality ENERGY EFFICIENCY
	HCFC free equipment, minimum energy performance, enhance energy performance, alternate water heating systems, on-site renewable energy – common lighting, energy efficiency in common area equipment, integrated energy monitoring system
	UNIT – III
	MATERIALS & RESOURCES Separation of house-hold waste, green procurement policy, local materials, eco friendly wood based materials, alternate construction material, handling of construction & demolition material.
	RESIDENT HEALTH & WELLBEING Minimum day lighting, Ventilation design, no smoking policy, enhanced day lighting, enhanced ventilation design, cross ventilation
	UNIT-IV
	CONSTRUCTION AND OPERATIONS Construction, Occupancy & Operations
	GREEN RATING SYSTEMS IGBC, LEED, GRIHA, BEE, benefits of rating systems, procedure to get IGBC certification
Text books	[T1] IGBC Green homes rating system Version 3.0 – A bridged reference guide, September 2019 [T2] Jerry Yudelson, "Green building through Integrated design", Mc Graw Hill, 2009 [T3]Gautham R K, "Green Homes", BSP Books Private Limited, New Delhi, 2009.
Reference books	[R1] "Sustainable building technical manual- Green building design, constructions and operation", Produced by Public Technology Inc., US Green Building Council
E-resources and other digital material	

23CEH4801C	DESIGN OF FORMWORK

Course Category:	Honors	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succe	essful c	omplet	ion of	the cou	ırse, th	e stude	ent will	be abl	le to:				
	CO1	apply	y a righ	t mate	rial for	manui	facturir	ng false	e work	and fo	rm wo	k suiti	ng spe	cific	
	CO2	analy	ze the	pressu	re of co	oncrete	on for	m wor	·k						
	CO3	evalu	ate the	adequ	acy of	deckir	ıg, forr	n work	and fa	lse wo	rk.				
	CO4		aluate the sequence of construction of civil engineering structures and safety steps volved in the design of form work and false work.												
Contributio n of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
Outcomes towards	CO1		1			2	1	1		1	1				2
achieveme nt of	CO2	2	2	1		2								2	
Program Outcomes	CO3	3	3	3			1			1				3	1
(Low – 1, Medium - 2, High – 3)	CO4	1	2			1	2	1		1	1			2	
Course Cont	ent		UNIT – I INTRODUCTION												

Formwork and false work, Temporary work systems, Construction planning and site constraints.

MATERIALS OF FORMWORK

Materials and construction of the common formwork and false work systems, Special and proprietary forms.

UNIT – II

FORM WORK

Formwork – Design: Concrete pressure on forms, Design of timber and steel forms

ANALYSIS OF FORMWORK

Loading and moment of formwork.

	UNIT – III DESIGN OF DECKS Types of beam, decking and column formwork, Design of decking
	FALSE WORKS False work design, Effects of wind load, Foundation and soil on false work design.
	UNIT – IV SPECIAL FORMS The use and applications of special forms.
	CONSTRUCTION SEQUENCE AND SAFETY IN USE OF FORMWORK Sequence of construction, Safety use of formwork and false work.
Text books	 [T1] Robert L. Peurifoy and Garold D. Oberiender, "Formwork for Concrete Structures", McGraw-Hill, 1996. [T2] TudorDinescu and Constantin Radulescu, "Slip Form Techniques", Abacus Press, Turn Bridge Wells, Kent, 2004.
Reference books	[R1] Austin, C.K., "Formwork for concrete", Cleaver - Hume Press Ltd., London, 1996 [R2] Michael P. Hurst, "Construction Press", London and New York., 2003
E-resources and other digital material	Open web

23CEH5801A

ENGINEERING ROCK MECHANICS

Course Category:	Honors	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:	23ES3103A - Engineering Geology	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes		Upon	succes	sful co	mple	etion c	of the	course	e, the	stude	nt wil	l be at	ole to:		
		CO1	evalu	evaluate rock masses based on classification systems											
		CO2	apply	oply the field and laboratory testing on rocks to assess ngineering properties nalyze rocks based on the failure criteria under various stress fields											
		CO3	analy												
	CO4		ate the		_		of fo	ounda	tion o	on roc	ks and	d unde	erstand	various	
Program Outcomes (Low – 1, Medium – 2		PO 1	PO 2	P O3	P O 4	P O 5	P O 6	P O7	P O8	P O9	P O1 0	PO 11	P O1 2	PSO 1	PSO 2
	CO1	3	2	2			3								1
	CO2	3	2	2	İ		3								1
	CO3	3	2	2			3								1
	CO4	3	2	2			3								1

Course Content

UNIT - I

INTRODUCTION TO ROCK MECHANICS AND CLASSIFICATION OF ROCKS

Objectives of rock mechanics, Fields of application of rock mechanics. Geological Classification of igneous, sedimentary and metamorphic rocks based on texture and stratification

ROCK MASS CLASSIFICATIONS

Rock Quality Designation (RQD), Rock Structure Rating (RSR), Rock Mass Rating (RMR).

	UNIT - II LABORATORY TESTS - PHYSICO — MECHANICAL PROPERTIES OF ROCKS Compressive strength, Tensile strength, Direct shear test, Triaxial shear test, Slake durability test, Schmidt rebound hardness test FIELD TESTS - PHYSICO — MECHANICAL PROPERTIES OF ROCKS
	Uniaxial jacking test- Pressure meter tests Hydraulic fracturing- Flat jack test Stress. Electric resistivity method- Seismic refraction method
	UNIT – III FAILURE CRITERIA FOR ROCK AND ROCK MASSES Mohr-Coulomb Yield Criterion, Hoek-Brown Criterion,
	STRENGTH AND DEFORMABILITY OF JOINTED ROCK MASS Shear strength of Rock joints, Deformability of Rock joints, Concept of joint compliance
	UNIT - IV FOUNDATION ON ROCKS Estimation of bearing capacity, Settlement in rocks, Pile foundation in rocks. STABILITY OF ROCK SLOPES AND METHODS TO IMPROVE ROCK MASS RESPONSES Modes of failure. Grouting in Rocks, Rock bolting, Rock Anchors.
Text books	 [T1] Goodman-Introduction to Rock mechanics, Willey International (1980). [T2] Ramamurthy, T Engineering in Rocks for slopes, foundations and tunnels, Prenice Hall of India. (2007) [T3] Rock mechanics in engineering practice: Stag and Zienkiewiz, John wiley& sons
Reference books	 [R1] Jaeger, J. C. and Cook, N. G. W. — Fundamentals of Rock Mechanics, Chapman and Hall, London.(1979). [R2] Hoek, E. and Brown, E. T. Underground Excavation in Rock, Institution of Mining and Metallurgy, 1982. [R3] Brady, B. H. G. and Brown, E. T Rock Mechanics for Underground Mining, Chapman & Hall, 1993. [R4] Rock mechanics for engineers: Varma, B.P,Khanna Publishers
E-resources and other digital material	

22/	7	T FO	1 T
741	- н н	I580	ик
4.71		1~7671	,,,,

ADVANCED STEEL DESIGN

Course Category:	Honors	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:	23CE6301 Design of Steel	Continuous Evaluation:	30
	Structures	Semester end Evaluation:	70
		Total Marks:	
			100

Course outcomes	Upon	success	sful co	mplet	ion o	f the c	ourse	, the s	studen	nt will	be ab	le to:			
		CO1	analyse safe section for Tension members with lug angle and Built up Compression Members												
		CO2	CO2 analyse safe section for Plate girders												
		CO3	analyse for safe section for gantry girders												
		CO4	analyse safe section for eccentric connections												
Contribution of Course Outcomes towards achievement of		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2
	CO1	2		2		3	1						1	3	
Program Outcomes	CO2	2		2		3	1						1	3	
(Low – 1, Medium - 2,	CO3	2		2		3	1						1	3	
High-3)	CO4	2		2		3	1						1	3	
Course Content	I	COMF	ION M of ten PRESS	ision n	nembo //EMI	ers wi BERS	th Lug (IS80	g ang 00-200	07)					onnection	

	UNIT - II
	INTRODUCTION TO GANTRY GIRDER Introduction, Various loads, Load effects, explanation of how to calculate loads Calculation of Maximum SF and Maximum BM using influence lines, Deflections
	DESIGN OF GANTRY GIRDER Design of Gantry Girder, Problems on design of gantry girder.
	UNIT - III
	INTRODUCTION TO PLATE GIRDERS
	Introduction to plate girder, Elements eccentric depth, Design of web and flanges, Design of plate girders without stiffeners, Problems DESIGN OF PLATE GIRDERS
	Design of plate girders with stiffeners, Design of plate girders with intermediate stiffeners, Problems on plate girders with intermediate stiffeners
	UNIT – IV SEATED CONNECTIONS
	Introduction to Connections, Unstiffened seated connections-bolted and welded, Stiffened seated connection-bolted and welded BRACKET CONNECTIONS
	Bracket Connections, type1-bolted and welded, Bracket connection type2-bolted and welded
Text books	[T1] Duggal, S.K., Limit State Design of Steel Structures, McGraw-Hill, NDLS, 2019.
	[T2] Bhavikatti, S.S., Design of Steel Structures-By Limit State Method as per IS:800-2007, I. K. IBH Pvt. Ltd., NDLS, 2019.
Reference books	[R1] Subramanian, N., Design of Steel Structures-Limit State Method Oxford University press, HYB, 2018.
	[R2] Ram, K.S.S., Design of Steel Structures, Pearson Education India, NDLS, 2015. [R3] Chandra, R. and Gehlot, V., Limit State Design of Steel Structures, Scientific Publishers, NDLS, 2010.
E-resources and other	https://nptel.ac.in/courses/105105162
digital material	https://nptel.ac.in/courses/105106113

23CEH5801C	GEOSPATIAL DATA PROCESSING

Course Category:	Honors	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0-0
Prerequisites	NIL	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course Outcomes	Upon	succes	sful c	omple	tion of	the co	urse, tl	ne stud	ent wi	ll be ab	ole to:				
	CO1		nderstand the concepts of Geographical information systems and apply them in various agineering applications. Valuate appropriate remote sensing data products for mapping, monitoring and anagement applications.											ous	
	CO2														
	CO3	apply	oply various image processing techniques and their applications.												
	CO4	apply	oply RS and GIS techniques for solving Engineering applications.												
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
towards achievement	CO1	3	2	3		3									3
of Program Outcomes	CO2	3	2	3		3									3
	CO3	3	2	3		3								2	
(Low – 1, Medium - 2, High – 3)	CO4	3	2	3		3								2	
Course Content	Comp	GRAPI onents inate s	of G	IS, Tyj , Maps	pes of s and s	Data, cales,	Types	nate sy	ps and	_	-		•	stem, Proje	

DATA EDITING AND STORAGE

Raster and vector data models, Digitization, Data editing, Errors and corrections, data presentation and generation of thematic maps, spatial database management systems, Data representation, Data storage, Entity relationship models.

PRACTISE

- 1. Introduction to Arc GIS and Georeferencing, projections and re-projections
- 2. Creating a shape file, clip and attribute data manipulation.

UNIT-II

INTRODUCTION TO REMOTE SENSING

Introduction, Data and Information, Remote sensing data collection, Remote sensing advantages & Limitations, Remote Sensing process. Electromagnetic Spectrum, Energy interactions with atmosphere and with earth surface features (soil, water, and vegetation), Resolution, image registration and elements of visual interpretation techniques.

DATA ACQUISITION AND PLATFORMS

Indian Satellites and Sensors characteristics, Remote Sensing Platforms, Sensors and Properties of Digital Data, Data Formats: Introduction, platforms-IRS, Landsat, Sentinel, SPOT, CARTOSAT, etc. sensors, sensor resolutions (spatial, spectral, radiometric and temporal), Optical, Thermal and Microwave, signal to noise ratio, LiDAR data acquisition and processing.

PRACTISE

3.DataDigitization (Draw, edit, delete and update)

UNIT-III

IMAGE CLASSIFICATION TECHNIQUES

Supervised Classification, Unsupervised classification, ANN and SVM classification techniques

SPECTRAL INDICES

Vegetation indices, water related indices, Digital elevation model, Digital terrain model, Triangulated irregular networks.

PRACTISE

- 4. Data Analysis Overlay, Buffer
- 5. Generation of DEM and DTM using raster data.

UNIT-IV

APPLICATIONS IN SCIENCE DOMAIN

Applications of Remote sensing in various Engineering and Science domains such as Agriculture, Forest, Soil, Geology

APPLICATIONS IN ENGINEERING DOMAIN

LU/LC, Water Resources, Urban, Disaster Management, etc.

PRACTISE 6.Assignment on Application of Geospatial techniques in Civil Engineering.
[T1] Photogrammetry, GIS & Remote Sensing, SSManugula, VeerannaBommakanti, Educreation Publishing, 2018
[T2] Text Book of Remote Sensing and Geographical Information Systems, M. Anji Reddy, BS Publications/BSP Books, 4 th edition, 2012
[R1] Remote Sensing and Image Interpretation, Lillesand, T.M, R.W. Kiefer and J.W. Chipman, Wiley India Pvt. Ltd., New Delhi,7th Edition 2015
[R2] Remote Sensing and GIS, BasudeBhatta, Oxford UniversityPress,2nd Edition, 2011
https://nptel.ac.in/courses/105/103/105103193/
https://nptel.ac.in/courses/105/101/105101206/
https://nptel.ac.in/courses/105/107/105107206/

22	CEH6801	4 4
, , ,	I HHAXIII	
4.1	TO THE PROPERTY OF THE PARTY OF	_

TRAFFIC ANALYSIS AND DESIGN

Course Category:	Honors	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:	23CE6302 Transportation	Continuous Evaluation:	30
	Engineering	Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succes	ssful co	omplet	tion of	the co	ourse,	the stu	dent w	ill be a	ble to:				
	CO1	unde	rstand	traffic	engin	eering	studie	es, anal	lyse the	e data	and pre	esent th	e result	S.	
	CO2		ate tra	ıffic a	and ro	ad fac	cilities	, and	interse	ction	control	measu	ires foi	r smootl	n traffic
	CO3	analy	se app	ropria	te traf	fic cor	ntrol aı	nd mar	ageme	ent mea	asures.				
	CO4		the pr section	_	es of o	queuin	g theo	ry to a	nalyse	delay a	at signa	alized a	nd unsi	gnalized	l
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
Outcomes towards	CO1	3	2	1	3	1	1			1					
achievement of Program Outcomes	CO2	3	3							1				3	
Outcomes	CO3	3			2	2	3			1					3
(Low – 1, Medium - 2, High – 3)	CO4	3	3							1					3
Course Content		FIC E	NGIN n Traffi								tives, N	Method:	s of Stu	dy, Equ	ipment.
	Case	Studie: cident	tion, A s of (a) & othe	Speed	d (b) S	_			Volu1	me (d)	Origin	and De	estinatio	on (e) Pa	ırking

E-Reference	Nil
Reference books	 [R1] IRC-SP41: Guidelines for the Design of At-Grade Intersections in Rural & Urban Areas [R2] Pignataro, L., Traffic Engineering – Theory & Practice, John Wiley, 1973. [R3] Salter, R J., Highway Traffic Analysis and Design, ELBS, 1996
Text books	[T1] Kadiyali, L.R., Traffic Engineering and Transport Planning, Khanna publishers, 2011.[T2] The Institute of Transportation Engineers, Traffic Engineering Handbook, 7th edn, 2016.
	QUEUING ANALYSIS Fundamentals of Queuing Theory, Demand Service Characteristics, Deterministic Queuin Models, Stochastic Queuing Models, Multiple Service Channels, Models of Delay at Intersection and Pedestrian Crossings.
	UNIT – IV TRAFFIC STREAM MODELS Fundamental Equation of Traffic Flow, Speed-Flow-Concentration Relationships, Normalised Relationship, Fluid Flow Analogy Approach, Shock Wave Theory, Platoon Diffusion and Boltzman Like Behaviour of Traffic Flow, Car-Following Theory, Linear and Non-Linear Car-Following Models, Acceleration Noise.
	TRAFFIC MANAGEMENT MEASURES Speed, vehicle, parking, enforcement regulations, mixed traffic regulation, various management techniques.
	UNIT – III TRAFFIC REGULATION AND MANAGEMENT Traffic Signs, Markings and Signals; Principles of Signal Design, Webster's method of Signal Design, Redesign of Existing Signals including Case Studies; Signal System and Coordination.
	Design of Islands Design of Channelising Islands, T, Y, Skewed, Staggered, Roundabout, Mini-roundabout and othe forms of AT-Grade Crossings including provision for safe crossing of Pedestrians and Cyclists Grade Separated Intersections, their Warrants and Design Features; Bus Stop Location and Bus Ba Design
	DESIGN OF TRAFFIC ENGINEERING FACILITIES Control of Traffic Movements through Time Sharing and Space Sharing Concepts.

Course Category:	Honors	Credits:	3
Course Type:	Program Elective	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:	23CE6302 Transportation	Continuous Evaluation:	30
	Engineering	Semester end Evaluation:	70

TRANSPORTATION ECONOMICS

Total Marks: 100

Course outcor	nes	Upon	succes	sful co	mplet	ion of	the cou	ırse, th	e stude	ent will	be ab	le to:			
		CO1	apply trans	the portation		omic 1	princip	les and	d estir	nating	the v	arious	cost c	compone	ents in
		CO2		the priate						the ec	onomi	c analy	sis an	d apply	ing the
		CO3	analy	ze Der	nand a	and Su	pply m	odelliı	ng						
		CO4	under	rstand	Know	ledge	on Reg	gulatio	n and I	Policy	making	g of Ec	onomi	c Evalua	ation
Contribution		РО	РО	PO	РО	РО	PO	РО	РО	PO	РО	РО	РО	PSO	PSO
of Course Outcomes		1	2	3	4	5	6	7	8	9	10	11	12	1	2
towards achievement of Program Outcomes	CO1	3	3	1		1				1		1		3	3
(L – Low, M -	CO2	3	3	1	1	3				1		1			
Medium, H – High)	CO3	3	1	1	3										
3 /	CO4	3							3	1		1			3

Course Content

23CEH6801B

UNIT – I

TRANSPORT COSTS AND BENEFITS

Principles of economic analysis, Fixed and variable cost, cost of improvement, maintenance cost, cost estimating methods, accounting for inflation, external costs.

CONSEQUENCES OF TRANSPORT PROJECTS, ROAD USER CONSEQUENCES

Reduced vehicle operation costs, value of travel time savings, value of increased comfort and convenience, cost of accident reduction, reduction in maintenance cost, non-user consequences – travel time.

	UNIT – II
	ECONOMIC ANALYSIS METHODS
	Generation and screening of project Alternatives
	DIFFERENT METHODS OF ECONOMIC ANALYSIS annual cost and benefit ratio methods, discounted cash flow methods, shadow pricing techniques, determination of IRR and NPV, examples of economic analysis, application economic theory in traffic assignment problem.
	UNIT – III TRANSPORT DEMAND The Basic Framework- measuring the demand in a spatial and temporal setting. Traditional Four-Stage Demand Model; modern approaches to modelling demand and practical issues in demand estimation.
	TRANSPORT SUPPLY
	The nature of output in transport, output and costs, economies of size, density and scope, empirical estimation of transport cost functions- the approaches and illustrations.
	UNIT – IV REGULATION AND POLICY Theory of Regulation, Deregulation and Privatisation in Transport. Approaches to privatisation of transport infrastructure and services and a competition policy for transport. Evolution of transport policy in India with focus on case studies regarding different modes. EVOLUTION OF POLICY Evolution of transport policy in India with focus on case studies regarding different modes.
Text books	 [T1] McCarthy, P. S., Transportation Economics, Massachusetts: Blackwell Publishers. 2001 [T2] Winfrey R, Highway Economic Analysis, International Textbook Company, 1969.
Reference books	 [R1] Kenneth J. Button, Transport Economics, Elgar, 2010 [R2] David A. Hensher, Ann M. Brewer, Transport: An Economics and Management Perspective, Oxford University Press, 2001. [R3] Emile Quinet, Roger Vickerman, Principles of Transport Economics, Edward Elgar Pub, 2005 [R4] Road User Cost Study, Central Road Research Institute [R5] Dickey J.W, Project Appraisal for Developing Countries, John Wiley, 1984
E-resources and other digital material	https://www.civil.iitb.ac.in/~dhingra

Course Category:	Honors	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:	23CE7302 Foundation Engineering	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcor	mes	Upon	succe	essful c	omple	etion o	of the	course	, the st	udent	will be a	ible to:			
		CO1	appl	y vario	ous be	aring	capac	ity det	ermina	tion te	chnique	s and			
		CO2	anal	ysis fo	r dete	rmina	tion o	f bear	ing cap	acity a	nd settl	ement	of sha	allow fou	ndation
		CO3	eval	uate sa	fe cap	acity	of pil	e found	dation	for all	types of	loads			
		CO4	anal	yze se	ection	for st	ability	y of we	ell four	ndation	/ caisso	on.			
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
Outcomes towards	CO1	3	1	1									2		2
achievement of Program Outcomes	CO2	3	1	1									2		2
(Low – 1,	CO3	3	1	1									2		2
Medium - 2, High – 3)	CO4	3	1	1									2		2
Course Conte	nt	Vesic Loads ESTI	RING meth s, Foo MATI	od, IS tings o	Code n Lay F BE	methorered S	od; Ef Soils. G CA	fect of	Water					ntric or I	nclined

UNIT – II

CONCEPT OF SETTLEMENT CLASSIC THEORIES

Immediate Settlement, Consolidation Settlement; Secondary Compression Settlement.

SETTLEMENT ESTIMATION - EMPIRICAL METHODS

Settlement of foundations on Sands-Schmertmann

	UNIT – III PILES IN COMPRESSION Static capacity of piles, Point Bearing Resistance with SPT and CPT; Ultimate Capacity of Pile Groups in Compression, Settlement; Pile Load Test; Negative Skin Friction. SPECIAL PILES AND SETTLEMENTS OF PILE Laterally Loaded Piles - Ultimate Lateral Resistance; Batter Piles; Under Reamed Piles; Mini and Micro Piles, Pullout & Lateral Load; Efficiency; Settlements of Pile Groups;
	UNIT – IV WELL FOUNDATIONS Open wells; Design of pier foundations and well foundations; Lateral stability of well foundations; R.C.C. designs of wells
	PNEUMATIC CAISSONS Introduction to Pneumatic Caissons, construction of piers;
Text books	 [T1] Das, B. M. Principles of Foundation Engineering 5th Edition Nelson Engineering, 2004. [T2] Coduto, D,P. Foundation Design Principles and Practices, 2nd edition, Pearson, Indianedition, 2012. Phi Learning, 2008. [T3] Bowles, J. E. Foundation Analysis & Design 5th Edition McGraw-Hill Companies, Inc., 1996. [T4] Poulos, H. G. & Davis, E. H. Pile Foundation Analysis and Design, John Wiley & Sons Inc., 2008.
Reference books	 [R1] Reese, L. C. & Van Impe, W. F. Single Piles and Pile Groups under Lateral Loading - Taylor & Francis Group (Jan 2000) [R2] Rowe, R. K. Geotechnical & Geo-environmental Engineering Hand Book - Springer ,2001. [R3] Tomlinson, M. J. Foundation Design and Construction, PHI , 2003.
E-resources and other digital material	nptel.ac.in/courses/105107120 nptel.ac.in/courses/105101083

23CEH6801B1	NPTEL Mandatory (Course Based on Availability)

23CEH7801A	GEO SYNTHETICS AND REINFORCED SOIL STRUCTURES

Honors	Credits:	3
Theory	Lecture - Tutorial - Practice:	3-0-0
23CE4304 Geotechnical	Continuous Evaluation:	30
Engineering	Semester end Evaluation:	70
	Total Marks:	100
	Theory	Theory Lecture - Tutorial - Practice: 23CE4304 Geotechnical Engineering Continuous Evaluation: Semester end Evaluation:

Course outco	mes	Upon	success	sful co	mpletio	on of	the co	ourse, t	he stud	dent wi	ll be ab	le to:			
		CO1	analy	ze the 1	propert	ies of	geos	ynthet	ics						
		CO2	under	stand f	unction	ns and	l appl	icatior	ns of ge	eosynth	etics				
		CO3	evalua	ate a ty	pical s	ectio	ı for t	he cor	ıstructi	on of r	einforce	ed earth	walls		
		CO4	evalua	ate rein	ıforced	earth	slop	es and	founda	ations					
Contributio n of Course Outcomes	C O1	PO 1	PO 2	PO 3	PO 4	P O 5	P O 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PS O2
towards achievemen t of	C O2	3	3	3		3								3	3
Program Outcomes (Low– 1,	C O3	3	3	3		3								3	3
Medium - 2, High – 3)	C O4	3	3	3		3								3	3
Course Conte	ent	Introd	SYNTH	to G	eosynt				_	•		nctions	of G	eosynth	netics-
		Manu	UFACT facture omembr	of geo	textiles	s- Ma	nufac	ture of	f geogr		anufact	ure of g	eonets-	Manuf	acture

	UNIT – II PROPERTIES OF GEOSYNTHETICS Physical properties-Mechanical Properties-Hydraulic Properties-Endurance Properties- Degradation properties TESTING OF GEOSYNTHETICS Need for testing of Geosynthetics-Testing of geogrids-Testing of geonets-Testing of
	geomembranes-Testing of GCLs UNIT – III EXTERNAL STABILITY ANALYSIS OF REINFORCED SOIL WALLS Different Types of Soil Retaining Structures-Construction Aspects of Geosynthetic Reinforced Soil Retaining Walls-External Stability Analysis of Reinforced Soil Retaining Walls
	INTERNAL STABILITY ANALYSIS OF REINFORCED SOIL WALLS Internal Stability Analysis of Reinforced Soil Walls- Testing requirements for Reinforced Soil Retaining Walls- Design of Gabions.
	UNIT – IV STABILITY ANALYSIS OF REINFORCED SOIL EMBANKMENTS Stability analysis of reinforced soil Embankments resting on soft foundation soils-Stability analysis of reinforced soil slopes- Reinforced soil for supporting shallow foundations-Natural geosynthetics and their applications.
	GEOSYNTHETICS FOR LANDFILLS Geosynthetics for construction of municipal waste landfills-Geosynthetics for construction of hazardous waste landfills
Text books	 [T1] Koerner, R.M. "Designing with Geosynthetics", Prentice Hall, Eaglewood cliffs, NJ, 2005. [T2] Sanjay Kumar Shukla, Jian-Hua Yin, Taylor, "Fundamentals of Geosynthetics Engineering" & Francis, Milton Park, Abingdon, UK, 2010. [T3] Saran, S. "Reinforced Soil and Its Engineering Applications", I.K. International Pvt Ltd, New Delhi, 2005.
Reference books	[R1] Venkatappa Rao, G. and Suryanarayana Raju, GVS. "Engineering with Geosynthetics", Tata McGraw Hill Publishing Company Limited – New Delhi, 2008. [R2] Koerner, R.M. and Welsh, J. P. "Construction and Geotechnical Engineering using Synthetic Fabrics" by. John Willey and Sons, New York, 1993.
E-resources and other digital material	https://nptel.ac.in/courses/105/101/105101143/[J. N. Mandal, Geosynthetics Engineering]

230	CEH	780	11 R
40		ľΟι	

INTELLIGENT TRANSPORTATION SYSTEMS

Practice:	Course Category:	Hono	rs									C	redits	:		3
Engineering Upon successful completion of the course, the student will be able to: CO1 evaluate the need and basics of ITS and data collection techniques CO2 apply ITS for different functional areas CO3 apply ITS for different user needs and services CO4 understand the significance of ITS in developed and developing countries Contribution of Course Outcomes towards achievement of Program Outcomes (Low - 1, Medium - 2, High - 3) CO3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Course Type:	Theo	ry								Tuto	rial -				3 - 0-0
CO1 evaluate the need and basics of ITS and data collection techniques	Prerequisites:				sport	ation					r end	Evalu	ation	:		30 70 100
Course Outcomes		Upon	succe	essful	comp	letion	of the	e cour	se, th	e stud	ent w	ill be a	ible to	:		
CO3 apply ITS for different user needs and services		CO1	eval	uate t	he ne	ed and	d basi	cs of	ITS a	nd dat	a coll	ection	techni	iques		
CO4	Course Outcomes	CO2	appl	y ITS	for d	iffere	nt fun	ctiona	l area	ıs						
Contribution of Course Outcomes towards achievement of Program Outcomes (Low - 1, Medium - 2, High - 3) Course Content Course		CO3	appl	y ITS	for d	iffere	nt use	r need	ls and	servi	ces					
Course Outcomes towards achievement of Program Outcomes CO1 2 2 2 2 2 1		CO4	unde	erstan	d the	signif	icance	e of IT	S in o	develo	ped a	nd dev	velopii	ng cou	ntries	
Outcomes CO1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Course Outcomes		_													PSO 2
(Low - 1, Medium - 2, High - 3) CO3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	of Program	CO1	2		2		2									2
2, High – 3) CO3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(Low 1 Madium	CO2	2				2									2
Course Content UNIT-I INTRODUCTION TO ITS	•	CO3	2	2			2									2
INTRODUCTION TO ITS		CO4	2	2			2							2		2
Definition of ITS, ITS Objectives, Historical Background, Benefits of ITS - ITS Decollection techniques – Detectors, Automatic Vehicle Location (AVL), Automatic Vehicle Identification (AVI), Geographic Information Systems (GIS), video data collection. TELECOMMUNICATIONS IN ITS Importance of telecommunications in the ITS system, Information Management, Tra Management Centres (TMC). Vehicle – Road side communication – Vehicle Position System	Course Content	INTR Defin collect Identi TELE Impo Mana System	CODU ition etion t fication ECOM ortance gement	of IT echnic on (A' IMUN e of to	S, IT ques - VI), C NICAT elecor	S Obj - Dete Geogra FION, nmun	ectors, aphic I S IN I icatio	Auto Inform TS ns in	matic nation	Vehi Syste ΓS sys	cle Lo ems (C	GIS), v	n (AVI video c	L), Aut data co Mana	tomatic llection. gement,	Vehicle Traffic
UNIT-II		UNIT	`-II													

ITS FUNCTIONAL AREAS

Advanced Traffic Management Systems (ATMS), Advanced Traveler Information Systems (ATIS), Commercial Vehicle Operations (CVO),

ITS FUNCTIONAL AREAS IN TRANSPORTATION SYSTEM

Advanced Vehicle Control Systems (AVCS), Advanced Public Transportation Systems (APTS), Advanced Rural Transportation Systems (ARTS).

	UNIT-III ITS USER NEEDS Travel and Traffic management, Public Transportation Management, Electronic Payment, ITS User Services Commercial Vehicle Operations, Emergency Management, Advanced Vehicle safety systems, Information Management.
	UNIT-IV AUTOMATED HIGHWAY SYSTEMS Automated highway system - Vehicles in Platoons – Integration of Automated Highway Systems. ITS PROGRAMS IN THE WORLD
	Overview of ITS implementations in developed countries, ITS in developing countries.
Text books	[T1] Ghosh. S, T. Lee, T.S Lee. "Intelligent Transportation Systems: New Principles and Architectures", 1sted, CRC Press, Boca Raton, 2000. [T2] Sussman. J, "Perspective on Intelligent Transport System ITS", 1sted, Artech House Publishers, Boston 2005.
Reference Book	[R1] M.A. Chowdhury, & A. Sadek, "Fundamentals of Intelligent Transportation Systems Planning", 1st ed, Artech House Publishers, Boston, 2003. [R2] J. Miles, K. Chen, C.J.C Miles, "ITS Hand Book 2000: Recommendations for World Road Association (PIARC)" 1sted, Artech House Publishers, Boston, 1999
E-resources and other digital material	https://www.civil.iitb.ac.in/~vmtom/nptel/591_ITS_1/web/web.html https://coeut.iitm.ac.in/ITS_synthesis.pdf [https://ocw.mit.edu/courses/civil-and-environmental-engineering/1-212j-an-introduction-to-intelligent-transportation-systems-spring-2005/lecture-notes/

		_
23CEH7	QA1	"
23CE11/	OUL	·

ENVIRONMENTAL IMPACT ASSESSMENT

Course Category:	Honours	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	23MC3107B – Environmental studies	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course Outcomes	Upon s	succes	sful c	omple	tion of	the co	ourse, t	he stud	lent wi	ll be al	ble to:				
	CO1	unde	erstan	d the (Concep	t of El	A, EI	A meth	odolog	gies.					
	CO2	anal	yze th	e effe	ct on d	ifferen	t sourc	es on	develo	pmenta	al activ	ities.			
	CO3	anal	yze th	e effe	ct of d	evelop	ment o	n flora	and fa	iuna.					
	CO4	unde	erstan	d the o	lifferer	nt acts	and ca	se stud	ies.						
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
Outcomes towards	CO1	3					2						1		2
achievement of Program	CO2	3	2							3					2
Outcomes	CO3	3	2										1		2
(Low – 1, Medium - 2, High – 3)	CO4						2								2
Course Content	UNIT INTRO Basic classifi evaluat environ EIA M Criteria method cost/be	DDUC conce cation a ment ETHO a for ls, net	pt-Sand and and all par DOL the sework	prediction of the prediction o	Feature ction of states of the	es of of important	EIA, acts -Intion	EIA P Elemen of env	roceduts of I vironm - EI	ire – EIA - ental A met	Analyte Factor base hods	tical furs affections affection map -	ting El Class	IA – I sification	mpact on of matrix

	UNIT II ENVIRONMENTAL IMPACT ASSESSMENT ON SOIL AND GROUND WATER Introduction, Prediction and assessment - Soil quality -Methodology for the assessment of soil and groundwater - Delineation of study area - Identification of activities.
	ENVIRONMENTAL IMPACT ASSESSMENT OF SURFACE WATER AND AIR Impact prediction - Assessment of impact significance - Identification and incorporation of mitigation measures - EIA in surface water, air and biological environment: Methodology for the assessment of impacts on surface water environment. Air pollution sources, Air pollution effect - Generalized approach for assessment of air pollution Impact.
	UNIT III ASSESSMENT OF IMPACT ON VEGETATION AND WILDLIFE
	Assessment of impact of developmental activities on vegetation and wildlife - Environmental impact of deforestation - Causes and effects of deforestation.
	ENVIRONMENTAL AUDIT Environmental audit and environmental legislation - Objectives of environmental audit - Types of environmental audit - Audit protocol - Stages of environmental audit - Onsite activities - Evaluation of audit data and preparation of audit report.
	UNIT – IV ENVIRONMENTAL ACTS Post audit activities - The Environmental protection act - The water act - The air act - Wild life act. CASE STUDIES Case studies and preparation of environmental impact assessment statement for various industries.
Text books	 [T1] Anjaneyulu, VallManickam, "Environmental Impact Assessment Methodologies", 2nd Edition ,B.S. Publications, 2007. [T2] Glynn. J, and Gary W. Heinke, "Environmental Science and Engineering", PHI, NDLS, 1996.
Reference books	 [R1] Barthwal, R. R., "Environmental Impact Assessment", New Age International Publications [R2] Dhameja,S.K., Environmental Engineering and Management, Kataria, NDLS, 2010. [R3] Bhatia,H.S., A Text Book of Environmental Pollution and Control, Galgotia NDLS, 2003.
E-resources and other digital material	https://nptel.ac.in/courses/120/108/120108004/

23CEH6802B1	NPTEL Mandatory(Course Based on Availability)

23CE5301 WATER RESOURCES ENGINEERING

Course Category:	Program Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

	Upon	succe	successful completion of the course, the student will be able to:												
	CO1	Unde	erstand	irrigat	ion me	thods,	crop w	ater re	quiren	nents, a	and wa	ter asse	ssmen	t.	
	CO2 Understand hydrologic processes, runoff, unit hydrographs, and well irrigation												١.		
Course Outcomes	CO3	Desig	Design irrigation channels, analyze waterlogging, and apply canal lining.												
	CO4	Evalu	Evaluate reservoir capacity and summarize various types of hydraulic structures												
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO 11	PO 12	PSO 1	PSO 2
Outcomes towards	CO1	3						2			1				
achievement of Program Outcomes	CO2	3		2	2									2	
(1 – Low, 2 - Medium, 3 – High)	CO3	3		2	2									3	
	CO4	3		3		2		2			1			3	

Course Content

UNIT – I 1. IRRIGATION:WATER APPLICATION METHODS

Definition; Necessity; Benefits of irrigation; Ill-effects of irrigation; Types of irrigation and methods of applying water to crops; Uncontrolled or wild flooding; Free flooding; Contour laterals; Border strip method; Check flooding; Basin flooding; Zig zag method; Furrow method; Contour Farming; Sub-surface irrigation; Sprinkler Irrigation; Drip irrigation.

2. WATER REQUIREMENT OF CROPS:

Saturation capacity; Field capacity; Wilting point; Available moisture and readily available moisture; Duty and Delta; Base period; Relation between Duty and Delta; Factors affecting duty; Methods of improving duty; Gross command area; Culturable command area; Culturable cultivated and uncultivated area; Kor depth and Kor period; Standards of irrigation water; Assessment of irrigation water.

UNIT – II

3. HYDROLOGY:

Introduction to Engineering Hydrology and its applications; Hydrologic cycle; Precipitation types; Rain gauges; Computation of average rain fall over a basin; Run off;

Factors affecting run off; Computation of run-off. Hydrograph; definition of Unit hydrograph; Limitations and applications of unit hydrograph, construction of a flood hydrograph resulting from rainfall of unit duration; Application of unit hydrograph to construction of a flood hydrograph resulting from two or more periods of rainfall; Construction of unit hydrograph of different unit duration from a unit hydrograph of some given unit duration. S-hydrograph

4. WELL IRRIGATION:

Introduction; Aquifer; Aquicludes; Aquifuge; Specific yield; Specific retention; Water table; types of aquifers; Dupit's theory for confined and unconfined aquifers; Constant level pumping test, Recuperation test.

UNIT-III

5. IRRIGATION CHANNELS – SILT THEORIES & DESIGN PROCEDURE:

Classification; Canal alignment; Silt theories—Kennedy's theory, Lacey's regime theory; Kennedy's method of channel design; Silt supporting capacity according to Kennedy's theory; Use of Garret's diagram in channel design; Lacey's theory applied to channel design; Use of Lacey's regime diagrams; Drawbacks in Kennedy's theory; Defects in Lacey's theory; Comparison of Kennedy's theory and Lacey's theory

6. WATERLOGGING, CANAL LINING

Waterlogging, causes, effects and remedial measures. Lining of Irrigation canals, Types of lining; Design of lined canal

UNIT-IV

7. DAMS IN GENERAL:

Classification; Gravity dams, Arch dams, Buttress dams, Steel dams, Timber dams, Earth dams and rock fill dams; factors governing selection of site for a dam.

8. RESERVOIR PLANNING:

Selection of site for a reservoir; Zones of storage in a reservoir; Storage capacity and yield; Mass inflow curve and demand curve; Calculation of reservoir capacity for a specified yield from the mass inflow curve; Determination of safe yield from a reservoir of a given capacity; Life of reservoir.

Text books

- 1. B.C. Punmia, Pande B.B. Lal, Ashok Kumar Jain, Arun Kumar Jain Irrigation and Water Power Engineering, Laxmi Publications, 2016
- 2. S.K. Garg Irrigation Engineering and Hydraulic Structures, Khanna Publishers, 2019
- 3. K. Subramanya Engineering Hydrology, Tata McGraw-Hill, 2013
- 4. Jain, Reddy, & Sharma Water Resources Engineering, New Age International, 2017

Reference books

- 1. Linsley, R.K., Franzini, J.B., Freyberg, D.L. & Tchobanoglous, G. Water Resources Engineering, McGraw-Hill, 1992
- 2. David Keith Todd & Larry W. Mays Groundwater Hydrology, Wiley India, 2004
- 3. S.K. Garg Hydrology and Water Resources Engineering, Khanna Publishers, 2019

V. R. Siddhartha Engineering College, Department of Civil Engineering: VR23 Regulation Syllabus

E-resources	www.nptel.ac.in/couses/105104103
and other digital	
material	

23CE5302 ENVIRONMENTAL ENGINEERING

Course Category:	Program Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	2 - 0- 2
Prerequisites:	23BS1102A – Engineering	Continuous Evaluation:	30
	Chemistry 23MC3107B – Environmental	Semester end Evaluation:	70
	studies	Total Marks:	100

	Upon	succe	ssful c	omplet	ion of	the co	urse, th	e stud	ent wil	l be ab	le to:					
Course Outcomes	CO1		evaluate the source of water for water supply scheme with reference to quantity and quality of water.													
	CO2		apply and design the treatment units for purification of water and to understand the components of distribution systems and its analysis.													
	CO3	under	nderstand the methods of collection, conveyance, quality and estimate the quantity of sewage.													
	CO4	apply	apply appropriate treatment and disposal methods of sewage.													
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO 11	PO 12	PSO 1	PSO 2	
Outcomes towards	CO1	1			2		1				1		1		1	
achievement of Program Outcomes	CO2	3		2	3		2	2		1	2			1	1	
(1 – Low, 2 - Medium, 3 – High)	СОЗ	2	2				1			1			1	2		
	CO4	3	2	3	3		3	2			1		1	3	3	

Course Content

UNIT I

INTRODUCTION AND QUANTITY OF WATER

Objectives of water supply systems, Per capita consumption; Design period; Types of demands; Fluctuations in demand; Prediction of population.

QUALITY OF WATER

Impurities in water; Routine water analysis - physical, chemical and bacteriological tests; Standards for drinking water; Water borne diseases.

Laboratory tests:

- 1. Determination of pH value of water sample.
- 2. Determination of total suspended and dissolved solids in water sample.
- 3. Determination of alkalinity of water sample.

UNIT II

PURIFICATION OF WATER

Purification of water; Plain sedimentation; coagulation and types of Coagulants; Sedimentation and coagulation tanks; Design aspects; Theory of filtration; Slow sand and rapid sand filters;

Construction and Operation; Disinfection methods-chlorination; Miscellaneous treatments - Removal of hardness, De-fluoridation.

DISTRIBUTION SYSTEMS

Methods of supply; Layouts; Distribution reservoirs; Capacity of balancing tank; Methods of analysis of distribution systems, Plumbing-pipes and fittings; Traps; One pipe and Two pipe systems.

Laboratory tests:

- 4. Determination of acidity of water sample.
- 5. Determination of turbidity of water sample.
- 6. Determination of optimum dose of coagulant.

UNIT III

INTRODUCTION TO SANITARY ENGINEERING, QUANTITIES, SEWERS AND SEWER APPURTENANCES

Sanitation; Conservancy and water carriage system; Sewerage systems; Relative merits, Sanitary and storm water sewage; Estimation of their quantities. Sewers-types, sewer appurtenances types.

OUALITY OF SEWAGE AND PRIMARY TREATMENT OF SEWAGE

Characteristics of sewage-physical, chemical and biological; decomposition cycles; BOD and COD. Primary treatment- theoretical concepts of Screens, Grit chamber; Skimming tanks; design aspects of Sedimentation tanks. Septic tank-Design and effluent disposal.

Laboratory tests:

- 7. Determination of temporary and permanent hardness of water sample.
- 8. Determination of chloride concentration of water sample.
- 9. Determination of sulphate content in a given water sample.

UNIT - IV

SECONDARY TREATMENT OF SEWAGE

Trickling filters and high rate trickling filters at primary level, Principles of action; Recirculation; Operational problems and remedies; Activated sludge process; Principles of action; Methods of aeration; Sludge bulking; Sludge volume index.

SEWAGE DISPOSAL

Methods; Disposal by dilution; Self-purification process; Oxygen sag; Zones of pollution of river; Disposal by irrigation.

Laboratory tests:

- 10. Determination of dissolved oxygen of water sample.
- 11. Determination of biochemical oxygen demand (BOD) of waste water.
- 12. Determination of chemical oxygen demand (COD) of waste water.

Text books

- [1] Duggal K.N., "Elements of public health engineering", S. Chand & Company Ltd., New Delhi, 2014.
- [2] Birdie G.S. and Birdie J. S., "Water Supply and Sanitary Engineering", 9th ed., Dhanpat Rai Publishing Company, New Delhi, 2015.

V. R. Siddhartha Engineering College, Department of Civil Engineering: VR23 Regulation Syllabus

Reference books	 [1] Garg S. K., "Environmental Engineering Vol. I& II- Water supply engineering", Khanna Publishers, New Delhi, 2017. [2] Gurucharan Singh, "Water Supply and Sanitary Engineering", Standard Publishers Distributors, Delhi, 2009. [3] CPHEEO and Ministry of Urban Development, "Manual on Water Supply & Treatment", Govt. of India, New Delhi, 2005.
E-resources and other digital material	[1] www. https://nptel.ac.in/courses/103107084 - Environmental Engineering, Dr. V. C. Srivastava, IIT, Roorkee – [2] www.nptel.ac.in/courses/105105048 - Wastewater management, Dr. M. M. Ghangrekar, IIT, Kharagpur

V. R. Siddhartha Engineering College, Department of Civil Engineering: VR23 Regulation Syllabus

23CE5303 Design of Concrete Structures

Course Category:	Program Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	23CE3308 Concrete Technology	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

	Upon	Upon successful completion of the course, the student will be able to:													
	CO1	analy	analyse for a section for R.C. beams												
Course	CO2	evalu	valuate a section for R.C. flanged beam & R.C slabs												
Outcomes	CO3	analy	nalyse for a safe section for R.C columns												
	CO4	evalu	valuate a section for Footings												
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO 11	PO 12	PSO 1	PSO 2
Outcomes towards achievement	CO1	2		3		3		1		2	1			3	
of Program Outcomes	CO2	2		3		3		1		2	1			3	
(1 – Low, 2 - Medium, 3 – High)	CO3	2		3		3		1		2	1			3	
	CO4	2		3		3		1		2	1			3	

Course Content

UNIT I:

GENERAL

Loading standards as per IS 875, Grades of steel and cement, Stress- Strain characteristics of concrete and steel, Introduction to working stress method and Limit State Method (L.S.D.) of design. Characteristic load and strengths, Design values, Partial safety factors, Factored loads.

ALL DESIGNS IN LIMIT STATE METHOD

DESIGN OF BEAMS (IS456-2000).

Flexural and Shear in R. C. beams; Check for development length. Deflection and cracking. Design of singly reinforced rectangular section, Doubly reinforced rectangular section.

UNIT II:

DESIGN OF FLANGED BEAM (IS456-2000)

T-Beams introduction, Analysis and Design of singly reinforced flanged sections

DESIGN OF SLABS (IS456-2000).

One way and Two-way action of slabs, Choosing slab thickness. Design of one way slab. (only

	simply supported one way slab) Design of restrained and unrestrained Two way slabs as per I.S. code provision (IS456-2000).
	UNIT III: DESIGN OF COLUMNS FOR AXIAL COMPRESSION (IS456-2000). Define short and long columns, estimation of effective length of a column. Code requirements on slenderness limits, minimum eccentricity and reinforcement. Design of short column under axial compression with lateral ties only.
	DESIGN OF COLUMNS FOR COMBINED ACTION (IS456-2000) Design of short columns subjected to combined axial load and uniaxial Moment.
	UNIT – IV Classification of foundations; Different types of shallow foundations and deep foundations. General aspects of footings.
	DESIGN OF ISOLATED FOOTING (IS456-2000). Design and detailing of Isolated Column footings.
Text books	Shah H.J., "Reinforced Concrete Vol-1", 11th ed., Charotar Publication House, Gujarat, 2016. Jain A.K, "Reinforced Concrete (Limit State Design)", 7th ed Nem Chand & Bros., Roorkee Uttarakhand, 2012.
Reference books	Varghese P.C, "Limit state designed of reinforced concrete", 2nd et. Printice Hall of India; New Delhi, 2004. ArtherH.Nilson, "Design of concrete structures", 1st ed., Tata McGraw-Hill Publishing Co. Ltd, New Delhi, 2017. IS 456-2000 PLAIN AND REINFORCED CONCRETE CODE OF PRACTICE
E-resources and other digital material	www.nptel.ac.in/courses/105105105 (Dr.Dhang. N, IIT/ Kharagpur – Design of Reinforced Concrete Structures) www.nptel.ac.in/courses/105105104 (Dr. J.N. Bandopadhyay, IIT/ Kharagpur – Design of Reinforced Concrete Structures)

23CE5404/A ADVANCED STRUCTURAL ANALYSIS

Course Category:	Programme Elective-I	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	20CE4302 – Structural Analysis	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

	Upon	succe	ssful c	omplet	ion of	the co	urse, th	ne stud	ent wil	l be ab	ole to:				
Course	CO1	analy	analyze arches and cables												
	CO2	evalu	valuate statically indeterminate beams using flexibility matrix method												
Outcomes	CO3	evalu	valuate statically indeterminate beams and frames by stiffness matrix method												
	CO4	apply	pply the basic concepts of plastic analysis and finite element method												
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO 11	PO 12	PSO 1	PSO 2
Outcomes towards	CO1	3	3	1										3	
achievement of Program Outcomes	CO2	3	3	1										3	
(1 – Low, 2 - Medium, 3 – High)	CO3	3	3	1										3	
	CO4	2	2	1										3	

Course Content

UNIT I:UNIT – I

ARCHES

Eddy's Theorem; Analysis of three hinged and two hinged Parabolic and Circular arches for Static loads.

CABLES

Analysis of cables under uniformly distributed and concentrated loads; Shape of the cable under self-weight; Effect of temperature changes in suspension cables.

UNIT II:

MATRIX METHODS OF ANALYSIS

Static Indeterminacy; Matrix Methods; Flexibility and Stiffness; Flexibility Matrix; Stiffness Matrix; Relationship between Flexibility and Stiffness Matrix.

FLEXIBILITY METHOD (FORCE METHOD)

Analysis of continuous beams and rigid jointed plane frames (Single bay, single storey with vertical legs only) by flexibility method.

UNIT III: STIFFNESS METHOD (DISPLACEMENT METHOD) Notations, Kinematic Indeterminacy, Generating Stiffness Matrices and analysis of continuous beams by Stiffness method. STIFFNESS METHOD FOR PORTAL FRAMES Analysis of rigid Jointed frames by stiffness method with matrix approach. UNIT - IV: **PLASTICANALYSISOFSTRUCTURES** Idealized stress - strain curve for mild steel; Ultimate load carrying capacity of members carrying axial forces; Moment - Curvature relationship for flexural members; Evaluation of fully plastic moment; Shape factor; Collapse load factor; Upper and lower bound theorems. **FINITEELEMENTANALYSIS** Equilibrium Conditions; Strain-displacement relations; Linear Constitutive relations; Principle of Virtual work, Energy Principles; Application to finite element method. Element Strains and Stresses: Element Stiffness matrix. [T1] Structural Analysis-Amatrix approach by Pandit. G.S&Gupta. S.P, Tata Mc.Graw Hill Text books Publishing Co.Ltd. New Delhi, 2008. [T2] Basic Structural Analysis by Reddy. C. S, Mc Graw Hill Education, 3rd Edition, 2010. [T3] Finite Element Analysis-Theory and Programming by Krishna Murthy. C.S. Tata Mc Graw Hill Publishing Company Ltd., New Delhi, 2013. [R1] Analysis of structuresVol.2 by Prof Vazirani. V. N, Ratwani. M. M, Duggal. Sk, 16th Reference books Edition, Khanna Publishers, New Delhi, 2016. [R2] Indeterminate Structural Analysis by Wang. C. K, 5th Edn Mc Graw Hill Education, New Delhi, 2014. E-resources and other http://onlinecourses.nptel.ac.in/courses/105106050 digital material

23CE5404/B Town planning & Architecture

Program Core	Credits:	3
Theory	Lecture - Tutorial - Practice:	3 - 0- 0
	Continuous Evaluation:	30
	Semester end Evaluation:	70
	Total Marks:	100
		Theory Lecture - Tutorial - Practice: Continuous Evaluation: Semester end Evaluation:

	Upon	succe	essful c	omple	tion of	the co	urse, th	ne stud	ent wil	ll be ab	ole to:						
	CO1	Analy	yze the	princip	le of ar	chitectu	ire by u	ındersta	anding l	History							
Course	CO2	Unde	rstand	basics c	of Land	scape I	Design a	and urb	an infra	structu	re syste	ems.					
Outcomes	CO3	Appl	y the pr	rinciple	of urba	n desig	n.										
	CO4	Appl	y the techniques used in planning of urban infrastructure systems.														
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO 11	PO 12	PSO 1	PSO 2		
Outcomes towards	CO1	1				1	1										
achievement of Program Outcomes	CO2	1				1	1							1			
(1 – Low, 2 - Medium, 3 –	CO3	1				1	1										
High)	CO4	1				1	1							1			

Course Content

UNIT I:

1.0 HISTORY OF ARCHITECTURE:

Indian – Indus valley, Vedic, Buddhist, Indo-Aryan, Dravidian and

Mughal periods: European – Egyptian, Greek, Roman, medieval and renaissance periods construction and Architectural styles; vernacular and traditional architecture. Principles of Architecture.

2.0 ENVIRONMENTAL STUDIES IN BUILDING SCIENCE:

Components of Ecosystem; ecological principles concerning environment; energy efficient building design; thermal comfort; solar architecture; principles of lighting and styles for illumination; basic principles of architectural acoustics

UNIT II:

3.0 LANDSCAPE DESIGN:

Principles of landscape design and site planning; history of landscape styles; landscape elements and materials.

4.0 Urban Infrastructure, Services and Amenities: Green building rating system-GRIHA and LEED Basic understanding of sustainable Development, green infrastructure; urban rainwater harvesting; power supply and communication systems -- guidelines; **UNIT III:** 5.0 URBAN DESIGN Concepts and theories of urban design; Urban design interventions for sustainable development and transportation; Historical and modern examples of urban design; Public spaces, spatial qualities and Sense of Place; Elements of urban built environment – urban form, spaces, structure, pattern, etc; Urban renewal and conservation; Site planning; Landscape design. **6.0 CITY PLANNING:** Evolution of cities; principles of city planning; planning regulations, Development controls – FAR, densities and building byelaws; sustainable development. UNIT - IV 7.0 TECHNIQUES OF PLANNING: Planning survey techniques; preparation of development plans; site planning principles and design; application of G.I.S and remote sensing techniques in urban and regional planning. 8.0 CONCEPTS OF CITY MASTER PLANNING AND SATELLITE TOWNS Definition importance, feature-Various phases in the preparation of master plan and satellite towns-advantages-Examples -Hyderabad master plan and Noida satellite town. [T1] N. V Modak and V.N Ambdekar, Town and country planning and housing, Orient Text books Longman Ltd. [T2] Brown, P. Indian Architecture (Buddhist and Hindu period), Taraporevala , CSTM, 2015. [T3] Bandopadhyay, A. Text book of Town Planning, Books and Allied, HRH, 2000 Reference [R1] Evans.M, Housing, Climate & Comfort, Architectural, LN, UK, 1980. [R2] Grover, S. The Architecture of India (Buddhist and Hindu period), Vikas, NDLS, 2017. books E1: https://nptel.ac.in/courses/124/105/124105001/ E-resources and other E2: https://nptel.ac.in/courses/124/105/124105004/ digital www.european-science.com material

23CE5404/C AIR POLLUTION AND CONTROL

Course Category:	Program Elective - 1	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	23MC3107B – Environmental	Continuous Evaluation:	30
	studies	Semester end Evaluation:	70
		Total Marks:	100

	Upon	succe	ssful c	omplet	tion of	the co	urse, th	ne stud	ent wil	l be ab	ole to:						
	CO1	ident	identify the various types of air pollutants and their effects														
Course Outcomes	CO2		rstand neters	the dis	persion	n pheno	omeno	n of air	r pollu	tants w	ith reg	ard to r	neteoro	ologica	1		
Outcomes	CO3	evalu	ate the	sampl	ing of	polluta	ants fro	om chii	mney s	stacks a	and am	bient at	mosph	ere			
	CO4	analy	alyze various types of air pollution controlling equipment														
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO 11	PO 12	PSO 1	PSO 2		
Outcomes towards	CO1	3													2		
achievement of Program Outcomes	CO2	3													2		
(1 – Low, 2 -	СОЗ	3	3		1										2		
Medium, 3 – High)	CO4	3		3	1		1	1							2		

Course Content

UNIT I

INTRODUCTION TO AIR POLLUTION

Composition of air, Air pollution-definition, Prominent air pollution disasters or episodes, Sources of air pollution, Stationary and mobile sources.

CLASSIFICATION AND EFFECTS OF AIR POLLUTION

Classification of air pollutants - Natural Contaminants; Particulate Matter, Aerosols and Gaseous pollutants; Primary and secondary pollutants, Effects of air pollutants on human health; Effects on plants and economic effects.

UNIT II

METEOROLOGY AND AIR POLLUTION

Meteorological factors influencing dispersion of air pollutants; Wind direction and wind speed, Atmospheric stability, temperature inversions, Mixing height, precipitation and humidity.

MEASUREMENT OF METEOROLOGICAL PARAMETERS

	Wind direction recorder, Wind speed recorder, Humidity Measurement, Temperature measurement; Wind Rose diagram; Plume behavior.
	UNIT III
	STACK SAMPLING Stack sampler; Sampling Procedure, Sampling point, size, Isokinetic Conditions, sampling of Particulate matter and Gases.
	AMBIENT AIR SAMPLING Sampling methods- Sedimentation, filtration, impingement methods, electrostatic precipitation and thermal precipitation. Sampling suspended particulates by high volume sampler. Sampling SO2 and NOx and Carbon Monoxide gases. Indian standard methods of analysis of SO2 and NOx gases Air Quality and Emission standards.
	UNIT – IV
	METHODS OF CONTROLLING AIR POLLUTION Measures to control air pollutants in atmosphere, Control of Particulate matter by equipments — Settling chamber, inertial separators, fabric filters, wet scrubbers, Electrostatic Precipitators.
	CONTROL OF GASEOUS POLLUTANTS Controlling methods of Gaseous Emissions - combustion, adsorption, absorption, closed collections and recovery systems - Control of SO ₂ and NO _x gases.
Text books	[1] Rao M. N. and Rao H. N., "Air Pollution and Control", Tata McGraw Hill, NDLS,2007.
	[2] Suresh S. K., "Environmental Engineering and Management", 2 nd ed., Kartarai& Sons, 2005.
Reference books	[1] Trivedi R. K., "An Introduction to Air pollution", B.S. Publications, 2005. [2] Wark and Warner, "Air pollution", Addison-Wesley, NDLS, 2010.
E-resources and other digital material	[1]www.http://nptel.ac.in/courses/webcourse-contents/ ITdelhi/Environmental%20Air%20Pollution/

23CE5404/D ENVIRONMENTAL GEOTECHNOLOGY

Course Category:	Program Elective - 1	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

	Upon	succe	ssful c	omple	tion of	the co	urse, tl	ne stud	ent wil	ll be at	ole to:				
	CO1	Apply	y funda	mental	princip	les of e	environ	mental	geotech	nology	to real	-world s	scenario	os.	
	CO2	Utiliz	e key c	oncept	s to des	ign var	ious co	mponei	nts of w	aste co	ntainm	ent facil	ities.		
Course Outcomes	CO3	Asses	ss and i	mpleme	ent rem	ediatio	n strate	gies for	contan	ninated	sites.				
	CO4														
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO 11	PO 12	PSO 1	PSO 2
Outcomes towards achievement	CO1	3						3							3
of Program Outcomes	CO2	3		3			3								3
(1 – Low, 2 - Medium, 3 –	CO3	3			3	1									
High)	CO4	3				1		1							3
Course Content	UNI	Γ-I: FU	UNDA	MEN	ΓALS	OF E	NVIR(ONME	NTAL	GEO	TECH	INOLO	OGY		
	•	Intro	oductio	n and	scope	of Env	ironme	ental G	eotech	nology	7				
	•	Sou	rces an	d type	s of co	ntamir	nants								
	•	Imp	act of s	subsuri	face co	ntamii	nation								
	SOU	RCES	AND	CHAI	RACT	ERIST	ΓICS (OF WA	ASTES	5					
	•	Was	ste cha	racteriz	zation a	and its	enviro	nment	al conc	erns					
	•	Was	ste mar	nageme	ent stra	tegies									
	•		ineered	_			ilities								
		J			1										

UNIT-II: SOIL-WATER INTERACTION

- Soil mineralogy characterization and its role in soil behaviour
- Soil-water interaction and double-layer concepts
- Forces of interaction between soil particles

CONTAMINANT TRANSPORT

- Soil-water-contaminant interactions and their implications
- Factors affecting contaminant retention and transport

UNIT-III: CONTAMINATED SITE ASSESSMENT

- Need for site characterization
- Characterization methods: Electromagnetic resistivity, ground-penetrating radar, electrochemical and electro-optical sensing methods

CONTAINMENT FACILITY

- Principles and concept of waste containment
- Site selection criteria for containment facilities
- Components and design of waste containment systems

UNIT-IV: CONTAMINATED SITE REMEDIATION

- Methods for subsurface contamination remediation
- Selection and planning of remediation techniques
- Bio-remediation, incineration, soil washing, electro-kinetics, and soil heating

RECYCLING AND REUSE

- Geotechnical reuse of waste materials
- Waste characteristics for soil replacement
- Suitability of waste materials for geotechnical construction

Text books

[T1]Gulhati, S.K. and Datta, M., Geotechnical Engineering, McGraw Hill India, New Delhi, 2005.

[T2] Sharma, H.D. and Reddy, K.R., Geoenvironmental Engineering, John Wiley, NY, USA, 2004.

Reference books

[R1] Rowe, R.K., Geotechnical and Geoenvironmental Engineering Handbook, Kluwer Academic, Netherlands, 2001.

[R2] Reddy, L.N. and Inyang, H.I., Geoenvironmental Engineering: Principles and Applications, CRC Press, FL, USA, 2000.

[R3] Mohamed, A.M.O. and Antia, H.E., Geoenvironmental Engineering, Elsevier, Netherlands, 1998.

E-resources and other digital material

https://nptel.ac.in/courses/105102160/

https://nptel.ac.in/courses/105103025/

23CE5205 GEOSPATIAL TECHNOLOGIES

Course Category:	Open Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Nil	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

	Upon	succe	ssful c	omplet	tion of	the co	urse, th	e stud	ent wil	ll be ab	ole to:					
	CO1		Apply the recent advances GIS technology in various fields of Engineering.													
Course Outcomes	CO2				rtunitie ıg appl			le met	hods f	or integ	grating	GIS in				
	CO3	Unde	nderstand large scale maps using GIS.													
	CO4	Anal														
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO 11	PO 12	PSO 1	PSO 2	
Outcomes towards	CO1					3				1	2		1			
achievement of Program Outcomes	CO2					3	3			1	2		1			
(1 – Low, 2 - CO3 3 1													1			
Medium, 3 – High)	CO4		3												3	

Course Content

UNIT I

INTRODUCTION TO GIS

Introduction to GIS, History of GIS, Early developments in GIS, Applications of GIS

MAP AND MAP SCALES

Introduction to Maps, History of Maps, Map Scales, Types of Maps, Map and Globe

UNIT II

GEOREFERENCING AND PROJECTION

Understanding Earth ,Coordinate System, Map Projection, Transformation, Georeferencing

SPATIAL DATABASE MANAGEMENT SYSTEMS

Introduction, Data Storage, Database Structure Models, Database Management system, Entity Relationship.

	UNIT III
	DATA MODELS AND DATA STRUCTURES Introduction, GIS Data Model, Vector Data Structure, Raster Data structure, Geo database and metadata.
	SPATIAL DATA INPUT AND EDITING Primary Data, Secondary Data, Data Editing, Data types – Spatial and Non Spatial (attribute) data.
	UNIT IV
	MODELLING IN GIS: Introduction to Web GIS, Digital Terrain Modelling, Digital Elevation Modelling, Triangular Irregular Network.
	APPLICATIONS OF GIS: Multidisciplinary applications of GIS.
Text books	[1]. Anji Reddy M., Remote Sensing & Geographical Information Systems by, BPS Publications-Hyderabad,4th edition 2011. [2]. Basudeb Bhatta., Remote Sensing & GIS, Oxford University Press, New Delhi 2011
Reference books	[1]. Lillesand TM., Kiefer RW., Remote sensing and Image interpretation; John Willey and sons.7th edition, 2015 [2]. Chandra AM., Ghosh SK Remote sensing and Geographical information System; Narosa Publishing House, Second Edition New Delhi,2015
E-resources and other digital material	NPTEL: https://nptel.ac.in/courses/105/102/105102015

23CE5205/B - BUILDING SERVICES ENGINEERING

Course Type: Theory Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites: Continuous Evaluation:	30
Semester end Evaluation:	70
Total Marks:	100

	Upon	succe	ssful c	omplet	tion of	the co	urse, th	ne stud	ent wil	l be ab	le to:						
	CO1	evalu	ate the	types, b	pasic pl	anning	and spe	ecificati	ions of	buildin	gs						
Course	CO2	apply	ventila	tion an	d therm	nal insu	lation i	n struct	ures								
Outcomes	CO3	apply	the plu	ımbing	and ele	ctrical	fixtures	in stru	ctures								
	CO4	analy	yze the considerations for fire prevention and fighting and termite prevention in buildings.														
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO 11	PO 12	PSO 1	PSO 2		
Outcomes towards achievement	CO1	3						2							2		
of Program Outcomes	CO2	1						2							2		
(1 – Low, 2 - Medium, 3 –	CO3	1				1	1	2							2		
High)	CO4	1				1	1	2		2	2				2		

Course Content

UNIT I:

BASICS OF BUILDINGS:

Types of structures: Load bearing walled structures & Framed structures, Different types of buildings: Residential, Public, Assembly, Hospitals, Institutional etc; Building height regulations; Calculation of plinth, floor and carpet area; Floor space index.

BASIC BUILDING PLANNING AND ELEMENTS:

Factors effecting the Selection of Site for residential building; Space requirement—Establishing areas for different units - Grouping, Circulation, Orientation, Aspect and prospect, Privacy, Elegance and economy; Basic building elements: Staircases, doors and windows - Guidelines for staircase planning; Guidelines for selecting doors and windows.

UNIT II:

VENTILATION AND AIR CONDITIONING:

Ventilation: Necessity of Ventilation, Functional Requirements; Types of ventilation: Natural Ventilation, Artificial Ventilation; Air Conditioning–Systems of Air Conditioning, Essentials of Air Conditioning systems, Protection against fire to be caused by Air Conditioning systems.

THERMAL INSULATION:

Heat transfer: Thermal Insulating Materials; Thermal Insulation Methods; Insulation of Walls,

	Roofs, Doors & Windows. UNIT III: PLUMBING SERVICES: Types of plumbing; Plumbing fittings and accessories; Water Meters; Drainage — Sanitary Fittings: Bathtubs, wash basins, sinks, flushing cisterns, water closets; Principles governing design of building drainage; Guidelines for laying of Gas supply systems. ELECTRICAL INSTALLATION IN BUILDINGS: Electrical Considerations for Office Buildings, School Buildings & Residential Buildings; Lighting, Fannage, Electrical Installation for Air Conditioning/ Heating, Reception and distribution of main supply; Method of internal wiring; Earthing; Lightening arrestors.
	UNIT – IV FIRE SAFETY: Causes of fire in buildings; Planning considerations for fire resistance: Non-combustible materials in construction, fire escapes, Special features required for physically handicapped and elderly people; Heat and smoke detectors, Fire alarm system, snorkel ladder, Firefighting pump; Dry risers and wet risers, Automatic sprinklers. ANTI-TERMITE TREATMENT: Preconstruction treatment, Post construction treatment; Construction of anti-termite groove in buildings for termite prevention.
Text books	 [T1]: Building Construction by B. C. Punmia; Ashok Kumar Jain; Arun Kumar Jain, 2005; Laxmi Publications, New Delhi [T2]: Building Construction by Janardhan Jha; S.K. Sinha; 2007; Jain Book Agency, New Delhi.
Reference books	 [R1]: National Building Code, 2015 [R2]: Building Construction by P. C. Varghese, 2005, PHI Publications, New Delhi [R3]: Building Services Engineering by David V. Chatterton, Sixth Edition, 2013, Routledge Publications.
E-resources and other digital material	https://nptel.ac.in/courses/105102176/

23CE5351 Computer Applications in Civil Engineering Lab1

Course Category:	Program Core	Credits:	1.5
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0- 3
Prerequisites:	Computer Aided Civil Engineering	Continuous Evaluation:	30
	Drawing	Semester end Evaluation:	70
		Total Marks:	100

	Upon	succe	essful c	omple	tion of	the co	urse, tl	ne stud	ent wi	ll be at	ole to:				
	CO1	determine the cross-sectional, reinforcement requirements and create structural drawings for various elements using AutoCAD.													
Course Outcomes	CO2	apply Microsoft Excel to develop spread sheets/Mat Lab to solve design problems.													
Contribution of Course Outcomes towards		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO 11	PO 12	PSO 1	PSO 2
	CO1	2	1			2						3		2	1
achievement of Program Outcomes		2	2			2						3		2	1
(1 – Low, 2 - Medium, 3 – High)	CO2														
Course Content	follo	wing 1. De 2. De 3. Ro	RCC etailed etailed oof/Flo	Struc	tural of arc of str stem(e leme hitect uctura	nts / s ural p l draw	teel st lan, el vings c	tructuevation	ral elon and Buil	ement section ding		deta	ails of	f the

- 5. Two way slabs(Simply supported slabs corners held down)
- 6. Two way slabs (Simply supported slabs corners not held down)
- 7. R.C.C Beam-Column joint
- 8. Isolated and Combined footing

PART-B:PROGRAMMING

Students are required to write & execute the programs using Microsoft Excel language

- 1. Design of singly reinforced beam for flexure by LSM.
- 2. Design of doubly reinforced beam for flexure by LSM.
- 3. Design of R.C.C column of rectangular section for axial load by LSM

Text books	
	[T1] Venugopal. K, "Engineering Drawing and Graphics and AUTOCAD", 1 st ed., New Age International Publishers, 2001.
	[T2] Anand R. K. "Computer Application in Civil Engineering", 1 st ed., Vayu education of India, New Delhi, 2013.
	[T3] Dr. Ritu Agarwal & Khushbu Naruka Dr. Hari Singh Parihar, "Computer Application in Civil Engineering", 1st ed., Neelkanth Publishers, 2012.
Reference books	[R1] Jeyapoovan. T, "Engineering Graphics using AUTOCAD", 1sted., Vikas Publishing House Pvt. Ltd., 2000.
E-resources and other digital material	

23CE5352 ADVANCED SURVEYING LAB

Course Category:	Programme Core	Credits:	1.5
Course Type:	Lab 2	Lecture - Tutorial - Practice:	0 - 0- 3
Prerequisites:	23CE3304 Surveying & Geomatics	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

	Upon	succe	ssful c	omple	tion of	the co	urse, th	ne stud	lent wi	ll be ab	ole to:					
	CO1		y the s	_	ng prir	nciples	for set	ting bo	oundar	ies, co	mputin	g area	and ele	vation	using	
Course	CO2	Appl	Apply setting out for buildings and curves using various instruments													
Outcomes	CO3	Evalı	Evaluate the contours for any given area													
	CO4	Appl	y adva	nced in	nstrum	ents fo	r surve	ying								
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO 11	PO 12	PSO 1	PSO 2	
Outcomes towards achievement	CO1	2				3					1			1	2	
of Program Outcomes (1 – Low, 2 - Medium, 3 –	CO2	2				3						la la			2	
	СОЗ	2		2		3					1			1	2	
High)	CO4	2				3					1				2	
Course Content	1. Me	1. Measure the boundaries of a given tract of land and determine the area using Total Station.														
Content	2. Se	2. Set out a building using chain and tape.														
	3. Se	t out a	buildi	ng usin	ıg total	statio	n.									
	4. Se	t out a	simple	circul	ar curv	ve usin	g chair	and t	ape.							
	5. Se	t out a	simple	circul	ar curv	ve usin	g chair	ı, tape	and th	eodolit	æ.					
	6. Se	t out a	simple	circul	ar curv	ve usin	g a tota	al stati	on.							
	7. De	termin	e the e	elevatio	on of a	remote	e objec	t.								
	8. Plo	ot the c	contour	map f	or a gi	ven ar	ea usin	g total	station	1.						
	9. De	termin	e the a	rea of	a give	n tract	of land	lusing	DGPS	S.						
	10. S	et out	a build	ing usi	ing DC	SPS.										
	11. D	emons	stration	of Un	ımanne	ed Aeri	al Veh	icle (U	JAV).							

Text books	[T1] Duggal S K, "Surveying Volume-1", 2nd ed., Tata Mc Graw Hill Publishing Company Limited, New Delhi, 2004. [T2] Dr. Arora K R, "Surveying Volume-2", 15th ed., Standard Book House, New Delhi, 2018
Reference books	[R1] Satheesh Gopi, Sathi Kumar R, Madhu N, "Advanced Surveying", 2nd ed., Pearson, 2017
E-resources and other digital material	https://nptel.ac.in/courses/105107158

23TP5106 PERSONALITY DEVELOPMENT

20CE5354 ENGINEERING PROJECT IN COMMUNITY SERVICES (EPICS)/ INTERNSHIP

Course Category:	Internship/ Project(6weeks)	Credits:	2.0
Course Type:	Practical	Lecture - Tutorial - Practice:	0 - 0- 4
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

	Upon si	ucces	sful c	omple	tion of	the co	urse, tl	ne stud	ent wi	ll be at	ole to:				
Course Outcomes	CO1				ocietal bjectiv	-	em fro	n the v	villages	s or tov	vns or	local co	ommur	nities w	ith
	CO2		-		olve th	-	olems b	y appl	ying m	odern	tools a	nd mat	erials f	or	
	CO3	Aı	Apply team work ,communication and presentations kills												
	CO4		Evaluate the context of the problem and prepare a technical report as per the specified guidelines												
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO 11	PO 12	PSO 1	PSO 2
Outcomes towards	CO1	2			2	2	3	3	2	3	3				1
achievement of Program	CO2														
Outcomes	CO3	2			2	2	3	3	2	3	3				1
(1 – Low, 2 - Medium, 3 – High)	CO4														
Course Content		Students hosp artice. The the vertice of the state of the	lents pitals/ cles or work work stude	will school yourn will to will be at the cent is e	go s/recre al pape oe carri end of	to to teation ears to content to the V seed to	he seclubs eclubs ecome up during semest	ociety etc,)to p with g sumn er.	(villa identif viable ner vac	ages/ y the j alternation a	probler ative so after IV	s/ loc m and s olutions / semes	study 1 ster and	d subm	evant
Text books															

Reference books	
E-resources and other digital material	

23CE5607 BUILDING INFORMATION MODELING (BIM)

Course Category:	Skill Oriented Course -2	Credits:	1
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0- 2
Prerequisites:	23CE4651 - Autodesk, Rivet and	Continuous Evaluation:	30
	Excel for Engineers	Semester end Evaluation:	70
		Total Marks:	100

	Upon	succe	ssful c	omple	tion of	the co	urse, tl	ne stud	lent wi	ll be al	ole to:				
Course	CO1		their onents		ledge	to mo	del the	struc	ture w	ith Ar	chitect	ural, S	tructur	al and	MEP
Outcomes	CO2	apply the software commands to create industry standard architectural drawings.													
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO 11	PO 12	PSO 1	PSO 2
Outcomes towards achievement of Program Outcomes	CO1			2		3				3	3	3		2	
(1 – Low, 2 - Medium, 3 – High)	CO2			2		3				3	3	3		2	
Course Content	 Mo Mo Mo Ge De Ex Ex Ex 	odeling odeling eneration etailing traction traction eparing	g of Stage of Mang the and can of Ban	ructura EP sys walkth reation ill of N ill of Q edule f	I Comptems under tems un	ponent sing R for the awings ls from tes from struction	s for a evit M structor for a son a Moon of the	structustustruct	re as po	ng Rever IS Covith mo	it Strud ode.	ergy co		otion.	
Text books	[T2] Unive	Explorersity 1	ring Au	utodesl vest, U	k Revi SA.		for str				•			ckoo, P	

	Publications ISBN #: 978-1-58503-512-0
Reference books	[R1] Autodesk Revit 2021 Structure Fundamentals by By ASCENT publications Published August 10, 2020, ISBN: 978-1-63057-358-4 ISBN 10: 1630573582
E-resources and other digital material	https://www.coursera.org/learn/autodesk-revit-for-structural-design-exam-prep

23MC5108B MANDATORY COURSE

23CE6301 DESIGN OF STEEL STRUCTURES

Course Category:	Program Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

	Upon	succe	ssful c	omplet	tion of	the co	urse, th	ne stud	ent wil	l be ab	ole to:				
Comme	CO1	Anal	Analyze the adequacy of bolted& welded connections												
	CO2	Evalı	Evaluate the adequacy of laterally supported and unsupported steel beams												
Course Outcomes	CO3 Analyze the adequacy of bolted & welded connections in tension and comembers.										compre	ssion			
	CO4	Evalı	Evaluate the adequacy of steel column bases												
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO 11	PO 12	PSO 1	PSO 2
Outcomes towards achievement	CO1	2		3		3	1							3	
of Program Outcomes	CO2	2		3		3	1							3	
(1 – Low, 2 - Medium, 3 – High)	CO3	2		3		3	1							3	
	CO4	2		3		3	1							3	

Course Content

UNIT I:

GENERAL

Fundamental Concepts of limit state design of structures, Different types of rolled steel sections available to be used in steel structures. Stress – Strain relationship for mild steel.

SIMPLE CONNECTIONS (IS800-2007)

Bolted connections: Types of joints, Behaviour of bolted joints, Design Strength of ordinary black bolts, Simple connections. Design of bolted joints subjected to axial load. Welded Connections: Advantages of welding, Types and properties of welds, Types of joints, weld specifications, Design of welded joints subjected to axial load.

UNIT II:

BEAMS- LATERALLY SUPPORTED (IS800-2007)

Introduction; classification of sections; Lateral stability of beams; web

2	Buckling; Web crippling. Design of laterally supported beams.
	BEAMS- LATERALLY UNSUPPORTED (IS800-2007) Design of laterally unsupported beams.
	UNIT III:
	TENSION MEMBERS (IS800-2007) Types of tension members, slenderness ratio, displacement of tension members, behaviour of tension members, modes of failure, factors affecting strength of tension members, design of tension members with bolted and welded connections.
	COMPRESSION MEMBERS (IS800-2007) Possible failure modes, behaviour of compression members, Effective length, radius of gyration and slenderness of compression members, Allowable stresses in compression, Design of axially loaded compression Members with bolted and welded connections.
	UNIT – IV COLUMN BASE (IS800-2007) Introduction to column bases and gusseted base, types of column bases. Allowable stress in Bearing. SLAB BASE Design of slab base with bolted and welded connections
Text books	 [T1] Subramanian, N. Design of steel structures - Oxford university press, NDLS., 2018. [T2] Duggal S K, Limit state design of steel structures -McGraw Hill (I) Pvt Ltd., 2017. [T3] Ramchandra and Gehlot V, Limit State Design of steel structures - Scientific Publishers (I).,2012.
Reference books	 [R1] Sai Ram K. S, Design of steel structures - Pearson Education India., 2020. [R2] Bhavikatti S.S, Design of steel structures by Limit State Method as per IS: 800-2007 IK IPHPvt. Ltd., NDLS-2019.
E-resources and other digital material	https://nptel.ac.in/courses/105105162. https://nptel.ac.in/courses/105106112.

23CE6302 TRANSPORTATION ENGINEERING

Course Category:	Program Core	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 2
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

	Upon	succe	ssful c	omplet	tion of	the co	urse, th	e stud	ent wil	l be ab	le to:				
Course	CO1	Anal	Analyze the best alternative route for highways												
	CO2	Appl	Apply the studies to regulate traffic control and management												
Outcomes	CO3 Evaluate geometrics of highway elements and pavement layers														
	CO4	Expe	xperiment and Analyse Pavement materials												
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO 11	PO 12	PSO 1	PSO 2
Outcomes towards achievement	CO1	3		3											
of Program Outcomes	CO2				3		1								3
(1 – Low, 2 - Medium 3 –	CO3	3	3	3										3	
Medium, 3 – High)	CO4	2		3	3			2		3	3				3

Course Content

UNIT I:

HIGHWAY NETWORK PLANNING AND ALIGNMENT

Different Modes of Transportation, Road Classification, Road Patterns, 20 Year Road Development plans. Highway Alignment: Requirements, factors controlling, Engineering Surveys.

PAVEMENT MATERIALS

Aggregates and their characterization, Bituminous materials, desirable properties and tests on Aggregates and Bituminous materials, aggregate blending concepts, Marshal Stability Test

Practice:

- 1. Determine the strength of aggregate and discuss the suitability in pavement construction.
- 2. Determine the toughness of aggregate and discuss the suitability in pavement

construction.

3. Determine the hardness of aggregate and discuss the suitability in pavement construction.

UNIT II:

HIGHWAY GEOMETRIC DESIGN

Geometric Design: Highway Cross Section Elements Sight Distance Stopping Sight Distance, Overtaking Sight Distance, Intermediate Sight Distance

Design of Horizontal Alignment-Super elevation, transition curves, extra widening,

HIGHWAY VERTICAL ALIGNMENT

Design of Vertical Alignment, Grades and Grade Compensation.

Practice:

- 4. Determine the flakiness and elongation index of aggregate and discuss the suitability in pavement construction.
- 5. Perform gradation of aggregate, analyze and discuss its importance in pavement ayers
- 6.Determine the Specific gravity Test of aggregate and discuss its application in pavement layers

UNIT III:

TRAFFIC STUDIES

Introduction, Road User Characteristics, Vehicle Characteristics, Traffic Volume Studies objectives, methods, presentation of data, Speed Studies, Methods and presentation of data, various methods of speed and delay studies, Traffic Flow Characteristics, Traffic Capacity and concept of Level of Service.

DESIGN OF TRAFFIC CONTROL DEVICES

Traffic Operations-Traffic Regulation, Traffic Control Devices- types of Signs, types of traffic signals, types of traffic signal system, design of traffic signal by Webster's method.

Practice:

- 7. Traffic volume study at mid block section
- 8. Traffic volume study at intersection
- 9. Speed studies

UNIT-IV:

DESIGN OF FLEXIBLE PAVEMENTS

Types of Pavement Structures, Design Factors, Design of Flexible Pavements- IRC Method using code IRC-37

DESIGN OF RIGID PAVEMENT

Design of Rigid Pavement- Wheel Load stresses, Temperature Stresses, Frictional Stresses. Using code IRC-58

	Practice: 10.Determine the grade of bitumen using different methods (penetration test and viscosity test) 11.Perform different tests on bitumen and discuss the suitability of bitumen in flexible pavement construction. 12. Determine CBR of soil sample.
Text books	Text Books for Theory [1].Khanna, S. K., Justo, C. E. G., Veeraragavan, A." Highway Engineering Revised 10th Edition Nem Chand Bros. Roorkee 2017. [2]. Kadyali, L R "Principles and Practices of Highway Engineering", Khanna Publishers, New Delhi, 2004.
Reference books	 [1].Principles of Transportation Engineering by Partha Chakraborthy & Animesh Das; PHI Learning Pvt. Ltd.; New Delhi, Second edition 2017 [2].Ministry of Road Transport and Highways- Specifications for Roads and Bridge Works, Fifth Revision, IRC, New Delhi, India-2013 [3].IRC 37:2012- Guidelines for the design of flexible pavements (Third Revision) [4].IRC58-2015 Guidelines for the Design of Plain Jointed Rigid Pavements for Highway [5] Ministry of Road Transport and Highways- Specifications for Roads and Bridge Works, Fifth Revision, IRC, New Delhi, India-2013
E-resources and other digital material	https://nptel.ac.in/downloads/105101087/ https://nptel.ac.in/courses/105105107/

23CE6403/A Advanced Design of concrete structures

Course Category:	Program Elective2	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	23CE5303 Design of Concrete Structures	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

	Upon	Jpon successful completion of the course, the student will be able to:													
	CO1 evaluate sectional details for staircase and flat slab.														
	CO2	anal	analyse for safe for foundation and retaining wall.												
Course Outcomes	CO3	eval	uate sa	fe sect	ion for	water	tanks								
CO4 analyse for safe composite structures.															
Contributio n of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
Outcomes towards achievement	CO1	3		2		1		2		1	2			3	
of Program Outcomes	CO2	3		2		1		2		1	2			3	
(1 – Low, 2 -	СОЗ	3		2		1		2		1	2			3	
Medium, 3 – High)	CO4	3		2		1		2		1	2			3	

Course Content

UNIT I:

DESIGN OF STAIRCASE

Types; Design and detailing of reinforced concrete doglegged staircase.

DESIGN OF FLAT SLABS

Design of Flat Slab: Direct design method – Distribution of moments in column strips and middle strip-moment and shear transfer from slabs to columns – Shear in Flat slabs-Check for one way and two-way shears, Limitations of Direct design method, Introduction to Equivalent frame method.

UNIT II:

DESIGN OF FOUNDATIONS

Structural Design of Pile Foundations: Types of piles, Load carrying capacity of piles, Structural design of RC piles, Design of pile cap for 2, Reinforcement detailing.

DESIGN OF RETAINING WALLS

Introduction – Types of retaining walls –Active and passive earth pressure- Design principles of cantilever retaining walls with horizontal back fill –With sloping back fill. Reinforcement detailing.

UNIT III:

DESIGN OF RECTANGULAR WATER TANKS

Rectangular Water Tanks: Introduction – General design requirements according to Indian standard code of practice – Design of on ground water tanks Design of overhead water tanks-Reinforcement detailing.

DESIGN OF CIRCULAR WATER TANKS:

Introduction – General design requirements according to Indian standard code of practice – Joints in water tanks – Circular tank with flexible joint between floor and wall – Circular tank with rigid joint between floor and wall.

UNIT - IV

DESIGN OF COMPOSITE STRUCURES

Introduction – Design principles – Composite action of components- Equivalent section – prefabricated steel and in-situ concrete – composite members

DESIGN OF SHEAR CONNECTORS:

Shear connectors – channel connectors - Spiral connectors - Composite beams and bridge deck

Text books

- S. Ramamrutham and R. Narayan, "Design of Reinforced Concrete Structures", 15th ed., Dhanpat Rai Publishing Co. Pvt. Ltd., New Delhi, 2010.
- B.C. Punmia, Ashok Kumar Jain, and Arun Kumar Jain, "Limit State Design of Reinforced Concrete", 1st ed., Laxmi Publications, New Delhi, 2007.
- B.C. Punmia, Ashok Kumar Jain, and Arun Kumar Jain, "Reinforced Concrete Structures", 5th ed., Laxmi Publications, New Delhi, 2010.

Reference books

- V.L. Shah and S.R. Karve, "Limit State Theory and Design of Reinforced Concrete", 9th ed., Structures Publications, Pune, 2023.
- Kim S. Elliott, "Precast Concrete Structures", 2nd ed., CRC Press, Boca Raton, 2017.

Kim S. Elliott and Colin Jolly, "Multi-Storey Precast Concrete Framed Structures", 2nd ed., Wiley-Blackwell, Chichester, 2013.

Codes of Practice:

IS 456:2000- Code of Practice for Plain and Reinforced Concrete

SP16 – Design aids of IS 456:2000

IS 13920 (1993) Ductile Designing of Reinforced Concrete Structures subjected to Seismic Forces.

E-resources and other digital material

www.nptel.ac.in/courses/105105105 (Dr.N.Dhang, IIT/ Kharagpur – Design of Reinforced Concrete Structures)

 $www.nptel.ac.in/courses/105105104(\ Dr.\ J.N.\ Bandopadhyay,\ IIT/\ Kharagpur\ -\ Design\ of\ Reinforced\ Concrete\ Structures\)$

23CE6403/B ADVANCED ENVIRONMENTAL ENGINEERING

Course Category:	Programme Elective -II	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	23MC3107B – Environmental	Continuous Evaluation:	30
	Studies 23CE5302- Environmental	Semester end Evaluation:	70
	Engineering	Total Marks:	100

	Upon	succe	ssful c	omplet	ion of	the co	urse, th	e stud	ent wil	l be ab	ole to:				
	CO1	evalu	evaluate the protection of water bodies against contamination on disposal of waste water.												
Course	CO2	apply	apply new concepts of wastewater treatment and selection of low cost treatment units.												
Outcomes	СОЗ	evalu	valuate suitable treatment process for selected industrial effluents.												
	CO4	_	alyze the effects of air pollutants and acquaint devices to control air pollutants, levels of d effects of noise pollution.												
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO 11	PO 12	PSO 1	PSO 2
Outcomes towards	CO1	3		1									1		
achievement of Program Outcomes	CO2	3		3				2							2
(1 – Low, 2 - Medium, 3 – High)	CO3	3		2			2	1							3
	CO4	1					2	1					1		

Course Content

UNIT I

STREAM SANITATION

Characteristics of the treatment plant effluents: Patterns of pollution and self-purification in a stream: Dissolved oxygen balance in streams: Oxygen Sag Curve Impact of pollutants on stream waters and usage of stream waters with reference to flora and fauna.

DESIGN OF LOW COST WASTEWATER TREATMENT SYSTEMS

Introduction, Biological kinetics of waste water, Stabilization ponds. Aerated lagoons, Oxidation ditch, Extended aeration process.

UNIT II

INDUSTRIAL WASTEWATER TREATMENT: SUGAR PLANT AND DAIRY

Introduction, Characteristics and treatment of industrial effluents. Difference between Industrial wastewater and Domestic wastewater. Sugar and Dairy Industry; Quantity of liquid waste; characteristics of liquid waste. Processing and Manufacturing Units, Methods of its treatment and disposal.

PULP AND PAPER INDUSTRY Quantity of liquid waste; characteristics of liquid waste. Processing and Manufacturing Units, Methods of its treatment and disposal. UNIT III NEW CONCEPTS IN BIOLOGICAL WASTEWATER TREATMENT Introduction: Nitrogen removal by biological nitrification and de-nitrification; Phosphate removal from the activated sludge process, Rotating disc biological contactor: An-aerobic filters, U-tube aeration systems. AIR POLLUTION AND EFFECTS OF AIR POLLUTION: Definition, Stationary and mobile sources, Primary and secondary pollutants, Natural contaminants, Particulate matter, Aerosols, Gases. Effects of air pollutants on human health, Effects on plants and economic effects. UNIT – IV METEOROLOGY AND CONTROL OF AIR POLLUTION BY EQUIPMENT: Atmospheric stability and temperature in versions; Mixing height, Wind direction and speed: Wind direction recorder; Wind speed recorder, Humidity measurement, Temperature measurement; Plume behavior. Objectives: Types of collection equipment: Settling chambers: Inertial separators; Cyclones, Filters: Electrostatic precipitators: Scrubbers. **NOISE POLLUTION:** Introduction; Levels of noise. Noise rating systems. Measures of noise: Sources of noise and their noise levels, Acceptance of noise levels; Effects of noise: Control of noise. Text books [1] Garg S. K., "Environmental Engineering Vol. II, Khanna Publishers, New Delhi, 2017. [2] A. D. Patwardhan, "Industrial Wastewater Treatment", Prentice hall of India, 2008. [3] M. N. Rao, A. K. Datta, "Wastewater treatment", Oxford and IBH, third edition. [4] M. N. Rao, H. V. N. Rao, "Air pollution", Tata Magraw hill, 2009 Reference [1] An Introduction to Air pollution by Trivedi, R.K., B.S. Publications, 2005 books [2] Air pollution by Wark and Warner, Addison-Wesley Publications, 1998. [3] Environmental engineering and management, (2nd Edition) Suresh, Kartarai S. K. & Sons [4] Metcalf & Eddy, Wastewater engineering Treatment disposal reuse, Tata McGraw Hill. E-resources and other [1] http://nptel.ac.in/courses/webcourse-contents/IIT- delhi Environmental Air Pollution/ digital material

23CE6403/C RAILWAY AND TUNNEL ENGINEERING

Course Category:	Program Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Nil	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course Outcomes	Upon	Upon successful completion of the course, the student will be able to:													
	CO1	unde	understand the components of the Railway Track												
	CO2		Apply geometric design principles to railway tracks and understand points, crossings, and signaling systems.												
	CO3		Demonstrate the general aspects of tunneling, construction stages and essential safety measures in tunneling.												
	CO4		Apply knowledge of tunneling methods for different soil and rock conditions and understand the process and materials used in tunnel lining.												
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO 11	PO 12	PSO 1	PSO 2
Outcomes towards	CO1	3													3
achievement of Program Outcomes	CO2	3	3	2										3	
(1 – Low, 2 -	CO3	3	2				2								2
Medium, 3 – High)	CO4	3		2				3							3

Course Content

UNIT – I

INTRODUCTION TO RAILWAYS

Introduction to Railways, Comparison of railway and highways transportation; Classification of Indian Railways, Gauges in Railway Track, Permanent way- Cross section and functions

COMPONENTS OF RAILWAY TRACK

Rails – Types, Coning of Wheels, Rail failures, Creep of Rails, Rail Joints-Types, Sleepers - Types, Types of Ballast materials, Specifications of Indian Railways, Ballast Profile, Formation; Specifications of Formation

UNIT – II

GEOMETRIC DESIGN OF RAILWAY TRACK

Geometric Design Necessity; Gradients – types, Gradient Compensation; Super elevation-definition, expression for super elevation; Cant deficiency and cant excess; Negative Super

	elevation concept, Numerical on Negative super elevation
	POINTS AND CROSSINGS & SIGNALLING
	Turnouts components and its working principle, Classification of signals, Classification of stations and yards
	UNIT – III
	GENERAL ASPECTS OF TUNNELLING
	Definition of Tunnel and Open cut, Comparison of by passing alternatives, advantages and disadvantages of tunnel, classification of tunnels, problems in tunneling.
	STAGES IN TUNNEL CONSTRUCTION
	Investigations at tunnel site, setting out of tunnel, excavation, safety precautions in tunneling
	UNIT – IV
	TUNNELLING METHODS FOR SOFT SOIL
	Methods of tunneling – for soft soil (American method, English method, Belgian method & Liner plates method)
	TUNNELLING METHODS FOR ROCK
	Methods of tunneling – for rock(drift method, heading and bench method, cantilever car dump method), objectives of lining, materials for lining
Text books	[1] Saxena, S.C. and Arora. S, "Railway Engineering", Dhanpat Rai Publications, NDLS, 2009. [2] Srinivasan, R "Harbour Dock and Tunnel Engineering", 29th ed., Charotar Publishing House Pvt Ltd, Anand, 2018.
Reference books	[1] Agarwal.MM, Satish Chandra, "Railway Engineering", 2nd ed., Oxford University Press; New Delhi, 2013.
E-resources and other digital material	[1] Prof Rajat Rastogi, IIT/Roorke – Transportation Engineering II– "https://archive.nptel.ac.in/courses/105/107/105107123/"

23CE6403/D **PLUMBING - WATER AND SANITATION**

Course Category:	Program Core	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 2
Prerequisites:	Environmental Engineering	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

	Upon	Upon successful completion of the course, the student will be able to:														
	CO 1	Selec	Select proper plumbing materials and systems.													
Course Outcomes	CO 2	Supe	Supervise code based plumbing installations.													
	CO 3	Unde	Understand methods to handling water to sewer													
	CO 4	Prote	Protect health and safety of end users.													
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	
Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)	CO 1	2	2				2		2					2	2	
	CO 2	2	2				2		3					2	2	
	CO 3	2	2				2		2					2	2	
	CO 4	2	2				2		1					2	2	
Course Content	UNI'		ply Pl	umbin	g:	1	1	I	1	1	ı	1	1	1	I	

Storage, hot and cold water distribution system, backflow prevention, air gap, cross connection control, pressure and velocity, pipe materials and jointing methods, alternative materials, hangers and supports, workmanship, prohibited fittings and practices, protection of pipes and structures, pressure controls, unions, thermal expansion, types of valves, installation and testing, disinfection, protection of underground pipes, color codes and arrow marking, introduction to Water Supply Fixture Units (WSFU) and sizing.

Hot water systems, individual and centralized systems, geysers, heaters, heat pumps, energy

sources, solar hot water systems, types, boilers, hot water generators, hot water consumption pattern, introduction to sizing of systems.

UNIT II:

Pumping Systems & Codal Provisions

Terminology, pump heads, types of Pumps, applications, pump selection, pump characteristics, pumps and motors, pump efficiency, motor efficiency, Hydro Pneumatic Systems (HPS), Zoning, Storm Water and Drainage Pumps, introduction to starters and control panels.

Scope, purpose; codes and standards in the building industry, UIPC-I, NBC and other codes, Local Municipal Laws, approvals, general regulations, standards, water supply, sewerage system, drainage system, workmanship, water conservation, protection of pipes and structures, waterproofing.

UNIT III:

Sanitary Plumbing Fixtures, Fittings and Traps

Definitions of plumbing fixtures, fittings, appliances and appurtenances; maximum flow rates, water closets, bidets, urinals, flushing devices, washbasins, bath/shower, toilets for differently abled, kitchen sinks, water coolers, drinking fountain, clothes washer, dish washer, mop sink, overflows, strainers, prohibited fixtures, floor drains, floor slopes, location of valves, hot water temperature controls, installation standard dimensions in plan and elevation.

Traps required, trap arms, developed length, trap seals, venting to traps, trap primers, prohibited traps, building traps.

UNIT - IV

Interceptors, Indirect Waste and Vents:

Discharge for indirect waste piping, nature of contents or systems, proper methods to install indirect waste piping, air gap and air break, sink traps, dish washers, drinking fountains, waste receptors, sterile equipment, appliances, condensers, point of discharge, venting.

Vent requirement, purpose of venting, trap seal protection, materials, vent connections, flood rim level, termination, vent stacks, water curtain and hydraulic jump, cleanouts, venting of interceptors, introduction to vent sizing.

one pipe and two pipe systems, different pipe materials and jointing methods, special joints, hangers and supports, protection of pipes and structures, alternative materials, workmanship, prohibited fittings and practices, hydraulic jump, change in direction of flow, T and Y fittings, cleanouts, pipe grading, fixtures below invert level, suds relief.

Text books

- [1]Elements of Water Pollution Control Engineering, O.P. Gupta, Khanna Book Publishing, New Delhi.
- [2] A Guide to Good Plumbing Practices, a book published by IPA.
- [3] Water Pollution, Berry, CBS Publishers.

Reference books

- [1]Uniform Illustrated Plumbing Code-India (UIPC-I) published by IPA and IAPMO (India)
- [2] National Building Code (NBC) of India
- [3]IS 17650 Part 1 and Part 2 for Water Efficient Plumbing Products

	[4]Water Efficient Products-India (WEP-I) published by IPA and IAPMO (India) [5]Water Efficiency and Sanitation Standard (WE.Stand) published by IPA and IAPMO (India)
E-resources and other digital	https://archive.nptel.ac.in/courses/105/105/105105201/
material	https://nptel.ac.in/courses/105107207

23CE6404/A ANALYSIS AND DESIGN OF HIGH-RISE BUILDING

Course Category:	Programme Elective III	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:	23CE5303 – Design of Concrete	Continuous Evaluation:	30
	Structures	Semester end Evaluation:	70
		Total Marks:	100

	Upon	Upon successful completion of the course, the student will be able to:														
	CO1	Unde	Understand the historical evolution and necessity of tall buildings													
Course	CO2	Evalu	Evaluate different types of loads and their impact on the design of tall structures													
Outcomes	CO3	Explo	Explore various structural systems and their applications in high-rise buildings													
	CO4	Appl	Apply advanced analysis to ensure the stability and safety of high-rise structures													
Contribution of Course Outcomes towards achievement of Program Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO 11	PO 12	PSO 1	PSO 2	
	CO1	1														
	CO2	1		1	1									2		
(1 – Low, 2 - Medium, 3 – High)	CO3	1		1	1									2		
	CO4	1	2	1	1									2		

Course Content

UNIT 1:

INTRODUCTION

History of tall buildings, Need for tall buildings, Factors affecting height, Growth and structural form, Design criteria: Loading, Strength & stability, Stiffness & Drift limitations, Human comfort criteria, Creep, Shrinkage & Temperature effects, Fire, Foundation settlement, and soil structure interaction

UNIT 2:

LOADS

Gravity loading: Dead and Live load calculation, Impact and Construction loads, Wind loading: Static and Dynamic approaches, Earthquake loading: Equivalent lateral force, Modal analysis, Combination of loading in various design philosophies

UNIT 3:

STRUCTURAL SYSTEMS

Structural Forms: Braced-frame, Rigid-frame, Infilled-frame, Shear wall, Wall-frame, Framed-tube,

	Outrigger braced, Core and Hybrid Structures, Introduction to various flooring systems in concrete and steel
	UNIT 4:
	ANALYSIS & DESIGN
	Approaches to analysis, Modeling for approximate analysis, modeling for accurate analysis – Plane frames, Plane Shear walls, 3D Frame and wall structures, Stability analysis: overall buckling analysis of frames, overall buckling analysis of wall frames
Text books	[T1] Smith, B. S., & Coull, A., "Tall Building Structures: Analysis and Design". Wiley, 1991. [T2] Taranath, B. S., "Tall Building Design: Steel, Concrete, and Composite Systems", CRC Press, 2016
Reference books	[R1] Chong, K. P., & Leonard, J. W., "Design and Analysis of Tall and Complex Structures", CRC Press, 2008.
E-resources and other digital material	https://www.youtube.com/watch?v=-syqppgcoVE

23CE6404/B SOLID WASTE MANAGEMENT

Course Category:	Program Elective 3	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

	Upon	succe	ssful c	omplet	ion of	the co	urse, th	ne stud	ent wil	l be ab	le to:				
Course Outcomes	CO1	Unde	Understand the sources and composition of Municipal Solid Waste.												
	CO2		Understand methods of collection, separation, transport and disposal of Municipal Solid Waste.												
	CO3	Unde	Understand the handling methods of Bio-medical waste.												
	CO4	Unde	Understand the methods of disposal and recycling of plastic and e-waste.												
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO 11	PO 12	PSO 1	PSO 2
Outcomes towards	CO1	1		1			1	2				1			2
achievement of Program Outcomes	CO2	1		1			1	2				1			2
(1 – Low, 2 -	CO3	1		1			1	2				1			2
Medium, 3 – High)	CO4	1		1			1	2				1			2

Course Content

UNIT I:

SOURCES, TYPES AND COMPOSITION OF MUNCIPAL SOLID WASTE

Sources, Types, Composition of Solid Waste, Effects of improper disposal of solid waste, public health effects, Types of materials recovered from MSW.

WASTE HANDLING, SEPARATION AND STORAGE

On site handling and separation at solid waste, on - site storage of solid waste, options under Indian conditions.

UNIT II:

COLLECTION OF MUNCIPAL SOLID WASTE

Methods of collection, equipment, types of vehicles, man power requirement.

TRANSFER AND TRANSPORT OF MUNCIPAL SOLID WASTE

Need for Transfer operations, Transfer Stations, Selection of Location of Transfer Stations, Transport means and methods.

	UNIT III: OFF-SITE PROCESSING, SEPARATION, TRANSFORMATION Size Reduction, Separation, Density separation, Magnetic Separation, Pyrolysis, Composting, and Incineration.
	DISPOSAL OF SOLID WASTE Disposal of Solid Waste – Sanitary land Fills, Site selection, Planning, Design and operation of Sanitary landfills, Leachate collection.
	UNIT IV: BIO-MEDICAL WASTE MANAGEMENT Sources & generation of Bio-medical Waste, Biomedical Waste Management. PLASTIC AND E-WASTE MANAGEMENT Dangers of Plastics, Recycling of Plastic waste, Disposal of plastic waste. Health Hazards of E-
Text books	waste, E- waste Management. [T1] Goerge, T. Hilary, T. & Samuel, A.V. Integrated Solid waste management, Mc Graw Hill Indian Edition, 2014.
	[T2] Amalendu,B. Design of Land Fills and Integrated Solid waste management, John Wiley & Sons 3RD Edition, 2004.
Reference books	[R1] CPCB Manual on solid waste Management, NDLS, 2016.[R2] Sasikumar,K. Sanoop,G. Solid waste management, PHI, NDLS, 2009[R3] Urvashi,D. Solid waste management in India, NDLS, 2014
E-resources and other digital material	https://nptel.ac.in/courses/105103205" https://www.coursera.org/learn/solid-waste-management#instructors"

23CE6404/C GROUND IMPROVEMENT TECHNIQUES

Course Category:	Program Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Geotechnical Engineering	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

	Upon	succe	ssful c	omple	tion of	the co	urse, th	ne stud	ent wil	l be ab	ole to:				
Course	CO1		Understand need and methods of ground improvement techniques and apply suitable ground improvement technique for a given site												
	CO2	Eval	Evaluate the expansively of soils and suggest suitable improvement technique												
Outcomes	CO3	Appl	Apply suitable stabilization method and grouting techniques												
1	CO4	Unde	Understand various types of geosynthetics and reinforced earth concept												
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO 11	PO 12	PSO 1	PSO 2
Outcomes towards achievement	CO1	3	2	3		3						3			3
of Program Outcomes	CO2	3		3		3						3			3
(1 – Low, 2 - Medium, 3 – High)	CO3	3	2	3								3		2	3
	CO4														

Course Content

UNIT I:

GROUND IMPROVEMENT METHODS IN GRANULAR SOILS

Need of Ground Improvement, Different methods of Ground improvement. In place densification by Dynamic Compaction, Vibroflotation, Compaction pile, Vibro-Compaction Piles and Blasting.

DENSIFICATION METHOD IN COHESIVE SOILS

Introduction, Preloading, Vacuum dewatering, Sand Drains, Stone columns, Prefabricated vertical drains.

UNIT II:

EXPANSIVE SOILS

Problems of expansive soils, Identification tests for expansive soils, I.S. test methods for swelling pressure of a soil.

	IMPROVEMENT METHODS FOR EXPANSIVE SOILS
	Sand cushion, CNS layer, Cushions using industrial by products, stabilization and lime slurry pressure injection.
	UNIT – III:
	SOIL STABILIZATION Types of soil stabilization, Lime stabilization - Base exchange mechanism, Pozzolanic reaction, lime-soil interaction. Lime stabilization mix design, Cement stabilization: Mechanism, amount, age and curing. GROUTING TECHNIQUES
	Grouting in soil, Desirable characteristics of grout, Grouting pressure, Grouting methods.
	UNIT IV:
	GEOSYNTHETICS Introduction – Family of geosynthetics, Functions and applications of Geosynthetics,
	REINFORCED EARTH Principle of reinforced earth, Components of reinforced earth, factors governing design of reinforced earth walls, design principles of reinforced earth walls.
Text books	 [T1] Hausmann, M.R., Engineering Principles of Ground Modification, McGraw-Hill International Editions, NY, US, 1990. [T2] Purushothama Raj, P., Ground Improvement Techniques, Laxmi Publications, 2007. [T3] Gopal Ranjan and Rao, A.S. R., Basic and applied soil mechanics, New Age Publishers, 2011.
Reference books	[R1] Chattopadhyay, B. C. and Maity, J., Ground Control and Improvement Techniques, PEEDOT, HWH, 2011.
	[R2] Korner, R. M., Design with Geosynthetics, Prentice Hall, NJ, US, 2002.
E-resources and other digital material	https://nptel.ac.in/courses/105108075/

23CE36404D URBAN TRANSPORT PLANNING

Course Category:	Program Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	23CE6302	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

	Upon	succe	ssful c	omplet	tion of	the co	urse, th	ne stud	ent wil	l be ab	ole to:				
	CO1	Anal	yze vai	rious st	tages ii	n trans	port Pl	anning	Proce	SS					
Course Outcomes	CO2	Appl	Apply various methods for data collection												
	CO3	Appl	apply and finalize the route choice and network design												
	CO4	Appl	Apply various methods for economic evaluation of transport projects												
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO 11	PO 12	PSO 1	PSO 2
Outcomes towards achievement	CO1			3											2
of Program Outcomes	CO2	3	3									3			2
(1 – Low, 2 - Medium, 3 – High)	CO3	3	3	3		3									
	CO4	3													2

Course Content

UNIT I:

TRANSPORT PLANNING PROCESS

Systems Approach to Transport Planning, Stages in Transport Planning, Survey and analysis of Existing Conditions, Forecast Analysis of Future Conditions and plan synthesis, Evaluation, Program Adoption and Implementation, Continuing Study, Citizen Participation, Difficulties in the Transport Planning Process.

TRANSPORTATION SURVEY

Study Area, Zoning, Type of Surveys, Home Interview Surveys, Commercial Vehicle Surveys, Road Side Interview Surveys, Public Transport Surveys, Inventory of Transport Facilities, Expansion of Data from Samples

UNIT - II:

TRIP GENERATION

Factors governing trip generation and attraction rates - Multiple linear regression analysis, Category analysis - Critical appraisal of techniques.

	TRIP DISTRIBUTION Uniform factor method, average factor methods - Gravity model and its calibration - opportunity model. UNIT - III: TRIP ASSIGNMENT Traffic assignment - General principles - Assignment techniques - Multiple root assignment Capacity - Restraint assignment - Diversion curves MODAL SPLIT Modal split - Advantages and limitations, Earlier Modal split models, trip end type models, trip interchange models, logit model, Multinomial logit model UNIT - IV: ECONOMIC EVALUATION OF TRANSPORTATION PLANS Economic evaluation techniques - Road user cost, Benefit cost ratio method. RETURN METHODS Net present value method, internal rate of return method, comparison of various methods
Text books	[T1] Kadiyali, L.R., Traffic Engineering and Transport Planning, Khanna, NDLS, 2006. [T2] Paque, J.R., Ashford, N.J. Wright, P.L.H. Transportation Engineering Planning and Design, NY, 2000
Reference books	[R1] Dicky,J.W. Metropolitan Transportation Planning, Tata McGraw, NDLS, 2000 [R2] Bruton, M.J. An Introduction to Transportation Planning, LN,UK, 2001.
E-resources and other digital material	[1] http://nptel.ac.in/courses/105106058/ [2] http://nptel.ac.in/courses/105107067/ [3]https://ocw.mit.edu/courses/urban-studies-and-planning/11-540j-urbantransportation-planning-fall-2006/ [4] http://nptel.ac.in/courses/105104098/

V. R. Siddhartha Engineering College, Department of Civil Engineering: VR23 Regulation Syllabus
23CE6205 OPEN ELECTIVE/ JOB ORIENTED ELECTIVE 2 (NPTEL)

23CE6408/A - PREFABRICATED ENGINEERING

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	20CE5303 – Design of Concrete	Continuous Evaluation:	30
	Structures	Semester end Evaluation:	70
		Total Marks:	100

	Upon	succe	ssful c	omplet	tion of	the co	urse, th	ne stud	ent wi	ll be ab	ole to:				
	CO1	Unde	Understand the design principles and IS code specifications.												
G	CO2	analy	analyze and design shear walls.												
Course Outcomes	CO3	analy	nalyze and design different types of floors and roof slabs.												
	CO4	desig	sign industrial buildings.												
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	P1O	PO 11	PO 12	PSO 1	PSO 2
Outcomes towards	CO1	3	2	3						1	1		1		2
achievement of Program Outcomes	CO2	3	2	3						1	1		1		2
(1 – Low, 2 - Medium, 3 –	CO3	2	2	3						1	1		2		2
High)	CO4	2	2	3						1	1		2		2

Course Content

UNIT I:

INTRODUCTION:

General Civil Engineering requirements, specific requirements for planning and layout of prefabricates plant. IS Code specifications.

DESIGN PRINCIPLES:

Modular coordination, standardization, Disuniting, of Prefabricates, production, transportation, erection, stages of loading and codal provisions, safety factors, material properties, Deflection control, Lateral load resistance, Location and types of shear walls.

UNIT II:

WALLS:

Prefabricated structures, long wall and cross wall large panel buildings, framed buildings with partial and curtain walls, single storey. Types of wall panels, Partition and load bearing walls, load transfer from floor to wall panels, vertical loads, Eccentricity and stability of wall panels, Design Curves, types of wall joints, their behaviour and design, approximate design of shear walls.

	UNIT III:									
	FLOORS, STAIRS AND ROOFS: Types of floor slabs, analysis and design example of cored and panel types and two-way systems, types of roof slabs and insulation requirements, Description of joints, their behaviour and reinforcement requirements, deflection control for short term and long-term loads, ultimate strength calculations in shear and flexure.									
	UNIT – IV									
	DESIGN OF INDUSTRIAL BUILDINGS: Components of single storey industrial sheds with crane gantry systems, design of R.C. Roof Trusses, roof panels, design of R.C. crane gantry girders, corbels and columns, wind bracing design.									
Textbooks	 [T1]: S. R. Damodara swamy & S. Kavitha, Basics of Dynamics and Aseismic Design, PHI Learning, 2009. [T2]: Pankaj Agarwal & Shrikhande, Earthquake resistant Design of Structures, PHI Learning, 2009. [T3]: Chopra A.K., "Dynamics of Structures - Theory and Applications to Earthquake Engineering", Second Edition, Pearson Education, 2007 									
Reference books	 [R1]: PCI Design Handbook, 6th Edition, 2004. [R2]: Handbook on Precast Concrete for Buildings, ICI Bulletin 02, First Edition, 2016 [R3]: V. Soundararajan, R. Jagadeesh Kumar, S KalpanaDevi Prefabricated structures ARS publications 									
E-resources and other digital material	https://www.youtube.com/watch?v=wXNlCrqbOwg									

23CE6408/B CONSTRUCTION EQUIPMENT AND AUTOMATION

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:	Building Materials and Construction	Continuous Evaluation:	30
	-	Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succes	sful co	mpletio	on of th	ne cours	se, the	student	will b	e able t	o:				
	CO1				•	-				-			ns and n activi		tand
	CO2		Understand the procedures of concrete production and procedure of dewatering and grouting												
	CO3	Apply	Apply the concept and procedure of automation in construction sector												
	CO4	Unde	rstand	the late	est tech	niques	of auto	mation	n in cor	ıstructi	on sect	or			
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O 1	PS O 2
towards achievement of Program	CO 1	1				3	2	1	3	2	3				1
Outcomes	CO 2	1				3	2	1	3	2	3				2
(L – Low, M - Medium, H – High)	CO 3	2	2			3	3	1	3	2	3			1	2
3 /	CO 4	2	2			3	3	1	3	2	3			1	2
Course Conter	nt	Funda Equip OTH Equip Comp Dewa	iPME amenta oment - ER Coment paction attering olition,	ls of E Tracto ONSTI for D - Erec and C	ors, Mo RUCTI redging tion Ec	ork Op otor Gra ION E0 g, Tren quipme g – Fo	eration aders, S QUIPN nching, nt - Ty oundati	s - Ear craper MENTS Tunn pes of	s, Fron S: neling, pumps	t end W Drilling used i	Vaders, ng, Bla n Cons	Earth asting	pes of l Movers - Equ on - Equ – Equ	s. ipment aipmen	for t for
		MAT Crane	ERIA es, Hoi	sts, Fo		and re	lated e	quipm	ent - F	Portable pumpi			ns – C	onveyo	ors –

	EQUIPMENT FOR PRODUCTION OF AGGREGATE AND CONCRETING Crushers and crushing Plants, Compressor, Feeders, Screening Equipment, Handling Equipment, Batching and Mixing Equipment, Hauling, Pouring and Pumping Equipment, Transporters.
	UNIT – III INTRODUCTION TO AUTOMATION IN CONSTRUCTION SECTOR Concept and application of Building Automation Systems (BAS); Requirements and design considerations and its effect on functional efficiency; Architecture and components of BAS; AUTOMATION SYSTEMS Fire sensors and fire control systems, HVAC components and applications, Access control systems
	UNIT – IV ROBOTICS IN CONSTRUCTION: Introduction; Benefits of robots in construction industry with respect to time, cost, quality, safety; Use of robots for construction activities like Brick laying, Demolition, Material Handling, Structural steel cutting, Rebar tying/bending; 3D PRINTING: Print complex, layered parts and objects of homes, buildings, bridges and roads; Form work mould making;
Text books	[1] Sharma S.C. Construction Equipment and Management, Khanna, NDLS, 1988. [2] Construction Planning, Methods and Equipment, R.L Peurifoy, McGraw Hill, 2011.
Reference books	 [1] Varma, M., Construction Equipment and its planning and application, Metropolitan, NDLS, 1983. [2] Automation in Construction Management: Automated management of Construction Materials Using RFID Technology, Javad Majrouhi Sardroud, Scholars' Press. [3] Robotics and Automation in Construction, Open access peer- reviewed edited volume.
E-resources and other digital material	[1] http://buildingsolutions.honeywell.com/en-US/Pages/default.aspx [2] http://www.isa.org [3] https://www.youtube.com/watch?v=T_CMr2KFSd4

23CE6408/C AIRPORT AND HARBOUR PLANNING

Course Category:	Program Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Nil	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

	Upon	succe	ssful c	omplet	tion of	the co	urse, th	ne stud	ent wil	l be ab	ole to:				
	CO1		Demonstrate knowledge of air transport modes, aircraft characteristics, airport classification and criteria for site selection												
Course Outcomes	CO2		Analyze airport obstructions and apply design principles to determine runway orientation and basic runway length												
	CO3	Appl	Apply various methods to design flexible and rigid airfield pavements												
	CO4 Demonstrate understanding of the types, features and functional require ports, and docks.									ements	s of ha	rbors,			
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO 11	PO 12	PSO 1	PSO 2
Outcomes towards	CO1	3						2							1
achievement of Program Outcomes	CO2	3	3	2										3	
(1 – Low, 2 -	CO3	3	2	3										3	
Medium, 3 – High)	CO4	3						3							

Course Content

UNIT - I

AIR TRANSPORT

Different modes of transportation, Introduction to NAA, IAAI, AAI and ICAO

AIRPORT PLANNING AND CHARACTERISTICS

Airport classification based on ICAO, airport components, Aero plane components; Air-craft characteristics; Selection of site for airport; Surveys for site selection

UNIT – II

AIRPORT OBSTRUCTIONS

Zoning laws, Imaginary surfaces, Approach zone, turning zone

RUNWAY DESIGN

	Runway orientation- cross wind component, wind rose diagram, types of wind rose; Basic
	runway length; Corrections for elevation, Temperature and gradient; Runway geometric design.
	Runway configurations, geometric design standards of taxiway design
	UNIT – III
	FLEXIBLE PAVEMENT DESIGN
	Various design factors, Design methods for flexible airfield Pavement- CBR Method, Mcleod
	Method and Burmister's Method
	RIGID PAVEMENT DESIGN
	Rigid pavement Design- PCA Method; LCN Method of pavement design.
	UNIT – IV
	HARBOR AND PORT: Types of Harbours, Site selection, features of harbor, definitions of
	break water, wharves, jetties, fender, piles, pier heads, mooring, types of break waters, port
	definition, requirements of port, facilities at port.
	DOCKS: Types of Docks- dry dock, floating dock, slip way, ship lift, Aprons, transit shed and
	ware houses
Text books	 [1] SK Khanna, MG Arora & SS Jain, "Airport Planning and Design", Nemchand & Bros, Roorkee, 2012. [2] Subash C Saxena, "Airport Engineering: Planning and Design", CBS Publisher, 2012 [3] Srinivasan, R "Harbour Dock and Tunnel Engineering", 29th ed., Charotar Publishing House Pvt Ltd, Anand, 2018.
Reference books	 [1] Rangwala, "Airport Engineering", Charotar Publishing House Pvt Ltd, Anand, 2012. [2] Hasmukh P Oza, Gautam H Oza, "Dock and Harbour Engineering", 8th Edition, Charotar Publishing House Pvt Ltd, Anand, 2012
E-resources and other digital material	[1] Prof Rajat Rastogi, IIT/Roorke – Transportation Engineering II— "https://archive.nptel.ac.in/courses/105/107/105107123/"

23CE6408/D IRRIGATION STRUCTURES

Course Category:	Program Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Water Resources Engineering	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

	Upon	succe	ssful c	omplet	tion of	the co	urse, th	ne stud	ent wi	ll be at	ole to:				
	CO1	Unde	Understand diversion headworks, weir failures, and canal regulation structures.												
Course	CO2	Unde	Understand cross-drainage works and river gauging techniques.												
Outcomes	CO3	Analyze stability and design of gravity dams.													
	CO4	Unde	Understand earth dams, failure control, and spillways.												
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO 11	PO 12	PSO 1	PSO 2
Outcomes towards	CO1													2	
achievement of Program Outcomes	CO2	3	3	3		2								2	
(1 – Low, 2 - Medium, 3 – High)	CO3	3	3	3		2					2			3	3
	CO4										2				2

Course Content

UNIT – I

1. DIVERSION HEAD WORKS:

Component parts of a Diversion Head works. Types of weirs, causes of failures of weirs and their remedies. – Bligh's Creep Theory, & Khosla's Theory. Canal falls; Necessity location and classification of falls. Silt control at head works.

2. CANAL REGULATION WORKS:

Canal regulators; Off-take alignment; Head regulators and cross- Regulators; Canal escape.

UNIT - II

3. CROSS DRAINAGE WORKS:

Introduction; Types of cross - drainage works; Selection of suitable type of cross - drainage work; Classification of Aqueducts and Syphon Aqueducts; Selection of a suitable type.

4. RIVER GAUGING: Necessity: Selection of gauging sites; Methods of discharge measurement; Area Velocity method; Measurement of velocity; Floats – Surface floats, Sub–surface float or Double float, Twin float, Velocity rod or Rod float; Pitot tube; Current meter; Measurement of area of flow; Measurement of width - Pivot point method; Measurement of depth – Sounding rod, Echo-sounder. UNIT - III 5. STABILITY ANALYSIS OF GRAVITY DAMS: Introduction; Forces acting on a gravity dam; modes of failure and stability analysis of gravity dams. 6. DESIGN OF GRAVITY DAMS Elementary profile of a gravity dam; Practical profile of a gravity dam; Limiting height of a gravity dam; High and low gravity dams; Galleries; Joints; Keys and water seals. UNIT - IV 7. EARTH DAMS: Introduction; Types of earth dams; Causes of failure of earth dams and control measures; Criteria for safe design of earth dams; Section of an earth dam; Seepage control measures. 8. SPILLWAYS: Introduction; Types of spillways; Profile of ogee spillway; Energy dissipation below spillways for relative positions of jump height curve and tail water curve; Stilling basins; Types and description only. Text books 1. B.C. Punmia, Pande B.B. Lal, Ashok Kumar Jain, Arun Kumar Jain – Irrigation and Water Power Engineering, Laxmi Publications, 2016 2. S.K. Garg – Irrigation Engineering and Hydraulic Structures, Khanna Publishers, 2019 1. R.S. Varshney – Irrigation Engineering, Nem Chand & Bros, 2018 Reference 2. G.L. Asawa – Irrigation and Water Resources Engineering, New Age International, 2005 books 3. R.K. Sharma & T.K. Sharma – Irrigation Engineering, S. Chand & Company, 2017 E-resources and other https://nptel.ac.in/courses/105104103 digital material

23CE6351 COMPUTER APPLICATIONS IN CIVIL ENGINEERING LAB-II

Course Category:	Program Core Lab1	Credits:	1
Course Type:	Practical	Lecture - Tutorial - Practice:	0 - 0- 2
Prerequisites:	23CE5303 Design of Concrete Structures	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

	Upon	succe	ssful c	omple	tion of	the co	urse, tl	ne stud	lent wi	ll be al	ole to:				
	CO1	CO1 analysis for cross section and requirement of reinforcements of various structural elements by using STAAD.Pro/ ETABS													nts by
Course Outcomes	CO2	analyse for rates and quantities and prepare rate analysis for various works in construction of building using Spread Sheets									on of a				
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO 11	PO 12	PSO 1	PSO 2
Outcomes towards achievement	CO1	2		2		3		2		2	1			3	1
of Program Outcomes		3		1		1		2		1	2			1	3
(1 – Low, 2 - Medium, 3 – High)	CO2														
Content	Softv 1. De 2. De 3. De 4. De Load 5. De 6. De 7. De PAR 1. Es build	ysis of vare. ssign of ssign of ssign of ssign of ssign of ssign of ssign of ssign of ssign of timate ing.	f continf plane f space of G+4 Load C f G+4 f Roof & We	frame frame frame Reside Reside Truss	beam. dential ations ential b	building uilding uilding	ing: Cg: Prepg: Prepging spi	reating aration aration read sh	g mode n of det n of De	el fron ail dra sign D	n the gwing	given d	lrawing	g, Assi	gning
Text books			Singh Delhi,	-	gdish S	Singh,	"Build	ing Pla	anning,	, Desig	gning, a	and Sch	edulin	g", Sta	ndard

	M. Vignesh Kumar, "Structural Modeling, Analysis & Design Using STAAD Pro Software", 1st ed., Lambert Academic Publishing, 2015. Syed Mohd Abid, "ETABS for Beginners: A Comprehensive Guide to Structural Analysis and Design", 1st ed., Independently Published, 2023
Reference books	Krishnan Sathia, "Principles of Structural Analysis – Static and Dynamic Loads", 2nd ed., McGraw Hill, 2018. D. Trevor Jones, "Analysis and Design of Structures - A Practical Guide to Modeling", 1st ed., CRC Press, 2020. Jack Moehle, "Seismic Design of Reinforced Concrete Buildings", 1st ed., McGraw Hill, 2014.
E-resources and other digital material	https://www.bentley.com/en/products/brands/staad – Official STAAD.Pro Learning Resources https://www.csiamerica.com/products/etabs – Official ETABS Learning Resources https://nptel.ac.in/courses/105102201 – Design of Reinforced Concrete Structures

23HS6152 ENGLISH AND COMMUNICATION SKILLS LAB

Course Category:	Skills Enhancement Course	Credits:	1
Course Type:	Lab	Lecture - Tutorial - Practice:	0-0-2
Prerequisites:	Notable level of skill in	Continuous Evaluation:	30
	language proficiency, including	Semester end Evaluation:	70
	listening, speaking, reading,	Total Marks:	100
	and writing, reaching a semi-		
	advanced level.		

Course Out	comes	Upon s	uccessi	ful com	pletion	n of th	e cour	se, the st	udent w	ill be ab	le to:		
		CO1	Relat	e effect	tive list	ening	and re	eading sk	ills esse	ntial for	profess	sional co	ontexts.
		CO2		onstrate roficie				sive spol	ken com	nmunica	tion for	argum	entation
		СОЗ	Apply sophisticated and creative written communication suitable for administrative and corporate documentation.										
		CO4	Analyze comprehensive life skills by adeptly communicating in various personal and professional settings for career and personal growth opportunities.										
Contributio n of Course Outcomes towards achieveme		PO 1	PO 2	PO3	PO 4	PO 5	PO 6	PO7	PO8	PO9	PO1 0	PO 11	PO12
	CO1										Н		
	CO2								L	M	Н		
nt of Program	CO3							P	P		Н		
Outcomes										M	Н		L
(L – Low, M - Medium, H – High)	CO4												
Course Con	tent	1.	Readi	ng Co	mpreh	ensio	n						
							yzing Sup Critical R					ferences egies.	
		2.	Listen	ing Sk	ills								
	Cl	arificat	ion a	nd Co	nfirm	ation	mpathetic – Resp s – Summ	onding	Appro	priately	- Re	eflective	

3. Relationship Building

Assertiveness – Adaptability – Emotional Intelligence – Conflict Management.

4. Professional Presentations

Planning and Preparation – Audience Analysis – Structuring Presentation – Visual Aids and Multimedia – Delivery Techniques – Handling Q&A Sessions – Overcoming Presentation Anxiety.

5. Cover Letter & Resume Writing

Cover Letter – Resume Formatting and Design – Creating a Professional and Eye-Catching Document – Highlighting Achievements – Tailoring Your Resume – Including Relevant Keywords.

6. Video Resume

Introduction – Professional Background – Visual Presentation – Personal Branding – Achievements and Accomplishments – Call to Action – Editing and Production.

7. Statement of Purpose (SOP)

Introduction – Educational Background and Training – Subject Matter Expertise – Relevant Skills and Attributes – Research Interests – Fit with the Program – Future Contribution.

8. Book/Film Review

Overview and Summary – Plot Analysis – Cinematography/Writing Style – Acting/Characterization –Themes and Messages – Audience Appeal – Final Thoughts and Recommendation.

9. Kinesics & Para Linguistic Features

Understanding Nonverbal Communication – Body Language – Vocal Cues – Cultural Variations – Emotional Expression – Deception Detection.

10. Life Skills – Poster Presentation

Introduction to Life Skills – Creative Thinking – Critical Thinking – Emotional Intelligence — Communicating Ideas Visually and Effectively.

Text Books

ADVANCED COMMUNICATION SKILLS LAB MANUAL

Reference Books	 Sanjay Kumar and Pushp Lata. Communication Skills. Oxford University Press, New Delhi, 2011. Nira Konar, English Language Laboratoties. PHI Learning Private Limited, New Delhi, 2011.
E-Resources	Softx & Walden Software

23TP6106 QUANTITATIVE APTITUDE

23CE6554 – MINI PROJECT I

Lecture:	0	Internal Assessment:	30 Marks
Tutorial:	0	Semester End Examination:	70 Marks
Practical:	2 hrs/Week	Credits:	1
Prerequisites:	20CE5354 EPIC	S	

Course			Upo	n succe	essful c	omple	etion o	of the c	ourse,	the stu	dent wi	ll be a	ble to		
Outcomes	CO1	ident	ify the	proble	m state	ement	and d	efine tl	he sco	pe and	bounda	ries of	the pro	ject.	
	CO2	appl solut	-	etical o	concep	ts, pra	ctical	skills l	learneo	d in the	course	to dev	elop fe	easible	;
	CO3	per g	uidelin	ies.			•	0 1					usions e		
	CO4	demo	emonstrate team work effectively with good communication and presentation skills									S.			
Contribution		PO	PO	РО	PO	РО	РО	РО	PO	PO	PO1	PO	PO1	PS	PS
of course		1	2	3	4	5	6	7	8	9	0	11	2	O1	O2
outcomes	CO1	1		2	1		2	1	1				1	2	
towards	CO2	2	3	3	3	3	2	1		1			1	3	3
achievement	CO3	1	2			1			2		3				1
of Program	CO4	1				2				3	3	1		1	
Outcomes															
(1- Low, 2-															
Medium, 3-															
high)															
	facult	y me rehens	mber.	The erature	projec surve	t nec	essita	te co	nducti	ng an	exten	sive	r the gr feasibil with f	ity st	udy ,
						C	ontin	uous E	valuat	ion:					
						Day	y to da	ay asse	ssmen	t = 10					
						Tw	o revi	iews (1	0+10)	= 20					
							-	Γotal =	30						
					Sen	nester	End I	Evaluat	ion (S	EE) = '	70 M				
							R	eport	= 40						
						Prese	ntatio	n and V	Viva V	oce = 3	30				

23MC6107 B TECHNICAL REPORT WRITING AND IPR

Course Category:	Mandatory Course	Credits:	0
Course Type:	Theory	Lecture - Tutorial - Practice:	2 - 0- 0
Prerequisites:		Continuous Evaluation:	
		Semester end Evaluation:	
		Total Marks:	

	Upon	oon successful completion of the course, the student will be able to:													
	CO1	Unde	Understand the significance of Technical Report writing.												
Course	CO2	Deve	Develop Proficiency in writing technical reports.												
Outcomes	CO3	Unde	rstand t	he need	l of Bib	oliograp	hy and	referer	nces for	quality	report	writing			
CO4 Apply various forms of the intellectual properties for research work.															
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO 11	PO 12	PSO 1	PSO 2
Outcomes towards	CO1	1	3		3	1									
achievement of Program Outcomes	CO2	1	3		3	1									
(1 – Low, 2 - Medium, 3 – High)	CO3	1	3		3	1									
	CO4	1	3		3	1									

Course Content

UNIT I:

Writing scientific and engineering papers

Title, Abstract, Introduction, Materials and Methods, Result, Discussion, Conclusion, References, Acknowledgements, Appendices, Hedging and Criticizing, Paraphrasing and Plagiarism.

UNIT II:

Effective use of charts, graphs and tables

Bar Chart, Line Chart, Pie Chart, Area Chart, Cylindrical Chart, Column Bars, Bubble Chart, Flow Diagram, Screen Capture, Tables

Writing Technical Reports

Objectives Of Technical Report, Types of Reports, Steps in Writing a Technical Report, Guidelines for Writing a Technical Report.

UNIT III:

Tables, Figures, Equations

Inserting Equations, Mathematical Symbols, Practical.

Inserting References- Introduction, The BibTeX file, Inserting the bibliography, Citing references, Styles, Practical.

	UNIT – IV: Intellectual Property The Concept, Intellectual Property System in India, Development of TRIPS Complied Regime in India, Patents Act, 1970, Trade Mark Act, 1999, The Designs Act, 2000, The Geographical Indications of Goods (Registration and Protection) Act1999, Copyright Act, 1957, Trade Secrets, Utility Models WTO, Paris Convention for the Protection of Industrial Property, National Treatment, Right of Priority, Common Rules, Patents, Marks, Industrial Designs, Trade Names, Indications of Source, Unfair Competition, Patent Cooperation Treaty (PCT), Trade Related Aspects of Intellectual Property Rights (TRIPS) Agreement.
Text books	[1] Barun K Mitra, Effective Technical Communication-A Guide for Scientists and Engineers, Oxford University Press,2006.[2] Ramappa, T., "Intellectual Property Rights Under WTO", 2nd Ed., S Chand, 2015.
Reference books	[1] Goldbort R (2006) Writing for Science, Yale University Press. [2] Day R.A. (2006) How to Write and Publish a Scientific Paper, Cambridge University Press.
E-resources and other digital material	https://archive.nptel.ac.in/courses/110/105/110105091/

MINORS

23CEM4701 INTRODUCTION TO CIVIL ENGINEERING – CONCEPTS AND MATERIALS

Course Category:	Minor	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

	Upon	succe	ssful c	omple	tion of	the co	urse, th	ne stud	ent wil	l be ab	ole to:						
	CO1		understand evaluation of civil engineering materials and use of stone as a primary component														
Course Outcomes	CO2	evalu	evaluate the quality of bricks and timber apply test on cement and understand varieties of concrete														
Outcomes	CO3	apply															
	CO4	analy	ze the	quality	y of ste	el and	paints										
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO 11	PO 12	PSO 1	PSO 2		
Outcomes towards	CO1	3						2							3		
achievement of Program Outcomes	CO2	3						2							3		
(1 – Low, 2 - Medium, 3 – High)	СОЗ	3						2							3		
	CO4	3						2							3		

Course Content

UNIT - I

INTRODUCTION

General Introduction to Civil Engineering; History of Civil Engineering; Relevance of Civil Engineering in the overall infrastructural development of the country.

STONES:

Classification of rocks; Qualities of a good building stone; Uses of Stones; Stone quarrying; Tools for blasting; Common building stones of India.

UNIT – II

BRICKS:

Composition of good brick earth; Qualities of good bricks; Tests for bricks; Classification of bricks; Size and weight of bricks.

TIMBER: Definition; Structure of a tree; Qualities of good timber; Preservation of timber; Seasoning of timber; Advantages of timber construction; Use of timber.

	UNIT – III									
	CEMENT Basic Ingredients; Grades of cement; Properties of cement; Field tests on cement.									
	CONCRETE Definition; properties; Special Concretes-Light weight concrete, High density concrete, Fibre reinforced concrete, Polymer concrete.									
	UNIT – IV									
	STEEL General; Manufacture of steel; Uses of steel; Market forms of steel; Properties of mild steel; Properties of hard steel;									
	PAINTS, VARNISHES AND DISTEMPERS General; Painting; Varnishing; Distempering; Wall paper; White washing; Colour washing.									
Text books	[T1] Engineering Materials by S. C. Rangwala; CharotarPublishing House. [T2] Building construction by B. C. Punmia -Laxmi Publications, New Delhi.									
Reference books	[R1] Building construction and construction materials by G.S.Birdie and T.D.Ahuja, Dhanpathrai publishing company, New Delhi.									
E-resources and other digital material	http://nptel.ac.in/courses/105102088/									

23CEM5701 METHODOLOGY FOR CIVIL ENGINEERING CONSTRUCTION

Course Category:	Minor	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

	Upon	Jpon successful completion of the course, the student will be able to:													
	CO1	Evalu	Evaluate the feasibility of the construction project												
Course	CO2	Appl	apply planning and construction contracts												
Outcomes	CO3	Anal	analyse construction finance and organization structure												
	CO4	Evalı	valuate the materials and adopt the quality control procedures												
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO 11	PO 12	PSO 1	PSO 2
Outcomes towards	CO1	1	1	1							1	2			1
achievement of Program Outcomes	CO2	1	1	1							1	2			1
(1 – Low, 2 - Medium, 3 – High)	CO3	1	1	1						1	1	2			1
	CO4	1		1							1	2			1

Course Content

UNIT I:

INTRODUCTION

Role of government and construction agencies, classification of construction works, various stages in construction of a project, the construction team.

PROJECT FEASIBILITY REPORTS

Introduction, technical analysis, financial analysis, economic analysis, ecological analysis, schematic diagram for feasibility study.

UNIT II:

PLANNING FOR CONSTRUCTION PROJECTS

General, steps involved in planning, objectives, principles, advantages of planning, limitations, stages and types of planning, stages of planning by different agencies.

CONSTRUCTION CONTRACTS & TENDERS

General, contract documents, types of contract, tender notice, types of tenders, tender

	documents, Earnest money deposit and security deposit.
	documents, Lamest money deposit and security deposit.
	UNIT III:
	CONSTRUCTION FINANCING AND CONTROL Introduction, costs associated with constructed facilities, estimates, effect of scale on construction cost, means of financing, application of financial assistance, cost control.
	ORGANISING FOR CONSTRUCTION Importance, general principles, types of organization structures, forms of business organizations.
	UNIT – IV:
	MATERIALS MANAGEMENT Importance, Objectives, Costs, functions of material management, uses, stores management, material procurement, maintaining stocks, material handling.
	QUALITY CONTROL IN CONSTRUCTION Elements of quality, Organisation for quality control, Quality assurance techniques, Documentation, Quality control circles, variation
Text books	[T1] Dr.S.Seetharaman, "Construction Engineering and Management", 5th Edition, Umesh Publications, New Delhi,
Reference books	[R1] Kumar Neeraj Jha, "Construction Project Management", 2nd Edition, Pearson Education India, New Delhi, 2015
E-resources and other digital material	

23CEM6701 SYSTEM DESIGN FOR SUSTAINABILITY

Course Category:	Minor	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

	Upor	succe	ssful c	omplet	ion of	the co	urse, th	ne stud	ent wil	l be ab	le to:				
	CO1		erstand buted 1			-			e syst	ems (S	SPSS)	and th	eir ap	plication	on in
Course Outcomes	CO2	Appl	pply SPSS to distributed renewable energy systems and exploring their sustainability.												
Outcomes	CO3		nderstand methodologies for design for Sustainability, and role in promoting eco-												
	CO4	_	Acquire knowledge on methods and tools for system design for sustainable energy, and design strategies to real-world case studies.												
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO 11	PO 12	PSO 1	PSO 2
Outcomes towards	CO1	1		1			2	3							2
achievement of Program Outcomes	CO2	1		1			2	3				1			2
(1 – Low, 2 - Medium, 3 – High)	CO3	1		1			2	3				1			2
	CO4	1		1		1	2	3				1			2

Course Content

UNIT I:

INTRODUCTION

Addressing sustainability by design; an introduction to sustainable product-service systems Applied to distributed renewable energy; United nations sustainability energy for all agenda.

DISTRIBUTED ENERGY SYSTEMS

Distributed renewable energy systems and Integrating SPSS with DE.

UNIT II:

SUSTAINABLE PRODUCT-SERVICE SYSTEM (SPSS)

Introduction to SPSS; Types; Sustainability Benefits; Barriers and Limits.

SUSTAINABLE PRODUCT-SERVICE SYSTEM APPLIED TO DISTRIBUTED RENEWABLE ENERGIES

A Win-Win opportunity; Scenario for SPSS applied to distributed renewable energy (DRE); SPSS applied to DRE: Sustainability Potential Benefits; SPSS applied to DRE: Sustainability Potential Benefits.

UNIT III: DESIGN FOR SUSTAINABILITY Evolution of design for sustainability; Product life cycle design or Eco-Design; Design for Eco-Efficient Product-Service Systems; Design for Social Equity and Cohesion; Design for Socio-Technical Transitions; State of the art of design for Sustainability Human Centred and Universal Design. SYSTEM DESIGN FOR SUSTAINABLE ENERGY FOR ALL: A NEW ROLE FOR **DESIGNERS** System design for sustainable energy for all (SD4SEA); SDSEA Design Criteria, Guidelines and Examples. UNIT IV: METHOD AND TOOLS FOR SYSTEM DESIGN FOR SUSTAINABLE ENERGY FOR ALL(SD4SEA) Method for system design for sustainable energy for all; Sustainability design orienting Scenario; (SDOS) on S.PSS&DRE; Sustainable energy for all idea Tables and Cards; E.DRE— Estimator for Distributed Renewable Energy; PSS + DRE Innovation Map S.PSS + DRE Design Framework & Card; The Energy System map innovation diagram for S.PSS& DRE; Concept Description Form for S.PSS and DRE Stakeholder Motivation and Sustainability Table. PRACTICAL EXAMPLES OF APPLICATION OF SDSEA APPROACH/TOOLS AND OTHER METHODS TO ACHIEVE SUSTAINABILITY Solar Energy Company, Botswana; SMEs for Energy, Uganda; Summary and Considerations; green design; emotionally durable design; cradle to cradle design, bio mimicry design; design for base of a pyramid design; design for social innovation. **Text books** [T1] FabrizioCeschin, İdilGaziulusoy, Design for Sustainability A Multi-level Framework from Products to Socio-technical Systems, Taylor and Francis, 2020. [T2] Carlo Vezzoli; FabrizioCeschin; Lilac Osanjo; Mugendi K. M'Rithaa; Richie Moalosi; VennyNakazibwe; Jan Carel Diehl, Designing Sustainable Energy for All Sustainable Product-Service System Design Applied to Distributed Renewable Energy; Green Energy and Technology, Springer, 2018. Reference [R1] The Handbook of Design for Sustainability books Stuart Walker (Author), Stuart Walker (Anthology Editor), Jacques Giard (Anthology Editor), Helen Walker (Anthology Editor) [R2] Elisa Bacchetti, Towards sustainable energy for All Designing Sustainable Product Service System applied to Distributed Renewable Energy, Politecnico di Milano, Milano, Italy 2017 E-resources nptel.ac.in/courses/107/103/107103081. and other digital material

23CEM6702 ECOLOGY AND ENVIRONMENT

Course Category:	Minor	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

	Upon s	Jpon successful completion of the course, the student will be able to:													
	CO1	Ana	Analyse the issues concerned with ecology, environment and sustainability.												
Course	CO2	Eva	Evaluate the quantity and quality of water based on the available natural sources												
Outcomes	CO3	Eva	Evaluate the water purification units and components of the distribution systems.												
CO4 Analyze the effect of various attributes of environmental pollution															
Contribution of Course Outcomes towards		P O 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
achievement of Program	CO1	1						2					2	1	1
Outcomes (1 – Low, 2 - Medium, 3 – High)	CO2	2	3		3		1								2
	CO3	2	1	3			1							1	2
	CO4	1	1	2	1										2

Course Content

UNIT I:

INTRODUCTION TO ECOLOGY AND ENVIRONMENT

Definition, scope & importance, need for public awareness- environment - definition, ecology, eco system - balanced ecosystem, human activities - food, shelter, economic and Social security.

SUSTAINABILITY

Sustainability – definition, significance, sustainability goals, impacts of climate change, Case Studies.

UNIT II:

WATER SUPPLY - QUANTITYOF WATER

Sources of water, objectives of water supply systems, Per capita consumption; Types of demands; Fluctuations in demand.

	QUALITY OF WATER Water purity characteristics; analysis of water samples - physical, chemical and biological tests; Standards for drinking water as per W.H.O; Water borne diseases.
	UNIT III:
	WATER TREATMENT Fundamentals on water purification; sedimentation; coagulation and types of coagulants; sedimentation and coagulation tanks uses and importance; theory of filtration; slow sand and rapid sand filters; operation; disinfection methodologies
	DISTRIBUTIONSYSTEMS Methods of supply; Layouts, Plumbing-pipes and fittings; Traps; One pipe and Two pipe Systems.
	UNIT – IV
	ENVIRONMENTAL POLLUTION Environmental Pollution: Water pollution, Land and soil pollution, Air pollution, their impacts and on health and environment.
	SOLID WASTE MANAGEMENT Solid waste characteristics—basics on on-site handling, collection—separation and processing—Incineration—Composting-Solid waste disposal methods— Fundamentals of land filling.
Text books	[T1] Benny Joseph, "Environmental Studies", Tata Mc Graw Hill, 2005 [T2] IgnaciMuthu S, "Ecology and Environment", Eastern Book Corporation, 2007 [T3] Birdie G.S. and Birdie J. S., "Water Supply and Sanitary Engineering", 9th ed., Dhanpat Rai Publishing Company, New Delhi, 2015.
Reference books	[R1] Garg S. K., "Environmental Engineering Vol. I& II- Water supply engineering", Khanna Publishers, New Delhi, 2017. [R2] Gurucharan Singh, "Water Supply and Sanitary Engineering", Standard Publishers Distributors, Delhi, 2009. [R3] Anjaneyulu Y. "Introduction to Environmental sciences", B S Publications PVT Ltd, Hyderabad 2004.
E-resources and other digital material	https://nptel.ac.in/courses/127106004 (Ecology and environment by Dr. Abhijit P. Deshpande, IIT Madras).

23CEM7701 INFRASTRUCTURE AND TRANSPORTATION SYSTEM PLANNING

Course Category:	Minors	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Nil	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

	Upon	succe	ssful c	omplet	ion of	the co	urse, th	ne stud	ent wil	l be ab	ole to:					
	CO1	Anal	Analyze and differentiate various types of roads and pavement structures.													
Course Outcomes	CO2		valuate and understand different pavement materials and construction methods for fective pavement design.													
Outcomes	CO3	Ident	lentify and describe the key components of a railway track system.													
	CO4		nderstand and apply knowledge of geometric features in the design and layout of llway tracks.													
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO 11	PO 12	PSO 1	PSO 2	
Outcomes towards achievement	CO1	2					2									
of Program Outcomes	CO2	2	2	2												
(1 – Low, 2 - Medium, 3 – High)	CO3	2	2													
	CO4	2	2	2			2									

Course Content

UNIT-I

INTRODUCTION TO ROADWAYS: Different Modes of Transportation, Road development in India during twentieth century, Classification of different types of roads, Highway cross section elements.

PAVEMENTS: Different types of pavements – Cross section, functions of pavement layers, Need for design, importance of drainage

UNIT-II

MATERIALS FOR PAVEMENTS: Materials used in highway construction- soil, fine and coarse aggregate, bituminous binders, cement, water.

	CONSTRUCTION OF PAVEMENTS: Construction of flexible pavement, Construction of
	rigid pavement, Equipment for excavation, equipment for compaction.
	UNIT-III
	INTRODUCTION TO RAILWAYS: Historic development of railways in India, Classification
	of Indian Railways, Different gauges in Indian Railways.
	COMPONENTS OF RAILWAY TRACK: Permanent way cross section and functions, Types
	of rails, Types of Sleepers, Types of ballast, cross section of ballast, coning of wheels, sleeper
	density, length of rails.
	UNIT-IV
	GEOMETRIC FEATURES AND OPERATION: Super elevation or cant, cant deficiency,
	cant excess, negative super elevation concept, types of transition curves, gradient types.
	POINTS AND CROSSINGS: Switches, crossings, working principle of turnout, classification
	of signals, interlocking
Text books	[1] Sk Khanna, CEG Justo, A Veeraragavan, Highway Engineering, Nem Chand & Bros, 10 th Edition, 2018 [2] Satish Chandra, MM Agarwal, Railway Engineering, Oxford University Press, 2 nd Edition
	2013
Reference books	[1] Saxena, S.C. and Arora. S, Railway Engineering, Dhanpat Rai, NDLS, 2009
E-resources and other digital material	[1] Dr. K.S. Reddy, Dr. Bhargab Maitra, IIT Kharagpur- Introduction to Transportation Engineering – "https://nptel.ac.in/courses/105/105/105105107/" [2] Dr Tom V Mathew, IIT Bombay- Transportation Engineering I "https://nptel.ac.in/courses/105/101/105101087/" [3] Prof Rajat Rastogi, IIT/Roorke – Transportation Engineering II—
	"https://archive.nptel.ac.in/courses/105/107/105107123/"

V. R. Siddhartha Engineering College, Department of Civil Engineering: VR23 Regulation Syllabus

23CEM7702B NPTEL (Mandatory Course Based on Availability)

HONORS

23CEH4801A STABILITY OF STRUCTURES

Course Category:	Program core	Credits:	3.0
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Honors	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

	Upon su	icces	sful c	omplet	tion of	the co	urse, th	e stud	ent wil	ll be at	ole to:					
	CO1		•	e the bu	-	-	lumns,	beam-	colum	ns and	find c	ritical lo	oads us	sing en	ergy	
Course Outcomes	CO2	Aı	Analyze the lateral buckling of beams by energy and non-energy methods													
	CO3		Analyze the buckling of rectangular plates and find critical compressive loads for various boundary conditions													
	CO4	an	analyze the buckling of axially loaded cylindrical shells													
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO 11	PO 12	PSO 1	PSO 2	
Outcomes towards	CO1	1		3	2		1							2		
achievement of Program	CO2	1		3	2		1							2		
Outcomes	CO3	1		3	2		1							2		
(1 – Low, 2 - Medium, 3 – High)	CO4	1		3	2		1							2		

Course Content

UNIT-I

Buckling of columns:

Introduction; Methods of finding critical loads; Critical loads for straight columns with different end conditions and loading; Inelastic buckling of axially loaded columns; Energy methods; Prismatic and non-prismatic columns under discrete and distributed loading.

Beam Columns – Theory of Beam column – Stability analysis of beam column with different types of loads.

UNIT-II

Lateral Buckling of Beams:

Beams under pure bending; Cantilever and simply supported beams of rectangular and I sections; Beams under transverse loading; Energy methods; Solution of simple problems.

UNIT-III

	Buckling of Rectangular Plates: Plates simply supported on all edges and subjected to constant compression in one or two directions; Plates simply supported along two opposite sides perpendicular to the direction of compression and having various edge conditions along the other two sides UNIT-IV Buckling of Shells: Introduction to buckling of axially compressed cylindrical shells, Linear theory of cylindrical shells-donnell equations, critical load of an axially loaded cylinder, failure of axially compressed cylindrical shells
Text books	 Theory of elastic stability by Timoshenko & Gere, McGraw Hill, 1961. Background to buckling by Allen and Bulson, McGraw- Hill, 1980.
Reference books	Elastic stability of structural elements by N.G.R.Iyengar, Macmillan India Ltd., 2007. Principles of Structural stability theory by Alexandar Chajes
E-resources and other digital material	https://nptel.ac.in/courses/105/105/105105108/

23CEH4801B SUSTAINABLE CONSTRUCTION METHODS

Course Category:	Honors	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

	Upon	succe	successful completion of the course, the student will be able to:												
	CO1	Appl	y the g	reen b	uilding	s and s	sustain	able de	esign a	spects					
Course	CO2	Anal	analyze the water conservation and energy efficiency												
Outcomes	CO3	Evalu	uate the	e sustai	inable	materi	als and	wellb	eing of	f reside	ents				
	CO4 Apply principles of green rating systems in construction														
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO 11	PO 12	PSO 1	PSO 2
Outcomes towards	CO1	1		1				2	1						1
achievement of Program Outcomes	CO2	1		1				2	1						1
(1 – Low, 2 - Medium, 3 – High)	CO3	1		1			2	2	1						2
	CO4	1		1				2	1						2

Course Content

UNIT I:

INTRODUCTION

Green building, Global warming, requirement of Green Building, Benefits of green Buildings

SUSTAINABLE DESIGN

Local building requirements, soil erosion control, natural topography, vegetation, heat island effect, roof & non-roof, passive architecture, basic house hold amenities, green education & awareness

UNIT II:

WATER CONSERVATION

Water efficient plumbing fixtures, rain water harvesting, landscape design, management of irrigation system, recycle and reuse of waste water, water quality

ENERGY EFFICIENCY

HCFC free equipment, minimum energy performance, enhance energy performance, alternate

	water heating systems, on-site renewable energy – common lighting, energy efficiency in common area equipment, integrated energy monitoring system
	UNIT III:
	MATERIALS & RESOURCES Separation of house-hold waste, green procurement policy, local materials, eco friendly wood based materials, alternate construction material, handling of construction & demolition material.
	RESIDENT HEALTH & WELLBEING Minimum day lighting, Ventilation design, no smoking policy, enhanced day lighting, enhanced ventilation design, cross ventilation
	UNIT – IV
	CONSTRUCTION AND OPERATIONS Construction, Occupancy & Operations
	GREEN RATING SYSTEMS IGBC, LEED, GRIHA, BEE, benefits of rating systems, procedure to get IGBC certification
Text books	[T1] IGBC Green homes rating system Version 3.0 – A bridged reference guide, September 2019 [T2] Jerry Yudelson, "Green building through Integrated design", Mc Graw Hill, 2009 [T3] Gautham R K, "Green Homes", BSP Books Private Limited, New Delhi, 2009.
Reference books	[R1] "Sustainable building technical manual- Green building design, constructions and operation", Produced by Public Technology Inc., US Green Building Council
E-resources and other digital material	

23CEH4801C DESIGN OF FORMWORK

Course Category:	Honors	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:		Continuous Evaluation:	
		Semester end Evaluation:	
		Total Marks:	

Course	Upon	succ	essful	compl	etion o	f the co	ourse, 1	the stud	dent wi	ll be a	ble to:				
	CO1	app	ly a rig	tht mat	erial fo	or manı	ufactur	ing fal	se worl	k and f	orm w	ork sui	ting sp	ecific	
	CO2	ana	analyze the pressure of concrete on form work												
	CO3	eval	evaluate the adequacy of decking, form work and false work.												
	CO4		evaluate the sequence of construction of civil engineering structures and safety steps involved in the design of form work and false work.												
Contribution of Course Outcomes		P O 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
towards achievement	CO1		1			2	1	1		1	1				2
of Program Outcomes	CO2	2	2	1		2								2	
	СОЗ	3	3	3			1			1				3	1
(Low – 1, Medium - 2, High – 3)	CO4	1	2			1	2	1		1	1			2	
Course Cont	ent	Form cons MA Mat prop	nwork straints TERL erials a orietary IT – II RM W	ALS O and con forms	False work of FOI nestruction.	RMW(ORK the con	nmon	•	ork and	d false	work	system	ning ans, Speci	
	ANALYSIS OF FORMWORK Loading and moment of formwork.														

	UNIT – III DESIGN OF DECKS Types of beam, decking and column formwork, Design of decking FALSE WORKS False work design, Effects of wind load, Foundation and soil on false work design. UNIT – IV SPECIAL FORMS
	The use and applications of special forms. CONSTRUCTION SEQUENCE AND SAFETY IN USE OF FORMWORK Sequence of construction, Safety use of formwork and false work.
Text books	 [T1] Robert L. Peurifoy and Garold D. Oberiender, "Formwork for Concrete Structures", McGraw-Hill, 1996. [T2] TudorDinescu and Constantin Radulescu, "Slip Form Techniques", Abacus Press, Turn Bridge Wells, Kent, 2004.
Reference books	[R1] Austin, C.K., "Formwork for concrete", Cleaver - Hume Press Ltd., London, 1996 [R2] Michael P. Hurst, "Construction Press", London and New York., 2003
E-resources and other digital material	Open web

23CEH5801A ENGINEERING ROCK MECHANICS

Course Category:	Program Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Geotechnical Engineering	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

	Upon	succe	cessful completion of the course, the student will be able to:														
	CO1	evalu	ate roc	k mass	es base	d on cl	on classification systems										
Course	CO2	apply	apply the laboratory and field testing of rocks to assess their engineering properties														
Outcomes	CO3	analy	yze rocks based on the failure criteria														
	CO4	evalu	aluate the bearing capacity of foundations on rocks and understand stability of rock slopes										pes				
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO 11	PO 12	PSO 1	PSO 2		
Outcomes towards achievement	CO1	3	2	2			3								1		
of Program Outcomes	CO2	3	2	2			3								1		
(1 – Low, 2 - CO3 3 2 2 3 3 Medium, 3 –													1				
High)	CO4	3	2	2			3								1		

Course Content

UNIT I:

INTRODUCTION TO ROCK MECHANICS AND CLASSIFICATION OF ROCKS

Objectives of rock mechanics, Fields of application of rock mechanics. Geological Classification of igneous, sedimentary and metamorphic rocks based on texture and stratification.

ROCK MASS CLASSIFICATIONS

Rock Quality Designation (RQD), Rock Structure Rating (RSR), Rock Mass Rating (RMR).

UNIT II:

LABORATORY TESTS - PHYSICO —MECHANICAL PROPERTIES OF ROCKS

Compressive strength, Tensile strength, Direct shear test, Triaxial shear test, Slake durability test, Schmidt rebound hardness test

FIELD TESTS - PHYSICO —MECHANICAL PROPERTIES OF ROCKS

Uniaxial jacking test, Pressure meter tests, Hydraulic fracturing, Flat jack test. Electric resistivity method, Seismic refraction method.

	UNIT III: FAILURE CRITERIA FOR ROCK AND ROCK MASSES Mohr-Coulomb Yield Criterion, Hoek-Brown Criterion.
	STRENGTH AND DEFORMABILITY OF JOINTED ROCK MASS Shear strength of Rock joints, Deformability of Rock joints, Concept of joint compliance.
	UNIT – IV FOUNDATION ON ROCKS Estimation of bearing capacity, Settlement in rocks, Pile foundation in rocks.
	STABILITY OF ROCK SLOPES AND METHODS TO IMPROVE ROCK MASS RESPONSES Modes of failure, Grouting in Rocks, Rock bolting, Rock Anchors.
Text books	 [T1] Goodman-Introduction to Rock mechanics, Willey International (1980). [T2] Nagaratnam Sivakugan, Sanjay Kumar Shukla and Braja M. Das-Rock Mechanics-An Introduction, CRC Press, (2013) [T3] Ramamurthy, T Engineering in Rocks for slopes, foundations and tunnels, Prentice Hall of India. (2007)
Reference books	 [R1] Jaeger, J. C. and Cook, N. G. W. — Fundamentals of Rock Mechanics, Chapman and Hall, London. (1979). [R2] Hoek, E. and Brown, E. T. Underground Excavation in Rock, Institution of Mining and Metallurgy, 1982. [R3] Rock mechanics for engineers: Varma, B.P, Khanna Publishers
E-resources and other digital material	https://archive.nptel.ac.in/courses/105/105/105105212/

23CEH5801/B Advanced Steel Design

Course Category:	Program Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Design of steel structures	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

	Upon	succe	essful c	omplet	ion of	the co	urse, th	ne stud	ent wil	l be ab	ole to:						
	CO1	analy	ze safe	section	for ecc	entric o	connect	ions									
Course	CO2	analy	ze safe	section	for Te	nsion m	nembers	s with 1	ug angl	e and E	Built up	Compre	ession N	Membei	'S		
Outcomes	CO3	analy	ze safe	e safe section for Plate girders													
	CO4	analy	ze for s	for safe section for gantry girders													
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO 11	PO 12	PSO 1	PSO 2		
Outcomes towards achievement	CO1	2		2		3	3	1					1	3			
of Program Outcomes	CO2	2		2		3		1					1	3			
(1 – Low, 2 - Medium, 3 –	CO3	2		2		3		1					1	3			
High)	CO4	2		2		3		1					1	3			

Course Content

UNIT – I:

SEATED CONNECTIONS

Introduction to Connections, Unstiffened seated connections-bolted and welded, Stiffened seated connection-bolted and welded

BRACKET CONNECTIONS

Bracket Connections, type I-bolted and welded, Bracket connection type2-bolted and welded

UNIT II:

TENSION MEMBERS (ISS00-2007)

Design of tension members with Lug angles with bolted and welded connections.

COMPRESSION MEMBERS (ISS00-2007)

Design of axially loaded built up compression members with Laced and Battened columns with

2	bolted and welded connections.
	UNIT III:
	INTRODUCTION TO PLATE GIRDERS
	Introduction to plate girder, Elements eccentric depth, Design of web and flanges, Design of plate girders without stiffeners, Problems
	DESIGN OF PLATE GIRDERS
	Design of plate girders with stiffeners, Design of plate girders with intermediate stiffeners, Problems on plate girders with intermediate stiffeners
	UNIT III:
	INTRODUCTION TO GANTRY GIRDER Introduction, Various loads, Load effects, explanation of how to calculate loads, Calculation of Maximum SF and Maximum BM using influence lines, Deflections
	DESIGN OF GANTRY GIRDER Design of Gantry Girder, Problems on design of gantry girder.
Text books	[T1] Duggal, S.K., Limit State Design of Steel Structures, McGraw-Hill, NDLS, 2019.[T2] Bhavikatti, S.S., Design of Steel Structures-By Limit State Method as per IS:800-2007, I. K. IBH Pvt. Ltd., NDLS, 2019.
Reference books	 [R1] Subramanian, N., Design of Steel Structures-Limit State Method Oxford University press, HYB, 2018. [R2] Ram, K.S.S., Design of Steel Structures, Pearson Education India, NDLS, 2015. [R3] Chandra, R. and Gehlot, V., Limit State Design of Steel Structures, Scientific Publishers, NDLS, 2010.
E-resources and other digital material	https://nptel.ac.in/courses/105105162 https://nptel.ac.in/courses/105106113

23CEH5801C GEOSPATIAL DATA PROCESSING

Course Category:	Honors	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

	Upon	succe	ssful c	omplet	ion of	the co	urse, th	ne stud	ent wil	ll be ab	ole to:				
	CO1			the co			ograph	ical in	forma	tion sy	stems	and app	ly ther	n in va	arious
Course Outcomes	CO2			ppropr it appli			sensir	ng dat	a pro	ducts	for m	apping	, mon	itoring	and
	CO3	Appl	pply various image processing techniques and their applications.												
	CO4	Appl	Apply RS and GIS techniques for solving Engineering applications.												
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO 11	PO 12	PSO 1	PSO 2
Outcomes towards achievement	CO1	3	2	3		3									3
of Program Outcomes	CO2	3	2	3		3									3
(1 – Low, 2 - Medium, 3 – High)	CO3	3	2	3		3								2	
	CO4	3	2	3		3								2	

Course Content

UNIT I:

GEOGRAPHICAL INFORMATION SYSTEM

Components of GIS, Types of Data, coordinate systems, Geographic coordinate system, Projected coordinate system, Maps and scales, Types of Maps and scales, Projections, Types of Projections, Georeferencing, Data structures, GIS analysis functions.

DATA EDITING AND STORAGE

Raster and vector data models, Digitization, Data editing, Errors and corrections, data presentation and generation of thematic maps, spatial database management systems, Data representation, Data storage, Entity relationship models.

PRACTICE:

1. Introduction to Arc GIS and Georeferencing, projections and re-projections Creating a shape file, clip and attribute data manipulation.

UNIT II:

INTRODUCTION TO REMOTE SENSING

Introduction, Data and Information, Remote sensing data collection, Remote sensing advantages & Limitations, Remote Sensing process. Electromagnetic Spectrum, Energy interactions with atmosphere and with earth surface features (soil, water, and vegetation), Resolution, image registration and elements of visual interpretation techniques.

DATA ACQUISITION AND PLATFORMS

Indian Satellites and Sensors characteristics, Remote Sensing Platforms, Sensors and Properties of Digital Data, Data Formats: Introduction, platforms-IRS, Landsat, Sentinel, SPOT, CARTOSAT, etc. sensors, sensor resolutions (spatial, spectral, radiometric and temporal), Optical, Thermal and Microwave, signal to noise ratio, LiDAR data acquisition and processing.

PRACTICE

3.DataDigitization (Draw, edit, delete and update)

UNIT III:

IMAGE CLASSIFICATION TECHNIQUES

Supervised Classification, Unsupervised classification, ANN and SVM classification techniques **SPECTRAL INDICES**

Vegetation indices, water related indices, Digital elevation model, Digital terrain model,

Triangulated irregular networks.

PRACTICE

- 4.Data Analysis Overlay, Buffer
- 5.Generation of DEM and DTM using raster data.

UNIT - IV

APPLICATIONS IN SCIENCE DOMAIN

Applications of Remote sensing in various Engineering and Science domains such as Agriculture, Forest, Soil, Geology

APPLICATIONS IN ENGINEERING DOMAIN

LU/LC, Water Resources, Urban, Disaster Management, etc

PRACTICE

6. Assignment on Application of Geospatial techniques in Civil Engineering.

Text books

[T1] Photogrammetry, GIS & Remote Sensing, <u>SSManugula</u>, VeerannaBommakanti,, Educreation Publishing, 2018

[T2] Text Book of Remote Sensing and Geographical Information Systems, M. Anji Reddy, BS Publications/BSP Books, 4th edition, 2012

Reference books

[R1] Remote Sensing and Image Interpretation, Lillesand, T.M, R.W. Kiefer and J.W. Chipman, Wiley India Pvt. Ltd., New Delhi, 7th Edition 2015

[R2] Remote Sensing and GIS, BasudeBhatta, Oxford UniversityPress,2nd Edition, 2011

E-resources and other digital material

https://nptel.ac.in/courses/105/103/105103193/

https://nptel.ac.in/courses/105/101/105101206/

https://nptel.ac.in/courses/105/107/105107206/

23CEH6801A TRAFFIC ANALYSIS AND DESIGN

Course Category:	Honors	Credits: 3	3
Course Type:	Theory	Lecture - Tutorial - Practice: 3	3 - 0- 0
Prerequisites:	NIL	Continuous Evaluation: 30	80
		Semester end Evaluation: 7	70
		Total Marks: 1	100

	Upon	succe	essful c	omple	tion of	the co	urse, th	ne stud	ent wi	ll be ab	ole to:					
	CO1	Unde	erstand	traffic	engino	eering	studies	s, analy	se the	data a	nd pres	sent the	results	S.		
Course Outcomes	CO2		uate traffic and road facilities, and intersection control measures for smooth traffement.												traffic	
	СОЗ	Anal	Analyse appropriate traffic control and management measures.													
	CO4		ply the principles of queuing theory to analyse delay at signalized and Un signalized ersections.													
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO 11	PO 12	PSO 1	PSO 2	
Outcomes towards	CO1	3			3					1						
achievement of Program Outcomes	CO2	3	3								1			3		
(1 – Low, 2 -	CO3	3					3								3	
Medium, 3 – High)	CO4	3	3							1					3	
		ı.	1	1	1	1		L.	1	1	1			1	1	

Course Content

UNIT I

Traffic Engineering Studies and Analysis

Sampling in Traffic Studies, Adequacy of Sample Size; Objectives, Methods of Study, Equipment.

Data Collection, Analysis and Interpretation

Case Studies of (a) Speed (b) Speed and Delay (c) Volume (d) Origin and Destination (e) Parking (f) Accident & other Studies

UNIT II

Design of Traffic Engineering Facilities

Control of Traffic Movements through Time Sharing and Space Sharing Concepts.

Design of Islands

	Design of Channelising Islands, T, Y, Skewed, Staggered, Roundabout, Mini-roundabout and other forms of AT-Grade Crossings including provision for safe crossing of Pedestrians and Cyclists; Grade Separated Intersections, their Warrants and Design Features; Bus Stop Location and Bus Bay Design UNIT III Traffic Regulation and Management Traffic Signs, Markings and Signals; Principles of Signal Design, Webster's method of Signal Design, Redesign of Existing Signals including Case Studies; Signal System and Coordination. Traffic Management measures Speed, vehicle, parking, enforcement regulations, mixed traffic regulation, various management techniques. UNIT – IV Traffic Stream Models Fundamental Equation of Traffic Flow, Speed-Flow-Concentration Relationships, Normalised Relationship, Fluid Flow Analogy Approach, Shock Wave Theory, Platoon Diffusion and Boltzman Like Behaviour of Traffic Flow, Car-Following Theory, Linear and Non-Linear Car-Following Models, Acceleration Noise. Queuing Analysis Fundamentals of Queuing Theory, Demand Service Characteristics, Deterministic Queuing Models, Stochastic Queuing Models, Multiple Service Channels, Models of Delay at Intersections and Pedestrian Crossings.
Text books	[1] . Kadiyali, L.R., Traffic Engineering and Transport Planning, Khanna publishers, 2011. [2]. The Institute of Transportation Engineers, Traffic Engineering Handbook, 7th edn, 2016.
Reference books	[1]. IRC-SP41: Guidelines for the Design of At-Grade Intersections in Rural & Urban Areas [2]. Pignataro, L., Traffic Engineering – Theory & Practice, John Wiley, 1973. [3]. Salter, R J., Highway Traffic Analysis and Design, ELBS, 1996
E-resources and other digital material	https://archive.nptel.ac.in/courses/105/101/105101008/ https://archive.nptel.ac.in/courses/105/105/105105215/

23CEH6801B TRANSPORTATION ECONOMICS

Course Category:	Honors	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	NIL	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

	Upon	succe	ssful c	omple	tion of	the co	urse, th	ne stud	ent wil	ll be ab	ole to:					
Course	CO1		nderstanding the economic principles and estimating the various cost components in ansportation													
Outcomes	CO2	Appl	y the possible project alternatives for the economic analysis and applying opriate economic analysis method													
	CO3	Anal	alysing Demand and Supply modelling													
	CO4	Attai	Attaining Knowledge on Regulation and Policy making of Economic Evaluation													
Contribution of Course		PO 1	PO 1 PO 2 PO 3 PO 4 PO 5 PO 6 PO 7 PO 8 PO 9 PO 10 PO 11 PO 12											PSO 1	PSO 2	
Outcomes towards achievement	CO1	3	3											3	3	
of Program Outcomes	CO2	3	3			3				1						
(1 – Low, 2 - Medium, 3 –	CO3	3			3											
High)	CO4	3							3		1				3	

Course Content

UNIT I

Transport Costs and Benefits

Principles of economic analysis, Fixed and variable cost, cost of improvement, maintenance cost, cost estimating methods, accounting for inflation, external costs.

Consequences of transport projects, road user consequences

Reduced vehicle operation costs, value of travel time savings, value of increased comfort and convenience, cost of accident reduction, reduction in maintenance cost, non-user consequences – travel time.

UNIT II

Economic Analysis Methods

Generation and screening of project Alternatives

Different methods of economic analysis

annual cost and benefit ratio methods, discounted cash flow methods, shadow pricing techniques, determination of IRR and NPV, examples of economic analysis, application economic theory in traffic assignment problem.

UNIT III **Transport Demand** The Basic Framework- measuring the demand in a spatial and temporal setting. Traditional Four-Stage Demand Model; modern approaches to modelling demand and practical issues in demand estimation. **Transport Supply** The nature of output in transport, output and costs, economies of size, density and scope, empirical estimation of transport cost functions- the approaches and illustrations. UNIT - IV Regulation and policy Theory of Regulation, Deregulation and Privatisation in Transport. Approaches to privatisation of transport infrastructure and services and a competition policy for transport. Evolution of transport policy in India with focus on case studies regarding different modes. **Evolution of Policy** Evolution of transport policy in India with focus on case studies regarding different modes. Text books [1]. McCarthy, P. S., Transportation Economics, and Massachusetts: Blackwell Publishers. 2001 [2]. Winfrey R. Highway Economic Analysis, International Textbook Company, 1969. [1]. Kenneth J. Button, Transport Economics, Elgar, 2010 Reference [2]. David A. Hensher, Ann M. Brewer, Transport: An Economics and Management Perspective, books Oxford University Press, 2001. [3]. Emile Quinet, Roger Vickerman, Principles of Transport Economics, Edward Elgar Pub, 2005 [4]. Road User Cost Study, Central Road Research Institute [5]. Dickey J.W, Project Appraisal for Developing Countries, John Wiley, 1984

https://archive.nptel.ac.in/courses/105/104/105104098/

https://www.civil.iitb.ac.in/~dhingra

E-resources

and other digital material

23CEH6801C ADVANCED FOUNDATION ENGINEERING

Course Category:	Honors	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 1- 0
Prerequisites:	24CE6404/B Foundation	Continuous Evaluation:	30
	Engineering	Semester end Evaluation:	70
		Total Marks:	100

	Upon	succe	essful c	omplet	tion of	the co	urse, tł	ne stud	ent wi	ll be at	ole to:						
	CO1	Apply	y differ	ent tech	niques	for det	erminir	ng beari	ng cap	acity.							
Course	CO2	Analy	yze sha	llow for	undatio	ns to as	ssess be	aring c	apacity	and se	ttlemen	t.					
Outcomes	CO3	Evalu	ate the	te the safe load-carrying capacity of pile foundations under various loading conditions.													
	CO4	Asses	ss the st	he stability of well foundations and caissons.													
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO 11	PO 12	PSO 1	PSO 2		
Outcomes towards	CO1	3	1	1									2		2		
achievement of Program Outcomes	CO2	3	1	1									2		2		
(1 – Low, 2 - Medium, 3 –	CO3	3	1	1									2		2		
High)	CO4	3	1	1									2		2		

Course Content

UNIT – I

BEARING CAPACITY OF SHALLOW FOUNDATIONS

Vesic method; IS Code method; Effect of water table; Footings with eccentric or inclined loads; Footings on layered soils.

ESTIMATION OF BEARING CAPACITY BASED ON FIELD TESTS

Bearing pressure using SPT & CPT.

UNIT - II

CONCEPT OF SETTLEMENT – CLASSIC THEORIES

Immediate settlement; Consolidation settlement; Secondary compression settlement.

SETTLEMENT ESTIMATION - EMPIRICAL METHODS

Settlement of foundations on sands – Schmertmann.

UNIT - III

PILES IN COMPRESSION

	Static capacity of piles; Point bearing resistance with SPT and CPT; Ultimate capacity of pile groups in compression; Settlement; Pile load test; Negative skin friction.
	SPECIAL PILES AND SETTLEMENTS OF PILE
	Laterally loaded piles – Ultimate lateral resistance; Batter piles; Under-reamed piles; Mini and micro piles; Pullout& lateral load; Efficiency; Settlements of pile groups.
	UNIT – IV
	WELL FOUNDATIONS
	Open wells; Design of pier foundations and well foundations; Lateral stability of well foundations; RCC designs of wells.
	PNEUMATIC CAISSONS
	Introduction to pneumatic caissons; Construction of piers.
Text books	 [T1] Das, B. M., Principles of Foundation Engineering, 5th Edition, Nelson Engineering, 2004. [T2] Bowles, J. E., Foundation Analysis & Design, 5th Edition, McGraw-Hill Companies, Inc., 1996. [T3] Coduto, D. P., Foundation Design Principles and Practices, 2nd Edition, Pearson, Indian Edition, 2012; Phi Learning, 2008. [T4] Poulos, H. G. & Davis, E. H., Pile Foundation Analysis and Design, John Wiley & Sons Inc., 2008.
Reference books	 [R1] Rowe, R. K., Geotechnical & Geo-environmental Engineering Handbook, Springer, 2001. [R2] Tomlinson, M. J., Foundation Design and Construction, PHI, 2003. [R3] Reese, L. C. & Van Impe, W. F., Single Piles and Pile Groups under Lateral Loading, Taylor & Francis Group, January 2000.
E-resources and other digital material	nptel.ac.in/courses/105107120 nptel.ac.in/courses/105101083

23CEH6801B1 NPTEL Mandatory Course based on Availability