M.TECH -19

VELAGAPUDI RAMAKRISHNA SIDDHARTHA ENGINEERING COLLEGE ELECTRONICS AND COMMUNICATION ENGINEERING Curriculum, Scheme of Examination and Syllabi

for

M.TECH DEGREE PROGRAM

in

VLSI DESIGN AND EMBEDDED SYSTEMS [M.TECH 19]

FIRST SEMESTER

w.e.f 2019-2020

Contact Hours: 23

S.	Course	Course Code	Title of the Course	L	P	С	Ι	Ε	Т
No	Category								
1.	Programme Core - I	19ECVE1001	Digital System Design using Programmable Devices	3	0	3	40	60	100
2.	Programme Core - II	19ECVE1002	ARM Controllers for Embedded Systems	3	0	3	40	60	100
3.	Programme Core - III	19ECVE1003	Device Modelling	3	0	3	40	60	100
4.	Programme	19ECVE1014/1	VLSI Technology	3	0	3	40	60	100
	Elective - I	19ECVE1014/2	Sensors and Actuators						
		19ECVE1014/3	MEMS						
		19ECVE1014/4	Open/Industry offered elective						
5.	Programme Elective - II	19ECVE1015/1	Programming Languages for Embedded Software	3	0	3	40	60	100
		19ECVE1015/2	Advanced Computer Architecture						
		19ECVE1015/3	Advanced Signal Processing						
		19ECVE1015/4	Open /Industry offered elective						
6.	Mandatory Learning Course	19ECVE1026	Research Methodology and IPR	2	0	0	40	60	100
7.	Laboratory - I	19ECVE1051	Digital System Design Lab	0	3	1.5	40	60	100
8.	Laboratory	19ECVE1052	Embedded Systems	0	3	1.5	40	60	100
	- II		Design Lab						
			Total	17	6	18	320	480	800

M. Tech (VLSI Design & Embedded Systems)

M.TECH -19

VELAGAPUDI RAMAKRISHNA SIDDHARTHA ENGINEERING COLLEGE ELECTRONICS AND COMMUNICATION ENGINEERING Curriculum, Scheme of Examination and Syllabi

for

M.TECH DEGREE PROGRAM

in VLSI DESIGN AND EMBEDDED SYSTEMS [M.TECH 19] SECOND SEMESTER

Contact Hours: 25

S.	Course	Course Code	Title of the Course	L	P	С	Ι	Ε	Т
No	Category	Course Coue	The of the Course		1	C	1	Ľ	1
1.	Programme	19ECVE2001	Real Time Operating	3	0	3	40	60	100
	Core – IV		Systems				-		
2.	Programme	19ECVE2002	VLSI Design	3	0	3	40	60	100
	Core – V		Verification						
3.	Programme	19ECVE2003	Analog & Mixed	3	0	3	40	60	100
	Core – VI		Signal Design						
4.	Programme	19ECVE2014/1	Low Power VLSI	3	0	3	40	60	100
	Elective –	19ECVE2014/2	VLSI Signal]					
	III		Processing						
		19ECVE2014/3	Algorithms for VLSI						
		19ECVE2014/4	Open/ Industry offered						
			elective						
5.	Programme	19ECVE2015/1	System Design with	3	0	3			
	Elective –		Embedded Linux				40	60	100
	IV	19ECVE2015/2	Communication						
			Busses and Interfaces						
		19ECVE2015/3	Parallel Processing						
		19ECVE2015/4	Open/ Industry offered						
			elective						
6.	Audit	19ECVE2036	Technical Report	2	0	-	-	-	-
	Course		Writing						
7.	Term Paper	19ECVE2067	Term Paper seminar –	2	0	1	40	60	100
			Literature Review for						
			the proposed problem#						
8.	Laboratory -	19ECVE2051	Real Time Operating	0	3	1.5	40	60	100
	Ι		Systems Lab		L				
9.	Laboratory -	19ECVE2052	Analog & Mixed	0	3	1.5	40	60	100
	II		Signal Design Lab		L				
			Total	19	6	19	320	480	800

*Students to be encouraged to go industrial training for at least Six weeks during semester break

#Students should conduct the Literature Survey for the proposed research topic and they need to develop a prototype or simulation based (must be outcome oriented) – the same to be presented in any conference (national or international)

M.TECH -19

M. Tech (VLSI Design & Embedded Systems)

VELAGAPUDI RAMAKRISHNA SIDDHARTHA ENGINEERING COLLEGE ELECTRONICS AND COMMUNICATION ENGINEERING Curriculum, Scheme of Examination and Syllabi for M.TECH DEGREE PROGRAM in VLSI DESIGN AND EMBEDDED SYSTEMS [M.TECH 19] THIRD SEMESTER

Contact Hours:21

S.	Course	Course Code	Title of the Course	L	Р	С	Ι	Ε	Т
No	Category								
1.	Programme	19ECVE3011	Choice for students to	3	0	3	-	-	100
	Elective - V		complete course in any						
			MOOCS Platform						
2.	Project	19ECVE3062	Dissertation*/ Project/	0	18	10	40	60	100
	(Part-A)		Research Organization						
3.	Internship	19ECVE3051	Internship/Summer Training	0	0	2	-	-	100
			in Research Organizations/						
			Institutions of Higher						
			Learning (After II Sem)						
			Total	3	18	15	40	60	300

*To be continued in the IV Semester

Program Elective V may be completed in semester I or II by satisfying the pre-requisites those who are going for industrial project

FOURTH SEMESTER

						Con	tact	Hou	rs:32
S. No	Course Category	Course Code	Title of the Course	L	Р	С	Ι	Ε	Т
1.	Project	19ECVE4061	Dissertation/	0	32	16	40	60	100
	(Part-B)		Industrial Project						
			Total	0	32	16	40	60	100

Total Credits:68

L – Lecture, P – Practical, C – Credits, I: Internal Assessment Marks, E: End Examination Marks, T: Total Marks

19ECVE1001: DIGITAL SYSTEM DESIGN USING PROGRAMMABLE DEVICES

Course Category:	Programme Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3-0-0
Prerequisites:	Digital Circuits	Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

Course	Upon	successful	completion of t	he course, the s	tudent will be a	ble to:				
Outcomes	CO1	Comprehe systems in		Os and issues r	elated to implen	nenting digital				
	CO2		Design applications using state machine for sequencing the operations n a digital system.							
	CO3		nd basic techniq representation of		combinational a t numbers.	nd sequential				
Contribution of Course		PO1	PO2	PO 3	PO 4	PO5				
Outcomes towards achievement	CO1	Н								
of Program Outcomes	CO2				Н					
(L – Low, M - Medium, H – High)	CO3					Н				
Course Content	Seque Circuit Intro Progra Array Cool I with A UNIT Field Progra Dedic Imple Decon Dedic Progra	w of Log ential Circu it Timing, T duction to ammable L s, Program Logic; Con Runner XC Accumulation 'II: Program ammable I ated Speci menting Fu nposition, ated Memo ammability	it Design, Design Tristate Logic and Programmal ogic Devices – mable Array I mplex Program R3064XL CPL on. mable Gate cechnologies, I nterconnects, a alized Compo- nections in FPG Carry Chains ory in FPGAs and C	gn of a Moore ad Busses. ble Logic De Read Only M Logic, Program mable Logic D D, CPLD Impl Arrays - Org Programmable and Programm nents of FPG As, Implementi in FPGAs, , Dedicated M One-Hot State	Sequential Circ vices - Introduce mories, Progra mable Logic E evices – Archite ementation of a canization of F Logic Block nable I/O bloc As, Applicatio ing Functions U Cascade Chain fultipliers in Fl	(10 Hrs) FPGAs, FPGA Architectures, ks in FPGAs, ising Shannon's ns in FPGAs, PGAs, Cost of PGA Capacity:				

	UNIT III:(15 Hrs)Design Examples -A BCD Adder, 32-Bit Adders, Traffic Light Controllers, State Graphs for Control Circuits, Scoreboard and Controller, Synchronixation and Debouncing, A Shift-and-Add Multiplier, Array Multiplier, A Signed Integer/Fraction Multiplier, Keypad Scanner, Binary Dividers.UNIT - IV:(15 Hrs)Floating-Point Arithmetic- Representation of Floating-Point Numbers, Floating-PointMultiplication, Floating-PointAddition Hardware Testing and Design for Testability - Testing Combinational Logic, Testing Sequential Logic, Scan Testing, Boundary Scan, Built-InSelf- Test.
Text books and Reference books	 Text Books: Charles Roth, Lizy K. John, ByeongKil Lee - Digital Systems Design Using Verilog-CL Engineering (2015). Reference Books: Michael D. Ciletti (2011), "Advanced digital design with the Verilog HDL", Eastern economy edition, PHI, 2nd edition. Palnitkar, S. (2010). Verilog HDL: A guide to digital design and synthesis (Vol. 1). Prentice Hall Professional, 2nd edition. Digital Systems Design with FPGAs and CPLDs - Ian Grout, Elsevier, Newnes.
E-resources and other digital material	 https://www.sciencedirect.com/topics/engineering/field- programmable-gate-arrays https://faculty.kfupm.edu.sa/COE/mayez/ps- coe202/core/Lesson6_1.pdf https://nptel.ac.in/courses/117108040/ https://www.eng.auburn.edu/~nelsovp/courses/elec4200/Slides/Progra mmable% 20Logic% 20Devices.pdf

Name of Course Coordinator : Mr G Kishore Kumar

19ECVE1002: ARM CONTROLLERS FOR EMBEDDED SYSTEMS

Course Category:	Programme Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3-0-0
Prerequisites:	Computer Organization	Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

Course Outcomes	Upor	n successful con	mpletion of the	course, the stu	ident will be ab	ble to:			
Outcomes	CO1		Inderstand and analyze the design aspects, Architecture, and astruction set associated with ARM processors.						
	CO2	Analyze the C	C programming	optimization 1	methods for AF	RM processor.			
	CO3	Examines var	rious cache-tecl	nnologies that	surround the A	RM cores.			
Contribution of Course Outcomes		PO1	PO2	PO 3	PO 4	PO5			
towards achievement	CO1			М					
of Program Outcomes (L – Low, M	CO2				М				
- Medium, H – High)	CO3					L			
Content	CPSI Intro Bran PSR Intro Bran	R, Pipeline, Exp oduction to the ch Instructions Instructions. oduction to t ch Instructions	ceptions, Interr a ARM Instr , Load –Store I he Thumb I s, Data Proces	upts and Vecto uction Set: D Instructions, So nstruction Se sing Instructio	ign Philosoph or Table, Core I Data Processing oftware Interrug t: Thumb Re ns, Load-Store	Extensions. g Instructions, pt Instruction, gister Usage,			
	Stack Instructions, Software Interrupt Instruction.UNIT II:(12 Hrs)Efficient C Programming: Basic C Data Types, C Looping Structures, Register Allocation, Function Calls, Structure Arrangement.Writing and Optimizing ARM Assembly Code: Writing Assembly Code, Profiling and Cycle Counting, Instruction Scheduling, Register Allocation, Conditional Execution, Looping Constructs.UNIT III:(10 Hrs)Exception and Interrupt Handling: Exception Handling, Interrupts, Interrupt Handling Schemes								

	Cache Policy, Fuhsing and Cleaning Cache Memory.
	UNIT – IV:(10 Hrs)Memory Protection Units : Protected Regions, Initializing the MPU, Caches and Write Buffer.Memory Management Units: Moving from an MPU to an MMU, How Virtual Memory Works, Details of the ARM MMU, Page Tables, Translation Lookaside Buffer, Domains And Memory Access Permission, The Fast Context Switch Extension
Text books and Reference books	 Text Books: A.Sloss, D.Symes, C.Wright, "ARM system Developers Guide: Designing and Optimizing System Software", Morgan Kaufmann publishers, 2012. Reference Books: Steve Furber, "ARM System on Chip Architecture", 2nd ed., Addison Wesley Professional,2000. Valvano, J,"Embedded microcomputer systems: real time interfacing", 3rd Edition, Cengage Learning, 2011. Frank Vahid, TonyGivargis, "Embedded System Design", J Wiley India,2005.
E-resources and other digital material	 <u>https://nptel.ac.in/courses/106105193/</u> <u>https://www.arm.com/resources/education/education-kits/efficient-embedded-systems</u>

Name of Course Coordinator :Dr Shaik Fayaz Ahamed

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3-0-0
Prerequisites:	Basics of semiconductor,	Continuous Evaluation:	40
	Network concept, Basic of	Semester end Evaluation:	60
	electronics devices	Total Marks:	100

19ECVE1003: DEVICE MODELLING

Course Outcomes	Upon successful completion of the course:										
	CO1	CO1 The student will be able to understand the physics of MOSFET operation and its characteristics.									
	CO2	CO2 The student will be able to analyze the SOI MOSFET and electr characteristics.									
	CO3	The student transistor.	will be gain a	bility to design	n and model	the nanoscale					
Contribution of Course		PO1	PO2	PO 3	PO 4	PO5					
Outcomes towards achievement	C01	L	L	Н							
of Program Outcomes (L – Low, M	CO2	L	L	Н							
- Medium, H – High)	CO3	Н		Н							
Course Content	capad Inver Solut and I oxide UNI Phys Grad effec dopin relial UNI Silice FDS IV cl effec	5 Capacitor : Ecitor(MOS), Mersion, 1D Electron of Poisson igh frequency e fixed charges, 7 II: 5 ics of MOSFE ual Channel A t, Pao&Sah M ng dependent bility issues (SI 7 III: 5 on Insulate OI MOS, VT departed of the set of t	ode of Operation trostatics of M a's Equation, C capacitor-volt , interfacial cha ZT: Drift-Diffur Approximation, odel, MOSFET mobility mod LC,TDDB, & I or MOSFET: lefinitions, Bac f FDSOI-FET, stor latch, ZRA	diagram of 1 ons: Accumulat IOS, Depletion V characterist age characterist rges, Midgap g sion Approach Sub-threshold f two dimension dels, High fie NBTI). FDSOI and P k gate coupling FDSOI-sub-thr M device, Bull	ion, Depletion n Approximat ics of MOS, 1 tics, Non-ideal tics, Non-ideal for current-vol d current and onal effects, H eld effects a DSOI, 1D Eld g and body effor reshold slope,	, Midgap, and ion, Accurate ow frequency lities in MOS, (13 Hrs) ltage analysis, slope, Body High field and nd MOSFET (12 Hrs) ectrostatics of ect parameter, Floating body					

	UNIT – IV: (10 Hrs) Nanoscale Transistors: Diffusive, Quasi Ballistic & Ballistic Transports, Ballistic planer and nanowire-FET modeling: semi-classical and quantum treatments Advanced MOSFETs: Strain Engineered Channel materials, Mobility in strained materials, Electrostatics of double gate, and Fin-FET devices					
Text books and Reference books	 Text Books: Sze, S. M., & Ng, K. K. (2006). Physics of semiconductor devices. John wiley& sons. Reference Books: B. G. Streetman, S. K. Banerjee, Solid State Electronic Devices, Pearson, (2016) Arora, N. (2007). MOSFET modeling for VLSI simulation: theory and practice. World Scientific. YannisTsividis (2010), Operation and Modeling of the MOS Transistor, Oxford University Press, 3rd edition 					
E-resources and other digital material	1. <u>https://ocw.mit.edu/courses/electrical-engineering-and-computer-</u> science/6-012-microelectronic-devices-and-circuits-fall-2009/lecture- notes/					

Name of Course Coordinator : Dr. Aniruddh Bahadur Yadav

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3-0-0
Prerequisites:	Semiconductor Devices,	Continuous Evaluation:	40
	Linear Integrated Circuits	Semester end Evaluation:	60
		Total Marks:	100

19ECVE1014/1: VLSI TECHNOLOGY

Course Outcomes	Upon successful completion of the course, the student will be able to:					
	CO1	Appreciate the various techniques involved in the VLSI fabrication process.				
	CO2	Understand process.	d the different	lithography m	ethods, Oxidati	on and etching
	CO3	Appreciate	e the deposition	and diffusion	mechanisms.	
	CO4	Understan	d the ion impla	ntation and me	tallization proce	ess.
Contribution of Course		PO1	PO2	PO 3	PO 4	PO5
Outcomes towards	CO1			М		
achievement of Program Outcomes	CO2			М		
(L – Low, M - Medium, H –	CO3				L	
High)	CO4			М		
Course Content	Cryst silicon consid Epita Silico UNIT Oxida Oxida dopan Litho Ray li React contro and ec UNIT Dieleo	CO4MUNIT I:(10 Hrs)Crystal Growth and Wafer Preparation – Introduction, Electronic grade silicon, Czochralski crystal growing, Silicon shaping, Processing considerations.Epitaxy – Introduction, Vapor phase epitaxy, Molecular beam epitaxy, Silicon-on-insulators, Epitaxial evaluation.UNIT II:(13 Hrs)Oxidation – Introduction, Growth mechanism and kinetics, Thin oxides, Oxidation techniques and systems, Oxide properties, Redistribution of dopants at interface, Oxidation of polysilicon, Oxidation induced defects.Lithography – Introduction, Optical lithography, Electron lithography, X- Ray lithography, Ion lithography.Reactive Plasma Etching – Introduction, Plasma properties, Feature size control and anisotropic etch mechanisms, Reactive plasma etching techniques and equipment.UNIT III:(12 Hrs)Dielectric and Polysilicon Film Deposition – Introduction, Deposition processes, Polysilicon, Silicon dioxide, Silicon nitride, Plasma assisted				

	Diffusion – Introduction, Models of diffusion in solids, Measurement techniques, Diffusion in polycrystalline silicon, Diffusion in SiO2.UNIT – IV:(10 Hrs)Ion Implantation – Introduction, Range theory, Implantation equipment, Annealing, Shallow junctions, High-energy implantation.Metallization – Introduction, Metallization applications, Metallization choices, Physical vapor deposition, Patterning.				
Text books and Reference books	 Text Books: S.M.Sze, "VLSI Technology (2nd edition)", McGraw Hill, 2003 W. Wolf, "Modern VLSI Design", (3rd edition), Pearson,2002 Reference Books: Plummer (2001), "Silicon VLSI Technology: Fundamentals, Practice, and Modeling", Pearson Education India. C.Y. Chang and S.M.Sze (Ed), (1996), "ULSI Technology", McGraw Hill Companies Inc. Stephen Campbell (2012), "The Science and Engineering of Microelectronics", Oxford University Press,. 				
E-resources and other digital material	 Lecture Series on VLSI Design by Dr.NanditaDasgupta, Department of Electrical Engineering, IIT Madras. For more details on NPTEL visit http://nptel.ac.in <u>https://www.youtube.com/watch?v=Hp4xFkEZUos&list=PL5060CE8</u> <u>F13023479</u>Video lecture series from IIT Professors VLSI Technology by Prof.SantiramKal, IIT KGP 				

Name of Course Coordinator :Dr. M. Durga Prakash

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3-0-0
Prerequisites:	Basics of sensor and actuator,	Continuous Evaluation:	40
	thin film and design	Semester end Evaluation:	60
		Total Marks:	100

19ECVE1014/2 SENSORS	AND ACTUATORS
----------------------	---------------

Course Outcomes	Upon	successful c	ompletion of th	ne course the stu	ident will be abl	le to:	
	CO1	CO1 understand the fundamentals of material, and micro/nano device synthesis					
	CO2	II *	wledge of math he engineering	ematics, science problem	e, and engineeri	ng to identify	
	CO3			electrical mec sor and other in		•	
Contribution of Course		PO1	PO2	PO 3	PO 4	PO5	
Outcomes towards achievement	C01	L	L	н			
of Program Outcomes (L – Low, M -	CO2	Н					
Medium, H – High)	CO3	L	L	н			
Course Content	Mater Mater Fabri Depos depos LIGA	UNIT I:(9 Hrs)Materials for Sensors and Actuators Materials.Substrates. AdditiveMaterials.Fabrication Techniques of Sensors and ActuatorsDeposition. Lithography. Etching. Thin film fabrication: chemical vapor deposition, thermal evaporation, focused ion beam etching and deposition, LIGA. Wafer bondingUNIT II:(8 Hrs)Sensors characteristicsTransfer function: Mathematical Models, Sensitivity, Multidimensional Transfer Functions, Calibration. Span (Full-Scale Input). Full-Scale Output. Accuracy. Calibration Error. NonlinearityUNIT III:(12 Hrs)MEMS Technology Pressure Sensors					
	Trans						
	MEM						
	Capac	Micromachined Silicon Diaphragms. Piezoresistive Pressure Sensors. Capacitive Pressure Sensors. Microphones. MEMS Technology for Force sensor					
			-	otical Devices. Coppe and Scanning	-	-	

	MEMS Technology for Flow sensor Pressure Difference Flow Sensors. Flow Sensor Based on the Faraday Principl. Turbulent Flow Studies. Nonthermal Time of Flight Flow Sensors Electrohydrodynamic. Electrochemical
	UNIT – IV:(11 Hrs)Transduction Technique(11 Hrs)Piezoresistivity. Piezoelectricity. Capacitive Techniques. Optical Techniques.Intensity Phase Wavelength. Spatial Position. Frequency. Polarization.Resonant Techniques. Vibration Excitation and Detection Mechanisms.Resonator Design Characteristics.Actuation TechniqueActuation Techniques. Electrostatic. Piezoelectric. Thermal, Magnetic.
Text books and Reference books	 Text Books: Stephen Beeby Graham Ensell Michael Kraft Neil White, MEMS Mechanical Sensors, Artech House, Inc. Boston London www.artechhouse.com Jacob Fraden, Handbook of Modern Sensors, fith edition Springer Reference Books: Vladimir V. Mitin, Viatcheslav A. Kochelap, Michael A. Stroscio, "Introduction to Nanoelectronics", Cambridge University Press, 2008. (ISBN: 9781107403765)
E-resources and other digital material	1. <u>https://application.wiley</u> vch.de/vch/journals/2081/books/2081_rel_titl e_varadan.pdf

Name of Course Coordinator :Dr. Aniruddh Bahadur Yadav

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3-0-0
Prerequisites:	Semiconductor Devices,	Continuous Evaluation:	40
	Analog Electronics	Semester end Evaluation:	60
	Circuits Design	Total Marks:	100

19ECVE1014/3 MEMS

Course Outcomes	Upor	Upon successful completion of the course, the student will be able to:					
	CO1	CO1 To understand the basic concepts of MEMS technology and working of MEMS devices.					
	CO2		d and selectin ompeting techr	•			
	CO3		nding the con- ackaging Methe	•	ication process	s of MEMS,	
	CO4	To analyze the MEMS Device	ne various fabrices.	ication techniq	ues in the mar	nufacturing of	
Contribution of Course		PO1	PO2	PO 3	PO 4	PO5	
Outcomes towards	CO1			М			
achievement of Program	CO2				М		
Outcomes (L – Low, M Modium H	CO3			М			
- Medium, H – High)	CO4				М		
Course Content	Intro MEM Micr princ Micr UNI MEM Scali Elect Elect Micr Com	CO4MUNIT I:(10 Hrs)Introduction to MEMS: Overview of MEMS and Microsystem- TypicalMEMS and Microsystem Products, Evolution of Microfabrication,Microsystem and Microfabrication, Applications of Microsystems. Workingprinciples of Microsystems- Microsensors, Microactuation, MEMS withMicroactuation, Microaccelertometers, Microfludics.UNIT II:UNIT II:(13 Hrs)MEMS Materials and Their Properties: Scaling Laws in Miniaturization-Scaling in Geometry, Scaling in Rigid-Body Dynamics, Scaling inElectrostatic forces, Scaling in Electromagnetic forces, Scaling inElectricity, Scaling in Fluidic Mechanics. Materials for MEMS andMicrosystems- Substrates and Wafers, Actives Substrates materials, SiliconCompounds, Silicon Piezoresistors, Gallium Arsenide, Quartz, Piezoelectriccrystals, Polymers, Packaging materials.					
	MEN		ion Processe Ion Implantati	•			

	Deposition by Epitaxy, Etching. Overview of Micromanufacturing- Bulk Micromanufacturing, Surface Micromanufacturing, LIGA Process. UNIT – IV: (10 Hrs) MEMS Devices: Microsystems Design- Design Considerations, Process Design, Mechanical Design, Mechanical Design using FEM, Design of a Silicon Die for a Microprocessor Sensor, Design of Microfulidic Network Systems, Design Case Studies on Applications- Cantilevers, Microheaters, Accelerometers, Pressure Sensors, Micromirrors in DMD, Inkjet printer-head.
Text books and Reference books	 Text Books: Tai-Ran Hsu, "MEMS and Microsystems: Design and Manufacture", Tata McGraw Hill, (2002). Reference Books: An Introduction to Microelectromechanical Systems Engineering; 2nd Ed - by N.Maluf, K Williams; Publisher: Artech House Inc. Fundamentals of Microfabrication - by M. Madou; Publisher: CRC Press; 2 edition Stephen D. Senturia, "Microsystem Design", Springer International Edition, (2010).
E-resources and other digital material	 Lecture Series on MEMS & Microsystems by Prof. Santiram Kal, Department of Electronics & Electrical Communication Engineering, I.I.T,Kharagpur. For More details on NPTEL visit <u>http://nptel.iitm.ac.in</u> <u>https://www.youtube.com/watch?v=EALXTht-stg</u>

Name of Course Coordinator : Dr. M. Durga Prakash

Т

Г

19ECVE1015/1: PROGRAMMING LANGUAGES FOR EMBEDDED SOFTWARE

Course Category:	Programme Elective		Credits:	3
Course Type:	Theory		Lecture - Tutorial -Practice:	3-0-0
Prerequisites:	Microprocessors	and	Continuous Evaluation:	40
	Microcontrollers		Semester end Evaluation:	60
			Total Marks:	100

Course Outcomes	Upon successful completion of the course, the student will be able to:							
	CO1	Write an embedded C application of moderate complexity.						
	CO2	Ability to develop programs using object-oriented concepts.						
	CO3	Develop and	analyze algoritl	nms in C++.				
	CO4	Differentiate	interpreted lang	guages from co	ompiled languag	ges.		
Contribution of Course		PO1	PO2	PO 3	PO 4	PO5		
Outcomes towards	CO1	Н						
achievement of Program	CO2		М		М			
Outcomes (L – Low, M	CO3			М				
- Medium, H – High)	CO4					L		
Course Content	 UNIT I: (12 Hrs) Embedded 'C' Programming - Bitwise operations, Dynamic memory allocation, OS services - Linked stack and queue, Sparse matrices, Binary tree - Interrupt handling in C, Code optimization issues - Writing LCD drives, LED drivers, Drivers for serial port communication - Embedded Software Development Cycle and Methods (Waterfall, Agile) UNIT II: (12 Hrs) Object Oriented Programming - Introduction to procedural, modular, object-oriented and generic programming techniques, Limitations of procedural programming, objects, classes, data members, methods, data encapsulation, data abstraction and information hiding, inheritance, polymorphism, CPP Programming: 'cin', 'cout', formatting and I/O manipulators, new and delete 							
	const	operators, Defining a class, data members and methods, 'this' pointer, constructors, destructors, friend function, dynamic memory allocation. UNIT III: (15 Hrs)						
UNIT III: Overloading and Inheritance: Need of operator overloading, overloading assignment, overloading using friends, type conversions, single inheritance and derived classes, friend classes, types of inheritance inheritance, multiple inheritance, virtual base class, polymorphism						verloading the e inheritance, ance, hybrid		

	functions, Templates: Function template and class template, member function templates and template arguments,Exception Handling: syntax for exception handling code: try-catch- throw, Multiple Exceptions. UNIT – IV: (10 Hrs) Scripting Languages Overview of Scripting Languages – PERL, CGI, VB Script, Java Script. PERL: Operators, Statements Pattern Matching etc. Data Structures, Modules, Objects, Tied Variables, Inter process Communication Threads, Compilation & Line Interfacing.						
Text books	Text Books:						
and	1. Michael J. Pont, "Embedded C", Pearson Education, 2nd Edition,						
Reference	2008.						
books	2. Randal L. Schwartz, "Learning Perl", O'Reilly Publications, 6th						
	Edition 2011.						
	3. A. Michael Berman, "Data structures via C++", Oxford University Press, 2002						
	4. Robert Sedgewick, "Algorithms in C++", Addison Wesley Publishing						
	Company, 1999. 5. Abraham Silberschatz, Peter B, Greg Gagne, "Operating System						
	Concepts", John Willey & Sons, 2005.						
	Reference Books: Programming embedded systems II by Michel J Pont. 						
E-resources and other digital material	1. "C programming for embedded microcontroller systems", V.P. Nelson.						

Name of Course Coordinator: R V H Prasad, Assistant Professor

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3-0-0
Prerequisites:	Digital Electronics,	Continuous Evaluation:	40
	Computer Architecture,	Semester end Evaluation:	60
	Microprocessor and	Total Marks:	100
	Micro controllers		

19ECVE1015/2: ADVANCED COMPUTER ARCHITECTURE

Course Outcomes	Upon successful completion of the course, the student will be able to:CO1Describe the computer architecture pipelining and pipeline hazards							
	CO2	-	Provide process of organization and management of cache memory to yield high-performance from processors					
	CO3	Understood th	ne memory stor	age process an	d technology			
	CO4	Analyze the computer syst	parallel proce tem	essing and m	ulti core tech	nology of a		
Contribution of Course		PO1	PO2	PO 3	PO 4	PO5		
Outcomes towards	CO1	М		М				
achievement of Program	CO2	М			М	М		
Outcomes (L – Low, M Modium H	CO3	Н	L	Н		М		
- Medium, H – High)	CO4	Н	М	Н	М	М		
Course Content	Logic pipel hazar UNI Basic virtu paral UNI Depe conn proce exam	CO4HMHMMUNIT I:(9 Hrs)Logic design conventions, building a datapath, an overview of pipelining, pipelined datapath and control, data hazards, forwarding vs stalling, control hazards, exceptions.(9 Hrs)UNIT II:(9 Hrs)Basics of cache organization, measuring and improving cache performance, virtual memory, using a finite state machine to control a simple cache, parallelism and memory hierachy: cache coherence.(9 Hrs)Dependability, reliability and availability, disk storage, flash storage, connecting processors, memory and IO devices, interfacing IO devices to the processor, memory and operating system, I/O performance measures: example for disk and fille systems. Design and IO system, parallelism and IO: redundant arrays of in expensive disks.						

	UNIT – IV: (9 Hrs) The difficulty of creating parallel processing programs, shared memory multiprocessors, clusters and other message-passing multiprocessors, hardware multithreading, SISD, MIMD, SIMD,SPMD and vectors, introduction to graphics processing units, introduction to network processor network topologies, multiprocessor benchmarks, roofline simple performance model.
Text books and Reference books	 Text Books: 1. Patterson, D. A., & Hennessy, J. L. (2013). Computer organization and design MIPS edition: the hardware/software interface. Newnes. Reference Books: 1. Kai Hwang and A.Briggs (1984) "Computer Architecture and parallel Processing" International Edition McGraw-Hill. 2. DezsoSima, Terence Fountain, Peter Kacsuk (1997), "Advanced Computer Architectures", Pearson.
E-resources and other digital material	 <u>https://swayam.gov.in/nd1_noc19_cs62/preview</u> <u>https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-823-computer-system-architecture-fall-2005/</u>

Name of Course Coordinator: R V H Prasad, Assistant Professor

Г

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3-0-0
Prerequisites:	Digital signal processing	Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

19ECVE1015/3: ADVANCED SIGNAL PROCESSING

Course outcomes	Upon successful completion of the course, the student will be able to:							
	CO1	Design a sam	es/increase by a	crease by a given factor.				
	CO2	Analyze and s	Analyze and synthesize FIR filter for given multistructure filter bank					
	CO3		Evaluate the Optimum reflection coefficients for the Lattice Forward and Backward Predictors					
	CO4	Understand t	he concepts of	LMS and RL	S algorithms			
Contribution of Course		PO1	PO2	PO 3	PO 4	PO5		
Outcomes towards	CO1				М			
achievement of Program	CO2				М			
Outcomes (L – Low, M	CO3			М				
- Medium, H – High)	CO4			М				
Course Content	Mult D, In I/D, Struc Rate Struc Samp UNI Mult Conv Shift Imple Signa Trans of ali	CO4 M UNIT – I Multirate Digital Signal Processing: Introduction, Decimation by a factor D, Interpolation by a factor I, Sampling Rate Conversion by a Rational Factor I/D, Implementation of Sampling Rate Conversion: Polyphase Filter Structures, Interchange of Filters and Downsamplers/Upsamplers, Sampling Rate Conversion with Cascaded Integrator Comb Filters, Polyphase Structures for Decimation and Interpolation Filters, Structures for Rational Sampling Rate Conversion UNIT – II Multistage FIR Filter Design: Multistage Implementation of Sampling Rate Conversion, Applications of Multirate Signal Processing: Design of Phase Shifters, Interfacing of Digital Systems with Different Sampling Rates, Implementation of Narrowband Low pass Filters, Sub band Coding of Speech Signals, Digital Filter Banks: Poly phase Structures of Uniform Filter Banks; Transmultiplexers, Two channel Quadrature Mirror Filter Bank: Elimination of aliasing, Condition for Perfect reconstruction, Polyphase form of the QMF Bank						

	Linear Prediction, Backward Linear Prediction, Optimum reflection coefficients for the Lattice Forward and Backward Predictors. Solution of the Normal Equations: Levinson Durbin Algorithm, Schur Algorithm. Properties of Linear Prediction Filters UNIT –IV Adaptive Filters: Applications of Adaptive Filters: System Identification or System Modeling, Adaptive Channel Equalization, Echo Cancellation in Data Transmission over Telephone Channels, Suppression of Narrowband Interference in a Wideband Signal, Adaptive Noise Cancelling, Linear Predictive Coding of Speech Signals, Adaptive Arrays. Adaptive Direct Form FIR Filters – The LMs Algorithm: Minimum Mean Square Error Criterion, The LMS Algorithm, Related Stochastic Gradient Algorithms, Properties of the LMS Algorithm.
Text books and Reference books	 TEXTBOOKS: 1. Digital Signal Processing: Principles, Algorithms & Applications - J.G.Proakis & D.G.Manolokis, 4th ed., PHI.(Units-I,II,III & IV) REFERENCES: 1. Multirate Systems and Filter Banks – P.P.Vaidyanathan – Pearson Education 2. Digital Signal Processing – S.Salivahanan, A.Vallavaraj, C.Gnanapriya, 2000,TMH
E-resources and other digital material	1. https://nptel.ac.in/courses/108105055/ 2. http://nptel.iitm.ac.in/courses/Webcourse- contents/IITKANPUR/Digi_Sign_Pro/ui/TOC.htm

Name of Course Coordinator :Dr. N.S.Murthy

Course Category:	Laboratory	Credits:	1.5
Course Type:	Practical	Lecture - Tutorial -Practice:	0-0-3
Prerequisites:	Digital Design	Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

Course Outcomes	Upon successful completion of the course, the student will be able to:							
	CO1	Get acquainted with programmable logic design flow.						
	CO2	Implement de	Implement designed digital circuits using FPGA.					
	CO3	Synthesize th	e designed circ	cuits using CA	AD tools			
Contribution of Course		PO1	PO2	PO 3	PO 4	PO5		
Outcomes towards	CO1	Н						
achievement of Program	CO2				Н			
Outcomes (L – Low, M - Medium, H – High)	CO3					Н		
Course Content	2 3 4 5 6 7 8 9	List of Experiments 1. Design a BCD to 7-segment Decoder 2. Design a BCD Adder 3. Deasign 3-bit Arbitary Counter to generate 0,1,2,3,6,5,7 and repeats. 4. Design a Mealy and Moore Sequence Detector to detect a Sequence. 5. Design a Traffic Light Controller 6. Design a Score board controller 7. Design a Signed Integer/ Fraction Multiplier 8. Design a Binary Divider. 9. Design a BCD to excess 3 code converter 10. Design a FIFO and LIFO buffers in Verilog and Verify its Operation.						

Name of Course Coordinator :G Kishore Kumar

Г

Course Category:	Laboratory	Credits:	1.5
Course Type:	Practical	Lecture - Tutorial -Practice:	0-0-3
Prerequisites:		Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

Course Outcomes	Upon successful completion of the course, the student will be able to:						
CO1 Design and execute the different concepts for embedd ARM processor						ystem using	
Contribution of Course Outcomes		PO1	PO2	PO 3	PO 4	PO5	
Outcomes towards achievement of Program Outcomes (L – Low, M - Medium, H – High)	CO1				М		
Course Content	I. Exp	I. Experiments using ARM-:					
content	1. Si	imple Assembly	v Program for				
	1. 0.	-	n Subtraction	Multiplicatio	on Division		
			ng Modes, Sys	· •			
		c. Loops,			1		
	2. Pr	—		ol General Pur	pose Input / Ou	tput (GPIO)	
	port pins.3. Programs to read digital values from external peripherals and execute them with the Target board.						
	4. Program to demonstrate Time delay program using built in Timer /					imer /	
	Counter feature on IDE environment						
	5. Program to demonstrate Serial communication. Transmission from Kit						
	and reception from PC using Serial Port on IDE environment use debug terminal to trace the program.						
				e interrunt ha	ndler and setting	un a timer	
		-	-	-	16 Characters		
		d verify the res			10 Characters	LCD display	
		ogram to demo	U U				
		ogram to demo		-	environment		
		eneration of PV					
	11. D	evelopment of	simple firmwar	e for small sca	ale acquisition s	system.	
	~		Theils Deven Ak				

Name of Course Coordinator :Dr Shaik Fayaz Ahamed

r

Course Category:	Programme Core	Credits:	03
Course Type:	Theory	Lecture - Tutorial -Practice:	3-0-0
Prerequisites:	Embedded Systems	Continuous Evaluation:	40
	concepts and Operating	Semester end Evaluation:	60
	System	Total Marks:	100

19ECVE2001: REAL TIME OPERATING SYSTEMS

Course Outcomes	Upor	Upon successful completion of the course, the student will be able to:				
	CO1	Illustrate real				
	CO2	Apply RTOS	functions to in	plement embe	dded applicatio	ons
	CO3	Relate RTOS	roles to real tin	me applications	8	
	CO4	Understand applications	fundamentals	of design co	onsideration fo	or embedded
Contribution of Course		PO1	PO2	PO 3	PO 4	PO5
Outcomes towards	CO1			М		М
achievement of Program	CO2	М		L		
Outcomes (L – Low, M	CO3	Н		М	М	М
- Medium, H – High)	CO4	Н		М	М	М
Course Content	Intro scheo Task Oper Conc UNI' Sema Sema Mess Oper cond UNI' Exce	UNIT I:(9 Hrs)Introduction to Real-Time Operating Systems - Defining an RTOS, The scheduler, Kernel Objects and services, Key characteristics of an RTOSTask- Defining a Task, Task States and Scheduling, Typical Task Operations, Typical Task Structure, Synchronization, Communication and ConcurrencyUNIT II:(9 Hrs)Semaphores - Defining Semaphores, Typical Semaphore Operations, Typical Semaphore UseMessage Queues - Defining Message Queues, Message Queue States, Message Queue Content, Message Queue Storage, Typical Message Queue Operations, Typical Message Queue Use, Pipes, Event Registers, Signals and condition VariablesUNIT III:(9 Hrs)Exceptions and Interrupts - Exceptions and Interrupts, Applications of Exceptions and Interrupts, Closer look at exceptions and interrupts,				

	Timer and Timer Services - Real-Time clocks and System Clocks, Programmable Interval Timers, Timer Interrupt Service Routines.					
	I/O Subsystems - I/O concepts, I/O subsystems					
	UNIT – IV: (9 Hrs) Synchronization and Communication - Synchronization, Communication, Resource Synchronization Methods, Critical section, Common practical design patterns, Specific Solution Design Patterns, Common Design Problems - Resource Classification, Deadlocks, Priority Inversion					
Text books and Reference books	 Text Books: Qing Li, Caroline Yao (2003), "Real-Time Concepts for Embedded Systems", CMP Books Reference Books: Albert Cheng, (2002), "Real-Time Systems: Scheduling, Analysi Verification", Wiley Interscience. Hermann Kopetz, (1997), "Real-Time Systems: Design Principle Distributed Embedded Applications", Kluwer. Insup Lee, Joseph Leung, and Sang Son, (2008) "Handbook of Real Systems", Chapman and Hall. Krishna and Kang G Shin, (2001), "Real-Time Systems", McGraw Hill 					
E-resources and other digital material	 <u>https://nptel.ac.in/courses/106105036/</u> <u>https://nptel.ac.in/noc/individual_course.php?id=noc18-cs12</u> 					

Name of Course Coordinator :R V H Prasad

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3-0-0
Prerequisites:	Verilog HDL	Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

19ECVE2003: VLSI DESIGN VERIFICATION

Course outcomes	Upon	successful cor	npletion of the	course, the stu	udent will be at	ble to:
outcomes	CO1	Familiarity of the front end design and verification techniques				
	CO2	Apply System Verilog constructs to create reusable test environments.				
	CO3	Understand (OOP concept in	n System Veril	og	
Contribution of Course		PO1	PO2	PO 3	PO 4	PO5
Outcomes towards	CO1	М				
achievement of Program Outcomes	CO2				М	
(L – Low, M - Medium, H – High)	CO3	М			М	
Course Content	Verifi functi Stimu Build code f UNIT Data Queu data t Type UNIT Proce Funct Time	 JNIT I: (10 Hrs) Verification Guidelines: Verification process, Basic Testbench unctionality, Directed Testing, Methodology Basics, Constrained Random Stimulus, Functional coverage, Testbench components, Layered Testbench, Building layered Testbench, Simulation Environment phases, Maximum ode reuse, Testbench performance. JNIT II: (12 Hrs) Data Types: Built in data types, Fixed sized arrays, Dynamic arrays, Queues, Associative Arrays, Linked lists, Array methods, Choosing a storage lata type, Creating new types with typedef, Creating user defined structures, Type conversion, Enumerated types, Constant strings, Expression width JNIT III: (12 Hrs) Procedural statements and routines: Procedural statements, tasks, Functions, Routine Arguments, Returning from a routine, Local data storage, Time values Connecting the Testbench and Design: Separating the testbench and 				

	connecting it all together, Top level scope program – Module interactions. UNIT – IV: (12 Hrs) System Verilog Assertions: Immediate Assertions, Customizing the Assertion Actions, Concurrent Assertions, Exploring Assertions. Basic OOP: Introduction, think of nouns, Not verbs, your first class, where to define a class, OOP terminology, creating new objects, Object De- allocation using objects, Static variable vs Global variable, Class methods, Defining methods outside of the class, Scoping rules, using one class inside another, Understanding dynamic objects, Public vs. Local, Straying offcourse building a testbench.
Text books and Reference books	 Text Books Chris Spears, "System Verilog for Verification", Springer, 2nd Edition. Reference Books M. Bushnell and V.D. Agarwal "Essential of electronic Testing for Digital, Memory and Mixed Signal VLSI Circuits", Kluwer Academic Publisher.
E-resources and other digital material	 IEEE 1800-2009 standard (IEEE Standard for SystemVerilog – Unified Hardware Design, Specification and Verification Language). System Verilog website – <u>www.systemverilog.org</u>

Name of Course Coordinator: G. Venkata Subbaiah.

Т

Г

Course Category:	Programme Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3-0-0
Prerequisites:	Analog Electronics	Continuous Evaluation:	40
	Circuits Design.	Semester end Evaluation:	60
		Total Marks:	100

19ECVE2003:	ANALOG	& MIXED	SIGNAL	DESIGN

Course Outcomes	Upon successful completion of the course, the student will be abl					ible to:	
	CO1	Design single stage amplifiers and Op-Amp amplifiers.					
	CO2	Analyze fee	Analyze feedback amplifiers and oscillators.				
	CO3	Analyze the	analog-digita	l converters a	and Comparators		
Contributio n of Course		PO1	PO2	PO 3	PO 4	PO5	
Outcomes towards	CO1			М			
achievement of Program	CO2				М		
Outcomes (L – Low, M - Medium, H – High)	CO3			М			
Course Content	UNIT I:(10 Hrs)Single Stage Amplifiers and Current Mirrors - Common source, common gate and source follower stages- Cascode and folded cascode structures- Frequency response, MOS current mirrors-sources.UNIT II:(13 Hrs)MOS Differential Amplifiers and Operational Amplifiers - Single ended and differential operation, Basic differential pair, Common mode response, Frequency response- CMOS operational amplifiers - One-stage op-amps and						
	two stage op-amps. UNIT III: (12 Hrs) Feedback Amplifiers - General considerations, Feedback topologies, Oscillators and PLLs – General Considerations, Ring oscillators, LC oscillators, Voltage controlled oscillators, Basics of PLLs. UNIT – IV: (10 Hrs) Switched-Capacitor circuits – Sampling switches, Switched-Capacitor amplifiers, Switched-Capacitor integrator Comparators and Analog-Digital converters – Two stage, Open-loop						

Text books and Reference books	 Text Books: BehzadRazavi (2002), 'Design of Analog CMOS Integrated Circuits' Tata-McGrawHill. Philip Allen & Douglas Holberg (2002), "CMOS Analog Circuit Design", Oxford University Press. Reference Books: David A Johns & Ken Martin (2001), "Analog Integrated Circuit Design" John Wiley and Sons.
E-resources and other digital material	 CMOS Analog VLSI Design by Prof. A.N. Chandorkar, Department of Electronics & Communication Engineering, IIT Bombay. For more details on NPTEL visit http://nptel.ac.in

Name of Course Coordinator : Dr. M. Durga Prakash

19ECVE2014/1: LOW POWER VLSI

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3-0-0
Prerequisites:	VLSI Design	Continuous Evaluation:	40
	_	Semester end Evaluation:	60
		Total Marks:	100

Course Outcomes	Upon successful completion of the course, the student will be able to:						
	CO1	O1 Apply different circuit techniques to manage the leakage currents					
	CO2	Comprehend existing low power adder and multiplier architectures					
	CO3		the architectura	ll and circuit lev	el techniques f	or attaining	
Contribution of Course		PO1	PO2	PO 3	PO 4	PO5	
Outcomes towards	CO1	М		Н			
achievement of Program Outcomes	CO2	М		Н			
(L – Low, M – Medium, H – High)	CO3			М			
Course Content	dissip Circu power UNIT Low adder adder Low multij woole UNIT Low	power CM ation, static p iit technique r, circuit techn TII: voltage low p 's architecture s. voltage lo plication, typ ey multiplier, TII: voltage low	oower dissipatio s for low power niques for leaka power adders es, low voltage w power m bes of multipli booth multiplie power static	esign - Introdu n, active power er design - Intro- ge power reduct - Introduction, s low power desig ultipliers - I er architectures r, wallace tree n RAM - Basice decoder, addres	dissipation. oduction, designion standard adder gn techniques, ntroduction, of , braun multipultiplier	gning for low (11Hrs) cells, CMOS current mode overview of plier, baugh- (12 Hrs) memory cell,	

	amplifier, output latch, low power SRAM technologies.
	Low voltage low power dynamic RAM - Types of DRAM, basics of DRAM, self refresh circuit, half voltage generator, voltage down converter, future trends and developments of DRAM
	UNIT – IV: (10 Hrs) Low- Voltage Low Power Read-Only Memories - Introduction, types of ROM, basics physics of floating gate nonvolatile devices, floating gate memories, basics of ROM, low power ROM Technology.
Text books and Reference books	 Text Books: KiatSeng Yeo, Kaushik Roy (2012), "Low Voltage, Low Power VLSI Subsystems", TATA McGraw-Hill. Reference Books: Yeo Rofail,Gohl (2009)," CMOS/BiCMOS ULSI Low Voltage, Low Power", Pearson Education Asia 1st Indian reprint. Anantha P. Chandrakasan, Robert W. Brodersen, "Low Power Digital CMOS Design", Springer Science Jan M. Rabaey, Anantha P. Chandrakasan, BorivojeNikolic, (2011) "Digital Integrated Circuits: a Design Perspective", Pearson Education, 2nd Edition.
E-resources and other digital material	 <u>http://www.nptelvideos.com/course.php?id=422</u> <u>http://leda.elfak.ni.ac.rs/education/projektovanjeVLSI/predavanja/10%20</u> <u>Low%20Power%20Design%20in%20VLSI.pdf</u> <u>https://www.egr.msu.edu/classes/ece410/salem/files/s16/lectures/Ch2_S2_N.pdf</u>

Name of Course Coordinator :K. Naga Sunanda

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3-0-0
Prerequisites:	VLSI Design, Digital	Continuous Evaluation:	40
	Signal Processing	Semester end Evaluation:	60
	-	Total Marks:	100

19ECVE2014/2: VLSI SIGNAL PROCESSING

Course Outcomes	Upor	n successful con	mpletion of the	course, the stu	dent will be al	ble to:		
	CO1	Apply the concepts of pipelining, parallel processing, Retiming, CO1 Folding and unfolding to optimize digital signal processing architectures.						
	CO2	Analyze data flow in systolic architectures.						
	CO3	Minimize th algorithms.	e computatio	nal complexit	y using fast	convolution		
	CO4	Analyze pipe	lining and para	llel processing	of IIR filters.			
Contribution of Course		PO1	PO2	PO 3	PO 4	PO5		
Outcomes towards	CO1	Н	L	М				
achievement of Program	CO2	Н	L	М				
Outcomes (L – Low, M	CO3	Н	L	М	М			
- Medium, H – High)	CO4	L	L	М				
Course Content	 UNIT I (10Hrs) Introduction to DSP - Typical DSP algorithms, Representations of DSP algorithms Iteration Bound – Loop bound and Iteration bound, Algorithms for computing iteration bound. Pipelining and Parallel Processing - Introduction, Pipelining of FIR Digitifiters, Parallel Processing, Pipelining and Parallel Processing for Low Power 							
	Inequ Unfo Unfo Fold Tech	ming - Introduc ualities – Retim Iding - Introdu Iding – critical ing - Introdu	ning Technique action – An Alg Path, Unfoldir action -Foldir	ons and Proper s. gorithm for Unf ng and Retiming ng Transform tion in folded	ties – Solving folding – Prope g. - Register	erties of minimization		

	UNIT III (15Hrs)							
	Systolic Architecture Design - Introduction – Systolic Array Design							
	Methodology – FIR Systolic Arrays – Selection of Scheduling Vector –							
	Matrix Multiplication and 2D Systolic Array Design.							
	Fast Convolution - Introduction – Cook-Toom Algorithm – Winogard algorithm – Iterated Convolution – Cyclic Convolution							
	UNIT – IV (10Hrs)							
	Pipelined and Parallel Recursive and Adaptive Filters – Introduction - Pipeline Interleaving in Digital Filters, Pipelining in 1st-Order IIR Digital Filters, Pipelining in Higher-Order IIR Digital Filters, Parallel processing for IIR Filters, Combined Pipelining and Parallel Processing for IIR Filters.							
Text books	Text Books:							
and	1. Keshab K. Parthi. (2013), "VLSI Digital Signal Processing- System							
Reference	Design and Implementation", Wiley Inter Science.							
books	Reference Books:							
	1. Jose E. France, Yannis Tsividis. (1994) "Design of Analog – Digital							
	VLSI Circuits for Telecommunications and Signal Processing",							
	Prentice Hall.							
	2. Medisetti V. K . (1995), "VLSI Digital Signal Processing", IEEE							
	Press (NY), USA.							
E-resources	1. http://viplab.cs.nctu.edu.tw/							
and other	2. http://people.ece.umn.edu/users/parhi/SLIDES/							
digital material								

Name of Course Coordinator: RajasekharTuraka

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3-0-0
Prerequisites:	Data structures (or	Continuous Evaluation:	40
	discrete math) & logic	Semester end Evaluation:	60
	design.	Total Marks:	100

19ECVE2014/3: ALGORITHMS FOR VLSI

Course outcomes	Upor	n successful con	mpletion of the	course, the stu	dent will be ab	le to:		
	CO1	Comprehend the working of physical design flow.						
	CO2	Formulate CA	Formulate CAD design using algorithm paradigms					
	CO3	Formulate a p	problem with Fl	oorplanning ar	nd Placement A	Algorithms		
	CO4	Understand d	esign and autor	nation of the F	PGA's and MC	CM's.		
Contribution of Course		PO1	PO2	PO 3	PO 4	PO5		
Outcomes towards achievement	CO1	М						
of Program Outcomes (L – Low, M	CO2				Н			
- Medium, H	CO3				Н			
– High)	CO4					М		
Course Content	VLS Cycle Persp Fabri VLS Statu Fabri UNI Data Basic Desig UNI Parti Class	CO4MUNIT I:(15 Hrs)VLSI Physical Design Automation-VLSI Design Cycle, Physical Design Cycle, New Trends, Design Styles, System Packaging Styles, Historical Perspectives, Existing Design ToolsFabrication Process and Impact-Fabrication Materials, Fabrication of VLSI Circuits, Design Rules, Layout of Basic Design, Scaling Methods, Status of Fabrication Process, Issues related to Fabrication Process, Future of Fabrication Process, Tools and Process Development UNIT II:UNIT II:(15 Hrs)Data Structures and Basic Algorithms-Complexity Issues and N-hardness, Basic Algorithms, Basic Data Structures, Graph Algorithms for Physical DesignUNIT III:(15 Hrs)Partitioning-Introduction to Partitioning, Problem Formulation, Classification of Partitioning Algorithm, Group Migration Algorithm, Simulated Annealing and Evolution, Other Partitioning Algorithm,						

	UNIT – IV: (15 Hrs) Routing and Automation of FPGA's and MCM's-Global Routing, Detailed Routing, Clock Routing, Power and Ground Routing, Compaction, Physical Design Automation of the FPGA's and MCM''s.
Text books and Reference books	 Text Books: I. Naveed A. Sherwani (1999), "Algorithms for VLSI Physical Design Automation, Third Edition, Kluwer Academic Publications. Reference Books: S.H.Gerez (1998), "Algorithms for VLSI Design Automation", Wiley Publication. Sadiq M. Sait and Habib Youssef (1999), "VLSI Physical Design Automation: Theory and Practice" by World Scientific Publishers, Singapore/New-Jersey, USA. (Also published by McGraw-Hill Book Co., Europe, December 1995).
E-resources and other digital material	 https://www.springer.com/gp/book/9780792383932 https://books.google.co.in/books?isbn=8126508213

Name of Course Coordinator: V B K L Aruna.

19ECVE2015/1 SYSTEM DESIGN	WITH EMBEDDED LINUX
----------------------------	---------------------

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3-0-0
Prerequisites:	Microcontrollers	Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

	1						
Course outcomes	Upon successful completion of the course, the student will be able to:					ble to:	
	CO1	Illustrate linux programming concepts and embedded board support package.					
	CO2	Understan	d concepts of	embedded storag	e and device d	rivers	
	CO3		d fundamental application	s of porting, buil	ding and debu	gging an	
Contribution of Course		PO1	PO2	PO 3	PO 4	PO5	
Outcomes towards achievement	CO1	М					
of Program Outcomes (L – Low, M	CO2		М				
- Medium, H – High)	CO3			М			
Course Content	UNIT I(12 Hrs)Introduction-Why Embedded Linux?, Embedded Linux Versus DesktopEmbedded Linux Distributions, Architecture of Embedded Linux, LinuxKernel Architecture, User Space, Linux Start-Up Sequence, GNU Cross- Platform Tool chain,Board Support Package- Inserting BSP in Kernel Build Procedure, The Boot Loader Interface, Memory Map, Interrupt Management, The PCI Subsystem, Timers, UART, Power Management,UNIT II(12 Hrs)Embedded Storage- Flash Map, MTD—Memory Technology Device, I Architecture, Sample MTD Driver for NOR Flash, The Flash-Map Drivers, MTD Block and Character Devices, Mtdutils Package, Embe File Systems, Optimizing Storage Space, Tuning Kernel MemoryEmbedded Drivers- Linux Serial Driver, Ethernet Driver, I2C Subsyste Linux, USB Gadgets, Watchdog Timer, Kernel Modules,UNIT III(12 Hrs)						
			t ions - Architec	tural Compariso	n, Application		

	Roadmap, Programming with Pthreads, Operating System Porting Layer (OSPL), Kernel API Driver Building and Debugging - Building the Kernel, Building Applications, Building the Root File System, Integrated Development Environment, Debugging Virtual Memory Problems, Kernel Debuggers, Profiling,
	UNIT – IV(12 Hrs)Embedded Graphics-Graphics System, Linux Desktop Graphics—The XGraphics System, Introduction to Display Hardware, Embedded LinuxGraphics, Embedded Linux Graphics Driver, Windowing Environments,Toolkits, and Applications
Text books and Reference books	 Text Books Raghavan, P., Lad, A., & Neelakandan, S. (2005). Embedded Linux system design and development. CRC press. Reference Books Barr, M., & Massa, A. (2006). Programming embedded systems:
E-resources and other digital material	 with C and GNU development tools., O'Reilly Media, Inc. 1. http://www.esys.ir/Files/Ref_Books/Linux/esys.ir_Embedded.Linux.Syst em.Design.and.Development.pdf 2. https://opensource.com/article/18/6/embedded-linux-build-tools

Name of Course Coordinator: G. VenkataSubbaiah.

19ECVE2015/2: COMMUNICATION BUSSES AND INTERFACES					
ourse Category:	Programme Elective	Credits:	3		
ourse Type	Theory	Lecture - Tutorial -Practice	3-0-0		

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3-0-0
Prerequisites:	Computer Networks	Continuous Evaluation:	40
		Semester end Evaluation:	60
		Total Marks:	100

Course Outcomes	Upon successful completion of the course, the student will be able to:				ble to:		
	CO1 Select a particular serial bus suitable for a particular application.				ication.		
	CO2	Develop API bus.	s for configura	tion, reading a	and writing d	ata onto serial	
	CO3	Design and d bus.	Design and develop peripherals that can be interfaced to desired serial bus.				
	CO4	Explain the ty	pes of transmi	ssion media wi	th real time ap	oplications	
Contribution of Course		PO1	PO2	PO 3	PO 4	PO5	
Outcomes towards	CO1	Н					
achievement of Program	CO2		М		М		
Outcomes (L – Low, M	CO3			М			
- Medium, H – High)	CO4					L	
Course Content		UNIT I: (12 Hrs) Serial Busses - Physical interface, Data and Control signals, features,					
	Limi	UNIT II: (12 Hrs) Limitations and applications of RS232, RS485, I2 C, SPI, CAN - Architecture, Data transmission, Layers, Frame formats.					
	UNIT III:(15 Hrs)CAN bus applications, USB - Transfer types, enumeration, Descriptor types and contents, Device driver.(10 Hrs)UNIT - IV:(10 Hrs)PCIe - Revisions, Configuration space, Hardware protocols, applications, Data Streaming Serial Communication Protocol - Serial Front Panel Data Port (SFPDP) using fibre optic and copper cable.						
						, applications,	
Text books and Reference books		 Text Books: 1. Jan Axelson, "Serial Port Complete - COM Ports, USB Virtual Com Ports, and Ports for Embedded Systems", Lakeview Research, 2nd Edition 					

	 Jan Axelson, "USB Complete", Penram Publications Mike Jackson, Ravi Budruk, "PCI Express Technology", Mindshare Press Wilfried Voss, "A Comprehensible Guide to Controller Area Network", Copperhill Media Corporation, 2nd Edition, 2005.
	Reference Books: 1. Serial Front Panel Draft Standard VITA 17.1 – 200x
E-resources and other digital material	 www.can-cia.org www.pcisig.com www.usb.org

Name of Course Coordinator :Dr Sk Fayaz Ahmed

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3-0-0
Prerequisites:	Computer Architecture and	Continuous Evaluation:	40
	Organization	Semester end Evaluation:	60
		Total Marks:	100

19ECVE2015/3: PARALLEL PROCESSING

Course Outcomes	Upon successful completion of the course, the student will be able to:					ble to:	
	CO1	CO1 Understand the evolution of High Performance Computing (HPC) with respect to laws and the contemporary notion that involves mobility for data, hardware devices and software agents					
	CO2	¹² Understand, appreciate and apply parallel and distributed algorithms in problem Solving					
	CO3			network topole traffic their perf		allel/distributed	
	CO4	Gain experier	nce parallel and	l distributed pro	gramming teo	chniques	
Contribution of Course		PO1	PO2	PO 3	PO 4	PO5	
Outcomes towards	CO1	Н					
achievement of Program	CO2				М		
Outcomes (L – Low, M	CO3				М		
- Medium, H – High)	CO4					М	
Course Content	UNIT I:(10 Hrs)Introduction to Parallel Computing Architectures, Parallel hardware, Parallel Software, Processes and threads, Programming models, Shared memory, Distributed memory, Amdahl's Law.UNIT II:(15 Hrs)Distributed memory programming with MPI:MPI Programs, SPMD Programs, Message matching, Trapezoidal rule in MPI, Parallelizing the trapezoidal rule, Parallel sorting algorithms.						
UNIT III:Shared memory Programming with Pthreads: Processes, Pthreads, Matrix Vector Multiplication, Read Write Locks, O coherence and false sharing, Thread Safety.UNIT – IV:Parallel Program Development:Parallelizing the solvers us Parallelizing the basic solver using MPI, Parallelizing the r using MPI, Performance of MPI solvers, Tree serarch				Caches, Cache (15 Hrs). sing Pthreads,			
Text books	Text	Books:					

and Reference books	 Peter S Pacheco, An Introduction to Parallel Programming, Morgan Kaufmann,2011. Reference Books: M Herlihy and N Shavit, The Art of Multiprocessor Programming Morgan Kaufmann, 2008. JL Hennessy and DA Patterson, Computer Architecture: A Quantitative Approach,4th Ed., Morgan Kaufmann/Els India, 2006.
E-resources and other digital material	 https://www.sciencedirect.com > book > an-introduction-to-parallel- program.

Name of Course Coordinator :V B K L Aruna

Course Category:	Laboratory	Credits:	1.5
Course Type:	Practical	Lecture - Tutorial -Practice:	0-0-3
Prerequisites:	Micro controller and	Continuous Evaluation:	40
	Embedded systems lab	Semester end Evaluation:	60
	-	Total Marks:	100

Course Outcomes	Upon successful completion of the course, the student will be able to:						
	CO1	CO1 Design and execute the different RTOS concepts for embedded system design					
	CO2	Developin board	g the RTOS	application	on Micro co	ntroller	
Contribution of Course Outcomes towards		PO1	PO2	PO 3	PO 4	PO5	
achievement of Program Outcomes (L – Low, M - Medium, H – High)	CO1	М	Н	М	М	М	
	CO2	Μ	Н	М	М	М	
Course Content	I.Exp	eriments us	ing ARM wi	ith RTOS:			
	1	Creating F	reeRTOS Ta	isks			
	2. UART Printmsg implementation using stdperiph. libary						
	3. Task handler implementation and testing on the target						
	4. LED task and Button interrupt handling code implementation						
	5. Task Delete Implementation						
	6. Task Priority Implementation and testing						
	7. vTaskDelay() Implementation						
	8	Synchroni	zing a Task a	and Multiple	Events		
	9	Mutual Ex	clusion betw	veen 2 tasks u	sing Binary S	Semaphore	
Lab Requirements:Software:		reeRTOS pen STM32	System Wo	rk bench			

<u>Hardware:</u>	 The development kits of ARM Developer Kits/ STM32F4 Discovery and Nucleo board. Serial Cables, Network Cables and recommended power supply for the board.
E-resources and other digital material	1. <u>https://training.ti.com/ti-rtos-workshop-series-1-10-</u> welcome

Name of Course Coordinator : R V H Prasad, Assistant Professor

Course Category:	Laboratory	Credits:	1.5
Course Type:	Practical	Lecture - Tutorial -Practice:	0-0-3
Prerequisites:	Analog and Mixed Signal	Continuous Evaluation:	40
	IC Design	Semester end Evaluation:	60
		Total Marks:	100

19ECVE2052: MIXED SIGNAL DESIGN LAB

Course Outcomes	Upon successful completion of the course, the student will be able to:						
outcomes	CO1 Design and analyze Analog and Mixed signal MOS circuits						
Contribution of Course		PO1	PO2	PO 3	PO 4	PO5	
Outcomes towards achievement of Program Outcomes (L – Low, M – Medium, H – High)	CO1	Н	L	М	М		
List of Experiments	Design the following circuits with given specifications, completing the design flow mentioned below:						
	 design flow mentioned below: (Minimum 10 Experiments) a. Design and perform the following analysis as per the requirement DC Transient Op AC b. Draw the Layout and verify the DRC and LVS c. Extract RC and back annotate the same and verify the Design Verify & Optimize for Time, Power and Area to the given constraint 						
	2 3 4 5 6 7 8 9 1	MOS DifferOperationalR-2R DAC	te amplifier ain amplifier or ential amplifier amplifier ADC tor ed Loop				

Text books	 Text Books: 1. Jan M. Rabaey, Anantha P. Chandrakasan, BorivojeNikolic, (2011)
and	"Digital Integrated Circuits: a Design Perspective", Pearson
Reference	Education, 2 nd Edition. 2. BehzadRazavi (2002), 'Design of Analog CMOS Integrated Circuits'
books	Tata-McGrawHill.

Name of Course Coordinator: RajasekharTuraka