SCHEME OF INSTRUCTION AND SYLLABUS

B.TECH IN CIVIL ENGINEERING

w.e.f 2017-2018 (VR17)

DEPARTMENT OF CIVIL ENGINEERING VELAGAPUDI RAMAKRISHNA SIDDHARTHA ENGINEERING COLLEGE (An Autonomous Institution affiliated to Jawaharlal Nehru Technological University Kakinada, Kakinada NBA Accredited & ISO 9001:2008 Certified) (Sponsored by Siddhartha Academy of General & Technical Education) Kanuru, Vijayawada-520007, A.P. India

INSTITUTE VISION

To nurture excellence in various fields of engineering by imparting timeless core values to the learners and to mould the institution into a centre of academic excellence and advanced research.

INSTITUTE MISSION

To impart high quality technical education in order to mould the learners into globally competitive technocrats who are professionally deft, intellectually adept and socially responsible. The institution strives to make the learners inculcate and imbibe pragmatic perception and proactive nature so as to enable them to acquire a vision for exploration and an insight for advanced enquiry.

DEPARTMENT VISION

To impart teaching, research and develop consultancy that serves the society and to strive continuously for excellence in education.

DEPARTMENT MISSION

To provide quality education for successful career and higher studies in Civil Engineering that emphasizes academic and technical excellence in profession and research, effective communication, team work and leadership to meet the challenges of the society.

Program Educational Objectives(UG)

PEO1:

Graduates will have fundamentals for successful profession and/or for higher education in civil engineering based on mathematical, scientific and engineering principles.

PEO2:

Graduates will adapt to the modern engineering tools for planning, design, execution and maintenance of works with sustainable development in their profession.

PEO3:

Graduates will exhibit professionalism, ethical attitude, communication and managerial skills, team work and social responsibility in their profession and adapt to current trends by engaging in lifelong learning.

Program Specific Outcomes

1. Graduates will have an ability to design components of diverse civil structures like buildings, roads, bridges, hydraulic structures etc.,

2. Graduates will have an ability to understand the materials and processes involved in various domains of civil engineering.

Program Outcomes(UG)

POs describe what students are expected to know or be able to do by the time of graduation from the program.

List of Program Outcomes for Civil Engineering

PO1.Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

VELAGAPUDI RAMAKRISHNA 12.05.2019 SIDDHARTHA ENGINEERING COLLEGE SCHEME OF INSTRUCTION FOR FOUR-YEAR UG PROGRAMME [VR17] CIVIL ENGINEERING EP I

SEMESTER I

STERI	Contact Hours: 26					
Course Code	Title of the Course	L	Τ	P	Credits	
17MA1101	Matrices And Differential Calculus	3	1	0	4	
17CH1102	Engineering Chemistry	3	0	0	3	
17CS1103	Problem Solving Methods	2	1	0	3	
17ME1104A	Engineering Mechanics – I(ME and CE)		0	0	3	
17ME1104B	Mechanics for Engineers (EEE)					
17ME1105	Engineering Graphics	2	0	4	4	
17CH1151	Engineering Chemistry Laboratory	0	0	3	1.5	
17CS1152	Computing and Peripherals Laboratory	0	0	2	1	
	Total	13	2	9	19.5	
17MC1106B	Professional Ethics& Human Values		0	0	-	
17MC1107	Induction Program		-			
	Course Code 17MA1101 17CH1102 17CS1103 17ME1104A 17ME1104B 17ME1105 17CH1151 17CS1152 17MC1106B	Course CodeTitle of the Course17MA1101Matrices And Differential Calculus17CH1102Engineering Chemistry17CS1103Problem Solving Methods17ME1104AEngineering Mechanics – I(ME and CE)17ME1104BMechanics for Engineers (EEE)17ME1105Engineering Graphics17CH1151Engineering Chemistry Laboratory17CS1152Computing and Peripherals Laboratory17MC1106BProfessional Ethics& Human Values	Course CodeTitle of the CourseL17MA1101Matrices And Differential Calculus317CH1102Engineering Chemistry317CS1103Problem Solving Methods217ME1104AEngineering Mechanics – I(ME and CE)317ME1104BMechanics for Engineers (EEE)217ME1105Engineering Graphics217CH1151Engineering Chemistry Laboratory017CS1152Computing and Peripherals Laboratory017MC1106BProfessional Ethics& Human Values2	Course CodeTitle of the CourseLT17MA1101Matrices And Differential Calculus3117CH1102Engineering Chemistry3017CS1103Problem Solving Methods2117ME1104AEngineering Mechanics – I(ME and CE)3017ME1104BMechanics for Engineers (EEE)2017ME1105Engineering Graphics2017CH1151Engineering Chemistry Laboratory0017CS1152Computing and Peripherals Laboratory0017MC1106BProfessional Ethics& Human Values20	Course CodeTitle of the CourseLTP17MA1101Matrices And Differential Calculus31017CH1102Engineering Chemistry30017CS1103Problem Solving Methods21017ME1104AEngineering Mechanics – I(ME and CE)30017ME1104BMechanics for Engineers (EEE)17ME1105Engineering Graphics20417CH1151Engineering Chemistry Laboratory00317CS1152Computing and Peripherals Laboratory00217MC1106BProfessional Ethics& Human Values200	

SEMESTER II

Contact Hours: 27

S.No	Course	Course		T	Р	Credits
	Code					
1.	17MA1201	Laplace Transforms And Integral Calculus	3	1	0	4
2.	17PH1202	Engineering Physics		0	0	3
3.	17CS1203	Programming in C	3	0	0	3
4.	17ME1204	Engineering Mechanics – II(ME and CE)	3	0	0	3
	17EE1204	Network Analysis-1 (EEE)				
5.	17HS1205	Technical English and Communication Skills	2	0	2	3
6.	17PH1251	Engineering Physics Laboratory	0	0	3	1.5
7.	17CS1252	Computer Programming Laboratory	0	0	3	1.5
8.	17ME1253	Basic Workshop	0	0	3	1.5
		Total		1	11	20.5
9.	17MC1206A	Technology and Society	1	0	0	-

L – Lecture, T – Tutorial, P – Practical, C – Credits

SEMESTER III

CONTACT HOURS: 28

S.No	Course Code	Course	Subject	L	T	P	Credits
1	17MA1301A	Mathematics III	Complex Analysis and Numerical Methods	3	1	0	4
2	17CE3302	Programme Core	Introduction to Mechanics of Solids	3	1	0	4
3	17CE3303	Programme Core	Fluid Mechanics	3	1	0	4
4	17CE3304	Programme Core	Surveying&Geomatics	4	0	0	4
5	17CE3305	Programme Core	Engineering Geology	2	0	0	2
6	17TP1306	Soft Skills 1	Logic and Reasoning	0	0	2	1
8	17CE3351	LABORATOTY 1	Surveying Laboratory	0	0	2	1
9	17CE3352	LABORATOTY 2	SM Laboratory	0	0	2	1

		17CE3353	LABORATOTY 3	Engineering Geology	0	0	2	1
				Laboratory				
10	0	17MC1307B	HS	Indian Constitution	2	0	0	
					Total		22	
					Credits			

SEM	SEMESTER IV CONTAG				HOURS:27				
S.No	Course	Course	Su	bject	L	Т	Р	Credits	
	Code								
1	17CE3401	Programme Core		ilding materials and nstruction	3	0	0	3	
2	17CE3402	Programme Core	Co	ncrete technology	3	0	2	4	
3	17CE3403	Programme Core	Me	echanics of Materials	3	1	0	4	
4	17CE3404	Programme Core		draulics and Hydraulics chines	3	1	0	4	
5	17TP1405	Soft Skills 2	En	glish for Professionals	0	0	2	1	
6	17HS2406	Humanities Elective			1	0	0	1	
7	17CE3451	LABORATORY 1	Flı	id Mechanics and	0	0	2	1	
			Hy	draulic Machines Lab					
8	17CE3452	LABORATORY 2		ilding Planning and	0	0	2	1	
				sign Lab					
9	17HS1453	LABORATORY 3	Co	mmunication Skills	0	0	2	1	
			La	boratory					
10	17MC1407A	HS	En	vironmental Studies	2	0	0		
					Tot	tal		20	
					Cre	edits			
List o	of Humanities	Electives						•	
A	Yoga & Meditatio	on		G Film Appreciation					

A	Yoga & Meditation	G	Film Appreciation
В	Music	Н	Sanskrit Bhasa
С	Human Rights and Legislative Procedures	Ι	Foreign Languages (German/French)
D	Philosophy	J	Law for Engineers
Е	Development of societies	Κ	Psychology
F	Visual Communication		

SEM	ESTER V		CON	TAC	Г НО	URS	S: 25
S.No	Course Code	Course	Subject	L	Τ	Р	Credits
1	17CE3501	Programme Core	Water Resources Engineering	3	0	0	3
2	17CE3502	Programme Core	Environmental Engineering	3	0	0	3
3	17CE3503	Programme Core	Structural Analysis	3	0	0	3
4	17CE2504	Open Elective -I		3	0	0	3
	17CE2504 A		Geospatial Technologies				
	17CE2504 B		Quality Control and Quality Assurance				
5	17CE2505	Open Elective –II		3	0	0	3

1			1		1	1
	(Inter Disciplinary Elective)					
17CE2505 A		Air and Noise Pollution				
17CE2505 B		Environmental Impact				
		Studies				
17CE2506	Open Elective –III		0	0	0	2
	(Self Learning Elective Course	2)				
17CE2506/A		Green buildings and				
		sustainability				
17CE2506/B	1	Advanced Construction				
		Materials				
17TP1507	HS	Personality	0	0	2	1
		Development &				
		Campus Recruitment				
		Training				
17CE3508	Programme core	Geotechnical	2	0	2	3
		Engineering				
17CE3509	Programme Core	Design of Concrete	2	0	0	2
		Structures				
17CE3551	LABORATORY 1	Environmental	0	0	2	1
		Engineering Lab				
			Tot	tal		24
			Cre	edits		
	17CE2505 B 17CE2506 17CE2506/A 17CE2506/B 17CE3508 17CE3509	17CE2505 B17CE2506Open Elective –III (Self Learning Elective Course17CE2506/A17CE2506/B17CE2506/B17TP1507HS17CE3508Programme core17CE3509Programme Core	17CE2505 AAir and Noise Pollution17CE2505 BEnvironmental Impact Studies17CE2506Open Elective –III (Self Learning Elective Course)17CE2506/AGreen buildings and sustainability17CE2506/BAdvanced Construction Materials17CE2506/BPersonality Development & Campus Recruitment Training17CE3508Programme coreGeotechnical Engineering17CE3509Programme CoreDesign of Concrete Structures17CE3551LABORATORY 1Environmental	17CE2505 AAir and Noise Pollution17CE2505 BEnvironmental Impact Studies17CE2506Open Elective –III (Self Learning Elective Course)017CE2506/AGreen buildings and sustainability017CE2506/BAdvanced Construction Materials017CE2506/BPersonality Development & Campus Recruitment Training017CE3508Programme coreGeotechnical Engineering217CE3509Programme CoreDesign of Concrete Structures217CE3551LABORATORY 1Environmental Engineering Lab0	17CE2505 AAir and Noise Pollution17CE2505 BEnvironmental Impact Studies17CE2506Open Elective –III (Self Learning Elective Course)017CE2506/AGreen buildings and sustainability17CE2506/BAdvanced Construction Materials17CE2506/BPersonality Campus Recruitment Training017CE3508Programme coreGeotechnical Engineering217CE3509Programme CoreDesign of Concrete Structures217CE3551LABORATORY 1Environmental0	17CE2505 AAir and Noise Pollution17CE2505 BEnvironmental Impact Studies17CE2506Open Elective –III (Self Learning Elective Course)017CE2506/AGreen buildings and sustainability17CE2506/BGreen buildings and sustainability17CE2506/BAdvanced Construction Materials17TP1507HS17CE3508Programme core17CE3508Programme core17CE3509Programme Core17CE3511LABORATORY 117CE3511LABORATORY 117CE351Total

*Students can opt any one of the self-learning courses prescribed by the Department. Students register and complete the opted course in approved MOOCS platform on or before the Last Instruction Day of <u>V semester</u>. They have to submit the certificate before the Last Instruction Day of <u>V semester</u>.

SEMI	ESTER VI		CONT	TACT HOURS: 29				
S.No	Course Code	Course	Subject	L	T	Р	Credits	
1	17CE3601	Programme Core	Design of Steel Structures	2	0	0	2	
2	17CE3602	Programme Core	Transportation Engineering	3	0	2	4	
3	17CE4603	Programme Elective -1		3	0	0	3	
4	17HS1604	HS	Engineering Economics and Finance	2	0	0	2	
5	17CE2605	Open Elective –IV		3	0	0	3	
	17CE2605/A		Traffic Safety					
	17CE2605/B		Building Services Engineering					
6	17TP1606	HS	Quantitative Aptitude	0	0	2	1	
7	17MC1607	HS	Biology for Engineers	2	0	0	0	
8	17CE3608	Programme Core	Foundation Engineering	3	0	0	3	
9	17CE3651	LABORATORY 1	Computer Applications in Civil Engg Lab-1	0	0	2	1	

10	17CE3652	LABORATORY 2	Advanced Surveying Lab	0	0	2	1
11	17CE5653	Project work	Engineering Project for	0	1	2	2
			Community Services				
				Tot	Total		22
				Cre	dits		

* Students will go to the society (Villages/ Hospitals / Towns etc,.) to identify the problem and survey the literature for a feasible solution. The work will be carried out during summer vacation after IV Semester. The student is encouraged to take up real life problems leading to innovative model building

SEMI	ESTER VII	CONTACT HOURS: 2					
S.No	Course	Course	Subject	L	T	P	Credits
	Code						
1	17CE3701	Programme Core	Construction Engineering and	3	0	0	3
			Management				
2	17CE4702	Programme Elective -2		3	0	0	3
3	17CE4703	Programme Elective -3		3	0	0	3
4	17CE4704	Programme Elective -4		3	0	0	3
5	17CE4705	Programme Elective -5		3	0	0	3
6	17CE3706	Programme Core	Estimation, Costing and	2	0	0	2
			Valuation				
8	17CE4751	LABORATORY 1	Computer Applications in Civil	0	0	2	1
			Engg Lab-II				
9	17CE5752	Mini Project*	Design Project 1	0	0	4	2
10	17CE6753	A) Internship					2
		B) Industry Offered					
		Course					
		C) Global Professional					
		Certification					
				То	tal		22
				Cr	edits	5	

SEMI	SEMESTER VIII CONTACT					CT HOURS: 19					
S.No	Course	Course	Subject	L	Τ	P	Credits				
	Code										
1	17CE4801	Programme Elective -6		3	0	0	3				
2	17CE2802	Open Elective –V*		3	0	0	3				
	17CE2802/A		Water Quality Engineering								
	17CE2802/B		Appropriate Course will be								
			offered based on Certificate								
			Courses offered by NPTEL at								
			that point of time								
3	17CE5851	Major Project**	Project work	0	5	8	9				
Total				6	5	8	15				

List of Open Electives

OPEN ELECTIVE-I (Open for All)

SEMESTER-V 17CE2504 A) Geospatial TechnologiesB) Quality Control and Quality Assurance

OPEN ELECTIVE-II (Inter Disciplinary Elective)

SEMESTER-V

17CE2505

A) Air and Noise Pollution

B) Environmental Impact Studies

OPEN ELECTIVE-III (Open for All- Self Learning Elective)

SEMESTER-V

17CE2506

A) Green Building and Sustainability B) Advanced Construction Materials

OPEN ELECTIVE-IV (Open for All)

SEMESTER-VI

17CE2605

A) Traffic Safety

B) Building Services Engineering

OPEN ELECTIVE-V (Open for All, option for Self-Learning)

SEMESTER-VIII

17CE2802

A) Water Quality Engineering

B) Appropriate Course will be offered based on Certificate Courses offered by NPTEL at that point of time

Sl.No	Specialization	Program Elec	tives				
	-	Elective 1	Elective 2	Elective 3	Elective 4	Elective 5	Elective 6
1	Structural Engineering	Advanced structural analysis	Advanced Design of concrete structures	Advanced Design of steel structures	Design of prestressed concrete	Finite element analysis	Earthquake resistant design
2	Geotechnical Engineering		Soil dynamics and machine foundations		Environmental Geo- technology		Ground improvement techniques
3	Environmental Engineering	Advanced environmental engineering	Solid waste management	Industrial effluent treatment		Environmental impact assessment	Air pollution and control
4	Transportation Engineering	planning and Design	Railway Engineering, Docks and Harbor Engineering	Pavement design and construction	Traffic Engineering	Highway safety	Urban transport planning

5	Hydrology &	Irrigation			Open channel		Ground
	Water	structures			flow and river		water
	Resources				engineering		Hydrology
	Engineering						
6	Miscellaneous	Remote	Town	Instrumentation	Construction	Repair and	
		sensing and	planning	and Sensor	equipment and	rehabilitation	
		GIS	and	technology in	automation	of structures	
			Architecture	Civil			
				Engineering			
7				Forensics in		Disaster	
				Civil		preparedness	
				Engineering		and planning	
						management	

17MA1101 MATRICES AND DIFFERENTIAL CALCULUS								
Course Category:	Institutional Core	Credits:	4					
Course Type:	Theory	Lecture -Tutorial-Practice:	3 - 1 - 0					
Prerequisites:	Fundamentals of Matrices,	Continuous Evaluation:	30					
-	Fundamentals of Calculus,	Semester end Evaluation:	70					
	Integration,	Total Marks:	100					
	Differentiation.							

Upon successful completion of the course, the student will be able to:

CO1	Determine Eigen values, Eigen vectors of a matrix.
CO2	Estimate Maxima and Minima of Multi Variable Functions
CO3	Solve the Linear differential equations with constant coefficients.
CO4	Solve the Linear differential equations with variable coefficients.

Contribution of Course Outcomes towards achievement of Program Outcomes (L – Low, M - Medium, H – High)

	PO 1	РО 2	РО 3	PO 4	РО 5	PO 6	РО 7	PO 8	PO 9	PO 10	РО 11	PO 12	PSO1	PSO2
CO1	Н			L	Н						М			
CO2	H			L	Н						М			
CO3	Н			L	Н						М			
CO4	Н			L	Н						М			

COURSE CONTENT

UNIT I

Matrices: Rank of a Matrix, Elementary transformations, Inverse of a Matrix (Gauss Jordan Method), Consistency of Linear System of Equations, Linear Transformations, Vectors, Eigen values, Properties of Eigen values, Finding Inverse and Powers of a Matrix by Cayley-Hamilton Theorem. Reduction to Diagonal form, Reduction of Quadratic form to Canonical form, Nature of a Quadratic form, Complex matrices. **UNIT II**

Differential Calculus: Rolle's Theorem, Lagrange's Mean Value Theorem, Cauchy's Mean Value Theorem, Taylor's Theorem, Maclaurin's Series.

Application: Curvature, Radius of Curvature.

Functions of two or more Variables: Partial Derivatives, Change of Variables, Jacobians, Taylor's

Theorem for Function of two Variables, Maxima and Minima of Functions of two Variables, Lagrange's Method of Undetermined Multipliers.

UNIT III

Differential Equations of First Order: Formation of a Differential Equation, Solution of a Differential Equation, Linear Equations, Bernoulli's Equation, Exact Differential Equations, Equations Reducible to Exact Equations.

Applications: Orthogonal Trajectories, Newton's Law of Cooling.

Linear Differential Equations of Higher Order: Definitions, Operator D, Rules for Finding the Complementary Function, Inverse Operator, Rules for finding Particular Integral, Working Procedure to Solve the Equation.

UNIT IV

Linear Dependence of Solutions, Method of Variation of Parameters, Method of Undetermined Coefficients, Equations Reducible to Linear Equations with Constant Coefficients: Cauchy's Homogeneous Linear Equation, Legendre's Linear Equation, Simultaneous Linear Differential Equations with Constant Coefficients.

Applications: L-C-R Circuits.

TEXT BOOKS

[1] B.S.Grewal, "Higher Engineering Mathematics", Khanna Publishers, 43rd Edition, 2014.

REFERENCE BOOKS

- [1].Pal Bhunia, Engineering Mathematics, Oxford University Press, 2015.
- [2].Erwin Kreyszig, "Advanced Engineering Mathematics", John Wiley & Sons, 10th Edition, 2015
- [3].B.V.Ramana, "Higher Engineering Mathematics", Tata MC Graw Hill, 1st Edition, 2007
- [4].N.P.Bali, Dr.Manish Goyal, "A Text Book of Engineering Mathematics", Laxmi Publications, 9th Edition, 2014.

E-RESOURCES AND OTHER DIGITAL MATERIAL

- [1]. <u>www.nptel</u> videos.com/mathematics/ (Math Lectures from MIT,Stanford,IIT'S)
- [2]. nptel.ac.in/courses/122104017
- [3]. nptel.ac.in/courses/111105035
- [4]. Engineering Mathematics Open Learning Project. www.3.ul.ie/~mlc/support/Loughborough%20website/

17CH1102 ENGINEEERING CHEMISTRY							
Course Category:	Institutional Core	Credits:	3				
Course Type:	Theory	Lecture-Tutorial-Practice:	3-0-0				
Prerequisites:	Knowledge of	Continuous Evaluation:	30				
	Chemistry at	Semester end Evaluation:	70				
	Intermediate level	Total Marks:	100				

Upon successful completion of the course, the student will be able to:

CO1 Analyze various water treatment methods and boiler troubles.

- **CO2** Apply the principles of spectroscopic techniques to analyse different materials and apply the knowledge of conventional fuels for their effective utilisation.
- **CO3** Apply the knowledge of working principles of conducting polymers, electrodes and batteries for their application in various technological fields.

CO4 Evaluate corrosion processes as well as protection methods.

Contribution of Course Outcomes towards achievement of Program Outcomes (1-Low, 2-Medium, 3- High)

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1		Н												
CO2	M													
CO3														
CO4			M						Н					

COURSE CONTENT

UNIT I

Water technology-I: WHO standards - Water treatment for drinking purpose - sedimentation, coagulation, filtration, disinfection by chlorination, breakpoint chlorination and its significance - Desalination of brackish water - principle and process of electrodialysis and reverse osmosis, advantages and disadvantages.

Water technology-II: Boiler troubles - scales-formation, disadvantages and internal conditioning methods - phosphate conditioning, calgon conditioning and sodium aluminate, caustic embrittlement- reasons, mechanism and its control, and boiler corrosion – causes and control.

UNIT II

Spectroscopic Techniques and Applications: Interaction of electromagnetic radiation with matter -Ultraviolet-visible spectroscopy: Frank-Condon principle, types of electronic transitions, Lambert-Beer's law – definition and numerical problems, problems on interpretation of UV-visible spectra of simple molecules of arenes, aldehydes and ketones. Infrared (IR) spectroscopy: Principle, types of vibrations, problems on interpretation of IR spectra of simple molecules of amines, alcohols, aldehydes and ketones. **Fuel Technology:** Fuel-definition, calorific value- lower and higher calorific values, analysis of coal – proximate analysis and ultimate analysis, refining of petroleum, flue gas analysis by Orsat's apparatus, numericals based on calculation of air required for combustion

UNIT III

Conducting polymers: Definition, examples, classification-intrinsically conducting polymers and extrinsically conducting polymers- mechanism of conduction of undoped polyacetylene, doping of conducting polymers- mechanism of conduction of p-doped and n-doped polyacetylenes – applications of conducting polymers.

Electrochemistry: Construction and working of Calomel electrode, silver-silver chloride electrode and principle, construction and working of glass electrode, determination of pH using glass electrode - Chemistry of modern batteries - Li/SOCl₂ battery and Li_xC/LiCoO₂ battery - construction, working and advantages, Chemistry of H₂-O₂ fuel cell-advantages.

UNIT IV

Corrosion principles: Introduction, definition, reason for corrosion, examples – electrochemical theory of corrosion, types of electrochemical corrosion - hydrogen evolution and oxygen absorption – corrosion due to dissimilar metals, galvanic series – differential aeration corrosion – pitting corrosion and concept of passivity.

Corrosion control methods: Cathodic protection- principle and types - impressed current method and sacrificial anode method, anodic protection-principle and method, corrosion inhibitors – types and mechanism of inhibition – principle, process and advantages of electroplating and electroless plating.

TEXT BOOKS

[1] Shikha Agarwal, "Engineering Chemistry – Fundamentals and Applications", Cambridge University Press, New Delhi, 1st edition (2015).

REFERENCE BOOKS:

- [1] Sunita Rattan, "A Textbook of Engineering Chemistry", S.K. Kataria & Sons, New Delhi, First edition 2012.
- [2] P.C. Jain , "Engineering Chemistry", Dhanpat Rai Publishing Company (P) Limited, New Delhi, 15th edition.
- [3] B.S. Bahl, G. D. Tuli and Arun Bahl, "Essentials of Physical Chemistry", S. Chand and Company Limited, New Delhi.
- [4] O. G. Palanna, "Engineering Chemistry", Tata McGraw Hill Education Pvt. Ltd., New Delhi.
- [5] Y.Anjaneyulu, K. Chandrasekhar and Valli Manickam, Text book of Analytical Chemistry, , Pharma Book Syndicate, Hyderabad.
- [6] H. Kaur, Spectroscopy, I Edition, 2001, Pragati Prakashan, Meerut.

E-RESOURCES AND OTHER DIGITAL MATERIAL

- [1] http://www.cip.ukcentre.com/steam.htm
- [2] http://corrosion-doctors.org/Modi;es/mod-basics.htm
- [3] http://nopr.niscair.res.in/bitstream/123456789/5475/1/JSIR%2063%289%29%20715-728.pdf
- [4] https://chem.libretexts.org/Core/Analytical_Chemistry/Electrochemistry/Basics_of_Electrochemistry
- [5] http://www.filtronics.com/blog/tertiary-treatment/stages-in-typical-municipal-water-treatment/
- [6] https://www.khanacademy.org/test-prep/mcat/physical-processes/infrared-and-ultraviolet-visible-spectroscopy/e/infrared-and-ultraviolet-visible-spectroscopy-questions
- [7] NPTEL online course, "Analytical Chemistry", offered by MHRD and instructed by Prof. Debashis Ray of IIT Kharagpur.
- [8] NPTEL online course, "Corrosion Part-I" offered by MHRD and instructed by Prof. Kallol Mondal of IIT Kanpur

17CS1103 PROBLEM SOLVING METHODS

Course Category:	Institutional Core	Credits:	3
Course Type:	Theory	Lecture -Tutorial-Practice:	2 -1- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

COURSE OUTCOMES

Upon successful completion of the course, the student will be able to:

CO1	Understand the Compu	iter problem solving app	roaches efficiency ar	nd analysis of algorithms
COL	Understand the Compu	iter problem sorving app	noaches, chilcheney ai	iu analysis of algorithing

CO2	Apply the factoring methods to solve the given problem
-----	--

CO3 Apply the array techniques to find the solution for the given problem

CO4 Solve the problems using MATLAB

Contribution of Course Outcomes towards achievement of Program Outcomes (L – Low, M - Medium, H – High)

	РО 1	РО 2	РО 3	РО 4	РО 5	РО 6	РО 7	РО 8	PO 9	PO 10	РО 11	PO 12	PSO 1	PSO 2
CO1	Н	М							L					
CO2	L		Н											
CO3	L		Н											
CO4	L	L							Н					

COURSE CONTENT

UNIT - I

Introduction to Computer Problem Solving: Programs and Algorithms, characteristics of an algorithm, Requirements for solving problems by computer; Flowchart, pseudo-code **The Problem – Solving Aspect**: Problem definition phase, Getting started on a problem, Similarities among problems, Working backwards from the solution, General problem-solving strategies; **Top-Down design**: Breaking a problem into sub-problems, Construction of loops, Establishing initial conditions for loops, Finding the iterative construct, Termination of loops;

The Efficiency of Algorithms: Redundant Computations, Referencing array elements, Inefficiency due to late termination, Early detection of desired output conditions, Trading storage for efficiency gains;

Analysis of Algorithms: Computational complexity, The order notation, Worst and average case behavior.

UNIT - II

Fundamental Algorithms: Problem, Algorithm Development, Algorithm Description - Exchanging values of two variables, Counting, Summation of a set of numbers, Factorial computation, Generation of Fibonacci sequence, Reversing the digits of an Integer. Using pseudo-codes and flowcharts to represent fundamental algorithms.

Factoring Methods: Finding the Square Root of a number: Smallest Divisor of an Integer, GCD of two Integers, Generating Prime numbers, Computing the Prime Factors of an Integer, Raising a Number to a Large Power, Pseudo random number generation, Computing nth Fibonacci number.

UNIT – III

Array Techniques: Introduction, Array Order Reversal, Array counting, Finding the maximum number in a set, Removal of duplicates from an ordered array, Partitioning an array, Finding The Kth Smallest Element.

Merging, Sorting and Searching: Sorting By Selection, Sorting By Exchange, Linear Search, Binary search;

$\mathbf{UNIT}-\mathbf{IV}$

Introduction to MATLAB: MATLAB Environment, Constants, Variables and Expressions: Data types, Constants and Variables, Operators, Built-in Functions, Vectors and Matrices: Introduction, Scalars and Vectors, Matrix Manipulations, Control Structures: Loops, Branches.

Input-Output Statements: Reading/Storing File Data, MATLAB Graphics: Introduction, Two-Dimensional Plots.

TEXT BOOKS

- [1] R.G. Dromey, "How to Solve it By Computer", Prentice-Hall International Series in Computer Science, 1982.
- [2] Bansal.R.K, Goel.A.K, Sharma.M.K, "MATLAB and its Applications in Engineering", Pearson Education, 2012.

REFERENCE BOOKS

- [1] Michael Schneider, Steven W. Weingart, David M. Perlman, "An Introduction to Programming and Problem Solving With Pascal", John Wiley and Sons Inc ,1984.
- [2] David Gries, "The Science of Programming", Springer Verlag, 1981.
- [3] ReemaThareja, "Computer Fundamentals and C Programming", Oxford, 2012

E-RESOURCES AND OTHER DIGITAL MATERIAL

MATLAB Getting Started Guide http://www.mathworks.com/help/pdf_doc/ matlab/getstart.pdf

	17ME 1		
	ENGINEERING	MECHANICS-I	
Course Category:	Engineering Science	Credits:	3
Course Type:	Theory	Lecture -Tutorial-Practice:	3 - 0 - 0
Prerequisites:	Basic Mathematics,	Continuous Evaluation:	30
-	Physical Science	Semester end Evaluation:	70
		Total Marks:	100

Upon successful completion of the course, the student will be able to:

CO1	Analyze coplanar concurrent forces
COL	Thatyze coplanal concurrent loices

CO2 Analyze coplanar parallel forces and determine centroids for plane figures.

CO3 Analyze coplanar general case of force systems

CO4 Analyze spatial concurrent and parallel forces

Contribution of Course Outcomes towards achievement of Program Outcomes (L – Low, M - Medium, H – High)

	PO 1	PO 2	PO 3	PO 4	PO 5	РО 6	РО 7	PO 8	PO 9	PO 10	РО 11	PO 12	PSO1	PSO2
CO1	Н				М									
CO2	Н				М									
CO3	Н				М									
CO4	Н				М									

COURSE CONTENT

UNIT I

Concurrent Forces in a Plane: Principles of statics, Force, Addition of two forces: Parallelogram Law – Composition and resolution of forces – Constraint, Action and Reaction. Types of supports and support reactions. Free body diagram. Equilibrium of concurrent forces in a plane – Method of projections –Moment of a force, Theorem of Varignon, Method of moments.

UNIT II

Parallel Forces in a Plane:Introduction, Types of parallel forces, Resultant. Couple, Resolution of Force into force and a couple. General case of parallel forces in a plane. **Centroids:**Introduction, Determination of centroids by integration method, Centroids of composite plane figures. Distributed forces in a plane.

UNIT III

General Case of Forces in a Plane: Composition of forces in a plane - Equilibrium of forces in a plane -

Plane Trusses: Method of joints

Friction: Introduction, Laws of dry friction. Co-efficient of friction, Angle of friction, Angle of repose, Cone of friction, Frictional forces on wheel, Wedge friction.

UNIT IV

Force System In Space: Components of a force, defining a force by its magnitude and two points on its line of action, components of a vector, work done by a force, Resultant of system of concurrent and parallel forces in space, Moment of a force, Component of a vector and moment about an axis, Equilibrium of concurrent and parallel forces in space.

TEXT BOOKS

- [1] S.Timoshenko, D.H.Young, J.V.Rao & Sukumar Pati, "Engineering Mechanics", Vth edition, Mc Graw Hill Education (India) Pvt Ltd, 2013 (For Concepts and symbolic Problems).
- [2] A.K.Tayal, "Engineering Mechanics Statics and dynamics", Umesh Publications, XIIIth edition, 2006 (For numerical Problems using S.I.System of Units).

REFERENCE BOOKS

- [1] Beer and Johnston, "Vector Mechanics for Engineers Statics and Dynamics", Tata McGraw Hill, IIIrd edition, 2010.
- [2] SS Bhavikatti and KG Rajasekharappa, "Engineering Mechanics", New Age International Private Limited, IVth Edition, 2012
- [3] K.Vijaya Kumar Reddy and J Suresh Kumar, "Singer's Engineering Mechanics Statics and Dynamics", BS Publications, IIIrd Edition 2010.

E-RESOURCES AND OTHER DIGITAL MATERIAL

[1] http://emweb.unl.edu/, Accessed On 15-06-2017

					FNC		7ME11 RING		PHICS					
Course	Catao	orv.	Ir	octitutic	nal Cor			GRAI						4
Course	Calleg	;01 y .	11	istitutio		C		ecture	2	-0-4				
Course	Tuno		т	hoom	& Practi	20			ous Ev					-0-4 30
Course	e i ype	•	1	neory c	x Flaction	Ce	-		r end F					30 70
Prereq	nicitos	<u> </u>						otal M		Lvalua				100
riereq	uisites	•					1	otai wi	arks:					00
COUR Upon s				n of th	e cours	e, the s	studen	t will b	e able	to:				
CO1	Unde	erstand	the Sca	ales, co	nics and	l Cyclo	oidal cu	irves.						
CO2	Draw Orthographic projections of points, Lines, Planes and Solids													
CO3			• •		vs of So	<u>^</u>	-	· · · · ·			+10		tation	
CO4 Contri (L – Lo	ortho	ographi	c projec	ctions utcome	es towar		2	-				onvert j	pictorial	views
	PO	PO	PO	PO	PO	PO	РО	РО	РО	PO	РО	PO	PSO1	PSO
	1	2	PO 3	4	FO 5	FU 6	PO 7	PU 8	PU 9	10 PO	11	12 PO	P501	F50
<u>CO1</u>	п	<u> </u>		тт							T			
CO1 CO2	H M			H H							L M			
$\frac{CO2}{CO3}$											-			
	M L			M H							M			
CO4				Н							Μ			
COUR	SE CC)NTFF	JT											
UNIT -		/1 \ 1 L 1	11											
Scales: Conic Genera Engine UNIT - Orthog is limit	Constr Section I metho ering (- II graphic ed to F of the	ruction ns: Co od only Curves c Proje	of plai nstructi 7) s: Cyclo ections:	n and d on of oidal cu Princi jection	rves - C	Scales parabc Cycloid Orthog	bla and l, Epicy graphic	hyper vcloid a Projec	bola (T and Hyp tions –I	reatme oocyclo Projecti	ent is li oid ons of	imited to Points,	ficance to Eccent Lines (Ti to Plane	reatme
	- 111													
UNIT - Project with va Section	tions o rying p is of So s(Limit	oositior olids: S	ns (Lim Sections	ited to s of soli	Solid In	clined as Cul	to one bes, Pr	of the isms, P	Referer yramid	ice plar s, Cylii	nes)		inders an es. True s	

ons (Treatment is limited to simple objects only) tions Auto CAD: Basic principles only (Internal assessment only) ooks N.D. Bhatt & V.M. Panchal, "Elementary Engineering Drawing", Charotar Publishing Ho Anand. 49th Edition – 2006 Basanth Agrawal & C M Agrawal," Engineering Drawing", McGraw Hill Education Private Limit New Delhi
N.D. Bhatt & V.M. Panchal, "Elementary Engineering Drawing", Charotar Publishing Ho Anand. 49th Edition – 2006 Basanth Agrawal & C M Agrawal," Engineering Drawing", McGraw Hill Education Private Limit
N.D. Bhatt & V.M. Panchal, "Elementary Engineering Drawing", Charotar Publishing Ho Anand. 49th Edition – 2006 Basanth Agrawal & C M Agrawal," Engineering Drawing", McGraw Hill Education Private Limit
Anand. 49th Edition – 2006 Basanth Agrawal & C M Agrawal," Engineering Drawing", McGraw Hill Education Private Limit
ice Books
K. L. Narayana & P. Kannaiah, "Text Book on Engineering Drawing", Scitech publications (In Pvt. Ltd., Chennai, 2nd Edition - fifth reprint 2006
K. Venugopal, "Engineering Drawing and Graphics + Auto CAD", New Age International, N Delhi
D M Kulkarni, AP Rastogi, AK Sarkar, "Engineering Graphics with Auto CAD", PHI Learn Private Limited, Delhi Edition – 2013
urces and other digital material
http://www.youtube.com/watch?v=XCWJ XrkWco, Accessed On 01-06-2017.
http://www.me.umn.edu/courses/me2011/handouts/drawing/blanco-tutorial.html# isodraw Accessed On 01-06-2017.

[4] http://edpstuff.blogspot.in, Accessed On 01-06-2017.

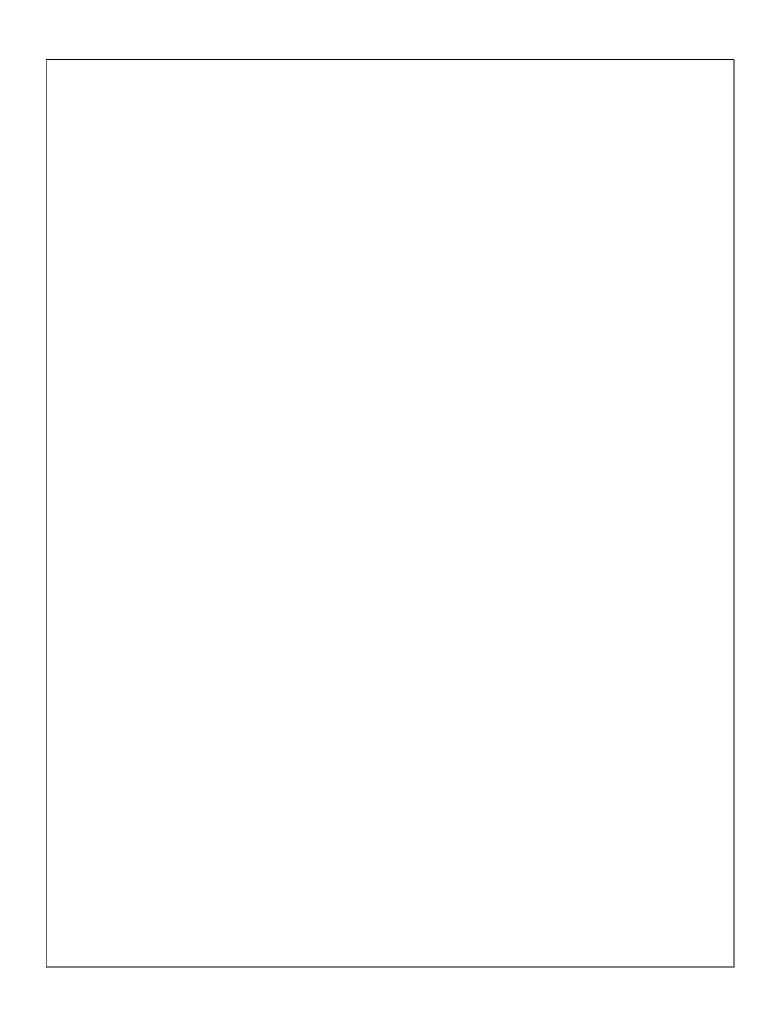
	17CH ENGINEERING CHEM		
Course Category:	Institutional Core	Credits:	1.5
Course Type:	Laboratory	Lecture -Tutorial-Practice:	0 - 0 - 3
Prerequisites:	Knowledge of	Continuous Evaluation:	30
-	chemistry	Semester end Evaluation:	70
	practicals at intermediate level	Total Marks:	100

Upon successful completion of the course, the student will be able to:

CO1 Analyze quality parameters of water samples from different sources

CO2	Perform	quantitative	analysis	using	instrumental	methods.
	I CHIOIIII	quantitutive	anarysis	using	monumental	methous.

CO3 Apply the knowledge of mechanism of corrosion inhibition, metallic coatings and photochemical reactions.


Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)

	РО 1	PO 2	PO 3	РО 4	РО 5	PO 6	РО 7	PO 8	PO 9	PO 10	РО 11	PO 12	PSO1	PSO2
CO1			H											
CO2									М					
CO3		М												

COURSE CONTENT

List of Experiments:

- 1. Determination of total alkalinity of water sample
- 2. Determination of chlorides in water sample
- 3. Determination of hardness of water sample
- 4. Determination of available chlorine in bleaching powder
- 5. Determination of copper in a given sample
- 6. Determination of Mohr's salt Dichrometry
- 7. Determination of Mohr's salt Permanganometry
- 8. Determination of purity of boric acid sample
- 9. Conductometric determination of a strong acid using a strong base
- 10. pH metric titration of a strong acid vs. a strong base
- 11. Determination of corrosion inhibition efficiency of an inhibitor for mild steel
- 12. Chemistry of Blue Printings
- 13. Preparation of Urea-Formaldehyde resin

REFERENCE BOOKS

- [1] S.K. Bhasin and Sudha Rani, "Laboratory Manual on Engineering Chemistry", Dhanpat Rai Publishing Company, New Delhi, 2nd edition.
- [2] Sunitha Rattan, "Experiments in Applied Chemistry", S.K. Kataria & Sons, New Delhi, 2nd edition.

		S1152 IPHERALS LABORATORY	
Course Category:	Institutional Core	Credits:	1
Course Type:	Laboratory	Lecture -Tutorial-Practice:	0 - 0 - 2
Prerequisites:		Continuous Evaluation:	30
-		Semester end Evaluation:	70
		Total Marks:	100

Upon successful completion of the course, the student will be able to:

CO1	Understand and Apply MS Office tools
CO2	Configure the components on the motherboard and install different operating systems
CO3	Understand and configure different storage media
CO4	Perform Networking, troubleshooting and system administration tasks

Contribution of Course Outcomes towards achievement of Program Outcomes (L – Low, M - Medium, H – High)

	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	РО 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	H								L					
CO2		Н	М											
CO3	Н		L											
CO4		М							Μ					

COURSE CONTENT

CYCLE - I:Word Processing, Presentations and Spread Sheets

1. Word Processing:

- a) Create personal letter using MS Word.
- b) Create a resume using MS Word.
- c) Creating project abstract: Features to be covered:- Table of Content, List of Tables, Formatting Styles, Inserting table, Bullets and Numbering, Changing Text Direction, Cell alignment, Footnote, Hyperlink, Symbols, Spell Check, Track Changes.
- d) Creating a Newsletter: Features to be covered:- Table of Content, List of figures, Newspaper columns, Images from files and clipart, Drawing toolbar and Word Art, Formatting Images, Textboxes, Paragraphsand Mail Merge in word.

2. Spread Sheets:

- a) Create a worksheet containing pay details of the employees.
- b) Creating a Scheduler: Features to be covered:- Gridlines, Format Cells, Summation, auto fill,Formatting Text
- c) Create a worksheet which contains student results: .Features to be covered:- Cell Referencing,

Formulae in excel – average, Charts, Renaming and Inserting worksheets, Hyper linking, Count function, LOOKUP/VLOOKUP, Sorting, Conditional formatting

d) Create a worksheet importing data from database and calculate sum of all the columns.

3. Presentations:

- a) Create a presentation using themes.
- b) Save, edit, print and import images/videos to a presentation.
- c) Create a power Point presentation on business by using master layouts, adding animation to a presentation and see the presentation in different views.

4. MS Access:

- a) Create simple table in MS Access for results processing.
- b) Create a query table for the results processing table.
- c) Create a form to update/modify the results processing table.
- d) Create a report to print the result sheet and marks card for the result.

CYCLE - II: Hardware Experiments

- 1. Identification of System Layout: Front panel indicators & switches and Front side & rear side connectors. Familiarize the computer system Layout: Marking positions of SMPS, Motherboard, FDD,HDD, CD, DVD and add on cards. Install Hard Disk. Configure CMOS-Setup. Partition and Format Hard Disk.
- 2. Install and Configure a DVD Writer or a Blu-ray Disc writer.
- 3. Install windows operating system and check if all the device (graphics, sound, network etc.) drivers are installed.
- 4. Install Linux operating system and check the working of all devices (graphics, sound, network etc.) in the computer.
- 5. Assemble a Pentium IV or Pentium Dual Core Pentium Core2 Duo system with necessary peripherals and check the working condition of the PC.
- 6. PC system layout: Draw a Computer system layout and Mark the positions of SMPS, Mother Board, FDD, HDD, and CD-Drive/DVDDrive add on cards in table top / tower model systems.
- 7. Mother Board Layout: Draw the layout of Pentium IV or Pentium Dual core or Pentium Core2 DUO mother board and mark Processor, Chip set ICs. RAM, Cache, cooling fan, I/O slots and I/O ports and various jumper settings.
- 8. Configure BIOS setup program to change standard and advanced settings to troubleshoot typical problems.
- 9. Install and configure Printer/Scanner/Web cam/Cell phone/bio-metric device with system. Troubleshoot the problems

CYCLE – III : Netwroking

- 1. Prepare an Ethernet/UTP cable to connect a computer to network switch. Crimp the 4 pair cable with RJ45 connector and with appropriate color code.
- 2. Manually configure TCP/IP parameters (Host IP, Subnet Mask andDefault Gateway) for a computer and verify them using IPCONFIG command. Test connectivity to a server system using PING command.
- 3. Creating a shared folder in the computer and connecting to that folder using Universal Naming Convention (UNC) format. (Ex: computername sharename)
- 4. Connects computers together via Switch/ Hub
- 5. Connect different devices via Switch/Hub
- 6. Statically configure IP address and subnet mask for each computer
- 7. Examine non-existent IP address and subnet conflicts
- 8. Configure a computer to connect to internet (using college internetsettings) and troubleshoot the problems using PING, TRACERT and NETSTAT commands.
- 9. Using scan disk, disk cleanup, disk Defragmenter, Virus Detectionand Rectifying Software to troubleshoot typical computer problems.

- 10.Configure DNS to establish interconnection between systems and describe how a name is mapped to IP Address.
- 11.Remote desktop connections and file sharing.
- 12. Installation Antivirus and configure the antivirus.
- 13. Introducing Ethereal, a packet capture tool.

E-RESOURCES AND OTHER DIGITAL MATERIAL

[1] Numerical Methods and Programing by Prof.P.B.Sunil Kumar,Department of Physics, IIT Madras https://www.youtube.com/ watch?v=zjyR9e-#1D4&list=PLC5DC6AD60D798FB7

[2] Introduction to Coding ConceptsInstructor: Mitchell Peabody View the

complete course: http://ocw.mit.edu/6-00SCS11

Credits:	
	-
itorial-Practice:	2 - 0 - 0
ous Evaluation:	30
end Evaluation:	70
Total Marks:	100
	ous Evaluation: end Evaluation:

Upon successful completion of the course, the student will be able to:

CO1	Know the moral autonomy and uses of ethical theories.
CO2	Understand morals, Honesty and character.
CO3	Understand about safety, risk and professional rights.
CO4	Know the ethics regarding Global issues related to Environment, Computers and weapon's development.

Contribution of Course Outcomes towards achievement of Program Outcomes (L – Low, M - Medium, H – High)

	PO 1	PO 2	PO 3	PO 4	РО 5	РО 6	РО 7	РО 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	М													
CO2								L						
CO3						М								
CO4									М					

COURSE CONTENT

UNIT I

Engineering Ethics: Senses of 'Engineering Ethics' - variety of moral issues- types of inquiry - moral dilemmas - moral autonomy - Kohlberg's theory -Gilligan's theory - consensus and controversy - Models of Professional Roles -theories about right action - Self-interest - customs and religion- uses of ethical theories.

UNIT II

Human Values:Morals, Values and Ethics - Integrity- Work Ethic – Service Learning - Civic Virtue - Respect for Others - Living Peacefully - caring – Sharing - Honesty - Courage - Valuing Time - Co-operation - Commitment –Empathy - Self-Confidence - Character - Spirituality .

UNIT III

Engineering as Social Experimentation: Engineering as experimentation – engineers as responsible experimenters - codes of ethics - a balanced outlook on law - the challenger case study, Safety, Responsibilities and Rights: Safety and risk - assessment of safety and risk - risk benefit analysis and

reducing risk – the three mile island and chernobyl case studies. Collegiality and loyalty – respect for authority - collective bargaining - confidentiality - conflicts of interest - occupational crime - professional rights - employee rights - Intellectual Property Rights (IPR) - discrimination.

UNIT IV

Global Issues: Multinational corporations- Environmental ethics- computer ethics - weapons development - engineers as managers-consulting engineers-engineers as expert witnesses and advisors -moral leadership-sample code of Ethics (Specific to a particular Engineering Discipline).

TEXT BOOKS

- 1. Mike Martin and Roland Schinzinger, "Ethics in engineering", McGraw Hill, New York (1996).
- 2. Govindarajan M, Natarajan S, Senthil Kumar V. S., "Engineering Ethics", Prentice Hall of India, New Delhi(2004).

REFERENCE BOOKS

- Baum, R.J. and Flores, A., "Ethical Problems in Engineering, Center for the studyof the Human Dimensions of Science and Technology", Rensellae Polytechnic Institute, Troy, New York, 335 pp. eds. (1978)
- [2] Beabout, G.R., Wennemann, D.J., "Applied Professional Ethics: A Developmental Approach for Use with Case Studies", University Press of America Lanham, MD, 175 pp (1994).

Ι	17MA1 APLACE TRANSFORMS AN		
Course Category:	Institutional Core	Credits:	4
Course Type:	Theory	Lecture -Tutorial-Practice:	3 - 1 - 0
Prerequisites:	Vectors, Curve Tracing.	Continuous Evaluation:	30
•		Semester end Evaluation:	70
		Total Marks:	100

COURSE OUTCOMES	COURSE	OUTCOMES
-----------------	--------	----------

Upon successful completion of the course, the student will be able to:

CO1	Solve Linear Differential Equations using Laplace Transforms.
CO2	Examine the nature of the Infinite series.
CO3	Evaluate areas and volumes using Double, Triple Integrals.
CO4	Convert Line Integrals to Area Integrals and Surface Integrals to Volume Integrals.

Contribution of Course Outcomes towards achievement of Program Outcomes (L – Low, M - Medium, H – High)

	PO 1	PO 2	РО 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	РО 11	PO 12	PSO1	PSO2
CO1	Н				М									
CO2	Н				М									
CO3	Н				М									
CO4	Н				М									

COURSE CONTENT

UNIT I

Laplace Transforms: Introduction, Definition, Conditions for Existence, Transforms of Elementary functions, Properties of Laplace Transforms, Transforms of Periodic functions, Transforms of Derivatives, Transforms of Integrals, Multiplication by tⁿ, Division by 't', Inverse Transforms, Method of partial fractions, Other methods of finding Inverse Transform, Convolution Theorem, Unit Step and Unit Impulse functions.

Applications: Evaluation of Improper Integrals, Solving Differential equations by Laplace Transform. **UNIT II**

Partial Differential Equations: Introduction, Formation of Partial Differential Equations, Solutions of a Partial Differential Equations, Equations Solvable by Direct Integration, Linear Equations of First Order. **Sequence and Series**: Convergence of series, Comparison test, Integral test, D'Alembert's Ratio test,

Cauchy's Root Test, Alternating series test, Absolute and Conditional convergence.

UNIT III

Integral Calculus: Double Integrals, Change of Order of Integration, Double Integrals in Polar Coordinates, Triple Integrals, Change of Variables. **Applications:** Area enclosed by Plane Curves, Volumes of Solids. **Special Functions**: Beta Function, Gamma Function, Relation between Beta and Gamma Function, Error Function.

UNIT IV

Vector Calculus: Scalar and Vector point functions, Del applied to Scalar point functions, Del applied to Vector point functions, Physical interpretation of Divergence, Del applied twice to point functions, Del applied to products of point functions. Integration of Vectors, Line Integral, Surface Integral, Green's Theorem in a plane, Stokes's Theorem, Volume Integral, Gauss Divergence Theorem, Irrotational Fields.

TEXT BOOKS

[1] B.S.Grewal, "Higher Engineering Mathematics, Khanna Publishers", 43rd Edition, 2014.

REFERENCE BOOKS

[1].Erwin Kreyszig, "Advanced Engineering Mathematics", John Wiley & Sons, 10th Edition,2015

- [2].B.V.Ramana, "Higher Engineering Mathematics", Tata MC Graw Hill, 1st Edition,2007
- [3].N.P.Bali, Dr.Manish Goyal, "A Text Book of Engineering Mathematics", Laxmi Publications, 9th Edition,2014

E-RESOURCES AND OTHER DIGITAL MATERIAL

- [1]. <u>www.nptel</u> videos.com/mathematics/ (Math Lectures from MIT,Stanford,IIT'S)
- [2]. nptel.ac.in/courses/122104017
- [3]. nptel.ac.in/courses/111105035
- [4]. Engineering Mathematics Open Learning Project. www.3.ul.ie/~mlc/support/Loughborough%20website/

17PH1202 ENGINEERING PHYSICS									
Course Category:	Institutional Core	Credits:	3						
Course Type:	Theory	Lecture -Tutorial-Practice:	3 - 0 - 0						
Prerequisites:		Continuous Evaluation:	30						
•		Semester end Evaluation:	70						
		Total Marks:	100						

COUR	SE OU	TCOM	IES											
Upon s	uccessf	ful com	pletion	of the	course	e, the st	tudent	will be	able to	:				
CO1	Anal	Analyse and understand various types of crystal structures and their characterization.												
CO2	Unde	Understand various concepts of acoustics and thermal performance.												
CO3		Understand the classification, properties, preparation and applications of various engineering materials.												
CO4	Unde	Understand the fabrication of nanomaterials and carbon Nanotubes.												
Contri (L – Lo						ds achi	eveme	nt of P	rogram	Outco	mes			
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	РО 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	Н													
CO2	Н		М											
CO3	Н													

COURSE CONTENT

Η

L

Unit – I

CO4

Crystallography: Introduction, Fundamental terms of crystallography, Types of crystals: Bravais lattices, Miller indices; Relation between inter planar distance and inter atomic distance, Crystal structures of materials: SC, BCC, FCC.

Characterization of materials: Introduction, diffraction of X-rays (Derivation for Bragg's law, Bragg's X-ray spectrometer), Determination of crystal structure by Powder crystal method.

Unit – II

Acoustics: Introduction, Classification of sound, Sound absorption: Absorption coefficient, Sabine's formula for reverberation time and its limitations, Factors effecting acoustics of building and their remedies and acoustic design of a hall.

Thermal Performance: Heat transfer through fenestrations, thermal insulation and its benefits- heat gain and heat loss estimation- factors affecting the thermal performance of buildings, thermal measurements, thermal comfort, indices of thermal comfort, climate and design of solar radiation, shading devices-central

heating. Unit – III

Engineering Materials: Composite materials: Introduction, classification, processing technique for composite materials (Fiber reinforced) and applications.

Ceramics: Introduction, classification, ceramic fabrication (Isostatic pressing) and applications.

Dielectric Materials: Fundamental definitions, Types of Polarization: Electronic and Ionic polarizations, ferroelectric materials and their applications.

Shape memory alloys: Introduction, properties, commercial shape memory alloys (Ni-Ti and copper based alloys) and applications.

Unit- IV

Nanotechnology: Basic concepts of Nanotechnology, Nano scale, Introduction to nano materials, Surface to volume ratio, General Properties of Nano materials, Fabrication of nano materials: Plasma Arcing, Chemical vapour deposition, Characterization of nano materials: SEM, TEM. Carbon nano tubes: SWNT, MWNT, Formation of carbon nanotubes: Arc discharge, Laser ablation, Properties of carbon nano tubes, Applications of CNT's & Nanotechnology.

TEXT BOOKS

- [1]. V. Rajendran, Materials science, Mc Graw Hill Publications, 4th Edition, 2014.
- [2]. M.N. Avadhanulu & P.G. Kshirsagar, Engineering Physics, S. Chand publications, Revised Edition, 2014.

REFERENCE BOOKS

- S.O. Pillai, "Solid State Physics", New age international publishers, 7th Edition, 2015.
- [2]. M.R. Srinivasan, "Engineering Physics", New age international publishers, First Edition, 2011.
- [3]. Severns, W.H. & Fellows, J.R., "Air Conditioning and Refrigeration", John Wiley and sons, London, 1988. (Unit-I).

E-RESOURCES AND OTHER DIGITAL MATERIAL

- 1. http://nptel.ac.in/courses/112106227/
- 2. https://ocw.mit.edu/courses/materials-science-and-engineering/3-60-symmetry-structure-and-tensor-properties-of-materials-fall-2005/video-lectures/introduction-to-crystallography-part-1/
- 3. https://architecture.mit.edu/subject/spring-2014-4431
- 4. http://freevideolectures.com/Course/3048/Physics-of-Materials/36
- 5. <u>https://www.peterindia.net/NanoTechnologyResources.html</u>

	1700	51203	
		IMING IN C	
Course Category:	Institutional Core	Credits:	3
Course Type:	Theory	Lecture -Tutorial-Practice:	3 - 0 - 0

Prerequisites:	Problem Solving Methods	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Upon successful completion of the course, the student will be able to:

CO1	Understand the fundamentals and structure of a C programming language
CO2	Apply the loops, arrays, functions and string concepts in C to solve the given problem.
CO3	Apply the pointers and text input output files concept to find the solution for the given applications.
CO4	Use the Enumerated, Datatypes, Structures and Unions.

Contribution of Course Outcomes towards achievement of Program Outcomes (L – Low, M - Medium, H – High)

									1					
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	РО 7	РО 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	Μ				L			L						
CO2	Μ				L			L						
CO3	H				M			L			L			
CO4	H				Н			L			L			

COURSE CONTENT

UNIT - I

Introduction to the C Language : Background, C Programs, Identifiers, Types, Variables, Constants, Input/Output, Programming Examples.

Structure of a C Program: Expressions, Precedence and Associatively, Evaluating Expressions, Type Conversion, Statements, Sample Programs.

Selection: Storage Class, Logical Data and Operators, Two -Way Selection, Multiway Selection, More Standard Functions

UNIT - II

Repetition: Concept of a Loop Loops In C, Loop Examples, Recursion, The Calculator Program.

Arrays: Concepts, Using Array in C, Inter-Function Communication, Array Applications, Two Dimensional Arrays, Multidimensional Arrays.

Functions: Functions in C, User Defined Functions, Inter Function Communication, Standard Functions, Scope.

Strings: String Concepts, C Strings, String Input/Output Functions, Arrays of Strings, String Manipulation Functions, String- Data Conversion.

UNIT - III:

Pointers: Introduction, Pointers For Inter Function Communications, Pointers to Pointers, Compatibility,

Lvalue and Rvlaue.

Pointer Applications: Arrays and Pointers, Pointer Arithmetic and Arrays, Passing an Array to a Function, Memory Allocations Functions, Array of Pointers.

Text Input/output: Files, Streams, Standard Library Input/Output Functions, Formatting Input/output Functions and Character Input/Output Functions, Command-Line Arguments.

UNIT - IV:

Enumerations: The Type Definition(Typedef), Enumerated Types: Declaring an Enumerated Type, Operations on Enumerated Types, Enumeration Type Conversion, Initializing Enumerated Constants, Anonymous Enumeration: Constants, Input/Output Operators.

Structures: Structure Type Declaration, Initialization, Accessing Structures, Operations on Structures, Complex Structures, Structures and Functions, Sending the Whole Structure, Passing Structures through Pointers.

Unions: Referencing Unions, Initializers, Unions and Structures, Internet Address, Programming Applications.

TEXT BOOKS

Behrouz A. Forouzan & Richard F. Gilberg, "Computer Science A Structured Programming Approach using C", CENGAGE Learning, Third Edition.

REFERENCE BOOKS

- [1] Kernighan and Ritchie , "The C programming language" , The (Ansi C Version), PHI, second edition.
- [2] Yashwant Kanetkar, "Let us C", BPB Publications, 2nd Edition 2001.
- [3] Paul J. Dietel and Dr. Harvey M. Deitel, "C: How to Program", Prentice Hall ,7th edition (March 4,2012).

[4] Herbert Schildt, "C:The Complete reference", McGraw Hill, 4th Edition, 2002.

K.R.Venugopal, Sundeep R Prasad, "Mastering C", McGraw Hill, 2nd Edition, 2015

	17ME1204 ENGINEERING MEC	-	
Course Category:	Engineering Sciences	Credits:	3
Course Type:	Theory	Lecture -Tutorial-Practice:	3 -0 - 0
Prerequisites:	Basic Mathematics,	Continuous Evaluation:	30
-	Physical Science,	Semester end Evaluation:	70
	Engineering Mechanics-I (Statics)	Total Marks:	100

Upon successful completion of the course, the student will be able to:

CO1	Analyze the rectilinear motion of particles.
CO2	Analyze the curvilinear motion of particles.

CO3 Evaluate the moment of inertia of areas and material bodies.

CO4 Analyze the motion of rigid bodies.

Contribution of Course Outcomes towards achievement of Program Outcomes (L – Low, M - Medium, H – High)

	РО 1	PO 2	PO 3	РО 4	РО 5	PO 6	РО 7	PO 8	PO 9	PO 10	РО 11	PO 12	PSO1	PSO2
CO1	H				М									
CO2	H				М									
CO3	H													
CO4	Μ				Η									

COURSE CONTENT

UNIT – I

Kinematics of Rectilinear Translation: Introduction, displacement, velocity and acceleration. Motion with Uniform and Variable acceleration.

Kinetics of Rectilinear Translation: Equations of rectilinear motion. Equations of Dynamic Equilibrium: D'Alembert's Principle. Work and Energy, Conservation of energy, Impulse and Momentum, Impact-Direct central Impact.

UNIT – II

Kinematics of Curvilinear Motion: Introduction, rectangular components of velocity and acceleration. Normal and Tangential acceleration, Motion of projectiles.

Kinetics of Curvilinear Motion: D'Alembert's Principle, and Work and Energy in curvilinear motion.

UNIT –III

Moment of Inertia of Plane Figures: Moment of Inertia of a plane figure with respect to an axis in its plane – Moment of inertia with respect to an axis perpendicular to the plane of the figure, Radius of gyration – Parallel axis theorem, MI of composite plane figures.

Moment of Inertia of Material Bodies: Moment of inertia of a rigid body – Moment of inertia of slender bar, laminas (2D), Radius of gyration, Parallel axis theorem, Moment of inertia of 3D bodies-cone, cylinder, sphere and parallelepiped.

$\mathbf{UNIT}-\mathbf{IV}$

Kinematics of Rigid Body:

Rotation: Linear and angular Velocity, linear and angular acceleration in uniformly accelerated rotation. Plane motion: Concepts of relative velocity and Instantaneous center.

Kinetics of Rigid Body:

Rotation: Equation of motion for a rigid body rotating about a fixed axis – Rotation under the action of a constant moment.

TEXT BOOKS

- [1] S. Timoshenko & D. H. Young , "Engineering Mechanics" , McGraw Hill International Edition. (For Concepts and symbolic Problems), 4th Edition, 2007.
- [2] A. K. Tayal, "Engineering Mechanics Statics and dynamics", Umesh Publication, Delhi, (For numerical Problems using S.I.System of Units),13th Edition, 2006.

REFERENCE BOOKS

- [1] Beer and Johnston, "Vector Mechanics for Engineers Statics and Dynamics", Tata McGraw Hill, IIIrd edition 2010.
- [2] SS Bhavikatti and KG Rajasekharappa, "Engineering Mechanics", New Age International Private Limited, IVth Edition 2012
- [3] K.Vijaya Kumar Reddy and J Suresh Kumar, "Singer's Engineering Mechanics Statics and Dynamics", BS Publications, IIIrd Edition 2010.

E-RESOURCES AND OTHER DIGITAL MATERIAL

[1] http://emweb.unl.edu/, Accessed On 15-06-2017

	TECHNICAL ENGLISH &	COMMUNICATION SKILLS	
Course Category:	Institutional Core	Credits:	3
Course Type:	Theory	Lecture -Tutorial-Practice:	2 - 0 - 2

17HS1205

Prerequisites:	Basic understanding of the	Continuous Evaluation:	30
	language skills, viz	Semester end Evaluation:	70
	Listening, Speaking,	Total Marks:	100
	Reading and Writing,		
	including Sentence		
	construction abilities		

COURSE OUTCOMES

Upon successful completion of the course, the student will be able to:

CO1	Develop administrative and professional compilations including web related(On-line) communication with felicity of expression
CO2	Demonstrate Proficiency in Interpersonal Communication, in addition to standard patterns of Pronunciation
CO3	Apply the elements of functional English with sustained understanding for authentic use of language in any given academic and/or professional environment
CO4	Execute tasks in Technical communication with competence

Contribution of Course Outcomes towards achievement of Program Outcomes (L – Low, M - Medium, H – High)

	РО 1	PO 2	PO 3	PO 4	РО 5	PO 6	РО 7	PO 8	PO 9	PO 10	РО 11	PO 12	PSO1	PSO2
CO1			М	М		Н	Н	М	М	Н	L	Μ		
CO2				М		Н	H	H	М	H		М		
CO3	М			М		Н	Н	Н	Н	Н	L	М		
CO4	L	М		М		Н	Н	Н	Н	Н	L	М		

COURSE CONTENT

UNIT I

Professional Writing Skills

Professional Letter- Business, Complaint and Transmittal,

Essay Writing- Descriptive and Analytical,

Administrative and On-line drafting skills -Minutes and Web notes including e-mail

UNIT II

Interpersonal Communication Skills

Communicative Facet- Speech acts- Extending Invitation, Reciprocation, Acceptance, Concurrence, Disagreeing without being disagreeable,

Articulation-oriented Facet- Transcription using International Phonetic Alphabet, Primary Stress.

UNIT III

Vocabulary and Functional English

A basic List of 500 words - Overview,

Verbal analogies, Confusables, Idiomatic expressions and Phrasal Collocations,

- Exposure through Reading Comprehension- Skimming, Scanning and Understanding,
- the textual patterns for tackling different kinds of questions,

Functional Grammar with special reference to Concord, Prepositions, use of Gerund and Parallelism . UNIT IV

Technical Communication skills:

Technical Proposal writing,

Technical Vocabulary- a representative collection will be handled ,

Introduction to Executive Summary,

Technical Report writing(Informational Reports and Feasibility Report.

TEXT BOOKS

- [1] Martin Cutts, "Oxford guide to Plain English", Oxford University Press, 7th Impression 2011.
- [2] TM Farhathullah, "Communication skills for Technical Students", Orient Longman, I Edition 2002
- [3] John Langan, "College Writing Skills", McGraw Hill, IX Edition, 2014.
- [4] "Eclectic Learning materials offered by the Department"

REFERENCE BOOKS

- [1] Randolph Quirk, "Use of English", Longman, I Edition (1968) Reprinted 2004.
- [2] Thomson A.J & A.V, Martinet, "Practical English Grammar", Oxford University Press, III Edition 2001
- [3] V.Sethi and P.V. Dhamija, "A Course in Phonetics and Spoken English", PHI, II Edition 2006

E-RESOURCES AND OTHER DIGITAL MATERIAL

- [1] https://www.britishcouncil.org/english Accessed on 15th June 2017
- [2] <u>www.natcorp.ox.ac.uk/Wkshops/Materials/specialising.xml?ID=online</u> Accessed on 15th June 2017
- [3] https://www.uni-marburg.de/sprachenzentrum /selbstlernzentrum/ /apps_for _esl. pdf Accessed on 15th June 2017

edits:	-
ctice: 1	1 - 0 - 0
ation:	30
ation:	70
arks:	100
Evalua	Evaluation: Evaluation: otal Marks:

COURSE OUTCOMES Upon successful completion of the course, the student will be able to: Understand the origins of technology and its role in the history of human progress. **CO1** Know the Industrial Revolution and its impact on Society **CO2** Interpret the developments in various fields of technology till Twentieth Century. **CO3** Distinguish the impacts of Technology on the Environemnt and achievements of great scientists. **CO4 Contribution of Course Outcomes towards achievement of Program Outcomes** (L – Low, M - Medium, H – High) PO PSO1 PSO2 1 2 3 4 5 6 7 8 9 10 11 12 **CO1** Η L **CO2** Η Μ **CO3** Η \mathbf{L}

Μ

Η

CO4

COURSE CONTENT

UNIT – I

Introduction: Origins of technology, The Agriculture revolution, Technological contributions of ancient civilizations- Mesopotamian, Egyptians, Greeks, Romans, Indians and Chinese.

UNIT - II

Industrial revolution: The social and political background, The technical background, Steam: The power behind the Indistrial Revolution, The revolution in Textile Indistry, The Imapact of Indutrial Revolution on Society.

UNIT - III

The Flowering of modern technology: Manufacturing Technologies, Prime Movers, Internal Combustion engines, Production of Metals and Allyos, The Birth of Electrical Technology, Twentieth Century: The Flowering of modern technology

UNIT - IV

Technology, Science and Society: Impact of technology on society, The Impacts of Technology on the environment, Sustainable development.

Achievements of famous scientists:

(World): Einestein, Newton, Faraday, Graham Bell, Edison, S.Hawking.

(India): CV Raman, S.Chandrasekhar, Aryabhatta, Homi J Bhabha, Vikram Sarabhai, APJ Abdulkalam, S.Ramanujan, M.Visweswarayya.

TEXT BOOKS

[1] Dr. R.V.G Menon, "Technology and Society", Pearson Education, 2011

REFERENCE BOOKS

[1] Quan-Haase, A., "Technology and Society: Inequality, Power, and Social Networks", Oxford University Press, 2013.

		H1251 YSICS LABORATORY	
Course Category:	Institutional Core	Credits:	1.5
Course Type:	Lab	Lecture -Tutorial-Practice:	0 - 0 - 3
Prerequisites:		Continuous Evaluation:	30
-		Semester end Evaluation:	70
		Total Marks:	100

COURSE OUTCOMES

Upon successful completion of the course, the student will be able to:

CO1	Use spectrometer and travelling microscope in various experiments
CO2	Determine the V-I characteristics of solar cell and photo cell and appreciate the accuracy in measurements
CO3	Test optical components using principles of interference and diffraction of light
	ution of Course Outcomes towards achievement of Program Outcomes w. M - Medium, H – High)

(L - L)	JW, M	- Mea	lum, i	1 – HI	gn)					
	PO	PO	PO	PO	PO	PO	PO	РО	РО	РО
	1	2	3	4	5	6	7	8	9	10

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	РО 11	PO 12	PSO1	PSO2
CO1				H										
CO2	M			Н										
CO3				Н										

COURSE CONTENT

- 1. Melde's apparatus- Determine the frequency of tuning fork
- 2. Wedge method- Measurement of thickness of a foil
- 3. Variation of magnetic field along the axis of current-carrying circular coil
- 4. Fibre Optics- Determination of Numerical aperture
- 5. Photo cell-Study of V-I Characteristics, determination of work function
- 6. Solar cell –Determination of Fill Factor
- 7. Torsional Pendulum-Determination of Rigidity modulus
- 8. Determination of Dielectric constant of a sample
- 9. Diffraction grating-Measurement of wavelength of mercury source
- 10. Hall effect -Hall coefficient measurement
- 11.Compound pendulum-Determination of 'g'
- 12.Figure of merit of a galvanometer

TEXT BOOKS

- Madhusudhan Rao, "Engineering Physics Lab Manual", Ist ed., Scitech Publications, 2015
- [2] Ramarao Sri, Choudary Nityanand and Prasad Daruka, "Lab Manual of Engineering Physics"., Vth ed., Excell Books, 2010

E-RESOURCES

- [1] http://plato.stanford.edu/entries/physics-experiment
- [2] http://www.physicsclassroom.com/The-Laboratory
- [3] http://facstaff.cbu.edu/~jvarrian/physlabs.html

VIRTUAL LAB REFERENCES

- [1] http://vlab.amrita.edu/?sub=1&brch=201&sim=366&cnt=1
 [2] http://vlab.amrita.edu/?sub=1&brch=195&sim=840&cnt=1
- [3] http://vlab.amrita.edu/?sub=1&brch=282&sim=879&cnt=1

17CS1252
COMPUTER PROGRAMMING LABORATORY

Course Category:	Institutional Core	Credits:	1.5
Course Type:	Laboratory	Lecture -Tutorial-Practice:	0 - 0 - 3

Prerequisites:	Continuous Evaluation:	30
	Semester end Evaluation:	70
	Total Marks:	100

COURSE OUTCOMES

Upon successful completion of the course, the student will be able to:

CO1 Implement the use of programming constructs in a structured oriented programming lang	CO1	I Implement the use of p	programming constructs	in a structured oriented	d programming langua
--	-----	--------------------------	------------------------	--------------------------	----------------------

CO3 Analyze and implement user defined functions to solve real time problems

CO4	Implement the usage of pointers and file operations on data
-----	---

CO5 Implement the user defined data types via structures and unions to solve real life problems

Contribution of Course Outcomes towards achievement of Program Outcomes (L – Low, M - Medium, H – High)

	1 1													
	P O 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	H													
CO2	L													
CO3	M				Н			L			L			
CO4	M				L									
CO5	Н				L									

COURSE CONTENT

CYCLE – I : PROGRAMMING CONSTRUCTS AND CONTROL STRUCTURES

- 1. Introduction to C Pogramming:
 - a) Use of Turbo C IDE
 - b) The Structure of C Program with Sample program
- 2. Data Types and Variables:
 - a) Programs to usage of keywords and identifiers in c
 - b) Programs on declaration of variables, rules for naming a variable, constants and different type of constants, data types
 - c) Programs to perform on various operators in C
- 3. Branching and Selection:
 - a) To specify the conditions under which a statement or group of statements should be executed.
 - b) To choose exactly one out of two statements (possibly compound statements) to be executed; specifies the conditions under which the first statement is to be executed and provides an alternative statement to execute if these conditions are not met.
 - c) To choose one statement (possibly compound) to be executed from among a group of state- ments (possibly compound); specifies the conditions under which each statement may be executed and may contain a default statement (in an else clause at the end) to be executed if none of these conditions are met. Note that in the absence of a final else clause, it may be the case that none of the statements are executed.
- 4. Unconditional control Transfer statements in C:
 - a) Design and develop programs that use of goto Statement
 - b) Design and develop programs that the use of Break Statement
 - c) Design and develop programs that use of Continue Statement
- 5. Looping constructs:

Design and develop programs based on

- a) Iterative loops using While, Do While, For, Nested For
- b) Selection Statement using the switch-case Statement
- c) Multiple way selections that will branch into different code segments based on the value of a variable or expression

6. Arrays

a) Design and develop programs which illustrates the implementation of single-dimensional arrays and Multi dimensional arrays

7. Strings

- a) Create programs to initialize strings and usage of them for various input, output operations.
- b) Design and develop programs to handle String functions

CYCLE - II: ADVANCED PROGRAMMING CONSTRUCTS

1.Concept of user defined functions

- a) Design and develop programs depending on functions both user defined and standard library functions in C with different approaches.
- 2. File handling operations
 - a) FILE structure
 - b) Opening and closing a file, file open modes
 - c) Reading and writing operations performed on a file
 - d) File Pointers: stdin, stdout and stderr
 - e) FILE handling functions: fgetc(), fputc(), fgets() and fputs() Functions
- 3. Pointers:
 - a) Programs on declaration of pointers and their usage in C

- b) Programs to relate between arrays and pointers and use them efficiently in a program
- c) To pass pointers as an argument to a function, and use it efficiently in program
- 4. Command Line Arguments
 - a) Design and develop programs that accept arguments from command line to perform different kinds of operations
- 5. Structures and Unions
 - a) Programs to define, declare and access structure and union variables
 - b) Design and develop programs to work with pointers to access data within a structure
 - c) Programs to pass structure as an argument to a function

TEXT BOOKS

[1] Ashok N Kamthane, "C And Data Structures", Pearson Education; First edition, 2008

REFERENCE BOOKS

- [1] Brain W Kernighan and Dennis Ritchie, "The C Programming language", Pearson Education India,2015
- [2] David Griffiths and Dawn Griffiths, "Head First C":A Brain Friendly Guide, O:Reilly media, 2012

E-RESOURCES AND OTHER DIGITAL MATERIAL

- [1] Introduction to Programming C: http://nptel.ac.in/courses/106104128/
- [2] C-Programming IIT Kharagpur lectures <u>https://www.youtube.com/watch?v=S47aSEqm_0I&list=PLeCxvb23g7hrw27XlekHtfygUTQ0TmF</u> fP
- [3] Numerical Methods and Programing by Prof.P.B.Sunil Kumar, Department of Physics, IIT Madras <u>https://www.youtube.com/watch?v=zjyR9e-N1D4& list=PLC5DC6AD60D798FB7</u>

	BAS	17ME1253 IC WORKSHOP	
Course Category:	Engineering Sciences	Credits:	1.5
Course Type:	Laboratory	Lecture -Tutorial-Practice:	0 - 0 - 3
Prerequisites:		Continuous Evaluation: Semester end Evaluation:	30 70
		Total Marks:	100

COURSE OUTCOMES

Upon successful completion of the course, the student will be able to:

CO1	Model and develop various basic prototypes in the Carpentry trade.
COI	whole and develop various basic prototypes in the carpentry frade.

CO2 Develop various basic prototypes in the trade of Welding.

CO3 Model and develop various basic prototypes in the trade of Tin Smithy.

CO4 Familiarize with various fundamental aspects of house wiring.

Contribution of Course Outcomes towards achievement of Program Outcomes (L – Low, M - Medium, H – High)

	PO 1	РО 2	PO 3	РО 4	PO 5	PO 6	РО 7	PO 8	PO 9	РО 10	РО 11	PO 12	PSO1	PSO2
CO1	H	Н									L			
CO2	M	Н									L			
CO3	M	Н									L			
CO4	L	Н									L			

COURSE CONTENT

UNIT I

Carpentry:

- a. Study of tools & operations and various carpentry joints.
- b. Practice of open bridle joint, Cross half lap joint, Half LapT Joint, and Dove tail joint
- c. Simple group exercise like preparation of single widow frame.

UNIT II

Welding:

- a. Study of tools and operations of Gas welding and arc welding.
- b. Practice of various joints like weld layer practice, V- Butt Joint, Double parallel fillet joint, T-Joint, and Corner Joint.

UNIT III

Tin Smithy:

a. Study of tools & operations

- b. Practice of various joints like Saw Edge, Wired Edge, Lap Seam, and Grooved Seam.
- c. Simple exercise like Fabrication of square tray.

UNIT IV

House Wiring:

- a. To connect one lamp with one switch.
- b. To connect two lamps with one switch.
- c. To connect a fluorescent Tube.
- d. Stair case wiring.
- e. Godown wiring.
- f. Study of single phase wiring for a office room.
- g. Nomenclature & measurement of wire gauges and cables.
- h. Estimation of cost of indoor wiring for a wiring diagram (plan of a building).
- i. Test procedure for continuity of wiring in a electric installation.
- j. Measurement of electric energy by using meter.

TEXT BOOKS

- [1] Kannaiah P. & Narayana K. C., "Manual on Workshop Practice", Scitech Publications, Chennai, 1999.
- [2] Venkatachalapathy, V. S., "First year Engineering Workshop Practice", Ramalinga Publications, Madurai, 1999.

REFERENCE BOOKS

[1] Gopal, T.V., Kumar, T., and Murali, G., "A first course on workshop practice – Theory, Practice and Work Book", Suma Publications, Chennai, 2005.

17MA1301A COMPLEX ANALYSIS & NUMERICAL METHODS

Course Category:	Programme Core	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 1 - 0
Prerequisites:	Algebra of Complex numbers,	Continuous Evaluation:	30
	convergence of infinite series, theory of	Semester end Evaluation:	70
	equations	Total Marks:	100

Course outcomes	Upon s	successfu	ul com	pletion	of the	course,	the st	udent v	vill be a	able to:						
	CO1	Deter	mine a	nalytic a	ind noi	n analy	tic func	tions a	nd und	erstand	the co	ncept c	of comp	lex integ	ratior	
	CO2			or and I and the						eal defi	nite int	egrals	using re	esidue th	neorei	
	CO3		-	raic an nterpola		iscende	ental, s	system	of eq	uations	and	unders	tand tl	ne conc	ept o	
	CO4			the con ms num	-		erical d	ifferen	tiation	and int	egratic	on. Solv	e initial	and bo	ooundary	
Contributio n of Course		PO 1	PO 2	PO 3	PO 4	РО 5	РО 6	РО 7	РО 8	РО 9	PO 10	PO 11	PO1 2	PSO1	PSO 2	
Outcomes towards	CO1	H				M		M								
achievemen t of	CO2	H				M		M								
Program Outcomes	CO3	H	M			H						M				
(L – Low, M - Medium, H – High)	CO4	H	M			H						M				
Course Content	function UNIT II Taylor' of real Standa	ex Anal ons, Orth	Laurer integra	system nt's serie als (by a	s, Com es, Zero pplying	plex in os and s g the re	tegratio singula sidue t	on, Cau rities.R heoren	chy's in esidue n).	tegral t	heorer n, calcı	n, Cauc ulation	hy's into of resid	egral for ues, eva	mula luatio	
	metho metho Interpo Relatio	rical Met d, Soluti d. olation: ons, Diff	ion of s Introc ference formula	simultar luction, es of a ae –Gau	Finite Finite poly uss's,	linear e Diffei nomial Sterling	equatio rences , New g's, Bee	ns – Ga – For rton's	auss Eli ward, formul	minatio Backwa ae for	on Met ard, Co inter	hod - G entral polatio	Gauss - Differei n, Cen ⁻	Seidel it nces, Sy tral diff	erativ mboli erenc	

Course Categ	ory:	Insti	tutiona	al Core			c	redits:	:						4		
Course Type:		Mar	datory	cours	e		L	Lecture -Tutorial-Practice:						3-1-			
Prerequisites	:	-	neerin IE1104	•	nanics		S		er end	/aluati Evalua				30 70 100			
Course outcomes	Upon s	success	ful cor	npletio	on of tl	he cou				ll be al	ole to:						
	CO1				•	-	•				e theo	ory of	elasti	city inc	luding		
	CO2		strain/displacement and Hooke's law relationships; Define the characteristics and calculate the magnitude of principal stresses shear force and bending moment diagrams.								es and	strain,					
	CO3		llate th pinatio		-	tresse	s and	deflect	tion at	: any p	point c	on a b	eam s	ubjecte	d to a		
	CO4	Unde	erstand	ing the	e shear	stress	in bea	ms, to	rsion	in shaf	ts and	spring					
Contributio n of Course		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO1	PSO2		
Outcomes towards	CO1	м	м	М	-	М	-	-	-	-	-	м	-				
achievemen t of Program	CO2	н	н	м	-	М	-	-	-	-	-	L	-				
Outcomes (L – Low, M-	CO3	м	м	м	-	М	-	-	-	-	-	L	-				
Medium, H - High)	CO4	м	м	М	-	М	-	-	-	-	-	L	-				
Course content	volumo compo UNIT II Princip Two d	es and and str etric st site ba : al Stre imension circle	rain - H rain – rs – Te sses ai onal sy	ooke's Elastic mpera nd Stra /stem,	modul ture st iins stress	i and t resses at a j	the rel - Simp point o	ationsl le prob	hip bet olems. lane, j	tween	them al stre	– Bars sses a	of var	on's rat ying sec ncipal p rain. —	ction –		

	Shear Force and Bending Moment diagrams of statically determinate beams
	Types of beams and supports, shear force and bending moment diagram–Simple problems.
	UNIT III:
	Flexural Stresses Theory of simple bending – Assumptions – Derivation of bending equation - Neutral axis – Determination of bending stresses – Section modulus of across various beam sections.
	Slope and deflection Relationship between moment, slope and deflection, Double integration method, Macaulay's method Moment area method, conjugate beam method Use of these methods to calculate slope and deflection for determinant beams—Simple problems.
	UNIT IV:
	Shear Stresses and Torsion Derivation of formula of shear stress– Shear stress distribution across various beam sections - Derivation of torsion equation and its assumptions. Applications of the equation of the hollow and solid circular shafts, Torsional rigidity, Combined torsion and bending of circular shafts, principal stress and maximum shear stresses under combined loading of bending and torsion. Analysis of close-coiled-helical springs- Simple problems.
Text books and Reference Books	 Text Books: 1. Strength of Materials (Mechanics of solids) by Er. R.K.Rajput; S.Chand&Company Ltd., New Delhi. 2. Strength of Materials by S Ramamrutham& R Narayan; DhanpatRai Publishing Co.(P) Ltd, New Delhi. Reference Books: 1. Structural analysis by S SBhavikatti – V K Publishers 2. Theory of structures by S P Timoshenki& D H Young.

17CE 3303 FLUID MECHANICS

urse Category:		ogramn	ne Core	9										4	
urse Type:		eory							Le	cture -	Tutoria	l - Prac		3 - 1- 0	
		MA 110									inuous			30	
		PH 120		-				S	emeste	er end l	Evaluati	on:		70	
	17	ME 120)4 – Enį	gineeri	ng Meo	hanics ·	-				Т	otal Ma	arks:	100	
Course Outcomes	Upon	success	ful con	npletio	n of th	e cours	e, the s	student	: will be	e able t	o:				
	CO1	Meas	ure the	e pressi	ure of t	the flow	ing flu	id.							
	CO2	Unde	rstand	the kin	ematio	and dy	namic	behavi	or of flo	ow.					
	CO3					through	n pipes	and Or	rifices/	Mouth	pieces.				
	CO4	-		flow th	rough	pipes.									
Contributio n of Course		PO 1	РО 2	РО 3	РО 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO1 0	PO 11	PO 12	PSO1	PSO 2
Outcomes towards	CO1	н	м	н											н
achievemen t of	CO2	Н	м	н											н
Program Outcomes	CO3	н	м	н										м	н
(L – Low, M - Medium, H – High)	CO4	Н	м	Н										м	H
Content	and No Fluid S Absoluvertica UNIT I Kinem unifor Irrotat and st Dynan Mome	rties of on - New Statics: ute and al and ir l: hatics o m and cional an ream fu nics of entum p II:	wtonian Variati gauge nclined f Fluid non-un nd rota unction Fluid	n fluids on of s pressu plane s Flow: niform ational Flow: e; Appli	; Vapo static p ure; Pre surface Meth flows; flows; Euler' ication	ur press pressure essure r s. ods of Lamin Stream s equa of Mon	describ describ ar and line; P tion o nentum	urface T sure the rement bing flu turbul rath line f motion equat	e same by ma id mot lent flo e; Strea on; Be ion; Fo	and Ca in all o nomete tion; Cl ows; Th ak line; rnoulli': rce exe	pillarity directio ers; Hyc assifica aree, tw Continu s equa rted on	ns – Pa rostatio tion of vo and uity equ tion; E a pipe	flow; one ouation; nergy bend.	inuum; N Law; Atm sure on h Steady, o dimensior Velocity correctio	osphe orizon unstea aal flo poten
								mont c	1 1 0 VA	through		-moth		nd various	dovid
	Discha	irge thre	ough V	enturi ı	meter;	Dischar	ge thro	ough or	ifice m	eter; M	easurer	nent of	veloci	nd various ty by Pito Determir	t tube

	coefficients for an orifice; Flow through small orifice and large rectangular orifice; Classification of mouthpieces; Flow through external cylindrical mouthpiece.
	UNIT – IV Analysis of Flow through Pipes: Energy losses in pipelines; Darcy – Weishbach equation; Minor losses in pipelines; Concept of equivalent length; Pipes in series and parallel.
	Laminar Flow: Relation between shear and Pressure Gradients in Laminar Flow; Reynold's experiment; Critical velocity; Steady laminar flow through a circular pipe – Hagen Poiseuille's Law; Laminar Flow between Parallel Plates – Both plates at rest.
Text books and Reference books	Text Books: [1] P.N. Modi& S.N. Seth, "Hydraulics & Fluid Mechanics", 18 th ed., Standard Book House, New Delhi, 2015. [2] A.K. Jain, "Fluid Mechanics", 11 th ed., Khanna Publishers, New Delhi, 2014.
	 Reference Books: [1] R. K. Bansal, "Fluid Mechanics and Hydraulic Machines", 9th et., Laxmi Publications; New Delhi, 2015. [2] Rajput R.K., "Fluid Mechanics and Hydraulic Machines", 3rd ed., S.Chand and Company Ltd., New Delhi, 2014. [3] K. Subramanya, "Theory and Applications of Fluid Mechanics", 3rd ed., Tata McGraw Hill Publishing Company, New Delhi, 2013.
E-resources and other digital material	 [1] Dr. T. I. Eldho, IIT/Bombay – Fluid Mechanics – "<u>www.nptel.ac.in / courses/ 105101082/</u>" [2] Dr. SubhashivaDutta& Dr. N. Sahoo, IIT/Guwahati – Fluid Mechanics – "www.nptel.ac.in/courses/105103095/"

17CE3304 SURVEYING & GEOMATICS

Course Category:	Programme Core	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	4 - 0- 0
Prerequisites:	Mathematics, Science	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	On suc	cessful completion of the course, the student will be able to:
	CO1	Understand the principles of surveying.
	CO2	Measure horizontal and vertical angles in surveying.
	CO3	Compute areas and volumes of a given section
	CO4	Understand the concepts of leveling and location of contour.

	CO5	Unde	erstand	the pri	nciples	of mod	lern fie	ld surv	ey syste	em.					
	CO6	Settir	ng out o	of a sim	nple cur	ve.									
Contributio n of Course		РО 1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	РО 9	РО 10	PO 11	PO 12	PSO 1	PSO 2
Outcomes towards	CO1	L													
achievemen	CO2	L				н				м		м			
t of program	CO3	L				н				м		м			
Outcomes (L-Low,	CO4	L				н				м		м			
M-Medium,	CO5	L								м		м			
H-High)	CO6	L								м					

Course Content

BASICS OF SURVEYING:

UNIT – I

Surveying: Definition; Classification; Principles of surveying; Plan and map; Scales used for Maps and plans. Accuracy; Precision; Sources of errors; Types of errors;

CHAIN SURVEYING:

Principles of chain surveying; Basic definitions; Different methods; Ranging out; Chaining a line on a flat ground; Chaining on an uneven or a sloping ground; Chain & Tape corrections.

UNIT-II

AREAS & VOLUMES:

Introduction; Boundaries with offsets at irregular intervals; Planimeter: Area of cross sections- two level sections only; Trapezoidal rule; Prismoidal formula; Capacity of a reservoir.

THEODOLITE SURVEYING:

Basic definitions, fundamental lines, Temporary adjustments; Measurement of a horizontal angle by repetition and reiteration. Measurement of vertical angle; Source of errors in Theodolite survey.

UNIT – III

LEVELLING:

Basic definitions; Different methods of leveling; Classification of direct leveling methods; Auto level; Leveling staff; Level field book; Profile leveling; Cross sectioning; Height of Instrument and rise and fall method. Sources of errors in leveling.

CONTOURING:

Contouring; contour interval; Characteristics of contours; Methods of locating contours; Interpolation and Sketching of contours; Uses of contour maps;

UNIT-IV

MODERN FIELD SURVEY SYSTEMS:

Principle of Electronic Distance Measurement, Types of EDM instruments, Total Station: GPS- Applications of GPS in Civil Engineering,

	CIRCULAR CURVES: Basic definitions; Designation of a curve; Relationship between radius and degree of curve; Elements of a simple curves; setting out of simple curve.
ext books	Text Books:
ind Reference books	 Surveying Vol I & II by K R Arora, 15th Edition, 2015; Standard Book house. Plane Surveying by AM Chandra, New Age International (P) Ltd.
	Reference Books:
	 Surveying Vol.I & II by B.C. Punmia, Laxmi Publications. Fundamentals of surveying by S.K. Roy 1999, Prentice- Hall of India, New Delhi. Advanced Surveying, by S. Gopi, R.S. Kumar and N. Madhu, 2007, Pearson education, New Delhi.
-resources ind other ligital naterial	http://nptel.ac.in/courses/webcourse-contents/IIT-ROORKEE/SURVEYING/home.htm
nd other gital	nttp://nptel.ac.in/courses/webcourse-contents/iii-ROOKKEE/SOKVEYING/nome.ntm

17CE3305-ENGINEERING GEOLOGY

urco Catogoriu			Drog	r	Coro								Credits:	2	
urse Category: urse Type:			Theo	ramme	core					Loct	Iro _T.,4		ractice:		. 0
requisites:			meo	'' Y									uation:		U
requisitesi													uation:		
												Total	Marks:	100	
Course outcomes	On suc	cessful	compl	etion c	of the co	ourse, t	he stu	dent w	ill be al	ole to:					
outcomes	C01	acqu	uire b	asic k	nowle	dge o	n geol	ogy i	n civil	engine	eering				
	CO2	Und	erstar	nd the	geolo	gical p	proces	s influ	ience	the civ	/il eng	ineeri	ng proj	ects	
	CO3	Und proje		nd the	geolo	gical a	and ge	ophy	sical m	nethod	ls for p	olannii	ng and	desigr	ning
	CO4	iden proje	-	ne soli	ution c	of geol	ogical	prob	lems i	n the o	contex	t of m	ajor civ	vil engi	neerin
Contribution of Course		РО 1	РО 2	РО 3	PO 4	PO 5	PO 6	РО 7	РО 8	РО 9	РО 10	PO 11	PO 12	PSO 1	PSO 2
Outcomes towards	CO1	Н													Н
achievement of program	CO2	Н													н
Outcomes	СОЗ	н	н		Н										н
(L-Low, M-Medium, H-High)	CO4	Н	н		н										Н
Course Content	Scope Depar Miner Moder of rock	AMEI luctio e of ge tment alogy rn Mei k form blogy menta	n of E ologic s dea -Intr hods ing m -Rock ry roc	Engine cal stu ling w oducti of mir ineral c cycle cks – F	eering idies ir ith geo on to neral io s - Igne Forma	g Geol n vario ology minera dentific eous ro tion –0	ogy E bus Civ alogy I cation- ccks – Classif	Branch vil eng Minera - SEM - Form ficatio	nes of jineeri al Iden I, XRD nation n and	Geolo ng pro tificati , EPM –Class Text	ojects: on by 1A and sificati ures, l	Centr Physi XRF on an Metan	al and cal pro . Physi d Tex norphic	perties cal pro	perties
	UNIT-	11													

	Physical geology-Weathering-Erosion- Denudation, Engineering classification of weathered
	rocks ; Types of Land forms- Alluvial- Glacial- Desert and Coastal
	Geological Hazards- Land slides -Type of landslides ,Factor of Safety ,Slope Protection and
	Maintenance Earthquakes - Causes and effects of earthquakes Earthquake Magnitude and
	intensity scales. seismic zones of India: Groundwate r- Factors control water bearing capacity of rocks;
	Deformation and strength Behavior of Rocks – Stress –strain behavior of rock, Concept of
	rock deformation Rock outcrops- Types- strike and Dip Folds - Types-Effects on construction
	Faults-Types-Effects on construction : joints-Types- Effects on construction
	UNIT-III
	Sub surface investigation Methods
	Maps and their interpretation- Topographic Map and Geological Map
	Geophysical Methods- Principles of exploration geophysical Methods Electrical Resistivity method- Interpretation, Seismic refraction method- Interpretation
	Rock mechanics - Rock mass as construction material- Definition of rock mass, Engineering characters of rock mass ,Measurement of velocity in rocks-Core logging- Rock quality designation Index
	UNIT-IV
	Geology for Major projects Dams - Site selection for dams , Geological investigation methods for dams Reservoirs- Failure of reservoirs , Reservoir suitable rocks, Reservoir induced seismicity Tunnels- Site selection for tunnels , Geological investigation methods for Tunnels
Text books	Text Books:
and Reference books	 F.G. Bell, Fundamental of Engineering Geology, BS Publications PVT Ltd, Hyderabad. Parbin Singh, "Engineering and General Geology ", Katson Publication House, 1987. Principals of Engineering Geology by K.V.G.K. Gokhale – B.S publications Engineering Geology by N.Chennkesavulu, Mc-Millan, India Ltd. 2005.

	Reference Books:
	 Krynine and Judd, "Engineering Geology and Geo techniques", McGraw Hill Book Company, 1990. Legeet, "Geology and Engineering", McGraw Hill Book Company, 1998. Blyth, "Geology for Engineers", ELBS, 1995. GoodmanR.F-Introduction to rockmechanics, JohnWiley, Chichestor Engineering Geology by SK Duggal, HK Pandey And N.Rawal –McGraw Hill Education
E-resources and other digital material	NPTEL Courses

17TP1306 LOGIC & REASONING

Course Category:	Institutional Core	Credits:	1
Course Type:	Learning by Doing	Lecture -Tutorial-Practice:	0 - 0 - 2

rerequ	isites:								:		er end E	Evaluation: Evaluation: Intal Marks:	0	
COURSE	OUTCOM	IES												
Jpon su	ccessful c	ompletio	on of the	e course	e, the stu	udent w	vill be al	ble to:						
CO1	Think	reason lo	ogically i	n any cr	itical sit	uation								
CO2	Analyz	e given i	nformat	ion to fi	nd corre	ect solut	ion							
CO3	To red	uce the r	nistakes	in day t	to day a	ctivities	in pract	tical life						
CO4	Develo	p time-n	nanager	nent ski	lls by ap	proachi	ng diffe	rent sh	ortcut r	nethod	5			
CO5	Use ma	athemati	cal base	ed reaso	ning to I	make de	ecisions							
	ution of Co	ourse Ou	tcomes	-							ny com	petitive exa	ım.	
Contribu		ourse Ou	tcomes	-							PO 11		nm. PSO 1	PSO 2
Contribu	ution of Co r, 2 - Medi PO	ourse Ou um, 3 – PO	itcomes High) PO	toward PO	s achiev PO	vement PO	of Prog PO	ram Ou PO	tcomes	PO	РО	РО	PSO	
Contribu 1 – Low	ution of Co r, 2 - Medi PO	ourse Ou um, 3 – PO	itcomes High) PO	toward PO	s achiev PO	PO 6	of Prog PO	ram Ou PO	tcomes	PO	РО	РО	PSO	
Contribu (1 – Low CO1	ution of Co r, 2 - Medi PO	purse Ou um, 3 – PO 2	itcomes High) PO	toward PO	s achiev PO	PO 6	of Prog PO	ram Ou PO	tcomes	PO	РО	РО	PSO	
Contribu 1 – Low CO1 CO2	ution of Co r, 2 - Medi PO	purse Ou um, 3 – PO 2	itcomes High) PO	toward PO	s achiev PO	PO 6	of Prog PO	PO 8	tcomes	PO	РО	РО	PSO	
Contribu (1 – Low CO1 CO2 CO3	ution of Co r, 2 - Medi PO	purse Ou um, 3 – PO 2	itcomes High) PO	toward PO	s achiev PO	PO 6	of Prog PO	PO 8	PO 9	PO	РО	РО	PSO	

COURSE CONTENT

UNIT I :

- Series Completion,
 Coding-Decoding,
 Blood Relation Blood,
- 4. Puzzles test

UNIT II:

- 1. Direction sense test,
- 2. Logical Venn diagrams,

- 3. Number test, ranking test,
- 4. Mathematical operations

UNIT III:

- 1. Arithmetical Reasoning,
- 2. Inserting missing character,
- 3. Syllogism.

UNIT IV: Non – Verbal:

- 1. Water images,
- 2. Mirror images,
- 3. Paper folding,
- 4. Paper cutting,
- 5. Embedded Figures,
- 6. Dot situation,
- 7. Cubes & Dice

ТЕХТ ВООК

R. S. Aggarwal, "Verbal and non-verbal reasoning", Revised Edition, S Chand publication, 2017 ISBN:81-219-0551-6

17CE3351 SURVEYING LABARATORY

ourse Category	:	Programme Core Practical	Credits: Lecture -Tutorial-Practice:	_
erequisites:		Mathematics, Science	Continuous Evaluation: Semester end Evaluation: Total Marks:	30 70
Course outcomes	Upon s	uccessful completion of the course, the studen	t will be able to:	

		1			<u> </u>		1 .										
	CO3	Proje	ct the	Project the traverse from ground, on to the sheet by using plane table Determine the horizontal & vertical angles by using Theodolite.													
	CO4	Deter	mine t	the hor	rizontal	l & ver	tical a	ngles l	oy usin	g Theo	dolite.						
	CO5	Determine the elevations by using different leveling instruments.															
Contribution of Course Outcomes		PO 1	РО 2	PO 3	PO 4	PO 5	PO 6	РО 7	РО 8	РО 9	РО 10	PO 11	PO 12	PSO1	PSO		
Outcomes towards	CO1	L								L	L				L		
achievement of Program	CO2	L								L	L				L		
Outcomes (L – Low, M - Medium, H –	CO3	L								L	L				L		
	CO4	L								L	L				L		
High)	CO5	L								L	L				L		
		Practio	cal App	olicatio	n : To fi	ind the	-	d Trave f a give	-								

	Practical Application : To find the R.L's of the ground for laying the pipe line using any leveling Instrument.
	 Reciprocal Levelling: Practical Application: Elevation difference between two points on both sides of river banks.
Text books and Reference books	 Surveying Vol I & II by K R Arora, Standard Book house. Plane Surveying by AM Chandra, New Age International (P) Ltd. Surveying Vol.I & II by B.C. Punmia, Laxmi Publications. Fundamentals of surveying by S.K. Roy 1999, Prentice- Hall of India, New Delhi.
E-resources and other digital material	http:/gauravtandon.wikspacaes.com

17CE3352 STRENGTH OF MATERIALS LABORATORY

Course Category:	Programme Core	Credits:	1
Course Type:	Practical	Lecture - Tutorial - Practice:	0-0-2
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon successful completion of the course, the student will be able to:														
	CO1	do te	ests on	steel ar	nd find	its prop	erties t	to asce	rtain su	itability	/ as per	IS code	es of pr	actice.	
	CO2	cond	luct tes	ts on w	ood as	per IS C	odes o	f practi	ce and	its use	in work	٢S			
	CO3	evaluate the strains and stresses experimentally using electrical resistance strain gauges.													
Contribution of Course		РО 1	РО 2	РО 3	РО 4	PO 5	PO 6	РО 7	РО 8	РО 9	РО 10	PO 11	PO 12	PSO1	PSO2
Outcomes towards	CO1	L			м					L	м				L
achievement of Program	CO2	L	. M L M .												L
Outcomes		L			м	м				L	м				L
(L – Low, M - Medium, H – High)	CO3														
Course Content	2. De	termir	ne the u	ıltimat	e shear	streng	th of n	nild ste	eel rod	in sing	gle and	doubl	e shear	nachine.	

	 and propped cantilever. 6. Find the impact resistance of the given material by conducting Charpy test and IZOD test on Impact testing machine. 7. Find the modulus of rigidity by conducting torsion test on solid circular shaft. 8. Determine the modulus of rigidity of the material of the spring. 9. Determine the ductility of steel wire. 10. Tests on timber. 11. Strain gauge application and evaluation of stress.
Text books and Reference books	 Strength of Materials by S Ramamrutham& R Narayan; DhanpatRai Publishing Co.(P) Ltd, New Delhi.
E-resources and other digital material	https://home.iitm.ac.in/kramesh/Strength%20of%20Materials%20Laboratory%20Manual.pdf

17CE3353-ENGINEERING GEOLOGY LABORATARY

Course Categ	ory:	Pro	gramm	e Core									Credit	s: 1		
Course Type:	-	Practical								Lect	ure - T	utorial	- Practic	e: 0	-0-2	
Prerequisites			Continuous Evaluation: Semester end Evaluation: Total Marks:								n: 7					
Course outcomes	On suc	cessful	comple	etion o	f the co	ourse, t	he stu	dent wi	ill be at	ole to:						
	C01	Iden	Identify the common rocks and minerals and their engineering properties													
	CO2	Inte	Interpret the subsurface geological structures using models													
	CO3	Prac	ctice th	ne top	ograp	hic ar	nd gec	logic	cross	sectio	ns					
	CO4	Cal	culate	the e	ngine	ering p	aram	eters f	rom th	ne roc	k sam	ples				
Contribution of Course		PO 1	PO 2	PO 3	РО 4	РО 5	PO 6	РО 7	РО 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	
Outcomes towards	CO1	н													н	
achievement	CO2	н													н	
of program Outcomes	СОЗ	н	н		н										н	
(L-Low, M-Medium, H-High)	CO4	H	Н		H										Н	
H-High) Course Content	EXP	a).(.2 . Ide a).(3 Iden a)Fc 1. Dra	Quartz entifica Granite ntificati olds b)	z grou tion o e b) Ba on an Fault and in	p b) F f the f asalt c d sket s c) U terpre	eldspa ollowin c)Sanc ching n cont tation	ng cor Istone of the formiti	up c) N nmon d) Lir struc es d) ologic	Mica g rocks nestor tural n Tunne al cros	roup o by Te ne e)M nodels Is in g	l) Car xture larble eolog	f)Gne	y Physi e group iss ructure:		ropertie	

	EXP.5 . Determination of point load strength index of rocks
	EXP.6. Determination of tensile strength of rocks from Brazilian test.
	EXP.7 . Determination of Compressive strength of rocks
Text books	Engineering Geology by SK Duggal, HK Pandey And N.Rawal –McGraw Hill Education
and Reference books	
E-resources and other digital material	https://www.fugro.com/our-services/land-site-characterisation/testing-monitoring/laboratory- testing-of-soils-and-rocks

17MC1307 B - INDIAN CONSTITUTION

Course Type: The	eory	Locture Tytorial Deaction	0 0 0
		Lecture - Tutorial - Practice:	2-0-0
Prerequisites:		Continuous Evaluation:	100M

Course outcomes	Upon successful completion of the course, the student will be able to:														
	CO1	Know the fundamental law of the land													
	CO2	Understand how fundamental rights are protected													
	CO3	Perceive the structure and formation of the Indian Government System													
	CO4	Exp	lain v	when a	and ho	ow an	emer	rgency	v can b	e imp	osed a	nd wha	it are t	he	
	consequences. PO PSPO PSPO PSPO														
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	РО 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSPO	PSPO
Dutcomes owards	C01	1	2	3	4	5	M	/	0	9	10	11	12	1	2
achievement	CO2						Μ								
of Program Outcomes	CO3						Μ								
(L – Low, M - Medium,	CO4						Μ								
Course	Consti Consti	ducti itution itution	nalisr	n, Hi										tion La ent feat	
Course	Intro Consti Consti UNIT Funda to equ the rig UNIT legisla Parlia Presid Perspe	ducti itution itution II: amen ality, tht of III: ative a ment ent o ective	tal ri sche: life a Nat and fi tary f of Inc s of t	n, Hi ndia. ights: me of nd per ure of nancia form lia, A he cor	storic Schei the fi rsonal of the al pov of go mend astitut	al pe me of undan l liber e Ind vers b vern lment ional	f the nenta ty un ian etwee nent of the amer	fundar fundar l right der Ar consti en the in Ind he Co admen	mental to certicle 2 tution Unior dia: T mstitut ts in In	nstituti rtain fi 21, wri : Fed a and s the Co tional ndia	ion of s, sche reedor its juri eral s tates nstitut powe	f India eme of ns und sdiction tructur ion po	the fu er Artin. e and wers a		ures of al right cope of tion of s of the
Course	Intro Consti Consti UNIT Funda to equ the rig UNIT legisla Parlia Presid Perspe Local	ducti itution itution II: amen ality, tht of III: ative a ment ent o setive Self	tal ri sche: life a Nat and fi tary f of Inc s of t	n, Hi ndia. ights: me of nd per ure of nancia form lia, A he cor	storic Schei the fi rsonal of the al pov of go mend astitut	al pe me of undan l liber e Ind vers b vern lment ional	f the nenta ty un ian etwee nent of the amer	fundar fundar l right der Ar consti en the in Ind he Co admen	mental to certicle 2 tution Unior dia: T mstitut ts in In	nstituti rtain fi 21, wri : Fed a and s the Co tional ndia	ion of s, sche reedor its juri eral s tates nstitut powe	f India eme of ns und sdiction tructur ion po	the fu er Artin. e and wers a	ent feat ndament cle 19, s distribu	ures of al right cope of tion of s of the
H – High) Course Content	Intro Consti Consti UNIT Funda to equ the rige UNIT legisla Parlia Presid Perspe Local	ducti itution itution II: amen ality, th of III: tive a ment oective Self IV:	tal ri sche: life a Nat and fi tary to f Inc s of t Gove	n, Hi ndia. ights: me of nd per ure of nancia form lia, A he cor rnme	storic Schei the fi rsonal of the al pov of go mend astitut nt: C	me of undan l liber e Ind vers b vern lment cional onstit	f the nenta ty un lian of etwee nent of the american	fundar l right der Ar consti en the in Ind he Co admen al Sch	mental to certicle 2 tution Unior dia: T nstitut ts in Ii eme in	nstituti rtain fi 21, wri : Fed a and s the Co tional ndia n India	ion of s, sche reedor its juri eral s tates nstitut powe	f India eme of ns und sdiction tructur tructur	the fu the fu er Arti n. e and wers a Proce	ent feat ndament cle 19, s distribu	ures of al right cope of tion of s of the

17CE3401

BUILDING MATERIALS & BUILDING CONSTRUCTION

Course Course	-	y:		Progra Theory		Core			Lectu				redits: cticals	3 3-0-0			
									8	30 70 100							
	On su	coosef		nnlotid	on of t	ho co	irea t	hostu	dont x	vill ho	abla t	· · ·					
COURSE	CO1 Su						,						ding ma	terials	that		
DUT				structu				mana	iuotuii	ng pro	000000	or our	ang na	uer lais	tilut		
COMES	CO2							materi	als for	structu	ıral me	mbers.					
			nderstand application of protective materials for structural members. stinguish different types of constructional procedures for different components of a ilding														
	CO3		uilding. pply the knowledge of different support systems for construction and repairs.														
	CO4	App	ly the 1	knowle	edge of	fdiffer	ent sup	port s	ystems	for co	nstruct	ion an	d repair	rs.			
Contrib		PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSC		
ution of		1	2	3	4	5	6	7	8	9	10	11	12	1	2		
Course	CO1	L		Μ		L		M	L						Н		
Outcom es	CO2	L		M			M	M							Н		
Toward	CO3	L		M		Н									M		
s achieve	CO4																
ment																	
of																	
Progra																	
m																	
Outcom																	
es																	
(L –																	
Low, M- Medium																	
, H –																	
, n High)		L				Н	н								Μ		
<u></u> g)	UNIT	– I							I						1,1		
	Proces BUILI BRIC	ies of s of bl DING KS: C en clan ks; Co	asting; BLOC deneral np bur lours c	Precau C KS: ; Com ning ar	utions position d kiln	in bla on of burnii	sting; good 1g; Qu	Comm brick alities	non bu earth; of goo	ilding Mar d brick	stones nufactu xs; Tes	of Indi are of ts for b	aterials a. bricks; oricks; C clays; I	Comp Classifi	arisor		
Course Content	CONC	CRET	E BLC	OCKS:	Raw	materi	als; ma	anufac	turing;	advan	tages;	FLY A	ASH BI	RICKS	S: Fly-		

	Ash; use of fly ash; fly ash building bricks;
	TIMBER: Definition; Structure of a tree; Defects in timber; Qualities of good timber; Decay of timber; Preservation of timber; Fire resistance of timber; Seasoning of timber; Advantages of timber construction; Use of timber. Indian timber trees. UNIT – II STEEL: General; Manufacture of steel; Uses of steel; Market forms of steel; Properties of mild steel; Properties of hard steel;
	PAINTS, VARNISHES AND DISTEMPERS: General; Painting; Varnishing; Distempering; Wall paper; White washing; Colour washing; Emulsion Paints.
	 UNIT – III BRICK MASONRY: Technical terms; Types of bonds in brickwork- Stretcher, header, English, Flemish. STONE MASONRY: Technical terms; Classification of stone masonry. WALLS AND LINTELS Classification of walls, Classification of Lintels- timber, stone, brick, steel, reinforced concrete lintels. UNIT – IV
	 DAMPNESS AND DAMP PROOFING: Causes of dampness; Methods of preventing dampness; Damp proofing materials and their classification; FLOORS: Technical terms; Types of flooring materials. ROOFS: Technical terms; Types of roofs; Trusses- king post, queen post, combination of king post & queen post trusses, mansard roof truss; Steel sloping roofs; Roof covering materials; Types of flat roofs;
	SCAFFOLDING, SHORING, UNDER PINNING AND FORM WORK: Types of scaffolding; Types of shoring; Methods of underpinning; Types of form work;
	Text Books:
Text books	 Engineering Materials by S. C. Rangwala; Charotar Publishing House. Building construction by B. C. Punmia -Laxmi Publications, New Delhi.
and Referen ce	 Reference books: 1. Building construction and construction materials by G.S.Birdie and T.D.Ahuja, Dhanpathrai publishing company, newdelhi

Е-	http://nptel.ac.in/courses/105102088/
resourc	
es and	
other	
digital	
materia	
1	

Course Category:			Programme Core				Credits:							4	
Course Type:			Theory				Lectures; Tutorial; Practicals: Continuous Evaluation: Semester end Evaluation:						ls:	3-0-2 30 70	
											Tota	ıl Marl	ks:	100	
COURSE	On su			-			-								
OUT COMES	CO1	Understand the manufacturing process of cement, types of cements and chemical composition of cement.										al			
	CO2														
		Understand the properties of the constituent materials in concrete Know the properties of freeh and hardened congrete including strength and													
	CO3	Know the properties of fresh and hardened concrete including strength and durability.													
	CO3		Understand various concreting methods.												
	CO4	Design concrete mixes using Indian Standard method and apply statistical quality													
		control techniques to concrete quality.										្រណា			
Contribut		PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PSO	PS
ion of		1	2	3	4	5	6	7	8	9	10	11	12	1	02
Course	CO1	L				L		L	L					L	Н
Outcomes Towards	CO2	L	L		М			M	L					M	Н
achieveme	CO3	L	Н		М	М	L	L						L	М
nt	CO4		11		L	M	M							L	M
of Program Outcomes (L – Low, M- Medium, H – High)	CO5	L	Н	Н		L	L							Н	L
Course Content	 UNIT- I CEMENT: General; Cement and lime; Chemical composition of ordinary Portland cement Functions of cement ingredients; Hydration of cement; Water requirements fo hydration, Storage of cement; Uses of cement. Types of cements including blended cements, properties and their applications; Field tests for cement; Grades of cement a per IS specifications. LABORATORY TESTS: fineness of cement, specific gravity, consistency, initial and final setting time. AGGREGATES: Classification; Fine aggregate-Natural and artificial; coarse aggregate, Source; Grading o Aggregates; IS: 383 requirements for aggregates; Alkali – Aggregate reaction. LABORATORY TESTS: sieve analysis, sp.gravity, bulk density of both fine and coar 														

aggregate, bulking of sand. UNIT-II

WATER:

General; Quality of water; Use of sea water; IS: 456 requirements.

MORTAR:

Functions of sand in mortar; Classification of mortars; Properties of good mortar mix and mortar; Uses of mortar; Precautions in using mortar; Selection of mortar; LABORATORY TESTS: compressive strength, adhesiveness.

CONCRETE:

Definition; Proportioning of concrete; Water - cement ratio.

ADMIXTURES IN CONCRETE:

General; Air–entraining agents; Plasticizers; Mineral and chemical admixtures; Accelerators; Retarders; Miscellaneous admixtures for damp proofing and Surface hardening.

FRESH CONCRETE:

Workability of concrete; Segregation; Bleeding; Yield of Concrete. LABORATORY TESTS: workability tests: slump cone, compaction factor;

UNIT – III

MANUFACTURE OF CONCRETE:

Batching of concrete; Mixing; Transporting Concrete; Placing concrete; Compaction of concrete; Finishing.

HARDENED CONCRETE:

General; Water – cement ratio; Gel / space ratio; Gain of strength with age; Maturity concept of concrete; Effect of maximum size of aggregate on strength.

TESTS ON HARDENED CONCRETE:

Compression test; Failure of compression specimen; Effect of height / diameter ratio on strength; Flexural strength of concrete; Tensile strength of concrete; Non – destructive testing methods- Rebound Hammer Test, Ultrasonic Pulse Velocity Test; Elastic properties of concrete; Relation between modulus of Elasticity and strength; Factors affecting modulus of elasticity; Creep; Factors affecting creep; Shrinkage; Plastic shrinkage; Mechanism of shrinkage; Factors affecting shrinkage.

LABORATORY TESTS: Compressive strength, flexural strength, split tensile test, NDT tests.

UNIT – IV

DURABILITY OF CONCRETE:

Permeability of concrete; Sulphate attack; Methods of controlling sulphate attack; Durability

	of concrete in sea water; Corrosion mechanism of reinforcement in concrete.
	SPECIAL CONCRETES & CONCRETING METHODS: Light weight concrete and No fines concrete; High density concrete; Polymer concrete and Fiber reinforced concrete; Cold weather concreting, Hot weather concreting, Gunite or shotcrete; Ferro cement; Vacuum concrete, Vacuum Dewatered Concrete, Self compacting concrete, Self healing Concrete.
	CONCRETE MIX DESIGN:
	Concept of mix design; Variables in proportioning; List of Mix design methods; Indian standard method of mix design. Ready Mixed Concrete.
	Text Book:
	1. Concrete Technology by M. S. Shetty; S. Chand & Company (Pvt.) Ltd., New Delhi.
	Reference Books:
	2. Properties of Concrete by A. M. Neville; Published by Dorling Kindersley(India) Pvt. Ltd. Licensees of Pearson Education in south Asia, New Delhi.
Text	 Concrete Technology by M. L. Gambhir; Tata Mc Graw – Hill Publishing Company
books	Ltd., New Delhi.
and	4. Concrete Technology by A.R.Santhakumar; Oxford University press-New Delhi.
Reference	Concrete Microstructure, Properties and Materials., by P.Kumar Mehta, Paulo J.M.Monteio,
books	Mc.Graw Hill Publications.
Е-	http:/nptel.ac.in/courses/105102012
resources	
and other	
digital	
material	

17CE3403 MECHANICS OF MATERIALS

Course Category:	Programme Core	Credits:	4
Course Type:	Theory		
		Lecture : Tutorial :Practice:	3-1-0
	Engineering Mechanics 17ME1104A		
	Introduction to Solid Mechanics	Continuous Evaluation:	30
Prerequisites:	17CE3302	Semester end Evaluation:	70
		Total Marks:	100

	Upon	Upon successful completion of the course, the student will be able to:														
COURSE	CO1															
OUT	CO2	Unde	erstand	the	compo	und st	tresses	and	behavi	iour o	f colu	mns u	ınder	various	end	
COMES			onditions													
		Und	Understand the various failure theories, strain energy, shear centre and composite beams													
	CO3															
	CO4	Unde prob		the e	energy	metho	ods us	ed to	derive	the o	equatic	ons to	solve	engine	ering	
Contribu		PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PS	
tion of		1	2	3	4	5	6	7	8	9	10	l1	12	1	02	
Course	CO1	H				H								L	H	
Outcome s	CO2	н				н								L	Н	
Towards achievem	CO3	Н				Н								L	H	
ent	CO4															
of																
Program																
Outcome																
S																
(L - Low,																
M-																
Medium,																
H–														-		
High)		Η				Η								L	H	

Course Content	 UNIT - I Analysis of statically determinate trusses; Analysis of statically determinate trusses using method of sections Thin Cylinders and Spheres Derivation of formulae and calculations of hoop stress, longitudinal stress in a cylinder, and sphere subjected to internal pressures, strain calculations Simple problems. Thick wall cylinders Introduction, Stresses in thick walled cylinders, variation of stresses.

	UNIT – II COMPOUND STRESSES:
	Introduction; Principle of superposition and its limitation; Stress distribution on various cross sections of members due to eccentric loads and lateral loads. Middle third rule; Core or Kernel of a section.
	COLUMNS: Introduction; Stability of equilibrium; The Euler's formula for columns with different end restraints, Limitations of the Euler's formulas; Generalized Euler buckling – load formulas The Secant formula; Rankine's Empirical formula.
	UNIT III STRAIN ENERGY: Introduction, Derivation of expressions for elastic strain energy in uni-axial stress, elastic strain energy in pure bending, elastic strain energy for shearing stresses, elastic strain energy of a bar in pure torsion and strain energy for multi-axial states of stress only.
	 FAILURE THEORIES: Introduction; Maximum normal stress theory; Maximum shearing stress theory; Maximum strain energy theory; Maximum distortion energy theory; Comparison of theories. Stresses in beams (Advanced topic); Introduction, analysis of composite beams, shear centre.
	UNIT IV DISPLACEMENTS OF DETERMINATE STRUCTURES USING ENERGY METHODS: Maxwell's reciprocal theorem; Maxwell – Betti's generalized reciprocal theorem Castigliano's theorems; Application of Castigliano's theorem for calculating deflection o beams, frames and trusses; Virtual work method for deflections.
	 Text Books: 1. Strength of Materials (Mechanics of solids) by Er. R.K.Rajput; S.Chand&Company Ltd. New Delhi. 2. Strength of Materials by S Ramamrutham& R Narayan; DhanpatRai Publishing Co.(P) Ltd, New Del
Text books and Reference Books	 Reference Books: 1. Structural analysis by S SBhavikatti – V K Publishers 2. Theory of structures by S P Timoshenki& D H Young. 3. Mechanics of materials by E P Popov; Prentice-Hall of India Pvt. Ltd.,New Delhi. 4. Norris, C.H. and Wilber, J. B. and Utku, S. "Elementary Structural Analysis" Mc Graw Hill, Tokyo, Japan.
	5. Timoshenko, S. and Young, D. H., "Elements of Strength of Materials", DVNC, NewYork, USA.
	6. Kazmi, S. M. A., 'Solid Mechanics" TMH, Delhi, India.
	7. Hibbeler, R. C. Mechanics of Materials. 6th ed. East Rutherford, NJ: Pearson Prentice

	Hall, 2004
	8. Crandall, S. H., N. C. Dahl, and T. J. Lardner. An Introduction to the Mechanics of Solids. 2nd ed. New York, NY: McGraw Hill, 1979
	9. Gere, J. M., and S. P. Timoshenko. Mechanics of Materials. 5th ed. Boston: PWS Kent Publishing, 1970.
	10. Ashby, M. F., and D. R. H. Jones. Engineering Materials, An Introduction to their Properties and Applications. 2nd ed. Butterworth Heinemann.
	11. Collins, J. A. Failure of Materials in Mechanical Design. 2nd ed. John Wiley & Sons,1993.
	12. Courtney, T. H. Mechanical Behavior of Materials. McGraw-Hill, 1990.
	13. Hertzberg, R. W. Deformation and Fracture Mechanics of Engineering Materials. 4 th Ed. John Wiley & Sons, 1996.
	14. Nash, W. A. Strength of Materials. 3d ed. Schaum's Outline Series, McGraw-Hill 1994.
E-resources and other digital material:	http://nptel.ac.in/courses/105105108/ http://nptel.ac.in/courses/105106116/13

17CE 3404 HYDRAULICS & HYDRAULIC MACHINES

ourse Catego	ory:	Pro	gramm	e Core								Cre	edits:	4			
ourse Type:		The	eory					Lectu	re - Tut	orial -F	Practice	:		3 - 1 - 0)		
rerequisites:		170	CE 3303	s — Fluic	d Mech	anics					inuous ter end T		tion:	30 70 100			
	Upon s	uccess	ful com	pletior	n of the	e course	e, the s	tudent	will be	able to):						
	CO1	Dete	Determine the most economical dimensions of different channel sections.														
Course	CO2	Analy	Analyze the flow through an open channel.														
Outcomes	CO3	Form	Formulate an equation for a phenomenon using dimensional analysis.														
	CO4	Analy	yze and	select	suitabl	e type (of turbi	ne / Pu	ımp.								
Contributi on of		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	РО 8	РО 9	PO1 0	PO 11	PO 12	PSO 1	PS 2		
Course	CO1	н Н	M	н	-	5			0				12	н	2		
Outcomes towards	CO1	н	M	н						_					H		
achievem	CO3	н	M	н						-					H		
ent of Program		н	M	н										M	ŀ		
Outcomes																	
(L – Low, M - Medium, H – High)	CO4																
Course Content	Bazin, I channe Non-Ui rectang applied UNIT II Gradua single s Rapidly jumps; UNIT II Dimens theore	Channe Kutter's Is; Velo niform gular ch I to ope I to ope Hly Var itep me Applica I: sional a m; Geo	s Equation ocity dis Flow: mannel; en chan ried Flo ethod; E d Flow: ations c Analysi	ions; H stributi Concep Critica nel flov W: Dyn Back wa Back wa G hydra f hydra s and S , Kinen	ydrauli on; Pre ot of sp I slope; w; Spec aamic e ater Cu ulic jun aulic jun Similitu natic a	cally ef ssure d becific e Differe cific for quatior rves an np; Eler mp; Ene ude: Din nd dyn	ficient istribut energy; ent slop ce; Spe d Draw nents a ergy los mensio	channe ion. Specifi ecific for corridown of and cha s in a h nal hor	l sectio ic ener itions; rce curv face Pr curves. racteris ydrauli nogene	ns - Re gy curv Channe ve. ofiles; stics of c jump	ctangul res; Crit el transi Comput hydrau yleigh's	ar, Trap ical flo tions; N ation c lic jump metho	oezoida ow; Crit Momer of surfa p; Type od; Bud	zy, Manr al and Ci tical flow ntum pri ace profi es of hyc ckinghar th and V	w in ncip iles I drau		

	exerted by fluid jet on series of flat vanes; Angular momentum principle; Torque exerted on a wheel with radial curved vanes.
	UNIT – IV Hydraulic Turbines: Classification; Impulse; Reaction; Radial, Axial, mixed and tangential flow turbines; Pelton, Francis and Kaplan turbines; Velocity triangles; Head and efficiency; Draft tube theory; Characteristic curves; Concept of specific speed and unit quantities.
	Centrifugal Pumps: Types of pumps, Manometric head; Losses and efficiencies; Working Principle and Work done; Priming; Velocity triangles; Characteristic curves; Multistage pumps; Specific speed; Cavitation.
Text books and Reference books	 Text Books: [1] P.N. Modi& S.N. Seth, "Hydraulics & Fluid Mechanics", 18th ed., Standard Book House, New Delhi, 2015. [2] A.K. Jain, "Fluid Mechanics", 11th ed., Khanna Publishers, New Delhi, 2014.
	 Reference Books: [1] Jagadhishlal, "Hydraulic Machines",9th ed., Metropoliton Company, New Delhi, 2012. [2] R. K. Bansal, "Fluid Mechanics and Hydraulic Machines", 9th ed., Laxmi Publications; New Delhi, 2015. [3] Rajput R.K., "Fluid Mechanics and Hydraulic Machines", 3rd ed., S.Chand and Company Ltd., New Delhi, 2014. [4] K. Subramanya, "Flow in Open Channels" – 3rd ed., Tata McGraw Hill Publishing Company, New Delhi, 2013.
E- resources and other digital material	 [1] Prof. Arup Kumar Sharma, IIT/ Guwahati – Hydraulics – "<u>www.nptel.ac.in / courses/ 105103096/</u>" [2] Prof. B.S. Murthy and Dr. B.S. Thandaveswara, IIT/Madras – Hydraulics – "<u>www.nptel.ac.in / courses/ 105106114/</u>"

17TP1405 ENGLISH FOR PROFESSIONALS

Course Cate	egory:	Institutional Core	Credits:	1	
Course Typ	e:	Learning by Doing	Lecture -Tutorial-Practice:	0 - 0 -	
				2	
Prerequisites:			Continuous Evaluation:	100	
			Semester end Evaluation:	0	
			Total Marks:	100	
		tion of the course, the students will be	able to:		
COURSE OU		tion of the course, the students will be	able to:		
	ssful comple	tion of the course, the students will be hemselves effectively in the professiona			
Jpon succes	SSFUI comple Present t		l world		

	Involv	/e in p	ractical	activit	y orien	ited se	ssions.							
CO5	Learn	about	variou	s expre	essions	to be	used in	differe	ent situ	ations.				
CO6	Respo	ond po	sitively	by dev	velopin	g their	analyt	ical thiı	nking sl	kills.				
Contribution				towar	ds ach	ievem	ent of I	Program	n Outc	omes				
(1 – Low, 2 -	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	РО 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	-									H	H		_	_
CO2									Н	Н	н			
CO3										н	Н			
CO4								м		н	Н			
CO5										н	н			
CO6														
COURSE CONTEN T:	UNIT		2. Pra 1. I	ecticin Errors Conjun	g on F in usag actions	Function ge of F S, Idior	onal Co	onversa f Speed ases.	ations.	ersatio n a thru		erbs, Ad	jectives a	nd
	 3. C. Practicing on Functional Conversations. UNIT-III I.Introducing Self & Others Structures and Forming Sentences Telephonic Etiquette, Social Etiquette and Table Manners Practicing on Functional Conversations. 													
	UNI	ſ-IV	3. Te	lephor		.	, Socia	al Etiqu	uette a		le Manı	ners		
	UNIT	Γ-IV	 3. Te 4. Pr 1. D 2. Pu 3. Ve 	elephor acticir irect, I iblic S ersant	ng on l ndirec peakin Test Pi	Function tr/Report ng Bas repara	e, Socia onal C orting S	al Etiqu onvers Speech	uette a ations		le Manı	ners		

Γ

٦

17HS2406/A– Yoga & Meditation

Course Category:	Humanities elective	Credits:	1
Course Type:	Practical	Lecture - Tutorial - Practice:	1-0-0
Prerequisites:		Continuous Evaluation:	100M

Course outcomes		Upo	Upon successful completion of the course, the student will be able to:												
	CO1	Equ	Equip better attitude and behaviour.												
	CO2	Imb	mbibe set of values enabling a balanced life focused on an ethical material life.												
	CO3	Dev	elop l	evels	of cor	ncentr	ation	throug	gh me	diatio	n				
	CO4	App	ly cor	nscien	ce for	the n	nissio	ns of l	life						
Contribution		PO	PO	PO	PO	PO	Р	PO	PO	PO	PO	PO	PO	PSO	PSO
of Course		1	2	3	4	5	06	7	8	9	10	11	12	1	2
Outcomes towards	CO1						Μ								
achievement of	CO2						Μ								
Program Outcomes	CO3						Μ								
(L – Low, M - Medium, H – High)	CO4						М								

Course	UNIT I :
Content	Understanding Yoga : Orientation, Introduction to Values, The positive impact of yoga, Application of Values in real life, Universal values
	(Lec-demo pattern with illustrations representing Yogic Postures and value system related pictorial is followed)
	UNIT II: Yogic Practices: Yoga, Self and Ultimate goal of yoga, Introduction to various types of yoga, Integration of values in Yoga (Activity based processes with Assasanas and Pranayama are implemented).
	UNIT III: Practice of Meditation: Art of Meditation, Observation, Introspection, Contemplatio Meditation and Concentration (Activity based processes involving Mediation sessions followed by demonstrations ar implemented)

	UNIT IV: Towards professional excellence through Yoga and meditation: Stress Management, Choices we make, Excellence and Integration (Lec-demo pattern is followed).
Text books	
and Reference	Text Book(s):
books	1. Common Yoga protocol, Ministry of Ayush, Govt of India
	2. Journey of the Soul- Michael Newton, 2003, Llewellyn
	Reference Books:
	1. Lectures from Colombo to Almora, Swami Vivekakanada, 2010 Ramakrishna
	Mission
	2. Essays of Ralph Waldo Emerson, 1982, Eastern press
	3. Eclectic materials Offered by English Dept.
E-resources	
and other	www.heartfulness.org accessed on 27 th April 2018
digital	www. ayush.gov.in accessed on 27 th April 2018
material	www. belurmath.org accessed on 27 th April 2018

Course Catego	ry:	Hum	anities	electi	ive								Credi	i ts: 1	
Course Type:		Theor	ry						Le	ecture	- Tut	orial -	Practi	ce: 1-	0 - 0
Prerequisites:										Co	ontinu	ous E	valuatio	on: 10	100M
Course		Upo	n succ	essful	comp	letior	ı of tl	ne co	urse, tl	he stu	dent	will be	e able to):	
outco mes	CO1	Unde	erstand	maior	. phile	sonhi	ical is	sues							
	CO2		Understand major philosophical issues. Appreciate the philosophical doctrines of western thinkers.												
	CO3								sical th						
	CO4								nd valu		ι.				
<u>Carra 4-rillar 4 a</u>	0.04										DO	DO	DO	DCDO	DC
Contributio n of Course		PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO8	PO 9	PO 10	PO 11	PO 12	PSPO 1	02
Outcomes	CO1						Μ								
towards achievement	CO2						Μ								
of Program	CO3						Μ								
Outcomes (L – Low, M -	CO4								M						
Medium	04														
, H – High)															
Cour	UNIT	I I													
se	What's	s Philo	sophy	: Defin	nition	, Natu	ire, So	cope	and Bra	anches	S				
Cont ent	UNIT	II:													
	Introd	luction	to We	stern p	hilos	ophy	: Anc	ient (Greek a	and Mo	odern	philos	ophy		
	UNIT Introd		to Ind	ian Th	ought	: Six	systei	ms – I	Moder	n phile	osoph	ers			
	UNIT Philos		f scien	ce & 7	Techn	ology	: Hu	nan v	values a	and pr	ofessi	onal E	thics		
Text books and Reference books	Text E [1] - 7 [2] - 2 Refere [1] - 9 [2] - 7	The sto An Intr ence B Six sys	oducti ooks: tems o	on to p f India	ohilos an Phi	ophy losop	∥,O.O hy ∥, Ì	.Fleto DH E	cher, W Dutta ,	/ord P	ublic]	Librar			
E-resources and other digital material	[1]J. K Availa			-	-	ear). T	Title (editic	on) [Ty	pe of	mediu	m].			

17HS2406/I – Foreign Language (German)

Course Category:	Humanities elective	Credits:	1
Course Type:	Theory/Practical	Lecture - Tutorial - Practice:	1-0-0
Prerequisites:		Continuous Evaluation:	100M

Cours e		Upor	1 succ	essful	comp	oletio	n of t	he co	urse,	the s	tudent	will b	e able	e to:	
outco	CO1 Learn basics of German Language.														
mes	CO2	CO2 Write German Writing													
	CO3 Understand German Hearing														
	CO4 Form sentence in Present , past and future tense														
Contributio		PO	PO	PO	PO						PO1	PO	PO	PSO	PSO
n of Course Outcomes	C01	1	2	3	4	5	6	7	8	9	0 M	11	12	1	2
Outcomes	COI										IVI				
towards															
achievement of															
Program															
Outcomes	CO2										М				
(L – Low, M -															
Medium, H –															
High)	CO3										M				
	CO4										М				
Course Content	UNIT Alphat UNITI Prepos UNIT Past Te UNIT Future	oets, Ni II: itions, III: ense an – IV: Tenses	Presen Id abor	nt Ten	se	cles a	nd nc	ot exac	et Art	icles					
Text books and	Text I		100	nelcon	Gov	1220	Publiz	ation	e Nou	الم					
and Reference books	[1] Su		ATCOL	neisen	Goya	1188	uun	auon	5 1160						
E-resources and other digital material															

17HS2406/K – Psychology

Course Category:	Humanities elective	Credits:	1
Course Type:	Theory	Lecture - Tutorial - Practice:	1-0-0
Prerequisites:	Introduction to Philosophy PSYCHOLOGICAL PROCESSES	Continuous Evaluation:	100M

Course outcomes		Upo	on su	ccessf	ul co	mplet	tion o	f the o	course	e, the s	studer	nt will	be able	e to:	
	CO1	Rela	ate bi	ologic	al and	d soci	o-cul	tural f	actors	in une	derstar	nding h	uman l	Behaviou	ur.
	CO2	Unc	Understand the nature of sensory processes, types of attentions.												
	CO3		Explain different types of learning and the procedures, distinguishes between ifferent types of memory,												
	CO4		Demonstrate an understanding of some cognitive processes involved in Problem solving and decision-making.												
Contribution		PO	PO P												
of Course Outcomes		1	2	3	4	5	6	7	8	9	10	11	12	1	2
towards	CO1						M								
achievement	CO2						Μ								
of Program Outcomes	CO3						Μ								
(L – Low, M -	CO4						Μ								
Medium, H – High)															
Course									1			1			
Content	UNIT	I:													
	Introduction: Psychology as a scientific study of behaviour. Biological and sociocultural bases of behaviour, fields of psychology														
	UNIT	II:													
	Senso	ory an	d per	ceptu	al pro	cesse	s: Ser	nsatior	n, atter	ntion a	nd per	ception	n		
	UNIT	III:													
	Cogn	ition	and A	Affect:	Lear	ning a	and m	emory	y. Emo	otion a	ind mo	otivatio	n		
	UNIT	– IV													
	Think	ing, p	roble	m sol	ving a	and de	ecisio	n mak	ing, P	ersona	ality ar	nd intel	ligence	e	

Text books	
and Reference	Text Book:
books	1 Zimbardo, P. G. (2013). Psychology and Life (20th Ed.). New York: Pearson Education
	Reference Books:
	1. Baron, R. A. (2006). Psychology (5th Ed.). New Delhi: Pearson Education.
	2. Coon, D., & Mitterer, J. O. (2007). Introduction to Psychology:
	Gateway to mind and behaviour. New Delhi: Cengage.
	3. Feldman, R. S. (2013). Psychology and your life (2nd
	Ed.). New York: McGraw Hill.
E-resources and other digital material	

17CE3451 FLUID MECHANICS AND HYDRAULIC MACHINES LAB

Course Category:	Programme Core	Credits:	1
Course Type:	Practical	Lecture -Tutorial-Practice:	0 - 0 - 2
		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon s	uccess	ful cor	npletio	on of tl	he cou	rse, the	e stude	nt will	be abl	e to:				
	CO1		ermine s of flo		tal ene	ergy at	variou	is sect	ions o	f pipe	flow a	und Cl	assify	differe	nt
	CO2	Determine the discharge through tanks and pipes													
	CO3	Determine the discharge through Open channel.													
	CO4	Dete	rmine	the pe	rforma	nce of	various	s Hydra	ulic ma	achine	5				
Contribution of Course Outcomes		РО 1	РО 2	PO 3	РО 4	РО 5	РО 6	РО 7	РО 8	РО 9	РО 10	PO 11	PO 12	PSO 1	PSO 2
towards achievement of	CO1				н										Н
Program Outcomes	CO2				н										Н
(L – Low, M -	CO3				Н										Н
Medium, H – High)	CO4				Н										Н
Course Content	3.	Pract theor Deter Pract Orific wate Field agrice Mout meth Field agrice Deter	tical Appresent to the second state of the sec	pplicati ion of (pplicati ion of (pplicati ermina cation: fields. e: Deto cation: fields. ion of f	ion: To Coeffic ion: To Coeffic ion: To ation c To find To find friction	ient of find th ient of find th of Coef d the di tion o	e total discha e disch discha e disch ficient scharg f Coef scharg of Pipe	rge of a narge ir rge of a narge ir of dis e in vill ficient e in vill es.	a Ventu n pipe I an Orifi n pipe I charge age wa of di age wa	urimeto ine ice me ine. by sto ater tan scharg ater tan	er. ter. eady a hks and e by hks and	ind un dagrici steady dagrici	steady ultural 'and	tanks ir	nethods dy flow

7	. Determination of loss of head in pipes due to bends, sudden contractions and sudden expansion.
	Field Application : To find the losses of head in pipe line fittings such as bends, Elbows, sudden contraction and sudden enlargements, etc.
8	Determination of Coefficient of discharge for a Rectangular Notch / Triangular / Trapezoidal Notch.
	Field Application: Determination ofdischarge in canals and village water tanks and agricultural tanks in agricultural fields.
9	. Characterization of laminar and turbulent flows by Reynolds's apparatus.
	Practical Application: 1. Flow through blood vessels, increase in viscosity increases blood
	pressure.
	2. Flow through aquifers.
1	0. Measurement of force due to impact of jets on vanes of different types.
	Practical Application: Power generation through hydro power houses.
1	1. Performance studies on single stage centrifugal pump.
	Practical Application: Design the pump from model to prototype by using characteristic curves.
1	2. Performance studies on Pelton turbine/Francis turbine.
1	Practical Application: Efficiency studies.
Dem	onstration Experiments:
1	
2	
3	
4	
4	. Performance studies on Gear Pump.

Text books	 Fluid Mechanics and Hydraulic machinery laboratory manual by Dr. N.KumaraSwamy,
and Reference	Charrotar Publishing House Pvt. Ltd. Experiments in fluid mechanics by Dr. BaljeetKapoor, Khanna Publications. Hydraulics and fluid mechanics including hydraulic machines by Dr. P.N.Modi and Dr. SM Seth,
books	Standard book house, New Delhi
E-resources and other digital material	 [1] Prof. Arup Kumar Sharma, IIT/ Guwahati – Hydraulics – "www.nptel.ac.in/courses/105103096/" [2] Prof. B.S. Murthy and Dr. B.S. Thandaveswara, IIT/Madras–Hydraulics - "www.nptel.ac.in/courses/105106114/"

17CE3452 BUILDING PLANNING AND DESIGN LABORATORY

Course Category:	Programme Core	Credits:	1
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0 - 2
Prerequisites:	Engineering graphics 17ME1105	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon s	uccessfu	ıl com	oletion	of the	course	e, the s	tudent	will be	e able to):						
	CO1	Acqu	Acquire the knowledge of Various measurements and dimensions of a building components														
	CO2	Unde	nderstand principles of planning, principles of architecture and building bye-laws.														
	СОЗ	Draw	Draw the line diagrams as per National Building Code														
	CO 4	Draw	the pl	an, ele	vation,	sectio	nal viev	w of th	e buildi	ing as pe	er princi	ples of	planni	ng			
Contribution of course out comes		PO1	PO 2	PO 3	PO 4	PO 5	PO 6	РО 7	PO 8	PO9	PO1 0	PO 11	PO 12	PSO1	PSO2		
towards achievemen	CO1	L		м													

t of program out comes	CO2	L	м											
L-Low, M-Medium,	CO3	L	M							1		1		
H-High	CO4	L	м											
Course Content				PART	A									
content	Introd	uction and	Theory Explan	ation of th	e Follo	owing								
	-	Principle	s of planning	& archi	itectur	e								
	•	Building	bye-laws & onal signs an	National	l Build	ling Co		ms						
		Plan, Ele	vation, Section dimensions of	n of Buil	dings		-		nts of di	fferen	t room	IS		
	(Manua	al Drawing												
	Draw Plan, Elevation & Section of the following Building Line diagrams													
	1. Residential building – Single Bedroom and Hall (Load bearing wall structure)													
	2.	Residentia structure)	al building- Sin	gle bedro	om, Liv	/ing roo	om, Kit	chen w	ith oper	ı veran	dah(L	oad bea	ring wall	
	3.	Dog legge	d Stair case											
	4.	RCC Two	storied framed	structure l	buildin	g with :	stairca	se.						
	PART B													
		-	Auto CAD Draw											
	-		uto CAD Comm ion & Section o		wing B	uilding	Line di	agrams						
			edroom and ha			iilding								
	7.	Rural hos	pital building											
	8.	Open we	ll stair case											
	9.	RCC Two	storied framed	structure l	buildin	g with :	stairca	se						
	10.	Elevations	s of different bu	uildings.										

Text books and Reference books	 Text Books: 1. Building planning, designing and scheduling by Gurucharan Singh and Jagdish Singh. – Standard Publishers-Delhi. 2. Building Drawing by M.G. Shah, C.M. Kale and S.Y. Patki; Tata McGrawHill Publishing
	 Co. Ltd., New Delhi. Reference Books: National Building Code, Bureau of Indian Standards, New Delhi, 2005. Planning & Designing Buildings by Yashwant S. Sane; Allies Book Stall, Pune Residential Interior Design: A Guide To Planning Spaces 3rd Edition by Maureen Mitton (Author), Courtney Nystuen (Author)
E-resources and other digital material	NPTEL : NPTEL, www.floorplanner.com

17HS1453 COMMUNICATION SKILLS LABORATORY

Course Category:	SO	ft skills							Credi	ts:			1															
Course Type:	La	borator	у						Lectu	re-Tuto	orial-Pra	actice:	0.	-0-2														
Prerequisites		chnical HS1205	-	ish 8	c Con	nmunic	ation	skills	Conti	nuous I	Evaluat	3	30															
	1,													70														
									Total	Marks:			1	00														
Course	Upon successful completion of the course, the student will be able to:																											
Outcomes	CO1																											
	CO2	Appl	Apply elements of listening comprehension in professional environments.																									
	CO3	Deve	Develop the abilities of rational argumentation and skills of public speaking.																									
	CO4		Demonstrate proficiency in the elements of professional communication including the competitive examination																									
			1	1	1	1	1	1		-	1				1													
Contributio n of Course		PO 1	РО 2	PO 3	PO 4	PO 5	РО 6	PO 7	PO 8	РО 9	РО 10	PO 11	PO 12	PSO1	PSO2													
Outcomes	CO1																											
towards	CO2	H L H M H																										
achievemen	CO3	M M H H M H H M H								н																		
t of Program Outcomes (H- Highly Mapped, M- Moderately Mapped, L- Low)	CO4	м	L	L	м	L	Η	м	Н	Н	H	н	м															
Course	UNIT:I	:Elemei	nts of S	poken	Expres	sion an	d proce	esses of	f Listen	ing																		
Content		ehensio																										
		 Speech Mechanism Articulation of vowels and consonants 																										
	\succ		 Patterns of Accentuation 																									
		Patter	ns of A												Types and processes of Listening comprehension													
		Patter	ns of A				nension	l																				
	> Types a UNIT II >	Patter	rns of A cesses rns of S p Disc	of Liste ubstan ussion	tiation	ompreh and Re	futatio	n in Pul	blic Spe	eaking:																		

	UNIT III: Professional Communication:
	Self Affirmation
	Textual Patterns
	Advanced Composition including Memo and e-mail
	Résumé Preparation
	Corporate ethic of Non-Verbal Communication
	UNIT IV: Life Skills and Vocabulary for Competitive Examinations:
	Select Life Skills(50)
	Select Logies, Isms, Phobias and Manias (25 each)
	Sentence Completion and Double Unit Verbal Analogies (50 items)
	Fundamentals of Syllogisms(Descriptive and Pictorial)
Text books	Text Book(s):
and	1. Martin Cutts, Oxford Guide to Plain English, 7 th Impression, OUP, 2011
Reference	2. Exercises in Spoken English, Prepared by Department of Phonetics and Spoken English,
books	CIEFL, OUP, 21 st Impression, 2003
	Reference Books:
	1. Stephen R Covey, The 7 Habits of Highly Effective people, II edition, (Pocket Books)
	Simon & Schuster UK Ltd, 2004
	Eclectic Learning Materials offered by the Department
E-resources	1. ODll Language Learner's Software, 27-6-2012 Orell Techno Systems
and other	2. Visionet Spears Digital Language Lab software Advance Pro, 28-01-2015
digital	3. <u>www.natcorp.ox.ac.uk</u> , British National Corpus accessed on 28-11-2017
material	
E-resources	1. ODll Language Learner's Software, 27-6-2012 Orell Techno Systems
and other	2. Visionet Spears Digital Language Lab software Advance Pro, 28-01-2015
digital	3. <u>www.natcorp.ox.ac.uk</u> , British National Corpus accessed on 28-11-2017
material	

17MC1407A ENVIRONMENTAL STUDIES

Course Category:	Institutional Core	Credits:	-
Course Type:	Theory	Lecture - Tutorial - Practice:	2 - 0 - 0
Prerequisites:		Continuous Evaluation:	100
		Semester end Evaluation:	0
		Total Marks:	100

Course outcomes	Upon successful completion of the course, the student will be able to:														
	CO1	Und	erstand	d the va	arious ı	natural	resourc	es, ana	alyze and	d explo	ore deg	radatio	on man	agement	
	CO2	Und	erstand	the E	cosyste	ems and	d need o	f Biodi	versity						
	CO3	Realize and Explore the Problems related to Environmental pollution and its management													
	CO4	CO4 Apply the Role of Information Technology and analyze social issues, Acts associated with Environment.													
Contribution of Course		РО 1	РО 2	РО 3	РО 4	РО 5	PO 6	PO 7	PO 8	РО 9	РО 10	PO 11	PO 12	PSO1	PSO2
Outcomes towards	CO1	L							н						
achievement of Program	CO2					L			н						
Outcomes	CO3				L		н								
(L – Low, M - Medium, H – High)	CO4				L				Н	H					
Course Content		ion, sco or publ Resou vable a al resou	rces ind Nor urces a Fores	d impo reness n-rene nd asso t resou	vrtance wable ociated urces: U	Resour proble	r ces: ems.	ploitat		oresta	tion. Ti	mber e	extracti	on, minir	g, dam

conflicts over water, dams-benefits and problems. (c) Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources. (d) Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity. (e) Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources. (f) Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification. Role of an individual in conservation of natural resources. Equitable use of resources for sustainable lifestyles. UNIT II **Ecosystems** Concept of an ecosystem. Structure and function of an ecosystem. Producers, consumers and decomposers. Energy flow in the ecosystem. Ecological succession. Food chains, food webs and ecological pyramids. Introduction, types, characteristic features, structure and function of the following ecosystem: (a) Forest ecosystem (b) Grassland ecosystem (c) Desert ecosystem (d) Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries) **Biodiversity and Its Conservation** Introduction, definition: genetic, species and ecosystem diversity. Biogeographically classification of India. Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values. Biodiversity at global, National and local levels. India as a mega-diversity nation. Hot-spots of biodiversity. Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts. Endangered and endemic species of India. Conservation of biodiversity: in-situ and ex-situ conservation of biodiversity. UNIT III **Environmental Pollution** Definition Causes, effects and control measures of (a) Air pollution (b) Water pollution Soil pollution (c) (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards Solid waste management: Causes, effects and control measures of urban and industrial wastes. Role of an individual in prevention of pollution. Diaster management: Floods, earthquake, cyclone and landslides.

	 UNIT IV Social Issues and the Environment From unsustainable to sustainable development. Urban problems related to energy. Water conservation, rain water harvesting, watershed management. Resettlement and rehabilitation of people; its problems and concerns. Environmental ethics: Issues and possible solutions. Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Wasteland reclamation. Consumerism and waste products.
	Environment Protection Act. Air (Prevention and Control of Pollution) Act. Water (Prevention and Control of Pollution) Act. Wildlife Protection Act. Forest Conservation Act. Issues involved in enforcement of environmental legislation. Public awareness.
	 Human Population and the Environment Population growth, variation among nations. Population explosion—Family Welfare Programme. Environment and human health. Human rights. Value education. HIV/AIDS. Women and Child Welfare. Role of Information Technology in environment and human health.
	Field Work/Case Studies: Visit to a local area to document environmental assets—river/forest/grassland/hill/ mountain. Visit to a local polluted site—Urban/Rural/Industrial/Agricultural. Study of common plants, insects, birds. Study of simple ecosystems—pond, river, hill slopes, etc.
Text books and Reference books	 Text Book: 1.Text book for ENVIRONMENTAL STUDIES for under graduate courses of all branches of higher education – ErachBharucha For University Grants Commission. First edition 2004. Reference Book: 1.Anjaneyulu Y. Introduction to Environmental sciences, B S Publications PVT Ltd,
E-resources and other digital material	Hyderabad 2004 collegesat.du.ac.in/UG/Envinromental%20 Studies_ ebook. pdf

17CE3501 WATER RESOURCES ENGINEERING

Course Category	Program Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0 - 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon s	uccess	ful cor	npletic	on of t	he cou	urse, tł	ne stud	ent wil	l be ab	le to				
	CO1	unde	understand various irrigation methods and Irrigation management practices in the field.												
	CO2	evalı	evaluate the Run-off and evaluate the ground water yield.												
	CO3	evalı	evaluate and Design of various Channel sections.												
	CO4	evalı	uate re	eservoi	r capa	city a	nd sun	nmariz	e vario	ous type	es of hy	draulic	e struct	ures	
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
Outcomes towards	CO1	Η						Μ			L				
achievement of Program	CO2	Н		М	М									М	
Outcomes (L – Low, M -	CO3	Н		М	М									Н	
(L – Low, M – Medium, H – High)	CO4	Н		Н		М		М			L			Н	
Course Content	1. 2.	 IRRIGATION:WATER APPLICATION METHODS Definition; Necessity; Scope of irrigation science; Benefits of irrigation; Ill-effects of irrigation; Types of irrigation and methods of applying water to crops; Uncontrolled or wild flooding; Free flooding; Contour laterals; Border strip method; Check flooding; Basin flooding; Zig zag method; Furrow method; Contour Farming; Sub-surface irrigation; Sprinkler Irrigation; Drip irrigation. WATER REQUIREMENT OF CROPS: Saturation capacity; Field capacity; Wilting point; Available moisture and readily available moisture; Duty and Delta; Base period; Relation between Duty and Delta; Factors affecting duty; Methods of improving duty; Gross command area; Culturable command area; Culturable cultivated and uncultivated area; Kor depth and Kor period; Standards of irrigation water; Assessment of irrigation water. 													

Factors affecting run off; Computation of run-off. Hydrograph; definition of Unit hydrograph; Limitations and applications of unit hydrograph, construction of a flood hydrograph resulting from rainfall of unit duration; Application of unit hydrograph to construction of a flood hydrograph resulting from two or more periods of rainfall; Construction of unit hydrograph of different unit duration from a unit hydrograph of some given unit duration. S-hydrograph

4. WELL IRRIGATION:

Introduction; Aquifer; Aquicludes; Aquifuge; Specific yield; Specific retention; Divisions of sub–surface water; Water table; types of aquifers; Dupit's theory for confined and unconfined aquifers; Constant level pumping test, Recuperation test.

UNIT-III

5. IRRIGATION CHANNELS – SILT THEORIES & DESIGN PROCEDURE:

Classification; Canal alignment; Silt theories–Kennedy's theory, Lacey's regime theory; Kennedy's method of channel design; Silt supporting capacity according to Kennedy's theory; Use of Garret's diagram in channel design; Lacey's theory applied to channel design; Use of Lacey's regime diagrams; Drawbacks in Kennedy's theory; Defects in Lacey's theory; Comparison of Kennedy's theory and Lacey's theory

6. WATERLOGGING, CANAL LINING

Waterlogging, causes, effects and remedial measures. Lining of Irrigation canals, Types of lining; Design of lined canal

UNIT-IV

7. DAMS IN GENERAL:

Classification; Gravity dams, Arch dams, Buttress dams, Steel dams, Timber dams, Earth dams and rock fill dams; factors governing selection of site for a dam.

8. RESERVOIR PLANNING:

Selection of site for a reservoir; Zones of storage in a reservoir; Storage capacity and yield; Mass inflow curve and demand curve; Calculation of reservoir capacity for a specified yield from the mass inflow curve; Determination of safe yield from a reservoir of a given capacity; Life of reservoir;

Text books and Reference	Learning Resources:
books	 Text Books: Irrigation and water power Engineering by Dr. B.C. Punmia & Dr. Pande B.B.Lal; Laxmi Publications Pvt. Ltd., New Delhi., 2006. Irrigation Engineering and Hydraulic structures by S. K. Garg; Khanna publishers New Delhi, 2006. Irrigation Engineering and Hydraulic structures by SR Sahasrabudhe, Katson Publishing house.2005 Reference Books: Irrigation, Water Resources & Water Power Engineering by Dr. P.N. Modi; standard Book House, New Delhi.,2006 Irrigation water power and water resources engineering by K R ARORA, Standard published distributors, New Delhi.,2006. A text book of hydrology by Dr.P.Jayarami Reddy, published by Laxmi Publications. Journals in Water resources
E-resources and other digital material	www.nptel.ac.in/couses/105104103

	17CE3502	ENVIRONMENTAL ENGINEERING					
Course Category:	Programme core	Credits:	3				
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0				
Prerequisites:	17CH1102 - Engineering chemistry	Continuous Evaluation:	30				
*	17MC1407A -Environmental studies	Semester end Evaluation:	70				
		Total Marks:	100				

Course outcomes	Upon	Upon successful completion of the course, the student will have an ability to												
	CO1		understand source of water for water supply scheme with reference to quantity and quality of water										uantity	
	CO2	unde	nderstand and apply the methods of treatment for purification of water											
	CO3	CO3 analyse the distribution of water												
	CO4	CO4 understand the concepts of collection & conveyance, Quality and quar sewerage										d quan	tity of	
	CO5	apply	y appro	priate	treatm	ient an	d disp	osal m	ethods	of se	ewage	and se	eptage	
Contribution of Course	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2

Outcomes	CO1								L	L		
towards achievement	CO2				Н						L	L
of Program Outcomes	CO3	Н	Н	M			M		M		Н	
(L – Low,	CO4	М	М	Н							М	
M - Medium, H – High)	CO5	Н	M	Н	Н	Н	М				Н	Н
Course Conte	nt	UNI	Γ – Ι			I				· · · ·		
		dema Type 2. QI Impu	ctives o inds; F is of int U ALIT irities i	luctuat takes; (T Y OF n wate	ions in d Capacity WATE r; Routin	systems, F demand; Pro and desigr R le water an er; Water b	ediction of 1 of pipes; alysis - ph	populatic Materials ysical, cho	on. for p	ipes; Ty	pes of pur	ıps.
		 Purif Sedin and t Remo 4. DI Meth 	ication nentati rapid s oval of STRII ods of	of v on and and fil hardn BUTIC supply	vater; Pl d coagula lters; Coagula ess, Meth DN SYS 7; Layout is of dist	ts; Distribu	s; Design and Opera noval; De-	aspects; ' tion; Dis luoridatio oirs; Cap	Theor infect on. acity	ry of filt tion met of balan	ration; Slo hods-chlor	ow san rination
		One	pipe an	ld Two	pipe sys	•	stems; val	ves. Plum	ioing-			
			pipe an F – III		pipe sys	•	stems; val	ves. Plum				
		UNI 5. II SEW Sanit	$\Gamma - III$ NTRO (ER A) (ation;	DUCT PPUR Conser	TION TO TENAN rvancy and	o sanit	ARY EN	GINEER tem; Sew	ING	e system		
		UNI 5. II SEW Sanit Sanit	$\Gamma - III$ NTRO (ER A) (ation; ary and	DUCT PPUR Consen 1 storn	TION TO TENAN rvancy and n water so	o SANIT CES nd water ca	ARY EN arriage sys imation of	GINEER tem; Sew their qua	ING verage ntities	e system 5.	s; Relative	
		UNI 5. II SEW Sanit Sanit	Γ – III NTRO (ER A) ation; ary and ers-type	DUCT PPUR Conser d storn es, desi	TION TO TENAN rvancy an h water se	o SANIT CES nd water ca ewage; Est	ARY EN arriage sys imation of d maintena	GINEER tem; Sew their qua unce; sew	ING verage ntities er app	e system 5. ourtenan	s; Relative ces-types.	merits

	Primary treatment- theoretical concepts of Screens; Grit chamber; Skimming tanks; design aspects of Sedimentation tanks.
	UNIT – IV
	7.SECONDARY TREATMENT OF SEWAGE Trickling filters; high rate trickling filters at primary level, Principles of action; Recirculation; Operational problems and remedies; Activated sludge process; Principle of action; Methods of aeration; Sludge bulking; Sludge volume index.
	8. SEWAGE DISPOSAL; SEPTIC TANKS & FEACAL WASTE AND SEPTAGE MANAGEMENT
	Methods; Disposal by dilution; Self purification process; Oxygen sag; Zones of pollution of river; Disposal by irrigation.
	Septic tank-Design; effluent disposal; Septage Management, government policies and programs, value chain, environmental aspects, on site contaminant system, waste characterisation and treatment options.
Text books and Reference books	 Text Books: 1. Elements of public health engineering by K. N. Duggal; S. Chand & Company Ltd., New Delhi, 2014. 2. Environmental Engineering Vol. I& II - Water supply engineering by S. K. Garg; Khanna Publishers, New Delhi, 2017.
	 Reference Books: 1.Water Supply and Sanitary Engineering Vol. 1 by Gurucharan Singh; Standard Publishers Distributors, Delhi, 2009 2.Water Supply and Sanitary Engineering by G.S. Birde; Dhanpatrai and sons,Delhi, 1998. 3. Manual on Water Supply & Treatment; CPH and EEO, Ministry of Urban
	Development; Govt. of India, New Delhi,2005
E-resources and other digital material	NPTEL:http://nptel.ac.in/courses/105104102/ http://nptel.ac.in/courses/105106119/

17CE3503	STRUCTURAL ANALYSIS

Course Category:	Program Core	Credits:	3
Course Type:	Theory		
	Mandatory course	Lecture: Tutorial :Practice:	3-0-0
		Continuous Evaluation:	30
Prerequisites:	17CE3403 Mechanics of Materials	Semester end Evaluation:	70
_		Total Marks:	100

	Upon	success	ful coi	npleti	on of th	e cours	e, the s	tuden	t will ł	be able	e to				
COURSE OUT COMES	CO1	draw a	and int	terpret	influer	ice line	diagrai	ns							
	CO2	apply	apply energy methods for analysis of indeterminate beams and frames												
	CO3	analyz	analyze statically indeterminate structures using force and displacement methods												
	CO4	analyz	nalyze multistory frames for vertical and horizontal loads by approximate methods												
Contribution			PO	PO				PO	PO	PO	PO	PO	PO		
of Course		PO 1	2	3	PO4	PO5	PO6	7	8	9	10	11	12	PSO1	PSO2
Outcomes Towards	CO1	Н				М				L	L		М	М	
achievement	CO2	Н	L			М				L	L		М	М	
of Program Outcomes	CO3	Н	L			М				L	L		М	М	
(L – Low, M-	CO4														
Medium, H–															
High)		Н	L			Μ				L	L		Μ	М	

	UNIT – I
	INFLUENCE LINES FOR STATICALLY DETERMINATE STRUCTURES:
Contont	1. EQUILIBRIUM PRINCIPLES AND ITS APPLICATION:
Content	Influence line for beam reaction, Shearing forces, Bending moment, Calculation of maximum and absolute maximum bending moment for rolling loads.
	2. MULLER BRESLAU PRINCIPLE AND ITS APPLICATION:
	Influence line for beam reaction, Shearing forces, Bending moment.
	UNIT – II
	ANALYSIS OF INDETERMINATE STRUCTURES USING ENERGY METHODS;
	3.BEAMS: Strain Energy Method for analysis of continuous beams.
	4.FRAMES: Analysis of rigid & pin jointed frames up to second degree of redundancy. Lack of fit and

Temperature variation.
UNIT III
ANALYSIS OF INDETERMINATE STRUCTURES: 5.FORCE METHOD
Propped cantilever by consistent deformation method. Fixed beams for different loadings, Effect of sinking and rotation of support.
Clapeyron's theorem of three moments.
6. DISPLACEMENT METHODS:
Slope deflection method for continuous beam and portal frames. Moment distribution method for continuous and portal frames.
UNIT IV
APPROXIMATE METHODS OF ANALYSIS FOR MULTISTORY FRAMES:
7.KANI'S METHOD:
Introduction and principles of the kani's method, Application of the method to continuous beams, Application of method to the analysis of portal frames without side sway,
8.ANALYSIS OF GRAVITY & LATERAL LOADS
Substitute frame method with various examples, Portal method and cantilever method .

	Text Books:
	 1.Analysis of structures by Volume I –17th Edition by Vazirani & Ratwani; & Volume –II 16th Edition by Vazirani & Ratwani, Khanna Publications; Delhi, 2015. 2. Structural Analysis by S.S. Bhavikatti, Volume-I and II, 4th Edition, Vikas Publishing house PVT Ltd, 2014.
Text books	
and	Reference Books:
Reference	
Books	1. Structural analysis by Hibbeler, 6 th Edition, Pearson India Education Services Pvt Ltd.2015
	2. Structural Analysis by R.Vaidyanathan Volume-I and II, 3 rd Edition, Laxmi Publications (P)
	Ltd, 2012.
	3. Theory of structures by S. Ramamrutham, 9 th Edition, Dhanapat Rai Publications, 2014.
	4. Basic Structural Engineering by C.S Reddy, Tata McGraw Hill, Third Edition.
	5. Theory of structures Vol – I by G.S. Pandit and S.P Gupta and R. Gupta by Tata McGraw Hill
	Ltd., New Delhi.
3.E-resources and	http:// nptel.ac.in/courses/105101085
other digital	http://nptel.ac.in/courses/105105166
material:	http://nptel.ac.in/courses/105101086

OPEN ELECTIVES

17CE2504 A GEOS				PATIAL TECH	NOLOGIES	
Course Category:	Open Electi	ve -I			Credits:	3

Course Category:	Open Elective -I	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0 - 0
Prerequisites:	NIL	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succe	ssful c	omple	etion of	of the	cours	e, the	stude	nt wil	l be ab	ole to								
	CO1		Apply the recent advances GIS technology in various fields of engineering																	
C			Evaluate the opportunities and available methods for integrating GIS in various engineering applications																	
	CO3	Understand large scale maps using GIS.																		
Contribution of	Contribution of				PO	PO	PO	РО	РО	РО	РО	РО	PO	PSO	PSO					
Course Outcomes		1	2	3	4	5	6	7	8	9	10	11	12	1	2					
towards achievement of	CO1					Н				L	М		L		М					

Program Outcomes	CO2			Н	Н		L	М	L	М
(L – Low, M – Medium, H – High)	CO3			Н			L	М	L	М

Course Content	UNIT I									
	1.INTRODUCTION TO GIS									
	Introduction to GIS, History of GIS, Early developments in GIS, Applications of GIS									
	2.MAP AND MAP SCALES									
	Introduction to Maps, History of Maps, Map Scales, Types of Maps, Map and Globe									
	UNIT II									
	3.GEOREFERENCING AND PROJECTION									
	Understanding Earth ,Coordinate System, Map Projection, Transformation, Georeferencing									
	4.SPATIAL DATABASE MANAGEMENT SYSTEMS									
	Introduction, Data Storage, Database Structure Models, Database Management system, Entity Relationship, Model Normalization.									
	UNIT III									
	5.DATA MODELS AND DATA STRUCTURES									
	Introduction, GIS Data Model, Vector Data Structure, Raster Data structure, Geo database and metadata.									
	6.SPATIAL DATA INPUT AND EDITING									
	Primary Data, Secondary Data, Data Editing, Data types – Spatial and Non Spatial (attribute) data.									
	UNIT IV 7.MODELLING IN GIS:									
	Introduction to Web GIS, Digital Terrain Modelling, Digital Elevation Modelling, Triangular Irregular Network.									
	8.APPLICATIONS OF GIS:									

	Multidisciplinary applications of GIS.									
Text books and Reference books	 Text books Remote Sensing & Geographical Information Systems by M.Anji Reddy, BPS Publications-Hyderabad,4th edition 2011. Remote Sensing & GIS by Basudeb Bhatta, Oxford University Press, New Delhi 2011 Reference books Remote sensing and Image interpretation by TM Lillesand and RWKiefer; John Willey and sons.7th edition, 2015 Remote sensing and Geographical information System by AM Chandra & SK Ghosh;Narosa Publishing House, Second Edition New Delhi,2015 									
E-resources and other digital material	NPTEL : <u>http://nptel.ac.in/courses/105102015</u>									
17CE2	504 B QUALITY CONTROL AND QUALITY ASSURANCE									

Course Category:	Open Elective -I	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcom	es	Upon	success	sful co	mplet	ion of t	he cou	rse, th	e stude	ent wi	ll be a	ble to			
	CO1	under	understand meaning of quality, quality standards												
	CO2	apply	apply provisions of IS codes												
		CO3	apply	apply QC techniques											
	CO4	analy	analyze methods to improve quality												
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
Outcomes towards	CO1	Н					M	М		Н	M				Н
achievement of Program	CO2						M	M	М	Н	М				Н
Outcomes (L – Low, M	CO3	Н	Н			Н	M	M		Н	Μ		M		Н
- Medium, H – High)	CO4	Н	H				M	M		H	М		M		Н

Course Content	UNIT – I 1.QUALITY MANAGEMENT
	Introduction – Definitions and objectives – Factors influencing construction quality – Responsibilities and authority – Quality Management Guidelines. TQM Guidelines
	 2.QUALITY SYSTEMS Introduction - Quality system standard – ISO 9000 family of standards – Requirements – Preparing Quality System Documents – Quality related training – Implementing a Quality system – Third party Certification. Quality circles.
	 UNIT – II 3.QUALITY PLANNING Quality Policy, Objectives and methods in Construction industry - Consumers satisfaction, Ergonomics - Time of Completion, IS code on sampling, sampling plans, acceptance criteria, Inspection procedures - Total QA / QC programme. 4.QUALITY PROCEDURES: Develop, schedule and implement procedures for tracking control phase meetings for definable features of work in the QC Plan. Notify appropriate personnel of time, date and agenda.
	 UNIT – III 5.QUALITY CONTROL: Definition, Objectives, Regulatory agencies, statically tolerances, Taguchi concept, Statistical methods: Mean, variance, standard deviation, coefficient correlation, coefficient regression, control charts, methods to evaluate deviation, Contractor Quality Control, Quality Control Personnel, The Three-Phase Control System: Preparatory Phase, Initial Phase and Follow-up Phase. Conduct Meetings (preparatory and initial). Safety considerations and Activity Hazard Analyses (AHAs). 6.QUALITY ASSURANCE: Checklists for - Quality of Materials and processes, factors influencing construction quality, Quality Assurance Personnel and their role, Document actual discussions and provide minutes to attendees. Monitor work in place through follow-up phase. Conduct additional control phase meetings, as needed. Quality Management Record Keeping, The Contractor Quality Control Report,
	 UNIT – IV 7.QUALITY IMPROVEMENT TECHNIQUES Definition, objectives, quality appraisal, techniques of quality assurance, Quality manual ,specification for few items. 8.FORENSIC ANALYSIS FOR BAD QUALITY Deficiency Tracking System/Rework Items List, Pareto analysis, cause effect diagram.

Text books and Reference books	Hill,2001	, F.M. "Quality Planning and Analysis", McGraw Berger, '"Quality Engineering Hand Book", New Delhi, 1995.
	· ·	h Edition, Eugene L Grant, McGraw-Hill
Course Category:	Open Electrics, 1980.	Credits: 3
	Besterfield-Sacre, 2nd edition 1999.	rfield-Michner, Glan Besterfield, mary n,Total Quality Management, printice Hall, lity Management- Cases", Himalaya Publihing
E-resources and other digital material	NPTEL:http://nptel.ac.in/courses/	

17CE2505 A	AIR AND NOISE POLLUTION

Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:		Continuous Evaluation:	30
_		Semester end Evaluation:	70
		Total Marks:	100

Course outcome	Upon	succes	sful co	omplet	tion of	the co	ourse,	the stud	lent wil	l have	an abi	lity to			
	CO1	unde	understand various types of air pollutants and their effects												
	CO2		understand the dispersion phenomenon of air pollutants with regard to meteorological parameters												
	CO3	analyse the samples, pollutants from chimney stacks and ambient atmosphere													
	CO4	understand the various types of air pollution controlling equipment													
		CO5	understand the sources and controlling measures of noise pollution												
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO8	PO9	PO 10	PO 11	PO1 2	PSO 1	PSO 2
Outcomes towards	CO1						H	M							
achievement of Program	CO2	H	H					M							Η
Outcomes (L – Low, M – Medium, H – High)	CO3	H		Н										L	Η
	CO4	Μ				H	M	L						Н	
	CO5	Μ		M		H	Μ	L						М	Н
Course Content	UNIT	Γ – Ι													

1.INTRODUCTION TO AIR POLLUTION

Composition of air, Air pollution-definition, Prominent air pollution disasters / episodes, Sources of air pollution - Stationary and mobile sources;

2.CLASSIFICATION OF AIR POLLUTANTS AND ITS EFFECTS

Classification- Natural Contaminants; Particulate Matter Aerosols and Gaseous pollutants; Primary and secondary pollutants.

Effects of air pollutants on human health; Effects on plants and economic effects.

UNIT – II

3.METEOROLOGY AND AIR POLLUTION

Meteorological factors influencing dispersion of air pollutants- Wind direction and wind speed, Atmospheric stability, temperature inversions, Mixing height, precipitation and humidity-measurement- Wind Rose; Plume behavior.

4.SAMPLING OF AIR POLLUTION

	Stack sampler; Sampling Procedure-Sampling point – size - Isokinetic Conditions- sampling of Particulate matter and Gases. Sampling methods. – Indian standard methods of analysis of SO2 and NOx gases- Air Quality and Emission standards
	UNIT – III
	5. METHODS OF CONTROLLING AIR POLLUTION Different means of control of effluent discharges into the atmosphere. Control of Particulate matter by equipment -Settling chamber, inertial separators-fabric filters- wet scrubbers-Electrostatic Precipitators
	6. CONTROL OF GASEOUS POLLUTANTS Controlling methods of Gaseous Emissions- combustion, adsorption, absorption, closed collections and recovery systems- Control of SO2 and NOx gases
	UNIT – IV
	 7.SOURCES AND EFFECTS OF NOISE POLLUTION Sources Of Noise – Units And Measurements Of Noise – Characterization Of Noise From Construction, Mining, Transportation And Industrial Activities, Airport Noise – General Control Measures – Effects Of Noise Pollution – Auditory Effects, Non-Auditory Effects
	8. CONTROL OF NOISE POLLUTION Prevention And Control Of Noise Pollution – Control Of Noise At Source, Control Of Transmission, Protection Of Exposed Person – Control Of Other Types Of Noise Sound Absorbent-standards
Text books and Reference books	Text Books:1.Air Pollution and Control by Rao, M.N and Rao, H.N., Tata McGraw Hill, New Delhi,20072. Environmental Engineering and Management, (2nd Edition) by Suresh, 1.S.K.Kartarai &
	 Environmental Engineering and Management, (2nd Edition) by Suresh, I.S.K.Kartaral & Sons, 2005. Environmental Engineering vol. II – Sewage disposal and air pollution engineering by S. K. Garg; Khanna Publishers, Delhi. Reference Books: An Introduction to Air pollution by Trivedi, R.K., B.S.Publications, 2005. Air pollution by Wark and Warner, Addison-Wesley Publications, 1998.
E-resources and other digital material	NPTEL:http://nptel.ac.in/courses/webcourse-contents/IIT- delhi/Environmental%20Air%20Pollution/

	17CE2505 B	ENVIRONMENTAL IMPACT STUDIES				
Course Category:	Open Elective - II	Credits:	3			
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0			
Prerequisites:	17MC1407A-Environmental Studies	Continuous Evaluation:	30			
1		Semester end Evaluation:	70			
		Total Marks:	100			

Course outc	Upon	succes	sful co	ompleti	ion of	the cou	rse, th	e stude	ent will	l have	an abili	ty to			
		CO1	understand impacts of the project on individual, society and environment												
	CO2		analyse the various indicators to assess the state of health, economy and standard of life either prospering or deteriorating												
		CO3	apply	apply the methodologies of EIA for projects under suitable conditions											
		CO4	asses	s the i	mpacts	s on en	vironn	nent-ca	se stud	lies					
Contributi on of		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
Course Outcomes	CO1					L									М
towards achieveme	CO2	L			М							Н		L	
nt of Program	CO3				М							L		L	Н
Outcomes (L – Low, M - Medium, H – High)	CO4	L												М	L
Course Con	tent	UNIT	– I					_		_					
Envir impa 2.SC			 1.INTRODUCTION TO EIA Environment and its interaction with human activities-Environment Imbalances- Attributes, impacts, Indicators, and measurements 2.SCOPE AND OBJECTIVES OF EIA Concept of Environmental Impact assessment (EIA), Environmental Impact Statement, 												
									ns of E		LIIVIIO	minenta	n mpa	ici Sial	ement,

	UNIT – II
	3.ENVIRONMENTAL INDICATORS FOR CLIMATE
	Indicators for climate-Indicators for terrestrial subsystems-Indicators for aquatic subsystems- Selection of indicators-
	4.SOCIO-ECONOMIC INDICATORS
	Socio-economic indicators-Basic information-Indicators for economy-Social indicators- indicators for health and nutrition-Cultural indicators-Selection of indicators
	UNIT – III
	5.METHODOLOGIES OF EIA
	Overview of methodologies, Adhoc, Checklist, Matrix, Network, Overlays, Benefit cost analysis choosing a methodology, review criteria.
	6.PREDICTION AND ASSESSMENT
	Assessment of Impact on land, water, air, social & cultural activities and on flora & fauna- Mathematical models- Public participation
	UNIT – IV
	7.ENVIRONMENTAL MANAGEMENT PLAN
	Plan for mitigation of adverse impact on environment – Options for mitigation of impact on water, air, land and on flora & fauna
	8.CASE STUDIES
	Case studies -water quality impact assessment – attributes, water quality impact assessment of water resources projects-data requirements of water quality impact assessment for dams impacts of dams on environment-case studies-On site and off site impacts during various stages of industrial development, long term climatic changes, greenhouse effect, industrial effluents and their impact cycle, Environment Impact of high ways, mining and energy development.
Text books and Reference books	Text Books: 1. Anjaneyulu, VallManickam, "Environmental Impact Assessment Methodologies", 2nd Edition ,B.S.Publications, 2007.
	 CANTER L.W, "Environmental Impact Assessment", Mcgraw Hill Pub.Co. New York, 1996. Reference Books: Join, R.K. Urban L.V.Stracy, G.S. "Environmental Impact Analysis", 2nd Edition,
	VauNostrand Reinhold Co, 2004.2. Ran, J.G. & Wooten, D.C., "Environmental Impact Assessment", 2nd Edition,

	McGraw Hill Pub. Co. Ltd, 2008.
E-resources and other digital material	https://nptel.ac.in/courses/120108004/5

17CE2506 A	GREEN BUILDINGS AND SUSTAINABILITY
------------	------------------------------------

Course Category:	Open Elective - III	Credits:	2
Course Type:	Theory	Lecture - Tutorial - Practice:	0 - 0 - 0
Prerequisites:	Nil	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes		Upor	n succe	essful	comple	etion o	of the c	ourse,	the stu	dent w	ill be a	able to)		
outcomes	CO1	unde	rstand	greer	ı build	ing an	d green	n build	ling ma	terials.					
	CO2	apply	diffe	rent ra	ting ag	gencies	s and f	eatures	s of gre	en buil	dings.				
	CO3	unde	rstand	sourc	es of c	arbon	emissi	ons an	d its in	npact of	n clim	ate.			
	CO4	apply	/ Zona	l regu	lation	while	prepari	ng lan	d use p	olans.					
Contribution		PO	PO	PO	PO	РО	PO	PO	PO	РО	PO	PO	PO	PSO	PSO
of Course		1	2	3	4	5	6	7	8	9	10	11	12	1	2
Outcomes towards	CO1						М	Н					М		M
achievement	CO2			Η			М	Η			Н	М	М	L	

of Program	CO3						M	H					Μ		Μ
Outcomes (L – Low, M -	CO4			M	I		M	Н			Н	М	М	L	
Medium, H –															
High) Course	UNIT	I													
Content				_											
		RODU	CTION	N											
	Green l	Building	g, Why	to go	for Gre	en B	uildin	g, Ben	efits of	Green	Build	lings.			
	2.GRE	EN BU	ILDIN	G MA	TERL	ALS									
	1		g Mater g, Impo		-	-				•	-	sites	for Cons	structin	g a
	UNIT	Π													
	3.GRE	EN BU	UILDIN	NG C	ONCE	PTS	5								
	Buildin	igs, Lau		Green	Buildir	ng Ra	ating S	System	s, Resi	dentia	Secto	or, Ma	Experie rket Tra		
	Green l	Building	U ILDI g Featur y Saving	res, M	aterial a	and I	Resour					otimur	n Energ	y Effici	iency,
	UNIT	III	BILIT						07		•				
	Introdu	ction, H		develo	-			ainabl	e deve	lopmer	nt and	social	ethics,	definiti	ons of
			BON C												
	pathwa	ys, and		ories,	Global	ener	gy bal	ance, (Global	energy	balan		oon cycle 1 temper		
	UNIT	IV													
	Introdu	ction, 1	BILIT Land us Zoning a	se and	land;	cove	er chai			e plan	ning a	nd its	s role in	sustai	nable
		nmental		sitive	desig	n-	low	impact	deve				infrastr		and

Course Category:	Open Elective - III	Credits:	2
Course Type:	Theory	Lecture - Tutorial - Practice:	0-0-0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

	17CE2506 B	ADVANCED CONSTRUCTION MATERIALS
Text book	s and Text Books:	
Reference		
books	2) Engineering Application	nstruction Code Powered by Standard 189.1-2017. ns in Sustainable Design and Development By Bradley A. Striebig, Maria Papadakis. First edition, 2016, CENGAGE Learning.
	Reference Books:	
	and Air conditioning Engine	tices published by Indian Society of Heating Refrigerating eers,2009. k by Tomwoolley and Samkimings,2009.
E-resource and other digital material	es https://igbc.in/igbc/ http://www.grihaindia.org/	

Course outcomes	Upon successful completion of the course, the student will be able to
-----------------	---

		CO1			differer d in cor			ern ma	terials	, Pain	ts, Ena	amels	and V	arnish	es
		CO2			l the ir onstruct		ce of s	special	l cor	ncretes	and	glass	mate	erials u	ised in
		CO3			l the clanaterials		ion and	l usag	e of n	nateria	ls like	e plas	tics, t	ar and	sound
		CO4	unde	erstand	l buildin	g mater	ial like	gypsu	m and	variou	s adhe	esives			
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
Outcomes towards	CO1	L	L				М				L				М
achievement of Program	CO2	L	L				М				L				М
Outcomes	CO3	L	L				М				L				М
(L – Low, M - Medium, H – High)	CO4	L	L				М				L				М
		Ceran refrac 2. PA Intro textur UNIT 3.SPI Light concr 4.GL Comp UNIT 5. PL	mics, setories AINT duction re pain - II ECIA Weig rete. ASS position - III AST	Sealar S- com S, EN on, rul nts, va L CO ght con on, cla	ATERI its for j iposite AMEI ober pa urnish, NCRE ncrete, assificat BITUM	oints, f materia LS AN ints, pl wax po ZTES: High c tion, pr IEN:	als, Ge D VAF astic e lish.	concr	hetics HES: on pa	ints, p	einfor	rced o	concr	ete, po	olymer
				on, po Bitum	olymeri en.	zation,	Class	ificati	ion of	f plas	tics,	biode	egrad	able p	olastic,

	6. SOUND ABSORBENT MATERIALS:
	Porous materials, porous-cum-elastic materials, perforated materials, Baffle materials.
	UNIT – IV
	7. Gypsum:
	Introduction, plaster of Paris, gypsum wall plasters, gypsum plaster boards, Non-load bearing Gypsum partition blocks.
	8. Miscellaneous materials:
	Adhesives- advantages and disadvantages, properties, types of Adhesives; Different types of Building faced cladding materials; heat insulating materials; water proofing materials.
Text books and	Text Books:
Reference books	 Engineering Materials by S. C. Rangwala; Charotar Publishing House, 33 Edn 2017.
	 Building materials by S.K Duggal; New Age International publishers, 3rd Edn, 2009. Reference books:
	1. Building materials by P.C Varghese; PHI Learning, 2 nd Edn 2005.
E-resources and other digital material	www:http://nptel.ac.in/courses/105102088/

RECRUITMENT

Course Category:	HS	Credits:	1
Course Type:	PRACTICE	Lecture - Tutorial - Practice:	0 - 0- 2
Prerequisites:		Internal Assessment:	100
		Total Marks:	100

	Course Outcomes	Upon	succe	ssful c	comple	tion of	f the co	ourse, t	he stuc	lent wi	ll be al	ole to				
In the control of the composed with positive attitude CO3 be composed with positive attitude CO4 understand the core competencies to succeed in professional and personal life Contribution of Course Outcomes PO PO <th></th> <td>CO1</td> <td>und</td> <td>erstanc</td> <td>the co</td> <td>orporat</td> <td>te etiqu</td> <td>iette.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		CO1	und	erstanc	the co	orporat	te etiqu	iette.								
CO3 PO PO <t< th=""><th></th><th>CO2</th><th>mak</th><th>e pres</th><th>entatio</th><th>ns eff</th><th>ectivel</th><th>y with</th><th>approp</th><th>priate b</th><th>ody la</th><th>nguag</th><th>e</th><th></th><th></th><th></th></t<>		CO2	mak	e pres	entatio	ns eff	ectivel	y with	approp	priate b	ody la	nguag	e			
Contribution of Course Outcomes towards achievement of Program Outcomes towards achievement of Program Outcomes towards achievement of Program Outcomes towards achievement of Program Outcomes (L - Low, M - Medium, H - High) PO 1 PO 2 PO 3 PO 4 PO 5 PO 6 PO 7 PO 8 PO 9 PO 10 PO 11 PO 12 PO 01 PO 11 PO 11 PO 11 PO 11 PO 11 PO 11 PO 11 PO 11 PO 11 PO 11 PO 11 PO 11 P		CO3	be c	ompos	sed wit	h posi	tive att	itude								
n of Course Outcomes towards achievement of Program 1 2 3 4 5 6 7 8 9 10 11 12 01 CO1 CO1 CO2 CO1 CO2 CO1 CO2 CO1 CO2		CO4	und	erstanc	the co	ore cor	npeten	cies to	succee	ed in p	rofess	ional a	nd pers	onal li	fe	
towards achievement of Program Outcomes (L - Low, M - Medium, H - High) CO1 M H M <t< th=""><th>n of Course</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>PS O2</th></t<>	n of Course															PS O2
of Program Outcomes (L – Low, M – Medium, H – High) CO2 M H H CO3 CO3 M H H H CO4 M H H H H Course Conrse Content UNIT I ANALYTICAL THINKING &COMMUNICATION SKILLS M H H H Course Content UNIT I ANALYTICAL THINKING &COMMUNICATION SKILLS 1. Self-Introduction, Shaping Young Minds - A Talk by Azim Premji (Listening Activity), – Analysis, Developing Positive Attitude, Perception. 2. Verbal Communication; Non Verbal Communication (Body Language) UNIT II SELF-MANAGEMENT SKILLS & ETIQUETTE 3. Anger Management, Stress Management, Time Management, Six Thinking Hats, T Building, Leadership Qualities 4. Social Etiquette, Business Etiquette, Telephone Etiquette, Dining Etiquette	towards	CO1								М		H				
(L - Low, M - Medium, H - High) CO3 H H CO4 O M H Course Content UNIT I ANALYTICAL THINKING & COMMUNICATION SKILLS 1. Self-Introduction, Shaping Young Minds - A Talk by Azim Premji (Listening Activity), - Analysis, Developing Positive Attitude, Perception. 2. Verbal Communication; Non Verbal Communication (Body Language) UNIT II SELF-MANAGEMENT SKILLS & ETIQUETTE 3. Anger Management, Stress Management, Time Management, Six Thinking Hats, T Building, Leadership Qualities 4. Social Etiquette, Business Etiquette, Telephone Etiquette, Dining Etiquette	of Program	CO2									М	Н				
- High) CO4 M H Course Content UNIT I ANALYTICAL THINKING &COMMUNICATION SKILLS 1. Self-Introduction, Shaping Young Minds - A Talk by Azim Premji (Listening Activity), - Analysis, Developing Positive Attitude, Perception. 2. Verbal Communication; Non Verbal Communication (Body Language) UNIT II SELF-MANAGEMENT SKILLS & ETIQUETTE 3. Anger Management, Stress Management, Time Management, Six Thinking Hats, T Building, Leadership Qualities 4. Social Etiquette, Business Etiquette, Telephone Etiquette, Dining Etiquette	(L – Low, M	CO3										Н				
Content ANALYTICAL THINKING & COMMUNICATION SKILLS 1. Self-Introduction, Shaping Young Minds - A Talk by Azim Premji (Listening Activity), – Analysis, Developing Positive Attitude, Perception. 2. Verbal Communication; Non Verbal Communication (Body Language) UNIT II SELF-MANAGEMENT SKILLS & ETIQUETTE 3. Anger Management, Stress Management, Time Management, Six Thinking Hats, T Building, Leadership Qualities 4. Social Etiquette, Business Etiquette, Telephone Etiquette, Dining Etiquette		CO4									M	H				
		ANAI 1. Se - Anai 2. Veri UNIT SELF 3. An Buildi 4. Soc	LYTI elf-Int lysis, bal Co TI S-MA ger M ing, L sial Et	roduct Devel ommu NAGE Manag eaders	tion, S oping inicatio	haping Positiv n; Nor T SKI Stres talities	g Young ve Attit n Verba LLS ð s Mar	g Minc ude, Po Il Com	ls - A 7 erception munica QUET ent, Tip	Falk by on. ation (1 TE me Ma	Azim 3ody I	Premj Langua	ge) Six Th	inking		
		UNIT	III													

	STANDARD OPERATION METHOD	OS & VERBAL ABILITY
	5. Note Making, Note Taking, Minutes P	reparation, Email & Letter Writing
		abstitutes-Correction of Sentences-Analogies, Spotting Action -Sentences Assumptions, Sentence Arguments,
	UNIT – IV CAREER-ORIENTED SKILLS	
	 Group Discussion, Mock Group Disc Resume Preparation, Interview Skills 	
Reference books	[2] S.P. Dhanavel, English and Soft Skill[3] R.S.Aggarwal, A Modern Approad Company Ltd., 2018.	oment and Soft Skills, Oxford University Press, 2011. s, Orient Blackswan, 2010. ch to Verbal & Non-Verbal Reasoning, S.Chand & eta, Technical Communication Principles and Practice,
E Sources & Other Digital Material:	www. Indiabix.com www.freshersworld.com	
	17CE3508	GEOTECHNICAL ENGINEERING

Course Category:	Programme Core	Credits:	3
Course Type:	Theory with practical	Lecture - Tutorial - Practice:	2-0-2
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon s	successful completion of the course, the student will be able
	CO1	to understand the origins of soil and basic inter-relationships of soil components
	CO2	to determine the index properties of soil and classify the soil based on the index properties
	CO3	to understand the Soil-Water Interaction
	CO4	to understand compressibility and shear characteristics of soil
	CO5	to determine the basic engineering properties of soil

Contributio n of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
Outcomes towards	CO1	Н													
achievemen t of	CO2	Н	Н											Н	Н
Program Outcomes	CO3	Н				Н								Н	Н
	CO4	Н	Н			Н								Н	Н
(L – Low, M - Medium, H – High)	CO5	Н	Н												Н

Course Content	 UNIT – I 1.INTRODUCTION, BASIC DEFINITIONS AND RELATIONS: Scope of Geotechnical Engineering; Origin of Soils; Formation of soils; Types of soils; Transportation of soils; Major soil deposits of India. Phase diagrams; Volumetric relationships; Weight relationship; Volume-weight relationships; Specific gravity of soils; Three phase diagram in terms of void ratio; Inter- relationships; 2.INDEX PROPERTIES AND SOIL CLASSIFICATION: Index Properties – Introduction, Particle Size Distribution Curve and its uses, Relative Density, Plasticity of soils, Consistency Limits and uses, Plastic, consistency and liquidity indices; Flow index & toughness index; Sensitivity; Thixotropy; Activity of soils. Unified soil classification system; Indian standard soil classification system Experiments: Determination of water content by oven drying method Determination of specific gravity by Density bottle & Pycnometer Grain Size analysis – Mechanical analysis – wet and dry soil Hydrometer analysis Determination of liquid limit and plastic limit Determination of field unit weight by Core cutter method Determination of field unit weight by sand replacement method
	 UNIT – II 3.SOIL MOISTURE AND PERMEABILITY: Flow of water in soils; Darcy's law; Validity of Darcy's law by Reynolds number; Determination of coefficient of permeability* by constant head and variable head methods & Indirect methods; Seepage velocity; General expression for laminar flow; Laminar flow through porous media; Factors affecting permeability; Permeability of stratified soil deposits. 4.EFFECTIVE STRESS PRINCIPLE: Effective stress principle; Effective stress in a soil mass under different loading conditions – effect of depth of water table, surcharge loading, capillary water Experiments: 8. Determination of permeability by Constant head and Variable head methods
	 UNIT – III 5.SEEPAGE THROUGH SOILS Seepage pressure; Quick sand conditions; Laplace equations*; Stream and potential functions*; Characteristics of flow net; Uses of flow nets; Seepage through earth dams with horizontal filter*; Uplift pressure; Flow net for anisotropic soils. 6.COMPACTION OF SOILS: Introduction; Standard proctor test and modified proctor test; Compaction of clayey soil and sand; Factors affecting compaction; Effect of compaction on properties of soils; Field compaction of soils and field compaction control. Experiments: 9. Standard proctor compaction test- Determination of OMC, MOD UNIT – IV
	7.CONSOLIDATION OF SOILS: Introduction; Initial and secondary consolidation; Spring analogy for primary consolidation; Terazaghi's theory of consolidation; Solution of basic differential equation;

	Consolidation test; Determination of void ratio at various load increments-height of solids and change in voids ratio methods; Consolidation test results; Determination of coefficient of consolidation-square root of time and logarithmic time fitting methods 8. SHEAR STRENGTH OF SOILS: Introduction; Mohr – coulomb theory; Different types laboratory of shear strength tests*(Triaxial test Direct shear test; Unconfined compressive strength test; Vane shear test*); Different drainage conditions and their field applicability; Mohr - coulomb failure criterion; Shear characteristic of cohesive and cohesion less soils Experiments: 10. Determination of C and φ by direct shear test 11. Determination of Shear strength by Vane shear test 12. Unconfined compression test- Determination of C and φ Note: 1. In Laboratory tests only test procedures need be studied - no need of derivations of the formulae used in the tests 2. Only test procedures according to relevant IS codes need be studied. 3.*methods and / or formulae only - no derivation of formulae needed.
Text books and Reference books	 Text Books: Soil Mechanics and Foundation Engineering by K.R. Arora; Standard Publishers & Distributors, Naisarak, New Delhi. Basic and Applied Soil Mechanics by Gopal Ranjan and A.S.R.Rao. published by New Age International Ltd., Reference Books: Geotechnical Engineering by B. J. Kasmalkar; Pune Vidyarthi Griha Prakashan, Pune. Modern Geotechnical Engineering by Alam Singh; CBS Publishers & distributors Pvt. Ltd., Delhi. Soil Mechanics and Foundation Engineering Vol. 1 by V. N. S. Murthy; Saikripa Technical Consultants, Bangalore. Soil Mechanics and Foundation Engineering by B. C. Punmia; Laxmi Publications, Delhi. Soil Mechanics Laboratory Manual by B.M. Das, Oxford University Press, 2002 Relevant Indian Standard Code Books – IS 2720
E-resources and other digital material	Introduction to Soil Mechanics - http://nptel.ac.in/courses/105103097/ Soil Mechanics - http://nptel.ac.in/courses/105101084/ Geotechnical Engineering Laboratory - https://nptel.ac.in/courses/105101160/

17CE3509	DESIGN OF CONCRETE STRUCTURES

Course Category:	Programme Core	Credits:	2
Course Type:	Theory	Lecture - Tutorial - Practice:	2-0-0
Prerequisites:	17CE3402 Concrete Technology	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outco	Upon s	uccess	ful co	mplet	ion of	the co	ourse,	the st	udent	will h	ave ar	n abilit	ty to		
	CO1	desig	gn of l	R.C. b	eams										
		CO2	design of B.C. ashumns												
		CO3													
		CO4	desig	gn Foo	otings										
Contributio n of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
Outcomes towards	CO1	М		Н		Н								Н	
achieveme nt of	CO2	М		Н		Н								Н	
Program Outcomes	CO3	М		Н		Н								Н	
(L – Low, M - Medium, H – High)	CO4	M		H		H								H	
Course Cont	ent	UNIT 1.GEN Loadir charac and L strengt ALL I 2. DES Design rectang Shear Develo develo	NERA ng sta teristi imit ths, D DESI SIGN of gular in F ppmer	ndard cs of State esign GNS OF I sing section X. C. nt le	conce walue invalue IN L BEAI gly ru on and bea ength;	erete ethod es, Pa IMIT MS (I einfo d sing ums; Ar	and s (L.S artial [S456 (S456 rced gly rei Diag achora	teel, 1 S.D.) safety TE 1 -2000 recta nforc onal age	Introc of c facto MET)). angula ed fla tensi bond	luctic lesigr ors, F HOD ar se anged on a ; Fl	ection section	worki naract ed loa n, Do ons. liagon	ing st eristi ads. oubly	ress m c loac reinf	forced ssion;

	 UNIT - II 3. DESIGN OF ONE WAY SLAB (IS456-2000). One way and Two-way action of slabs, Choosing slab thickness. Design of one way slab. 4. DESIGN OF TWO WAY SLAB (IS456-2000). Design of restrained and unrestrained Two way slabs as per I.S. code provision (IS456-2000).
	 UNIT – III 5. DESIGN OF COLUMNS FOR AXIAL COMPRESSION (IS456-2000). Define short and long columns, estimation of effective length of a column. Code requirements on slenderness limits, minimum eccentricity and reinforcement. Design of short column under axial compression with lateral ties and helical reinforcement.
	6. DESIGN OF COLUMNS FOR COMBINED ACTION (IS456-2000). Design of short columns subjected to combined axial load and uniaxial moment
	 UNIT – IV 7. DESIGN OF ISOLATED FOOTING (IS456-2000). General aspects of footings and types of footings. Design and detailing of Isolated Column footings.
	8. DESIGN OF COMBINED FOOTING (IS456-2000). Design and detailing of combined footings.
Text books and Reference books	 Text Books: 1. Reinforced Concrete Vol-1,8th Edition by H.J.Shah, by Charotar Publication House. 2. Reinforced Concrete (Limit State Design), 7th Edition by Ashok K.Jain, Nem Chand & Bros., Roorkee Reference Books: 1. Limit state designed of reinforced concrete – P.C.Varghese, Printice Hall of India,
	 New Delhi 2. Design of concrete structures by ArtherH.Nilson, Tata McGraw-Hill Publishing Co. Ltd, New Delhi.
E-resources and other digital material	http://nptel.ac.in/courses/105105105/ http://nptel.ac.in/courses/105105104/

17CE3551 ENVIRONMENTAL ENGINEERING LAB

Course Category:	Programme core	Credits:	1
Course Type:	Lab	Lecture - Tutorial - Practice:	0-0-2
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon successful completion of the course, the student will be able to					
	CO1 test the various parameters and understand their significance and application.					
	CO2 recommend the suitability of water for various applications by knowing water quality standards.					
Course Content	 Determination of total suspended and dissolved solids in water / sewage sample. Determination of fixed and volatile solids in water / sewage sample. Determination of turbidity of water / sewage sample. Determination of alkalinity of water sample. Determination of acidity of water sample. Determination of temporary and permanent hardness of water sample. Determination of chloride concentration of water / sewage sample. Determination of PH value of water / sewage sample. Determination of optimum dose of coagulant. Determination of fluorides in water sample. Determination of fluorides in water sample. Determination of biochemical oxygen demand (BOD) of waste water. Determination of chlorine demand and residual chlorine. Determination of nitrogen in water sample. 					

Text books and Reference books	Text Books: Environmental Engineering Vol. I - Water supply engineering by S. K. Garg; KhannaPublishers, Delhi. 18 th Edn, 2004. Reference Books :
	 Manual on Water Supply & Treatment; CPH and EEO, Ministry of Urban Development; Govt. of India, New Delhi. Is 3025 (part 2): 2004 iso 11885:1996 Indian standard methods of sampling and test (physical and chemical) for water and waste water ,* part 2 determination of 33 elements by inductively coupled plasma atomic emission spectroscopy
E-resources and other digital material	http://www.nitttrchd.ac.in/sitenew1/nctel/civil.php

17CE3601 DESIGN OF STEEL STRUCTURES

Course Category:	Programme Core	Credits:	2
Course Type:	Theory	Lecture - Tutorial - Practice:	2-0-0
Prerequisites:		Continuous Evaluation:	30
_		Semester end Evaluation:	70
		Total Marks:	100

Course outco	omes	Upon s	success	sful co	omplet	tion of	f the c	ourse,	the st	udent	will h	ave ar	n abili	ty to	
	CO1	CO1 design of steel connections													
		CO2	CO2 design of steel members in tension and compression with s connections									simple			
		CO3	CO3 design of laterally supported and unsupported steel beams												
		CO4	desi	gn of	steel c	olum	1 base	S							
Contributio n of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
Outcomes towards	CO1	M		Н		H								Н	
achieveme nt of	CO2	М		Н		Н								Н	
Program Outcomes	CO3	М		Н		Н								Н	
(L – Low, M – Medium, H – High)	CO4	М		Н		Н								Н	
Course Cont	ent	rolled relatio 2. SIN Bolted streng subject Welde	NERA menta steel onship IPLE cont th of ted to d Co o, Typ	al Con section for m COI nection ordin ordin o axia onnection	ons a nild s NNE ons: ary b l load tions: of joi	vailal teel. CTIC Types lack b l. Adv. nts,	ble to DNS (s of j polts, vantag	be u IS800 oints Simp ges o	used i 0-200 , Beh ole com	n stee 7). navior nnect	ur of ions.	bolte Desig	es. St ed jo gn of und p	ress – ints, I bolted	joints ies of
		UNIT 3. TE Types memb	NSIO of t	ensio	n m	embe	rs, sl	ende	rness						

	 strength of tension members, design of tension members and Lug angles with bolted and welded connections. 4.COMPRESSION MEMBERS (IS800-2007) Possible failure modes, behaviour of compression members, Effective length, radius of gyration and slenderness of compression members, Allowable stresses in compression, Design of axially loaded compression members, built up compression members with Laced and Battened columns with bolted and welded connections.
	 UNIT – III 5. BEAMS- LATERALLY SUPPORTED (IS800-2007). Introduction; classification of sections; Lateral stability of beams; web buckling; Web crippling. Design of laterally supported beams. 6. BEAMS- LATERALLY UNSUPPORTED (IS800-2007). Design of laterally unsupported beams.
	 UNIT - IV 7. COLUMN BASE - SLAB BASE (IS800-2007). Introduction to column bases and types of column bases. Allowable stress in bearing, Design of Slab base with bolted and welded connections. 8.COLUMN BASE - GUSSET BASE Design of Gusset base with bolted and welded connections.
Text books and Reference books	 Text Books: 1. Design of Steel structures by N. Subramanian, Oxford University Press. 2. Limit State Design of steel structures by S.K.Duggal, McGraw Hill Education Private Ltd. 3. Limit State Design of steel structures – Ramchandra and VirendraGehlot, Scientific Publishers (India) Reference Books: 1. Design of steel structures by K.S.Sai Ram, Pearson Education India. 2. Design of steel structures by Limit State Method as per IS: 800-2007 – S.S. Bhavikatti, IK International Publishing House, Bangalore – 560 001.
E-resources and other digital material	http://nptel.ac.in/courses/105103094/ http://nptel.ac.in/courses/105106112/

17 CH	E 3602	TRANSPORTATION ENGINEERING						
Course Category:	Program Core	Credits:	4					
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0 - 2					
Prerequisites:		Continuous Evaluation: Semester end Evaluation: Total Marks:	70					

Course	Upon successful completion of the course, the student will be able to
--------	---

outcomes	CO1	anal	yze th	e best	alter	native	route	for hi	ghway	ys.					
	CO2	2 identify suitable Pavement materials in Highway Construction by performing various tests.													
	CO3	desi	gn geo	ometri	cs, tra	affic c	ontrol	devic	es and	l pave	ement	crust			
	CO4	understand the Construction and Maintenance of Highways													
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
Outcomes towards	CO1	Н		Н											
achievement of Program	CO2				Н										Н
Outcomes	CO3	Н	Н	Н										Н	
(L – Low, M - Medium, H – High)	CO4			М		М									
Course Content	UNIT 1.		GHW/	AY N	ETW	ORK	PLA	NNIN	G AN	D AI	JGN	MENT	ſ	1	·
	Different Modes of Transportation, Road Classification, Road Patterns, 20 Year Road Development plans. Highway Alignment: Requirements, factors controlling, Engineering Surveys 2. HIGHWAY GEOMETRIC DESIGN														
	Geometric Design: Highway Cross Section Elements- Friction, Unevenness. Camber, Carriageway Width, Kerbs, road margins, formation width, right of way, Sight Distance- Stopping Sight Distance, Overtaking Sight Distance, Intermediate Sight Distance, Design of Horizontal Alignment- Super elevation, transition curves, extra widening, Design of Vertical Alignment-Grades and Grade Compensation, Types of Vertical curves.								ance, Design of						
	UNIT-II														
	3.	TRA	AFFI	C STU	JDIE	S									
	 3. TRAFFIC STUDIES Introduction, Road User Characteristics, Vehicle Characteristics, Traffic Volume Studies-objectives, methods, presentation of data(no numerical), Speed Studies- spot speed, average speed, running speed, travel speed, objectives of spot speed study, methods and presentation of data, various methods of speed and delay studies, various methods of Origin and Destination Studies, types of parking system, various methods of Parking Studies(no numerical), Traffic Flow Characteristics, Traffic Capacity and concept of Level of Service. 4. DESIGN OF TRAFFIC CONTROL DEVICES 														

Traffic Operations-Traffic Regulation, Traffic Control Devices- types of Signs, Signalsadvantages, disadvantages, types of traffic signals, types of traffic signal system, design of traffic signal by Webster's method.

UNIT-III

5. DESIGN OF PAVEMENTS

Types of Pavement Structures, Design Factors, Design of Flexible Pavements- IRC Method, Design of Rigid Pavement- Wheel Load stresses, Temperature Stresses, Frictional Stresses.

6. HIGHWAY CONSTRUCTION AND MAINTENANCE

Construction Steps of Embankment, earth roads, Granular Sub Base (GSB), Wet Mix Macadam (WMM), Dense Bituminous Macadam (DBM), Bituminous Concrete (BC) as per MORTH. Pavement failures, causes, failures in flexible pavement, failures in rigid pavements, maintenance of Bituminous pavements and concrete pavements.

7. HIGHWAY DRAINAGE

Importance of Highway Drainage, Requirements, Surface Drainage and Sub Surface Drainage

UNIT-IV

8. PAVEMENT MATERIALS

Sub grade Soil Properties, CBR Test, Plate Bearing Test (demo), Stone Aggregates-Desirable Properties, tests- Aggregate Crushing Value Test, Aggregate Impact Value Test, Aggregate Abrasion Value Test, Shape Tests, Specific gravity, Bitumen-Desirable Properties, Penetration test, ductility test, softening point test, viscosity test, flash and fire point test, Marshal Method of Bituminous Mix Design (theory only), Job mix formula for GSB, WMM.

Text books and	Learning Resources:
Reference	Text Books
books	
	1. Khanna, S. K., C. E. G. Justo, A. Veeraragavan" Highway Engineering Revised 10th Edition Nem Chand Bros . Roorkee 2017.
	2. L R Kadyali, "Principles and Practices of Highway Engineering", Khanna Publishers, New Delhi,
	2004.
	Reference Books
	1. Principles of Transportation Engineering by Partha Chakraborthy & Animesh Das; PHI Learning Pvt. Ltd.; New Delhi, Second edition 2017
	2. Ministry of Road Transport and Highways- Specifications for Roads and Bridge Works, Fifth
	Revision, IRC, New Delhi, India-2013
	3. IRC 37:2012- Guidelines for the design of flexible pavements (Third Revision)
	4. IRC58-2015 Guidelines for the Design of Plain Jointed Rigid Pavements for Highways

E-resources and other digital	https://nptel.ac.in/downloads/105101087/ https://nptel.ac.in/courses/105105107/
material	

PROGRAM ELECTIVES

17CE4603 A	ADVANCED STRUCTURAL ANALYSIS
------------	------------------------------

Course Category:	Programme Elective - I	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:	17CE3503:Structural Analysis	Continuous Evaluation:	30
_		Semester end Evaluation:	70
		Total Marks:	100

Course outo	Upon	Upon successful completion of the course, the student will be able to													
		CO1	analyze arches and cables.												
		CO2	evaluate statically indeterminate beams, rigid jointed plane frames using Flexibility method												
		CO3		evaluate statically indeterminate beams, rigid jointed & pin jointed plane frames using Stiffness method											
		CO4	apply frame		analys	sis princ	iples t	o dete	ermina	te , in	determi	inate b	eams a	nd porta	al
Contributi on of		PO 1	PO 2	PO3	PO 4	PO5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO 11	PO1 2	PSO 1	PSO 2
Course Outcomes	CO1	Н	Н	L							L	L		Н	
towards achievem	CO2	Н	Н	L							L	L		Н	
ent of Program	CO3	Н	Н	L							L	L		Н	
Outcomes (L – Low, M – Medium, H – High)	CO4	М	М	L							L	L		Н	
Course Con	itent	Eddy arche 2. Analy the c	ARC 's The es for S CAB ysis of	orem; Static lo LES: Cables nder so	oads s unde	sis of t r unifo ight; E	ormly	distr	ibuted	d and	conce	entrate	ed load	ds; Sha	ape of

	 UNIT – II 3. FLEXIBILITY AND STIFFNESS MATRICES: Flexibility and stiffness; Flexibility matrix; Stiffness matrix; Relationship between flexibility matrix and stiffness matrix 4. FLEXIBILITY METHOD (MATRIX APPROACH): Analysis of continuous beams and rigid jointed plane frames (Single bay, single storey with vertical legs only) by flexibility method with matrix approach.
	UNIT – III
	 5. STIFFNESS METHOD (MATRIX APPROACH): Analysis of continuous beams, rigid jointed plane frames (Single bay, single storey with vertical legs only) by stiffness method with matrix approach 6. DESCRIPTION OF MATRIX METHOD : Application to plane truss (Limited to two degree of freedom)
	UNIT – IV
	 7. PLASTIC ANALYSIS OF STRUCTURES: Idealized stress - strain curve for mild steel; Ultimate load carrying capacity of members carrying axial forces; Moment - Curvature relationship for flexural members; Evaluation of fully plastic moment; Shape factor; Collapse load factor; Upper and lower bound theorems; Collapse load analysis of indeterminate beams and single bay, single storied portal frames. 8. FRAMES WITH INCLINED MEMBERS: Plastic analysis of a gable frame, effect of axial forces on plastic moment capacity,
Text books and Reference books	 effect of shear on plastic moment capacity. Text Books: Structural Analysis – A matrix approach by G. S. Pandit& S.P. Gupta, 2008, Tata Mc. Graw – Hill Publishing Co. Ltd., New Delhi Basic Structural Analysis by C.S.Reddy, McGraw Hill Education; 3rd Edition, 2010 Limit state Design of steel structures by S.K.Duggal, 2 edition, 2017, McGraw Hill Education, New Delhi.
	 Reference Books: 1) Analysis of structures Vol.2 by Prof V.N.Vazirani, Dr.M.M.Ratwani, Dr.Sk.Duggal, 16th Edition,2016, Khanna Publishers, New Delhi. 2) Indeterminate Structural Analysis by C.K.Wang, 5th Edn 2014, McGraw Hill Education, New Delhi.
E-resources and other digital material	http://onlinecourses.nptel.ac.in/courses/105106050

17CE 4603 B	ADVANCED ENVIRONMENTAL ENGINEERING

Course Categor	:y:	Program	nme El	ective	-1				Credits: 3						
Course Type:		Theory							Lecture - Tutorial - Practice: 3-0-0						
Prerequisites:	502 - Environmental Engg						Continuous Evaluation:30Semester end Evaluation:70Total Marks:100								
Course outcome	es	At the	the end of the course, the students are able to develop ability to												
		CO1	Inter	Interpret contamination of water bodies on disposal of waste water.											
		CO2	Unde	Understand the new concepts in Biological Waste Treatment											
		CO3		Design low cost treatment units and to choose suitable treatment for selected industrial effluents.											
	CO4	D4 Identify the types of air pollutants, their effects and understand the working of controlling devices to control particulate matter.													
CO5			Understand the basics of noise, sources, effects and controlling measures.												
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
Outcomes towards	CO1	Н		М		L			L						L
achievement	CO2	Н							L						L
of Program Outcomes	CO3	Н		М					L					L	L
(L – Low, M – Medium, H –	CO4	Н	L						L						L
High)	CO5	Н	L						L						L
Course Content		Int wa & Se Di Im fau Te Di 2. NE (At Int	REAM troduct tter WI Re-aen If puri ssolved pact o ina. mpera ssolved W CO t prelin troduct	ion; T RT BC ration; ficatio d oxyg f follo ture, S d Inor; NCEI ninary ion; N	oleran DD and D and gen mc gan mc ganic s PTS IN level) litroge	ce lim I TSS i Oxyge odel or oolluta ded ma substar N BIO n remo	n parti n sag c Mathe nts on atter an nces. LOGI	cular; curve v matica water d Turl CAL biolog	Self p vith cr al Equa bodies bidity, WAST gical n	urifica itical c ation fo and us Foam, `E TR itrifica	tion in concen or Oxy sage w , Acidi EATN ttion at	tration gen sa vith ref ic and IENT nd de-1	am- Do , defic ag curv erence Alkali nitrific	nland su e-oxyge it and the re - derive to floration ine pollution ation; iologica	nation me; vation. and utants,

contactor (RBC); An-aerobic filters; U-tube aeration system.
 UNIT – II 3. INDUSTRIAL WASTE WATER TREATMENT AND SUGAR PLANT WASTE WATER TREATMENT Introduction; General Characteristics of Industrial wastes; Routine Treatment methods of Industrial wastes. Quantity of liquid waste; Manufacturing process flow diagram and sources of waste; Characteristics of liquid waste; Methods of treatment and treatment flow diagram and disposal. 4. DAIRY AND PULP AND PAPER INDUSTRY WASTE WATER TREATMENT Quantity of liquid waste; Manufacturing process with flow diagram and sources of waste; Characteristics of liquid waste; Methods of its treatment and treatment flow diagram and sources of waste; Characteristics of liquid waste; Methods of its treatment and treatment flow diagram and disposal.
 UNIT – III LOW COST WASTE WATER TREATMENT SYSTEMS AND THEIR DESIGN Introduction; Biological kinetics of waste water; Algal-Bacterial Symbiosis; Aerobic and Facultative Stabilization ponds-Principle and working. Design w.r.t latitude of the locality and dispersion factor; Aerated lagoons- working and design; Oxidation ditch- working and design; Extended aeration process at preliminary level. SOURCES, CLASSIFICATION OF AIR POLLUTANTS AND EFFECTS OF AIR POLLUTION Stationary and mobile sources; Primary and secondary pollutants; Natural contaminants; Particulate matter- dust, SPM, smoke, Mist, Fumes, etc ; Aerosols; Gases. Effects of air pollutants on human health; Effects on plants and Economic effects.
 UNIT-IV 7. METEOROLOGY AND AIR POLLUTION Atmospheric stability – variation of temperature w.r.t to altitude. Temperature inversions – Radiation Inversion, Subsidence Inversion, Advective

Text books and Reference books	 Text Books: 1. Waste water treatment by M. N. Rao and A. K. Datta, 2008, Oxford &IBHpublishing Co. Pvt. Ltd., New Delhi. 2. Waste Water Engineering, Treatment, Disposal and Reuse by Metcalf &Eddy, 2005, Tata McGraw – Hill publishing Co. Ltd., New Delhi. 3. Air pollution by M. N. Rao and H. V. N. Rao, 2004, Tata McGraw – Hill Publishing Co. Ltd., New Delhi. Reference Books: 1. Environmental pollution control Engineering by C. S. Rao, 2008, Wiley Eastern Ltd., New Delhi. 2. Water Supply and waste water disposal by G. M. Fair et al. 1958, John Wiley &Sons. 3. Sewage and Sewage treatment by S. K. Kshirasagar, 1998, Roorkee Publishing House, Roorkee. 4. Sewage Disposal and Air pollution Engineering by S. K. Garg, 2010, KhannaPublications; Delhi.
E-resources and other digital material Web References:	https://onlinecourses.nptel.ac.in/noc18_ce29 https://onlinecourses.nptel.ac.in/noc18_bt19 https://onlinecourses.nptel.ac.in/noc18_me63 https://onlinecourses.nptel.ac.in/noc18_ce26 NPTEL

17CE4603 C	AIRPORT PLANNING AND DESIGN
------------	-----------------------------

Course Category:	Program Elective-1	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:	-	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcom	mes	Upon	succe	essful c	omple	etion	of the	course	, the st	udent v	will be a	ble to			
		CO1	und	erstanc	l airpo	ort an	d airc	raft cha	racteri	stics.					
	CO2	understand various obstructions at airport.													
	CO3	eval	uate a	irport	runw	ay pa	vement	•							
		CO4	unde	erstand	traff	ic cor	ntrol a	ids							
Contribution of Course Outcomes		РО 1	PO 2	PO3	PO 4	PO 5	PO 6	PO7	PO8	PO9	PO10	PO 11	PO12	PSO1	PSO2
Outcomes towards	CO1		Н												М
achievement	CO2	Н		Μ											М
of Program Outcomes	CO3	Н	Н	Μ							L		L	Н	
(L – Low,	CO4					Н					L		L		М
			ICAO 2.AIRPORT PLANNING AND CHARACTERISTICS Airport classification based on ICAO, airport components, Aero plane components; Air–craft characteristics; Selection of site for airport; Surveys for site selection												
	UNIT – II 3.AIRPORT OBSTRUCTIONS Zoning laws, Imaginary surfaces, Approach zone, turning zone 4.RUNWAY DESIGN Runway orientation- cross wind component, wind rose diagram, typ wind rose; Basic runway length; Corrections for elevation, Temper						am, type Tempera	ature							
			and gradient; Runway geometric design. Runway configur geometric design standards of taxiway design						ingurat	ions,					
	UNIT – III 5.STRUCTURAL DESIGN OF AIRFIELD PAVEMENT FLEXIBLE PAVEMENT Various design factors, Design methods for flexible airfield Pavement- CBR Method, Mcleod Method and Burmister's Method 6.RIGID PAVEMENT rigid pavement Design- PCA Method; LCN Method of pavement design.														
		UNIT		ISUA			al aic	ls, air	port r	narkin	igs-runv	way	markin	gs, taxi	iway

	 markings, runway and taxiway shoulder markings, apron markings. Wind direction indicator, landing direction indicator, airport lighting 8.AIR TRAFFIC CONTROL Need of air traffic control, air traffic control aids- airway aids, landing aids
Text books and Reference books	 Text Books: Airport Planning and Design by S. K. Khanna ,M. G. Arora& SS Jain; Nemchand& Bros,Roorkee- 2012 Airport Engineering: Planning and Design, Subhash C Saxena, CBS Publisher, 2012 Reference Books: Airport Engineering – Rangwala, Charotar Publishing House Pvt. Ltd., 2012 Virender Kumar and Satish Chandra, "Airport Planning and Design"-Galgotia Publication Pvt Ltd 2012
E-resources and other digital material	https://nptel.ac.in/courses/105107123/

17CE4603 D	IRRIGATION STRUCTURES
------------	-----------------------

Course Category:	Programme Elective - I	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0 - 0
Prerequisites:	17CE3501 -	Continuous Evaluation:	30
	Water Resources Engineering	Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	Upon successful completion of the course, the student will be able to						
	CO1	understand the basics of diversion head works and canal regulation						
	CO2	apply the design principles of various cross drainage works						
	CO3	evaluate various types of dams and principles of Aurthur cotton technology						

understand various types of spill ways. CO4 PO PS PSO **Contribution of Course Outcomes** 2 3 4 5 6 7 8 9 10 11 12 01 2 1 towards Μ **CO1** achievement of Program Η Η Η Μ Μ CO₂ Outcomes Η Η Η Μ Μ Η Η CO3 (L - Low, M -Medium, H-**CO4** Μ Μ High) **Course Content** UNIT – I **1. DIVERSION HEAD WORKS:** Component parts of a Diversion Head works. Types of weirs, causes of failures of weirs and their remedies. - Bligh's Creep Theory, & Khosla's Theory. Outlets, Types:-Non modular Outlets, Semi modular Outlets, Rigid Module, Canal falls; Necessity and locations of falls, Development of falls and classification of falls. Silt control at head works. 2. CANAL REGULATION WORKS: Canal regulators; Off-take alignment; Head regulators and cross-regulators; Canal escape. UNIT – II **3.CROSS DRAINAGE WORKS:** Introduction; Types of cross - drainage works; Selection of suitable type of cross drainage work; Classification of Aqueducts and Syphon Aqueducts; Selection of a suitable type. **4.COTTONS TECHNOLOGIES** Introduction to aurthur cotton technologies for present day needs, modern substitutes for aurthur cottons materials, introduction to design of Krishna anicut, introduction to design of Godavari anicut UNIT – III **5.STABILITY ANALYSIS OF GRAVITY DAMS:** Introduction; Forces acting on a gravity dam; modes of failure and stability analysis of gravity dams: **6.DESIGN OF GRAVITY DAMS:** Elementary profile of a gravity dam; Practical profile of a gravity dam; Limiting height of a gravity dam; High and low gravity dams; Design of gravity dams-single step method; Galleries; Joints; Keys and water seals. UNIT – IV 7. EARTH DAMS: Introduction; Types of earth dams; Causes of failure of earth dams; Criteria for safe design of earth dams; Section of an earth dam; Seepage control measures; Slope protection.

	8. SPILLWAYS: Introduction; Types of spillways; Profile of ogee spillway; Energy dissipation below spillways for relative positions of jump height curve and tail water curve; Stilling basins; Types and description only.
Text books and Reference books	 Text Books: Irrigation and Water Power Engineering by Dr. B.C.Punmia & Dr. Pande B.B. Lal; Laxmi Publications pvt. Ltd., New Delhi. 2006. Water Power Engineering by M.M. Dandekar and K. K. Sharma; Vikas Publishing House Pvt. Ltd., New Delhi.,2006. Irrigation Engineering and Hydraulic Structures by S.R. Sahasra Budhe; Katson Publishing House, Ludhiana. 2000. Sir Srthur Cottons Technologies for todays anicuts, dams, aqueducts, bridges, barrages, kissing reservoirs., by Dr Gutta Lakshmana Rao, Dr KSR Prasad. Reference Books: Irrigation Engineering and Hydraulic Structure by S. K. Garg; Khanna Publishers, Delhi.,2006 Irrigation, Water Resources and Waterpower Engineering by Dr. P.N. Modi; Standard Book House, New Delhi. 2006. Journals in Water Resources Methods of Numerical Analysis, S. S. Sastry, PHI , 2005.
E-resources and other digital material	www.nptel.ac.in/courses/105105110

17CE4603 E	REMOTE SENSING AND GIS

Course Category:	Programme Elective - 1	Credits:	3
		Lecture - Tutorial -	
Course Type:	Theory	Practice:	3 - 0 - 0
		Continuous	
Prerequisites:		Evaluation:	30
		Semester end Evaluation:	70
		Total Marks	: 100

Course outcomes	Upon successful completion of the course, the student will be able to:														
	CO1	apply the recent advances satellite based remote sensing and GIS technology in variou fields of Civil engineering													
	CO2	evaluate the opportunities and available methods for integrating remote sensing and GIS in various civil engineering applications													
	CO3	understand large scale maps using satellite imageries.													
Contribution of Course Outcomes towards achievement of Program Outcomes (L – Low, M – Medium, H – High)		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
	CO1					H				L	М		L		M
	CO2					H	H			L	М		L		M
	CO3					н				L	M		L		М
Course Content	 1.INT Necess Atmos Black Platfor 2.IMA Process UNIT 3.REM Introd Foress extent 4.RED 	UNIT-I 1.INTRODUCTION TO REMOTE SENSING Necessity and importance; Radiant energy from the sun; The electromagnetic spectrum Atmospheric effects on radiation; Absorption, transmission and reflection; Atmospheric windows Black body radiation; Specular and diffuse surfaces: Multi concept of Remote Sensing: Sensor an Platforms: Satellites: Types of data products – Types of image interpretation 2.IMAGE INTERPRETATION – Basic Elements, visual interpretation keys - Digital Imag Processing – Pre-Processing – image enhancement techniques – multispectral image classification. UNIT-II 3.REMOTE SENSING APPLICATIONS Introduction, Land use and land cover mapping: urban growth studies: Agriculture: Forestry: Ground water mapping: Flood plain mapping: Hydro morphological studies: Type extent and distribution of wastelands in India; Development of wastelands; 4.REMOTE SENSING APPLICATIONS IN CIVIL ENGINEERING District level planning : Disaster management: Application of Remote Sensing in Civil Engineering													
	UNIT-III														

	5.INTRODUCTION TO GIS
	Introduction – Maps – Definitions – Map projections – types of map projections –Maps analysis GIS definition and terminology – basic components of GIS –standard GIS software's
	6.DATABASE MANAGEMENT SYSTEMS Data types – Spatial and Non Spatial (attribute) data –measurement scales – Data Base Managemer system (DBMS): definition - DTM ,DEM ,TIN
	UNIT-IV
	7.APPLICATIONS OF GIS
	Introduction, Problem Identification; GIS for Site Suitability in Urban Planning – Roa Accident Analysis – Irrigation water management – Tourism Information System –
	8.ADVANCED APPLICATION OF GIS IN CIVIL ENGINEERING
	Worldwide Earth quake Information System- Drainage problem in Tea Plantation Area- Knowledge Based System for Military Use.
	GIS-T; Application of GIS in Civil Engineering.
Text books and Reference books	Text Books: 1. Remote Sensing & Geographical Information Systems by M.Anji Reddy, BPS Publications-Hyderabad. 2012
DUURS	2. Remote Sensing & GIS by Basudeb Bhatta, Oxford University Press. New Delhi 2011
	 Reference Books: 1. Remote sensing and Image interpretation by TM Lillesand and RWKiefer; John Willey and sons.7th edition 2015
	 2. Remote sensing and Geographical information System by AM Chandra & SK Ghosh;Narosa Publishing House. Second edition, 2015
E-resources and other digital	E1] <u>www.sciencedirect.com/science/article/pii/S1878029612003957</u> [E2] transportgeography.org /page_id6741
material	[E3] https://www.gislounge.com/military-applications-of-gis/ [E4] https://grindgis.com/blog/gis-applications-uses/attachment/gismap-45
	[E5] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5557132/[E6] https://shodhganga.inflibnet.ac.in/bitstream/10603/174401/13/13 chapter%207.pdf
	[E7]
	www.researchgate.net/publication/323411930Applications_of_Remote_Sensing_and_GIS_in_Wasteland_rr apping

17HS1604	ENGI	ENGINEERING ECONOMICS AND FINANCE				
Course Category:	Core	Credits:	2			

Course Type:	Theory	Lecture - Tutorial - Practice:	2 - 0 - 0	
Prerequisites:		Continuous Evaluation:	30	
		Semester end Evaluation:	70	
		Total Marks:	100	

Course outcomes	Upon s	succe	essful	comp	oletion	ofth	e coui	rse, th	e stuc	lent wi	ll be al	ble to			
	CO1	Un	Understand various forms of organizations and principles of management												
	CO2	Un	Understand the various aspects of business economics												
	CO3	Ac	quire	knowl	edge o	n Hun	nan re	source	s and	Market	ing fun	ctions			
	CO 4				ferent		ds use	d in c	alcula	ting dep	oreciatio	on and	evalu	ating	
Contribution of Course Outcomes towards		Р О 1	P O 2	P O 3	Р О 4	P O 5	P O 6	Р О 7	P O 8	PO 9	PO 10	Р О 11	P O 1 2	PS O1	PS O2
achievement of Program Outcomes	CO1	М											M		М
(L – Low, M - Medium, H – High)	CO2	М				Н							М		М
	CO3	М											М		М
	CO4	М				Н							М		М
Course Content	UNIT- Forms Partner Manag of Scie	of rship geme	, Join e nt: I	t Stoc ntrod	k Cor uction	npany to M	, Co- Ianag	opera ement	tive S t, Fur	ociety ictions	and Pu of Ma	ıblic S	Sector		-

	 UNIT-II Introduction to Economics: Introduction to Basic Economic Concepts, Utility Analysis: Marginal Utility and Total Utility, Law of Diminishing Marginal Utility, Law of Equi Marginal Utility. Demand Analysis: Theory of Demand: Demand Function, Factors Influencing Demand, Demand Schedule and Demand Curve, Shift in Demand, Elasticity of Demand: Elastic and Inelastic Demand, Types of Elasticity. Supply Analysis: Supply Schedule and Supply Curve, Factors Influencing Supply, Supply Function.
	 UNIT-III Human Resource Management: Meaning and difference between Personnel Management and Human Resource Management, Functions of Human Resource Management. Marketing Management: Concept of Selling And Marketing – Differences, Functions of Marketing, Product Life Cycle, Concept of Advertising, Sales Promotion, Types of Distribution Channels, Marketing Research, Break-Even Analysis.
	 UNIT-IV Financial Management: Functions of Financial Management, Time value of money with cash flow diagrams, Concept of Simple and Compound Interest. Depreciation: Causes of depreciation, Factors influencing depreciation, common methods of Depreciation: Straight Line Method, Declining Balance Method, Sum of Year's Digits Method –Problems. Economic Alternatives: Methods of Evaluating Alternatives under Present worth method, Future worth method, Annual Equivalent method - Problems.
Text books and Reference books	 Text Books [1] M. Mahajan Industrial Engineering and Production Management Dhanpat Rai Publications 2nd Edition. [2] Martand Telsang" Industrial & Business Management" S.Chand publications Reference books [1] R.Paneer selvam "Production and Operations Management" PHI [2] Philip Kotler & Gary Armstrong "Principles of Marketing" ,pearson prentice Hall,New Delhi,2012 Edition. [3] IM Pandey, "Financial Management" Vikas Publications 11th Edition [4] B.B Mahapatro, "Human Resource Management".,New Age International ,2011
E-resources and other digital material	 [1]<u>https://www.toppr.com/guides/fundamentals-of-economics-and-management/supply/supply-function/</u> [2]<u>https://keydifferences.com/difference-between-personnel-management-and-human-resource-management.html</u> [3] <u>http://productlifecyclestages.com/</u> [4] <u>https://speechfoodie.com/cash-flow-diagrams/</u>

OPEN ELECTIVE-IV

17	CE2605 A	TRAFFIC SAFETY					
Course Category:	Open Elective - IV		Credits: 3				
Course Type:	Theory		Lecture - Tutorial - Practice: 3 - 0 - 0				
Prerequisites:	NIL		Continuous Evaluation: 30				

			Total Marks:	100
			Semester end Evaluation:	70
rer	equisites:	NIL	Continuous Evaluation:	30

Course outcomes	Upon	pon successful completion of the course, the student will be able to					
	CO1	understand the road accidents and road safety improvement strategies					
	CO2	analyse the crash data using statistical methods & conduct road safety audits					
	CO3	understand the mechanism needed for crash reconstruction based on case					

			stu	dies											
		CO4 apply accident mitigation measures in view of safet highway.									afety o	ety of user on a			
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
achievement of	CO1				L										
Outcomes (L – Low, M -	CO2		Н	Н	М	L									L
Medium, H – High)	CO3			М		L									L
	CO4		М	M	Н							Μ			
towards achievement of Program Outcomes (L – Low, M - Medium, H –											tegies, Black s, erstand Case				

	Traffic management measures and their influence in accident prevention, legislation, enforcement, education and propaganda,
Text books & Reference Books	Text books : 1.Trafffic Engineering and Transport Planning , Dr.L.R.Kadiyali, 9 th Edition, 2017, Khanna Publications , New Delhi. 2. S K Khanna C E G Justo, A. Veeraragavan. Highway Engineering. Nem Chand and Bros, Roorkee, 2001 Reference books: [R1] Black Spot Manual, Traffic safety project- General Directorate of Highways, Swedish Transport Administration, December 2001. [R2] Guidelines for road safety audit, directorate of urban land transport, Urban development department, Govt. of Karnataka. [R3] Stewart, A.E. and Lord, J.H., 2002. Motor vehicle crash versus accident: a change in terminology is necessary. Journal of traumatic stress, 15(4), pp.333-335.
E-resources and other digital material	 [E1] https://nptel.ac.in/courses/105101008/downloads/cete_42.pdf [E2] https://roadsafety.piarc.org/en/road-safety-management [E3] http://erso.swov.nl/knowledge/content/10 rsm/the road safety management system.htm [E4] http://www.nimhans.ac.in/sites/default/files/UL_BR_b007_Summery%20rprt.pdf [E5] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2700566/ [E6] https://safety.fhwa.dot.gov/provencountermeasures/

17CE2605 B	BUILDING SERVICES ENGINEERING
------------	-------------------------------

Course Category:	Open Elective - IV	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	successful completion of the course, the student will be able to
	CO1	understand the types, basic planning and specifications of buildings.
	CO2	understand ventilation and thermal insulation in structures
	CO3	understand the plumbing and electrical fixtures in structures
	CO4	understand the considerations for fire prevention and fighting and termite prevention in buildings.

Contributio n of Course Outcomes		PO 1	PO 2	P O 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
towards achieveme	Н	H M M												Μ	
nt of Program	CO2	L						M			Μ				Μ
Outcomes	CO3	L				L	L	Μ			Μ				Μ
(L – Low, M - Medium, H – High)	CO4	L	L L L M M										М		
	 UNIT – I 1. BASICS OF BUILDINGS Types of structures: Load bearing walled structures & Framed structures – Different types of buildings: Residential, Public, Assembly, Hospitals, Institutional etc - Zoning regulations; Regulations regarding layouts or sub-divisions; Building height regulations; Calculation of plinth, floor and carpet area; Floor space index. 2. BASIC BUILDING PLANNING AND ELEMENTS Site planning; Space requirement–Establishing areas for different units - Grouping, Circulation, Orientation, Aspect and prospect, Privacy, Elegance and economy; Climatic considerations – Basic building elements: Stair cases, doors and windows - Guidelines for staircase planning; Guidelines for selecting doors and windows; Terms used in the construction of stair case, doors and window 													oning ng, ws -	
		 UNIT – II 3. VENTILATION AND AIRCONDITIONING, Ventilation – Necessity of Ventilation – Functional Requirements – Types: Natural Ventilation – Artificial Ventilation – Air Conditioning – Systems of Air Conditioning – Essentials of Air Conditioning systems – Protection against fire to be caused by Air Conditioning systems 4. THERMAL INSULATION: Heat transfer – Thermal Insulating Materials – Thermal Insulation Methods – Economics of Thermal Insulation – Insulation of Walls – Roofs – Doors & Windows. 													
		 UNIT – III 5. PLUMBING SERVICES Types of plumbing – Fixing pipes in buildings – Plumbing fittings and accessories – Water Supply System: guidelines for mains, communication and consumer pipes – Water Meters; Drainage – Sanitary Fittings: Bathtubs, wash basins, sinks, flushing cisterns, water closets – Principles governing design of building drainage – Guidelines for laying of Gas supply systems. 6. ELECTRICAL INSTALLATION IN BUILDINGS Considerations for Office Buildings, School Buildings & Residential Buildings; Lighting– Fannage – Electrical Installation for Air Conditioning/Heating – Reception and distribution of main supply – Electrical Fittings and accessories- Method of internal wiring – Earthing – Planning of electrical Installations – Lightening arrestors 													

	 UNIT – IV 7. FIRE SAFETY: Causes of fire in buildings – Planning considerations for fire resistance - Non-combustible materials in construction, staircases and lift lobbies, fire escapes - Special features required for physically handicapped and elderly people – Heat and smoke detectors – Fire alarm system, snorkel ladder – Fire fighting pump and water storage – Dry and wet risers – Automatic sprinklers 8. ANTI- TERMITE TREATMENT Pre construction treatment – Post construction treatment – Construction of anti termite groove in buildings for termite prevention.
Text books and Reference books	 Text Books: 1.Building Construction by B.C. Punmia; Ashok Kumar Jain; Arun Kumar Jain, 2005; Laxmi Publications, New Delhi 2. Building Construction by Janardhan Jha; S.K. Sinha; 2007; Jain Book Agency, New Delhi. Reference Books: 1. National Building Code, 2015 2. Building Construction by P.C.Varghese, 2005, PHI Publications, New Delhi 3. Building Services Engineering by David V. Chatterton, Sixth Edition, 2013, Routledge Publications.
E-resources and other digital material	https://nptel.ac.in/courses/105102176/

	17TP1606	QUANTITATIVE APTITUDE	
Course Category:	Institutional Core	Credits:	1
Course Type:	Learning by Doing	Lecture - Tutorial - Practice:	0 - 0 - 2
Prerequisites:		Continuous Evaluation:	100
-		Semester end Evaluation:	
		Total Marks:	0

100

Course outcomes	mes	Upon	succes	ssful	comple	tion o	f the o	course	e, the s	tuden	t will t	e able	e to		
		CO1	solv	e vari	ious Ba	isic M	athem	natics	proble	ems by	follov	wing d	ifferen	t metho	ds
		CO2			rategies nethod			-		onsum	ption	in pr	oblem	solving	Apply
		CO3		onfidently solve any mathematical problems and utilize these mathematical tills both in their professional as well as personal life.											
		CO4		•	summa phs and		-	esent	infor	natior	n in qu	lantita	tive fo	orms inc	luding
Contributio n of Course Outcomes towards achieveme nt of Program Outcomes (L – Low, M – Medium, H – High)		PO 1	PO 2	P O 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
	CO1	М													
	CO2		M												
	CO3	М													
	CO4				М										

Course Content	UNIT I:													
	1.Numerical ability I:													
	Number system, HCF & LCM, Average, Simplification, Problems on numbers													
	2.Numerical ability II:													
	Ratio & Proportion, Partnership, Percentages, Profit & Loss													
	UNIT II:													
	3. Arithmetical ability l													
	Problems on ages, Time & Work, Pipes & Cistern, Chain Rule.													
	4.Arithmetical ability II:													
	4.Arithmetical ability II:													

	UNIT III:
	5.Arithmetical ability III: Allegation, Simple interest and compound interest, Races & Games of skills, Calendar and Clock,
	6.Logical ability : Permutations and Combination and Probability.
	UNIT IV:
	7.Mensuration: Geometry, Areas, Volumes,
	8.Data interpretation: Tabulation, Bar graphs, Pie charts, line graphs
Text books and Reference books	R. S. Aggarwal "Quantitative Aptitude", Reviseded., S Chand publication, 2017 ISBN:8121924987
E-resources and other digital material	

17MC1607 BIOLOGY FOR ENGINEERS		
	17MC1607	BIOLOGY FOR ENGINEERS

Course Category:	Mandatory Learning	Credits:	
Course Type:	Theory	Lecture - Tutorial - Practice:	2-0-0
Prerequisites:		Continuous Evaluation:	100
-		Semester end Evaluation:	0
		Total Marks:	100

Course outco	Upon	succe	ssful	compl	etion	of the	cour	se, the	e stud	ent wi	ll be a	ble to			
		CO1	Desc	cribe	the fun	dame	ntal p	rincip	les and	l meth	ods of	fengir	neering		
		CO2	Iden	Identify the functions of different types in bio-molecules											
		CO3		bescribe mechanisms underlying the working of molecular biological proces including enzyme catalysis, metabolic pathways, gene expression								ocess			
		CO4			l, MAT proce		and o	ther c	compu	tationa	al tools	s to qu	antitat	ively and	alyze
Contributio n of Course Outcomes towards achieveme nt of Program Outcomes		PO 1	PO 2	P O 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
	CO1	М	Н												
	CO2		Н												
	CO3		М		Н										
(L – Low, M - Medium, H – High)	CO4		L		М	Н									

Course Content	UNIT – I Introduction and Classification of Living organisms Introduction: Fundamental differences between science and engineering by drawing a comparison between eye and camera, Bird flying and aircraft. Biology as an independent scientific discipline. Discuss how biological observations of 18 th century that lead to major discoveries. Examples from Brownian motion and the origin of thermodynamics by referring to the original observation of Robert Brown and Julius Mayor. Classification: Classification of living organisms based on (a) Cellularity- Unicellular or multicellular (b)
	Ultrastructure- prokaryotes or eukaryotes. (c) Energy and Carbon utilization –Autotrophs, heterotrophs, lithotrophs (d) Ammonia excretion – aminotelic, uricotelic, ureotelic (e)
	Habitat-acquatic, terrestrial (e) Molecular taxonomy- three major kingdoms of life.

	 UNIT – II Biomolecules and Enzymes Biomolecules: Biomolecules: Structures of sugars (Glucose and Fructose), starch and cellulose. Nucleotides and DNA/RNA. Amino acids and lipids. Proteins- structure and functions- as enzymes, transporters, receptors and structural elements. Enzymes: Enzyme classification. Mechanism of enzyme action. Enzyme kinetics and kinetic parameters
	UNIT – III
	Genetics and Gene information TransferGenetics:"Genetics is to biology what Newton's laws are to Physical Sciences" Mendel's laws, Concept ofsegregation and independent assortment. Concept of allele. Concepts of recessiveness anddominance. Gene interaction, Epistasis. Meiosis and Mitosis be taught as a part of genetics.Emphasis to be give not to the mechanics of cell division nor the phases but how genetic materialpasses from parent to offspring.Information Transfer:DNA as a genetic material. Hierarchy of DNA structure- from single stranded to double helix tonucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Define gene interms of complementation and recombination.
	 UNIT – IV Metabolism and Microbiology Metabolism: Exothermic and endothermic versus endergonic and exergonic reactions. Concept of Keq and its relation to standard free energy. ATP as an energy currency. Breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) and synthesis of glucose from CO2 and H2O (photosynthesis). Energy yielding and energy consuming reactions. Microbiology: Concept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Growth kinetics. Ecological aspects of single celled organisms. Microscopy.
Text books and Reference books	 Text Books Biology: A global approach: Campbell, N.A.;Reece, J.B.;Urry, Lisa;Cain,M,L.;Wasserman,S.A.; Minorsky,P.V.;Jackson, R.B.Pearason Education Ltd Outlines of Biochemistry, Conn, E.E; Stumpf, P.K; Bruening, G; Doi, R.H., John Wiley and Sons Reference Books Principles of Biochemistry (V Edition), By Nelson, D.L.; and Cox, M.M.W.H. Freeman and Company Molecular Genetics (Second Edition), Stent, G.S.; and Calender, R.W.H. Freeman and Company, Distributed by Satish Kumar Jain for CBS publisher Microbiology, Prescott, L.M J.P. Harley and C.A.Klein 1995. 2nd edition Wm, C.Brown publishers

17CE3608	FOUNDATION ENGINEERING

Course Category:	Programme Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0 - 0
Prerequisites:	17CE3508—Geotechnical	Continuous Evaluation:	30
	Engineering	Semester end Evaluation:	70
		Total Marks:	100

Course outcomes		Upon	succe	ssful	compl	etion	of the	cour	se, the	e stud	ent wi	ill be a	able to		
	CO1		understand the principle of earth pressure, analyze and design of earth retaining structures												
		CO2	unde	understand, analyze and design of soil slopes.											
		CO3		analyze the various parameters in soil investigation program and analyze the soil profile and its properties.											
		CO4	anal	yze va	arious	types	of loa	ds ap	plied t	o the s	oil an	d its d	istribut	ion in se	oil.
		CO5		yze ai emen		ign of	vario	us typ	es of s	hallov	v foun	dation	i includ	ing	
		CO6	anal	yze ai	nd desi	ign of	vario	us typ	es of c	leep fo	oundat	ions.			
Contributio n of Course Outcomes		PO 1	PO 2	P O 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
towards achieveme	CO1	Н	Н	M									М	M	
nt of Program	CO2	Н	Н	M									M	M	
Outcomes	CO3	М	M	M									М	L	
(L – Low,	CO4	Н	Н	M									М	L	
M - Medium, H – High)	CO5	Н	Н	M									М	Н	
	CO6	Н	Н	M									М	Н	

Course Content	 UNIT – I 1.SUB–SOIL INVESTIGATION AND SAMPLING Introduction; Planning of sub-surface exploration Program; Stages in sub-surface exploration; Methods of exploration; Soil sampling and samplers; Water table location; Depth and number of borings; Bore hole logging; In-situ tests – Standard penetration test, Static cone penetration test, Dynamic cone penetration test and Vane shear tests. 2.STRESSES DUE TO APPLIED LOADS Stress-strain parameters; Vertical and horizontal stresses due to concentrated loads; Boussinesq and Westergard solutions; Isobars; Influence diagram; Newmark's influence charts; Contact pressure distribution.
	UNIT – II 3.LATERAL EARTH PRESSURE & RETAINING WALLS Different types of lateral earth pressure; Rankine's and Coulomb's earth pressure theories; Graphical methods; Types of retaining walls; Proportioning of retaining walls.
	4.STABILITY OF SLOPES Definition of slope; Types of slopes; Types of slope failures; Different factors of safety; Factors affecting the stability of slopes; Assumptions in the stability analysis; Analysis of finite slopes by Culman's method; Method of slices; Friction Circle method and Taylor's stability charts; Methods of improving stability of slopes.
	 UNIT – III 5.BEARING CAPACITY OF SHALLOW FOUNDATION Different bearing capacity equations; Types of shear failures; Effect of inclined load, eccentric load and water table on bearing capacity; Bearing capacity from insitu tests; Methods of improving bearing capacity; Plate load test. 6.SETTLEMENT ANALYSIS
	Settlement of foundations; Immediate and consolidation settlements; Allowable settlement; Proportioning of a foundation for a given settlement.
	 UNIT – IV 7.PILE FOUNDATIONS Necessity of pile foundation; Classification of piles; Construction of piles; Load carrying capacity of single pile from static, dynamic and in-situ test methods; Pile load tests; Pile group and its efficiency; Settlement of pile foundation; Negative skin friction; Under-reamed pile foundation in swelling soils. 8.WELL FOUNDATION Forces acting on well foundation; Types, different shapes of wells; Analysis of well foundation; Individual components of well; Sinking of wells; Measures for rectification of tilts and shifts.

Text books and Reference books	 Text Books Basic and Applied Soil Mechanics, Gopal Ranjan and A.S.R. Rao, 8th Edition, 2018, New Age International (P) Limited Publishers, Chennai. Soil Mechanics and Foundation Engineering K.R. Arora, 2011, Standard Publishers and Distributors, New Delhi.
	 Reference Books 1. Advanced Foundation Engineering, V.N.S.Murthy, 2018, CBS Publishers and Distributors, New Delhi. 2. Foundation Analysis and Design, Joseph E. Bowles, 4th Edition, 1996, McGraw – Hill International Editions, 3. Relevant Indian Standard Code Books.
E-resources and other digital material	nptel.ac.in/courses/105107120 nptel.ac.in/courses/105101083

17CE3651 COMPUTER APPLICATIONS IN CIVIL ENGG LAB-1

Course Category:	Programme Core	Credits:	1
Course Type:	Practical	Lecture - Tutorial - Practice:	0-0-2
Prerequisites:		Continuous Evaluation:	30
_		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	successful completion of the course, the student will be able to
	CO1	design and prepare structural drawings themselves for various structural elements by using AUTOCAD
	CO2	write and execute the program using Microsoft Excel/Mat Lab

Contribution of Course		PO 1	PO 2	PO3	PO 4	PO 5	PO 6	PO7	PO8	PO9	PO10	PO 11	PO12	PSO1	PSO2
Outcomes towards	CO1	М	L			М						Н		М	L
towards achievement of Program Outcomes (L – Low, M – Medium, H – High)	CO2	M M M M M													L
Course Conte	nt	Desig steel 1. Ro 2. Dc 3. Tw 4. R. 5. Iso 6. Ste 1. Stude langu 1. De 2. De	gn and struction of/Floor oglegg vo way C.C B lated cel Ro T - B: ents ar age sign of sign of	ural ele oor Syssed stain y slabs eam - Cand Co of Trus PROC e requi f singly f doub	ng the ments tem (C case (Simp Colum mbines GRAN red to y rein ly rein	e reint s. Contir oly sup in joir ed foc MMIN write forceconforce	nuous pportent oting NG e & ex l bear ed bea) with f ed slabs ecute t n for fl m for f	langed s corne he pros exure t lexure	beams rs held grams u by LSM by LSM	down / do	croso	rs not he ft Excel	al eleme	
Text books ar Reference boo		1. Str 2. En Pvt. J 3. En Inter 4. Co	ructur ginee Ltd., 2 ginee natio	ring G 2000. ring D nal Pul er App	raphi rawir blishe	ics us ng and ers, 2(ing A d Gra)01.	UTOC	AD, T and AU	U TOC		⁷ enug	opal, N	C	use
E-resources a other digital material	nd														

17CE3652	ADVANCED SURVEYING LAB

Course Category:	Programme Core.	Credits:	1
Course Type:	Practical	Lecture - Tutorial - Practice:	0-0-2
Prerequisites:	17CE3304: Surveying &	Continuous Evaluation:	30
	Geomatics,	Semester end Evaluation:	70
	17CE3351:Surveying Laboratory	Total Marks:	100

Course outcom	mes	Upon	succe	essful c	omple	etion	of the	course	, the st	udent v	vill be a	ble to				
	CO1	calc	calculate linear and angular measurements using Total station													
	CO2	calc	calculate area of a given building/field using Total station													
		CO3	set o	et out curves												
		CO4	tran	transfer points from plan to field												
Contribution of Course		PO 1	PO 2	PO3	PO 4	PO 5	PO 6	PO7	PO8	PO9	PO10	PO 11	PO12	PSO1	PSO2	
Outcomes towards	CO1	М				Н		Н				Н				
achievement of Program	CO2	М				М		Н				М				
Outcomes	CO3	М				Н		Н				Н				
(L – Low, M - Medium, H – High)	CO4					М						Н				

Course Content	 PART-A Setting of Boundaries and computation of area of a field by using Total Station. Calculation of Height of object by using Total station. Setting of simple curve using chain and tape. Setting of simple curve using chain, tape and Theodolite Setting of a Building using Total Station. Setting out for a Building using Total Station. Setting out for a Building using Total station. Computation of area of building by using Total station. Contour Map (Levelling) using Total station Contour Map (Levelling) using Total station Demonstration of DGPS- area measurement PART-B Survey Camp is to be conducted for a minimum period of one week Using Total Station to train in one of the following areas: Preparation of a contour Plan/ Map. Earth work Computations for a high way / canal projects Marking of a Sewer line/ Water supply line. Any type of Execution works. Text Books: Higher Surveying by Dr.A.M.Chandra, 2006, New Age International Publishers, Chennai. Reference Books: Surveying Vol I & II by B.C. Punmia, 6th Edn 2016, Laxmi Publications, New Delhi.
E-resources and other digital material	NPTEL: http://www.nptelvideos.in/2012/11/surveying.html

17CE 5653	ENGINEERING PROJECTS IN COMMUNITY
	SERVICE

Course Category:	Programme Core	Credits:	2
Course Type:	Project Work	Lecture - Tutorial - Practice:	0 - 1- 2
Prerequisites:		Continuous Evaluation:	30

Semester end Evaluatio	n: 70
Total Mark	s: 100

	Upon s	ucces	sful c	omple	tion of	the co	urse, t	he stuc	lent wi	ll be al	ole to				
~	CO1	analyzing the societal problem and survey the literature for a feasible solution.													
Course Outcomes	CO2	applying modern Research Tools and Material available.													
	CO3	eval	uating	g knov	vledge	of con	tempor	rary iss	sues.						
Contributio n of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
towards achievement of Program	CO1		Н			M	Н				M	Н		M	Н
Outcomes (L – Low, M - Medium, H – High)	CO2		Н			M	Н				M	Н		M	Н
- mgn)	CO3		Н			Μ	Н				Μ	Н		М	Н
	com prep EPIC subr the 1 prob worl stud The curri prob The topic onlin follc Pow	munit are stu CS wi nitted literatu- lems a to b ents to topic iculum lems stude: cs of v ne. Th ow the er Poi Engine • T • T	y ser udents ll be in Vl ure fo throu be don of throu of En n so of civ nts ar work ie stand e stand et slid eering he Ai he ne	vice a s for the carried or a fee gh thi ne in e use of gineer as to vil engree ther from s dard I des at g Proje m and ed for	and ed ne futu d out d ester. S asible s cour the 2 ⁿ of Reso ring Pr identi ineerin requi Standa submit EEE/T the tim ects in 0	ucation re whil luring s Student solutic se. Fu d seme earch T ojects fy, for ng. Bas red to rd Refe the wo echnic ne of Se Commu- tives o nale bel	a organ e impr summe s will on. Str urther, ester o cools a in Con- mulate ed on collect erence ork in al Jour emeste unity S f the si-	nizatio roving or vaca go to t udents this m f the nd Ma nmunit e and the top t litera Books the for mal For r end For cred For service tudy ie study	ns. T their c tion af the soc are en hay be final y terial a ty Serv solve pic a h ture ar s, Journ cm of a prmat a Evaluat	The EF ommuni- iter IV iety to acourage considered ear B. vailable rice (E the co- ypothe ad supp- nals, and repor- and pre- tion.	PICS is nities to Semes identi- ged to lered a Tech., le for c PICS) ontemp sis is to port in: nd Mag t of 8-	based p s design oday. ater and fy the p choose s precu Progra ivil eng is chose orary i formation gazines 10 (A4 heir wo	the reproblem and so ursor to mme. gineerin en from ssues ade by on for – both size) i	inspir port sh and solve re the p It train g prace the B and so the st their c a printe n leng	e and hall be survey al life project ns the tice. B.Tech bocietal udent. thosen ed and th and

	: One week after the 1 st Mid Term Examination
Last date of submitting the Project Report	: One week before commencement of 2 nd Mid
	Term Examinations
Date of Seminar	: During the Lab. Internal Examinations
Method of Evaluation:	
Day-to-Day work (Evaluated by the Guide)) : 10 M
Seminar - 1	: 10 M
Seminar -2 with report submission	: 10 M
Semester End Evaluation	: 70 M
Total	 : 100 M

Text books and Reference books	Text Books: Standard Reference Books, Journals and Magazines – both printed and online.
E-resources and other digital	https:// <u>www.purdue.edu</u> http://unnatbharatabhiyan.gov.in
material	

17CE3701 CONSTRUCTION ENGINEERING AND MANAGEMENT

Course Category:	Programme Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3 - 0 - 0
Prerequisites:	17CE3401- Building Materials	Continuous Evaluation:	30
	and Construction	Semester end Evaluation:	70
		Total Marks:	100

	Upon s	succes	sful c	omple	etion o	of the	cours	e, the	stud	ent wi	ll be a	able to):		
Course	CO1	Und proje		d kno	wledg	ge on	planr	ing a	nd sc	hedul	ing of	f vario	ous co	onstru	ction
Outcomes	CO2	App	Apply PERT and CPM networking methods.												
	CO3	App	Apply resource optimization techniques in construction												
	CO4	App	ly kno	wledg	ge on 1	the con	ncepts	of qu	ality o	contro	1 and s	safety	mana	gemei	nt
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
Outcomes towards	CO1	М		М	М		М						Н		М
achievement of Program	CO2	М		М		М						М	Н		М
Outcomes	CO3	М			М		М						Н		М
(L – Low, M - Medium, H – High)	CO4			М	М	М	М		М				Н		М
Course Content	UNIT- INTRO Classif failure; PLAN Steps i plannir Bar ch Project UNIT- PROJI EVAL Objecti Activit networ estimat path; P	DDUC ication Object NING nvolven g; Sc arts; 1 work II ECT I UATI ives of ies; D k tec ies; E	n of c ctives AND ed in j hedul: Mile s break MANA ON A of ne Dumm hniqu arliest	Sonstru of con SCH planni ing, P stone dowr AGEN ND F twork ies; T es ov expe	ISTRUCT IST	LING bjectivition of tion of tion of tion tion tion tion tion tion tion tion	ves; P of con trollir ROUG ECHN s; Fu twork ional Latest	rincip struct ng; Jo H NE NIQU ndam s; Ch techr allov	Func les; A ion so b layo ETWC E (PE entals ioice niques wable	tions of dvant chedul out; F DRKS CRT) of net	ages; ages; M actors - PR network PERT	struct Limit lethod affec OGR ork an type; :Intr	ion ma ations s of s eting j AM nalysis roduct	s; Evantage	rents; es of lling; yout;

	 CRITICAL PATH METHOD (CPM) & COST CONTROL Introduction; Difference between CPM and PERT; Earliest event time; Latest event time; Activity time; Float; Critical activities and critical path. Cost Control: Direct cost; Indirect cost; Total project cost; Optimization of cost through networks; Steps involved in optimization of cost. UNIT-III
	RESOURCE MANAGEMENT (MANPOWER & MACHINERY) Introduction; Resource smoothing; Resource leveling; Establishing workers productivity. Advantages and disadvantages of using equipment; Selection of equipment– Task consideration, Cost consideration; Factors affecting the selection; Factors affecting cost of owning and operating the equipment; Equipment maintenance.
	CONSTRUCTION EQUIPMENT Classification of construction equipment; Earth moving equipment; Excavation equipment; Hauling equipment, Earth compaction equipment; Hoisting equipment; Concreting plant and equipment; Pile driving equipment; Tunneling and rock drilling equipment; Paving equipment
	UNIT-IV
	RESOURCE MANAGEMENT (MATERIALS) Objectives of material management; Costs; Functions of material management department; ABC classification of materials; Inventory of materials; Material procurement; Stores management.
	QUALITY CONTROL: Importance of quality; Elements of quality; Organization for quality control; Quality assurance techniques; Documentation; Quality control circles; Total quality management; ISO – 9000.
Text books	Text Books:
and Reference books	 [T1] Seetharaman. S, Construction Engineering and Management, Umesh, NDLS, 2006 [T2] Peurifoy R Construction Planning, Equipment & Methods; McGraw Hill, LN, UK, 2010.
	Reference Books:
	[R1] Sengupta. B and Guha. H, Construction Management & Planning, Tata McGraw Hill, NDLS, 2004.
	[R2] Bhattacharjee, S.K. Fundamentals of PERT/CPM and Project Management, Khanna, NDLS, 1996.
E-resources and other digital material	nptel.ac.in/courses/105103093

17CE4702/A ADVANCED DESIGN OF CONCRETE STRUCTURES

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3 - 0 - 0
Prerequisites:	17CE3509 - Design of	Continuous Evaluation:	30
	Concrete Structures	Semester end Evaluation:	70
		Total Marks:	100

	Upon	succe	ssful	compl	etion	of the	e cour	se, th	e stud	lent w	ill be	able t	0:		
	CO1	Eval	uate s	ection	al det	ails fo	r stair	case a	und fla	t slab					
Course	CO2	CO2 Evaluate safe section for foundation and retaining wall.													
Outcomes	CO3	CO3Evaluate safe section for water tanks.													
	CO4	Eval	uate s	afe co	mpos	ite stru	ucture	s.							
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
Outcomes towards achievement	CO1	Н		М		L								Н	
of Program Outcomes	CO2	Н		М		L								Н	
(L – Low, M	CO3	Η		М		L								Н	
- Medium, H – High)	CO4	Н		М		L								Н	
Course	UNIT	Ι													
Content	DESI	GN OF STAIRCASE													
	Types	; Desi	gn and	d detai	iling c	of rein	forced	conc	rete de	oglegg	ged sta	ircase			
	DESI						.1	1 D	• , •1	<i>.</i> .	C		• 1		<i>,</i> •
	Design and m														
	slabs-0 Introd				•		•		, Lim	itatior	ns of 1	Direct	desig	gn me	thod,
	UNIT	Π													
	DESI	GN O	F FO	UNDA	ATIO	NS									
	Structo Group Reinfo	actio	n in pi	iles, S	tructu	ral de	sign o	f RC 1	piles,				-		-
	DESI	GN O	F RE'	TAIN	ING	WAL	LS								
	Introd princij		-	-		-				-		-			-

	fill. Design principles of Counter fort retaining walls with horizontal back fill. Reinforcement detailing and bar bending schedule.
	UNIT III
	DESIGN OF RECTANGULAR WATER TANKS
	Rectangular Water Tanks: Introduction – General design requirements according to Indian standard code of practice – Design of on ground and underground water tanks- Design of overhead water tanks- Reinforcement detailing and bar bending schedule.
	DESIGN OF CIRCULAR WATER TANKS: Introduction – General design requirements according to Indian standard code of practice – Joints in water tanks – Circular tank with flexible joint between floor and wall – Circular tank with rigid joint between floor and wall – Design of Overhead tanks - IS code method for design of circular tanks- Reinforcement detailing and bar bending schedule need to be prepared.
	UNIT – IV
	DESIGN OF COMPOSITE STRUCURES
	Introduction – Design principles – Composite action of components- Equivalent section – prefabricated steel and in-situ concrete – composite members
	DESIGN OF SHEAR CONNECTORS: Shear connectors – channel connectors - Spiral connectors - Composite beams and bridge deck
Text books and Reference books	 Text Books: [T1] Ramamrutham. S and Narayanan. P, <i>Design of Reinforced concrete structures</i>, Dhanapat Rai Publishing Co. (P) Ltd., NDLS, 2010 [T2] Punmia, B.C, <i>Limit state design of Reinforced concrete</i>, Laxmi Publications, NDLS, 2007 [T3] Punmia, B.C, <i>Reinforced concrete structure design</i>, Laxmi Publications, NDLS, 2010
	 Reference Books: [R1] Shah, V.L. and Karve, S.R., <i>Limit State theory & Design of reinforced concrete</i> Structures, Pune, 2003. [R2] Elliot. K, <i>Precast Concrete Structures</i>, Elsevier, CH, 2002. [R3] Multi-Storey Precast Concrete Framed Structures, Kim S. Elliott, Colin Jolly, Wiley-Blackwell publications, second edition-2013, Wiley-Blackwell
	 Codes of Practice: 1. IS 456:2000- Code of Practice for Plain and Reinforced Concrete 2. SP16 – Design aids of IS 456:2000 3. IS 13920 (1993) Ductile Designing of Reinforced Concrete Structures subjected to Seismic Forces.
E-resources and other digital material	https://onlinecourses.nptel.ac.in/noc18_ce24/preview https://nptel.ac.in/downloads/105105104/ (Phase - 1) https://nptel.ac.in/syllabus/105105105/ (Phase - 2) http://engineeringvideolectures.com/course/294

17CE4702/B SOIL DYNAMICS AND MACHINE FOUNDATIONS

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3 - 0 - 0
Prerequisites:	17CE3608—Foundation	Continuous Evaluation:	30
	Engineering	Semester end Evaluation:	70
		Total Marks:	100

	Upon	succe	ssful	comp	etion	of the	e cour	se, th	e stud	lent w	ill be	able t	20:		
	CO1	App	ly the	ory of	vibrat	tions t	o solv	e dyna	amic s	soil pr	oblem	IS			
Course Outcomes	CO2	2 Evaluate the dynamic properties of soils using laboratory and field tests													
Outcomes	CO3	Analyze and design behavior of a machine foundation resting on the surface, embedded foundation.													
	CO4	Anal	lysis a	nd des	sign o	f vibra	ation i	solatio	on sys	tems					
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
Outcomes towards	CO1	Н	Н	М									Μ	М	
achievement of Program	CO2	Н	Н	М									Μ	М	
Outcomes	CO3	М	М	М									Μ	L	
(L – Low, M – Medium, H – High)	CO4	Η	Н	М									М	L	
Course Content	NTRO Nature Vibrati forced WAV Types layere UNIT	CO4 H H M L UNIT - I NAVES & WAVE PROPAGATION Types of waves, Waves in unbound media, Waves in semi-infinite media, Waves in layered media. UNIT - II DYNAMIC PROPERTIES OF SOILS Dynamic soil properties: Laboratory tests, Field tests, Correlation of different parameters.											e and		

	 DYNAMIC EARTH PRESSURE: Active and Passive Pressures, Retaining wall problems under Dynamic loads. Dynamic slope stability Analysis. UNIT – III DESIGN OF MACHINE FOUNDATIONS-I General requirements of machine foundations – Design criteria – principles of & simple procedures of design of foundations for machineries of reciprocating type. DESIGN OF MACHINE FOUNDATIONS-II: Impact & Rotary type (treated as single degree freedom only) – dynamic loads, simple design procedures for foundations under UNIT – IV
	 VIBRATION ISOLATION General, Force isolation, Motion isolation VIBRATION SCREENING Screening of vibration by use of open trenches, Passive screening by use of pile barriers, Illustrative Examples
Text books and Reference books	 Text Books: [T1] Saran, S., Soil Dynamics and Machine Foundations, Galgotia, NDLS, 1999, [T2] Prakash S. and Pun V.K, Soil Dynamics & Design foundation, McGraw, LN, UK, 1998 Reference Books: [R1] Srinivasulu P. and Vaidanathan. C, Handbook on machine Foundations, McGraw Hill, NDLS, 1976, [R2] I.S.2974, Part I to IV, Indian Standard Code Practice of Design and Construction of Machine Foundations, 1987.
E-resources and other digital material	https://nptel.ac.in/courses/105/101/105101005/

17CE4702/C SOLID WASTE MANAGEMENT

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3 - 0 - 0
Prerequisites:	17CE3502 - Environmental	Continuous Evaluation:	30
	Engineering	Semester end Evaluation:	70
		Total Marks:	100

	Upon	succe	ssful	comp	letion	of the	e cour	se, th	e stud	lent w	ill be	able t	to:		
	CO1	Ana	lyze tł	ne sou	rces a	nd coi	nposi	tion of	f Mun	icipal	Solid	Waste	е.		
Course	CO2	Analyze collection, transport and disposal of Municipal Solid Waste.													
Outcomes	CO3	App	Apply methods of separation and recycling of Municipal Solid Waste.												
	CO4	Und	erstan	d hand	dling o	of Bio	-medi	cal, pl	astic a	and e-	waste				
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
Outcomes towards achievement	CO1	Н		L		L			Н						Μ
of Program	CO2	Н		Н		Η			Η						Μ
Outcomes	CO3	Н		L		L			Н						Μ
(L – Low, M – Medium, H – High)	CO4	Н		L		L			Н						Μ
Course Content	UNIT SOUF Source waste, WAS On - option UNIT COLI Metho TRAN Need	RCES, es, Ty publi FE H site h s und II LECT ods of	rpes, (c heal ANDI andlir er Ind ION collec R AN	Composite of the effective of the effect	osition ects, T , SEP 1 sepa nditio UNC equipr	n of S Ypes ARAT aration ns. IPAL nent, 1 PORT	Solid V of mat FION a at so SOL types of OF N	Waste, terials AND blid w Dlid w of veh	, Effe recov STOI vaste, ASTE icles,	cts of rered f RAGI on - man p	impro from N E site st bower	oper o ASW. torage requir	lispos of so rement	al of olid w	solid vaste,

	Stations, Transport means and methods.
	UNIT III
	OFF-SITE PROCESSING, SEPARATION, TRANSFORMATION: Size Reduction, Separation, Density separation, Magnetic Separation, Pyrolysis, Composting, Incineration.
	DISPOSAL OF SOLID WASTE Disposal of Solid Waste – Sanitary land Fills, Site selection, Planning, Design and operation of Sanitary land fills, Leachate collection.
	UNIT – IV
	BIO-MEDICAL WASTE MANAGEMENT Sources & generation of Bio-medical Waste, Biomedical Waste Management.
	PLASTIC AND E-WASTE MANAGEMENT Dangers of Plastics, Recycling of Plastic waste, Disposal of plastic waste. Health Hazards of E- waste, E- waste Management
Text books and Reference books	Text Books: [T1] Goerge, T. Hilary, T. & Samuel, A.V. Integrated Solid waste management, McGraw Hill Indian Edition, 2014. [T2] Amalendu, B. Design of Land Fills and Integrated Solid waste management ,
	John Wiley & Sons 3 RD Edition, 2004
	Reference Books: [R1] <i>CPCB Manual on solid waste Management</i> , NDLS, 2016. [R2] Sasikumar,K. Sanoop,G. <i>Solid waste management</i> , PHI, NDLS, 2009 [R3] Urvashi,D. Solid waste management in India, NDLS, 2014
E-resources and other digital material	 [1] www.nptel.ac.in/courses/120108005 [2] nptel.ac.in/courses/10510605 [3] https://www.coursera.org/learn/solid-waste-management

17CE4702/D RAILWAY ENGINEERING, DOCKS AND HARBOR ENGINEERING

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3 - 0 - 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

	Upon	succe	ssful	compl	etion	of the	e cour	se, th	e stud	lent w	ill be	able t	0:		
	CO1	Und	erstan	d the o	compo	onents	of the	e Railv	way T	rack.					
Course	CO2	Anal	lyze a	nd pre	pare a	section section	on for	Railw	vay Tr	ack.					
Outcomes	CO3	Apply Signaling System for a Railway Track.													
	CO4	Und	erstan	d com	poner	nts of o	docks	and h	arbors						
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
Outcomes towards achievement	CO1	Н	Н			Н									
of Program Outcomes	CO2	Н		Н								Н		Н	
	CO3		Н			Н									
(L – Low, M – Medium, H – High)	CO4	Η		Н								Н			
Course	UNIT - I														
Content	Introd Classi Types COM Conin Types Specif Specif Comp UNIT GEON	 UNIT - I INTRODUCTION TO RAILWAYS Introduction to Railways, Comparison of railway and highways transportation; Classification of Indian, Railways, Gauges in Railway Track, Permanent way, Rails- Types. COMPONENTS OF RAILWAY TRACK Coning of Wheels, Rail failures, Creep of Rails, Rail Joints-Types of Joints, Sleepers- Types, stresses in track , Comparison of Sleepers Types of Ballast materials- Specifications of Indian Railways, Ballast Profile, Blanket or Sub Ballast, Specification for Blanket Material, Formation; Specifications of Formation, Compaction of Formation UNIT - II 													
	Geom									ent C	Compe	nsatio	n; El	emen	ts of

	horizontal alignment; Speeds on track, Super elevation; Cant deficiency and cant excess; Negative Super elevation.
	GEOMETRIC DESIGN AT CURVES Types of Transition Curve, Length of Transition Curve, Vertical curve and gradients, Length of vertical curve.
	UNIT - III
	POINTS AND CROSSINGS & SIGNALLING Switches, Components and types of crossing, Turnouts components, Types and its working principle, Classification of signals-types, Interlocking
	STATION & STATION YARDS Classification , Applications Brief on RDSO Rules and Recommendations.
	UNIT - IV
	DOCKS Dry Docks , Wet Docks and Slipways
	HARBOR Harbor Layout: types of harbors, port terms, site selection, Break Waters, Piers and wharves
Text books and	Text Books:
Reference	[T1] Saxena, S.C. and Arora. S, Railway Engineering, Dhanpat Rai, NDLS, 2009.
books	[T2] Hasmukh P. Oza, Gautam H. Oza, <i>Dock And Harbour Engineering</i> , Charotar, Anand, GJ, 2016.
	Reference Books: [R1] Agarwal, M M, <i>Railway Engineering</i> , Prabha , NDLS, 2018.
E-resources and other digital material	https://nptel.ac.in/courses/105/107/105107123/

17CE4702/E TOWN PLANNING AND ARCHITECTURE

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3 - 1 - 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

	Upon	succe	ssful	compl	etion	of the	e cour	se, th	e stud	lent w	ill be	able t	:0:		
	CO1	App	ly kno	wledg	ge of a	rchite	ctural	histor	y and	theor	y.				
Course	CO2	Und	erstan	d basi	cs of l	Landso	cape I	Design	and I	Housir	ng sce	narios	•		
Outcomes	CO3		Apply the Concepts and theories of urban design and basic principles of town planning												
	CO4		ly sign lifferen						-	g deve	lopme	ent pla	ins an	d plar	nning
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
Outcomes towards achievement	CO 1	М			М			М				М			
of Program	CO2	Μ		Η	Н					М		Н	Н		
Outcomes	CO3	Μ	М	Η					Н			Н			
(L – Low, M - Medium, H – High)	CO4	М	М		Н							Н			
Course	UNIT	- I													
Content	Indian Mugha period archite ENVI Comp efficie styles UNIT LANI	 UNIT - I HISTORY OF ARCHITECTURE Indian – Indus valley, Vedic, Buddhist, Indo-Aryan, Dravidian and Mughal periods: European – Egyptian, Greek, Roman, medieval and renaissance periods construction and Architectural styles; vernacular and traditional architecture.Principles of Architecture. ENVIRONMENTAL STUDIES IN BUILDING SCIENCE Components of Ecosystem; ecological principles concerning environment; energy efficient building design; thermal comfort; solar architecture; principles of lighting and styles for illumination; basic principles of architectural acoustics. UNIT – II LANDSCAPE DESIGN Principles of landscape design and site planning; history of landscape styles;												ional nergy	

	HOUSING: Concept of housing; neighborhood concept; site planning principles; housing 193 typology; housing infrastructure; housing policies, finance and management; housing programs in India;
	UNIT – III
	URBAN DESIGN Concepts and theories of urban design; Urban design interventions for sustainable development and transportation; Historical and modern examples of urban design; Public spaces, spatial qualities and Sense of Place; Elements of urban built environment – urban form, spaces, structure, pattern, etc; Urban renewal and conservation; Site planning; Landscape design;
	CITY PLANNING: Evolution of cities; principles of city planning; planning regulations, Development controls – FAR, densities and building byelaws; sustainable development.
	UNIT – IV
	TECHNIQUES OF PLANNING Planning survey techniques; preparation of development plans; site planning - principles and design; application of G.I.S and remote sensing techniques in urban and regional planning;
	Urban Infrastructure, Services and Amenities: Basic understanding of sustainable Development, green infrastructure; urban rainwater harvesting; power supply and communication systems - guidelines
Text books	Text Books:
and Reference books	 [T1] Brown, P. Indian Architecture (Buddhist and Hindu period), Taraporevala, CSTM, 2015. [T2] Bandopadhyay, A. Text book of Town Planning, Books and Allied, HRH, 2000.
	Reference Books:
	 [R1] Evans.M, Housing, Climate & Comfort, Architectural, LN, UK, 1980. [R2] Grover,S. The Architecture of India (Buddhist and Hindu period), Vikas, NDLS, 2017.
E-resources and other digital material	nptel.ac.in/courses/105107067 www.pipsc.ca/portal/page/portal/website/memberservices/representation//ar.en.pdf

17CE4703/A ADVANCED DESIGN OF STEEL STRUCTURES

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3 - 0 - 0
Prerequisites:	17CE3601 - Design of Steel	Continuous Evaluation:	30
	Structures	Semester end Evaluation:	70
		Total Marks:	100

Course Outcomes	Upon successful completion of the course, the student will be able to:														
	CO1	Analyze the loads on the roof trusses													
	CO2	Evaluate safe section for Plate girders													
	CO3	Evaluate safe section gantry girders													
	CO4	Eval	Evaluate eccentric connections												
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
Outcomes towards	CO1	Μ		М		Н									
achievement	CO2	Μ		Μ		Н									
of Program Outcomes	CO3	Μ		Μ		Н									
(L – Low, M - Medium, H – High)	CO4	М		М		Н									
Course Content	UNIT - I ROOF TRUSSES Introduction, Types of trusses, Various types of loads, Calculation of Wind loads, Load combinations and calculation of joint loads, Problems on evaluation of joint loads PURLINS Design of Purlin, Problems on Purlin Design UNIT - II INTRODUCTION TO GANTRY GIRDER Introduction, Various loads, Load effects, explanation of how to calculate loads, Calculation of Maximum SF and Maximum BM using influence lines, Deflections														

	DESIGN OF GANTRY GIRDER
	Design of Gantry Girder, Problems on design of gantry girder.
	UNIT - III
	INTRODUCTION TO PLATE GIRDERS
	Introduction to plate girder, Elements eccentric depth, Design of web and flanges, Design of plate girders without stiffeners, Problems
	DESIGN OF PLATE GIRDERS
	Design of plate girders with stiffeners, Design of plate girders with intermediate stiffeners, Problems on plate girders with intermediate stiffeners
	UNIT - IV
	SEATED CONNECTIONS Introduction to Connections, Unstiffened seated connections-bolted and welded, Stiffened seated connection-bolted and welded
	BRACKET CONNECTIONS Bracket Connections, type1-bolted and welded, Bracket connection type 2 - bolted and welded.
Text books and Reference books	 Text Books: [T1] Duggal, S.K., <i>Limit State Design of Steel Structures</i>, McGraw-Hill, NDLS, 2019. [T2] Bhavikatti, S.S., <i>Design of Steel Structures-By Limit State Method as per IS:800-2007</i>, I. K. International Publishing House Pvt. Ltd., NDLS, 2019.
	 Reference Books: [R1]Subramanian, N., Design of Steel Structures-Limit State Method Oxford University press, HYB, 2018. [R2] Ram, K.S.S., Design of Steel Structures, Pearson Education India, NDLS, 2015. [R3] Chandra, R. and Gehlot, V., Limit State Design of Steel Structures, Scientific Publishers, NDLS, 2010.
E-resources and other digital material	[1] https://nptel.ac.in/courses/105/106/105106113/ [2] https://nptel.ac.in/courses/105/105/105105162/

17CE4703/B INDUSTRIAL EFFLUENT TREATMENT

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3 - 0 - 0
Prerequisites:	17CE3502 Environmental	Continuous Evaluation:	30
	Engineering	Semester end Evaluation:	70
		Total Marks:	100

	Upon	succe	ssful	comp	etion	of the	e cour	se, th	e stud	lent w	ill be	able t	0:		
	CO1	Und	erstan	d the p	oroper	ties o	f indu	strial	wastes	8					
Course	CO2	App	ly suit	able t	reatmo	ent pro	ocess	for inc	lustria	al was	te				
Outcomes	CO3	Understand new concepts of waste water treatment													
	CO4	Anal	lyze tł	ne cha	racter	istics a	and tro	eatme	nt of c	liffere	nt ind	ustrial	waste	es	
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
Outcomes towards achievement	CO1	Н													М
of Program Outcomes	CO2			Н											М
Outcomes	CO3						Н								М
(L – Low, M – Medium, H – High)	CO4	Н													М
Course Content	UNIT SOUF Physi betwee EFFE Effect UNIT PRE-' Equal PRIM Reduc	RCES cal, C en ind CTS s of in - II FREA izatio	hemic ustria OF IN dustri ATME n, Pro TRE	al, Or l & m NDUS al effl CNT- portio ATM	ganic unicip TRIA uents ning, ENT	& Bi al was L EF on sev Neutr	ste wa FLUF wers a alizati	ters. E NTS nd Na	itural	water	Bodie	s.			erence

	UNIT - III
	WASTE TREATMENT METHODS – Nitrification and De-nitrification-Phosphorous removal -Heavy metal removal - Membrane Separation Process
	SPECIAL TREATMENT AND DISPOSAL - Air Stripping and Absorption Processes - Special Treatment Methods - Disposal of Treated Waste Water.
	UNIT - IV
	MANUFACTURING PROCESS - Manufacturing Processes of Industries like Textile Mill Waste, Steel Plant Waste, Petrochemical Waste.
	CHARACTERISTICS AND TREATMENT - Composition of Industries like Textile Mill, Steel Plant, Petrochemical Waste.
Text books	Text Books:
and Reference books	 [T1] Metcalf & Eddy, <i>Wastewater engineering Treatment disposal reuse</i>, Tata McGraw Hill. [T2] Eckenfelder, W.W., <i>Industrial Water Pollution Control</i>, McGraw-Hill
	Reference Books:
	 [R1] Rao, M.N and Dutta – <i>Industrial Waste</i>. [R2] Mark J. Hammer, Mark J. Hammer, Jr., <i>Water & Wastewater Technology</i>, PHI, NDLS, [R3] Nemerrow, N.L., <i>Theories and practices of Industrial Waste Engineering</i>. [R4] C.G. Gurnham – Principles o Industrial Waste Engineering
E-resources and other digital material	https://nptel.ac.in/courses/105105178/ https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/105106119/lec36.pdf

17CE4703/C INSTRUMENTATION AND SENSOR TECHNOLOGY IN CIVIL ENGINEERING

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3 - 0 - 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

	Upon successful completion of the course, the student will be able to:														
Course	CO1		erstan surem		easure	ment	units	, typ	oes o	f me	asure	ment	and	errors	s in
Outcomes	CO2	Eval	luate e	lectric	cal vai	riables	, conv	verse v	variou	s mea	surem	ents			
	CO3		Understand various types of sensors and understand sensors used for temperature measurement												
	CO4	App	ly var	ious se	ensors	used	in flo	w, pre	ssure,	level	measu	ureme	nt		
Contribution of Course Outcomes		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
towards achievement	CO1	М				М								L	
of Program	CO2	Μ				Μ								L	
Outcomes	CO3	Μ				Μ								L	
(L – Low, M – Medium, H – High)	CO4	M				М								L	
Course Content	UNIT INTR Introd instrum MEAS Introd precis UNIT ELEC Introd oscillo	ODU uctior ments SURE uctior ion, re - II CTRIC	n, Mea , dyna C MEN n, Gros esoluti C AL I n, Digi	surem mic cl (T ER ss and on and NDIC	nent un naract ROR syste d sign	nits, R eristic S matic ificant	errors t figur	y of in astrum s, abso es, me EST I	strum ents olute e easure NSTH	ent ty rrors a ment o	pes, S and re error o ENTS	lative	errors nation	s, accu s	iracy

	 VARIABLE CONVERSION ELEMENTS Introduction, Bridge circuits, Resistance Measurement, Inductance measurement, capacitance measurement, current measurement, frequency measurement, phase measurement UNIT - III SENSOR TECHNOLOGIES Introduction, Types of Sensors, Piezo electric Transducers, Ultrasonic Transducers TEMPERATURE MEASUREMENT Introduction, Principles of Temperature measurement, Thermoelectric effect sensors, Varying resistance devices, semiconductor devices, Radiation thermometers, thermography, Thermal expansion methods, Intelligent temperature measuring instruments UNIT - IV PRESSURE MEASUREMENT
	Introduction, Diaphragms, Capacitive Pressure sensor, Fibre-Optic Pressure sensor, Bellows, Bourbon tube, Manometers, Resonant Wide devices, Dead-weight gauge, Special measurement devices for low pressures, high-pressure measurement, Intelligent pressure transducers
	FLOW MEASUREMENT & LEVEL MEASUREMENT Introduction, Mass flow rate, Volume flow rate, Intelligent flow meters, Introduction to level measurement, Dipsticks, float systems, ultrasonic level gauge, radar methods, radiation methods, intelligent level measuring systems
Text books and Reference books	 Text Books: [T1] Bell D. A., <i>Electronic Instrumentation and Measurements</i>, Oxford, LN, UK, 2007. [T2] Morris A. S. <i>Measurement and Instrumentation Principles</i>, Butterworth Hienemann,LN, UK, 2001. Reference Books: [R1] Tumanski S. <i>Principle of Electrical Measurement</i>, Taylor & Francis, LN, UK, 2006.
	[R2] Gertsbakh I. <i>Measurement Theory for Engineers</i> , Springer, BL, Germany, 2010.
E-resources and other digital material	 [1] https://www.sensy.com/en/blog/instrumentation-for-civil-engineering-applications-b38 [2] https://www.iitk.ac.in/nicee/wcee/article/13_1791.pdf

17CE4703/D PAVEMENT DESIGN AND CONSTRUCTION

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3 - 0 - 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

	Upon	succe	ssful o	compl	etion	of the	cour	se, th	e stud	ent w	ill be	able t	0:		
	CO1	Und	erstan	d the o	conce	ot of la	ayer s	ystem	and fa	actors	affect	ting pa	aveme	nt des	ign
Course	CO2	Eval	uate tl	he thic	ckness	of fle	xible	paven	nent a	nd rig	id pav	ement	t		
Outcomes	CO3	Understand and fully conversant on construction of different types of pavements													
	CO4	Eval	uate a	nd co	mpute	paver	nent c	overla	ys						
Contributi on of		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PSO 2
Course Outcomes	CO1	М		М											М
towards	CO2	Н		Н										Н	
achieveme nt of	CO3					Н		L							М
Program Outcomes														Н	
(L – Low, M - Medium, H – High)	CO4	Н		Н											
Course Content	UNIT						•		•		-		•		
	FLEX											T	-1 -1 -		
	Requin compo pavem	onents	and	funct	ions,	facto	rs aff	fecting	g desi	ign a	nd pe	erform	ance	of fl	
	DESI	GN O	F FLI	EXIB	LE PA	AVEN	IENT	I							
	CBR method, Flexible pavements design as per IRC guidelines IRC 37:2001, AAS Method- basis for AASHTO method, performance criteria, traffic and material in pavement design as per AASTHO criteria.														
	UNIT	- II													
	RIGII	D PAV	VEME	ENT											
	Rigid	paven	nent co	ompor	nents a	and fu	nctior	ns, Ty	pes of	joints	s, fact	ors aff	ecting	g desig	gn and

performance of CC pavement, stresses in rigid pavement (numerical)

DESIGN OF RIGID PAVEMENTS

Design of rigid pavement as per IRC guidelines, design of joints, design of dowel bars, design of tie bars

UNIT - III

CONSTRUCTION OF FLEXIBLE PAVEMENTS

Construction of highway embankment – material, construction steps, QC checks, Construction of subgrade - material, construction steps, QC checks, Equipment for compaction of soils, Equipment for excavation of earth, Construction of GSB – material, construction, QC checks, Construction of Base course- WMM material, construction steps, QC checks, Preparations before constructing bituminous layer over GSB, Preparations before laying bituminous pavement layer over existing bituminous layer, Prime coat, tack coat, Construction of bituminous macadam – materials, construction steps, QC checks, Dense graded bituminous mixes – materials, construction steps, QC checks,

CONSTRUCTION OF RIGID PAVEMENTS

Construction of CC pavement- construction of supporting layers, construction of cc pavement slab, construction of joints, QC checks, Interlocking concrete block pavements,

UNIT - IV

PAVEMENT EVALUATION

Pavement deterioration, objectives of maintenance, classification of maintenance, structural evaluation of flexible pavement- principle of FWD method, Evaluation by Benkelman beam method (no numerical),

PAVEMENT OVERLAYS

Design of flexible pavement overlay using BBD data, strengthening existing flexible pavement by overlays, strengthening of cc pavements by overlays.

Text books and Reference books	 Text Books: [T1] Khanna, S.K., Justo, C.E.G., Veeraragavan, A. <i>Highway Engineering</i>, Nem Chand RK, 2018. [T2] <i>AASHTO Guide for Design of Pavement Structures</i>, American Association of State Highway and Transportation Officials (AASHTO), 1993 Reference Books: [R1] Yang, H.H. <i>Pavement Analysis and Design</i>, Pearson, NJ, 2004 [R2] Chakraborthy, P., Das, A. <i>Principles of Transportation Engineering</i>, PHI, NDLS, 2017.
E- resources and other digital material	[1] https://nptel.ac.in/courses/105/105/105105107/ [2] https://nptel.ac.in/courses/105/101/105101087/

17CE4703/E FORENSICS IN CIVIL ENGINEERING

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3 - 0 - 0
Prerequisites:	17CE3509: Design of concrete structures	Continuous Evaluation:	30
	17CE3608: Foundation engineering	Semester end Evaluation:	70
		Total Marks:	100

	Upon successful completion of the course, the student will be able to:														
	CO1	App	ly fore	ensic e	engine	ering	to der	nonstr	ate st	ructura	al and	geote	chnica	al failu	ures
Course Outcomes	CO2		erstan studie		forced	d conc	erete S	Structu	ires ai	nd ste	el stru	icture	failur	es thr	ough
	CO3	Eval	Evaluate different geotechnical failures through case studies												
	CO4	Ana	lyze re	easons	for g	eo-en	vironn	nental	and f	luid aı	nd hyc	lraulic	failu:	res	
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
Outcomes towards achievement	CO1	М	L	М								Н			М
of Program	CO2	М	L	М								Н			М
Outcomes	CO3	М	L	М								Н			М
(L – Low, M - Medium, H – High)	CO4	М	L	М											М
Course Content	UNIT - INTRO Definiti terms, O investig FOREN Load te tests, W UNIT - FOREN Bore h Dimenss REINF Skyline Pentago	DDUCT fon of a Causes gation. NSIC S sts, Ins (eld tes II NSIC C ole log ional M ORCE Plaza	a Foren of fail STRUC strumen its, wate GEOTI gs, Pen Measure in Bai	UTURA CTURA (tation, er and a ECHNI (etration ements, NCRE ley's C	L INV Dimen dir pend (CAL I n tests Seism TE ST rossroa	(SPT, ic tests RUCT ids, Bo	rmation GATIO neasur tests, I TIGAT CPT) URES mbing	n about N ements Heat los FION Test CASE	t failure , concr ss tests. Pits, I STUD	e, Data ete and n-place IES	mason e streng	tion, Hi	ierarch <u>y</u> s, Meta ts, Inst	y of fo l tests,	rensic Wood tation,

	 UNIT - III STEEL STRUCTURES CASE STUDIES The World Trade Center Attacks, Pittsburgh Convention Center Expansion Joint Failure, Minneapolis I- 35W Bridge Collapse, Hartford Civic Center Stadium Collapse GEOTECHNICAL CASE STUDIES Leaning tower of Pisa, Teton Dam, Vaiont Dam Reservoir Slope Stability Failure, Excavation failure, Reclamation bund failure, High way failure UNIT - IV GEO-ENVIRONMENTAL CASE STUDIES Love Canal, Valley of the Drums, Stringfellow Acid Pits, Kettleman Hills Waste Landfill, North Battleford, Saskatchewan Water Treatment Failure FLUID MECHANICS AND HYDRAULICS CASE STUDIES: Johnstown Flood, Malpasset Dam, Schoharie Creek Bridge, New Orleans Hurricane Katrina Levee Failures
Text books and Reference books	 Text Books: [T1] Robert, W. D., Forensic Geotechnical and Foundation Engineering, Second Edition, McGraw-Hill, NY, US, 2011. [T2] Delatte, N. J., Beyond Failure –Forensic case studies for Civil Engineers, ASCE, US, 2009. Reference Books: [R1] Kenneth, L. C., Forensic Engineering, CRC Press, 2nd Edition, NY, US, 2000 [R2] Rao, V.V.S. and Babu, G. L. S., Forensic Geotechnical Engineering, Developments in Geotechnical Engineering series, Springer, SG, 2016. [R3] Paul, A.B., Pamalee, A. B., Norbert, J. D. and Kevin, M. P., Failure case studies in civil Engineering-Structures, Foundations and Geoenvironment, 2nd Edition, ASCE, Virginia, US, 2013
E-resources and other digital material	[1] NIL

17CE4704/A DESIGN OF PRESTRESSED CONCRETE

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3 - 0 - 0
Prerequisites:	17CE3509 - Design of RC	Continuous Evaluation:	30
	Structures	Semester end Evaluation:	70
		Total Marks:	100

Т

	Upon	succe	ssful	comp	letion	of the	e cour	se, th	e stud	lent w	ill be	able t	:0:		
	CO1	Unde	erstan	d the o	conce	ot of p	orestre	ssing	and sy	stems	s of pr	estres	sing		
Course	CO2	Eval	uate	losses	of pre	e-stres	sing								
Outcomes	CO3	Anal	yze tł	ne sect	tion fo	or safe	ty of a	n pre-	stress	ed bea	ım.				
	CO4	Anal	Analyze end anchorages for prestressing beams.												
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
Outcomes towards	CO1	L		L											
achievement	CO2			Н		Н									
of Program Outcomes	CO3	L		Н		Н								Η	
(L – Low, M - Medium, H – High)		L		Η		Н								Η	
	CO4														
Course	UNIT	– I													
Content	Basic and H Hoyer of Fr	NTRODUCTION AND SYSTEMS asic concepts of pre stressing; Historical development; Need for High strength steel and High strength concrete; Advantages of prestressed concrete. Tensioning devices; loyer's long line system of pre tensioning; Post tensioning systems; Detailed study f Freyssinet system and Gifford – Udall system; Thermo – electric prestressing; Themical prestressing.								vices; study					
	 LOSSES OF PRESTRESS Types of losses in pre and post tensioning ;Loss due to elastic deformation of concress shrinkage of concrete, creep of concrete, relaxation of stress in steel, friction anchorage slip; Total losses allowed for in design. UNIT – II 														
	ANAI Basic											at a s	ection	; Pre	ssure

	(Thrust) line and internal resisting couple; Concept of Load balancing; Stresses in tendons; Cracking moment.
	DEFLECTIONS OF PRESTRESSED CONCRETE MEMBERS Importance of control of deflections; Factors influencing deflections; Short term and long term deflections of un cracked members.
	UNIT – III
	ELASTIC DESIGN OF PRESTRESSED CONCRETE SECTIONS FOR FLEXURE Permissible compressive stresses in concrete as per IS 1343; Elastic design of rectangular and I – sections of TYPE 1, TYPE 2 members, LINs approach.
	ULTIMATE FLEXURAL STRENGTH OF PRE-STRESSED CONCRETE MEMBERS: Modes of failure, Ultimate flexural strength of pre-stressed concrete members of rectangular, flanged sections
	UNIT – IV
	SHEAR RESISTANCE Shear and Principal stresses; Ultimate shear resistance of prestressed concrete members; Design of shear reinforcement
	TRANSFER OF PRESTRESS IN PRE-TENSIONED MEMBERS
	& ANCHORAGE ZONE STRESSES IN POST-TENSIONED MEMBERS
	Transmission of prestressing force by bond; Transmission length; Bond stresses; Transverse tensile stresses; End zone reinforcement; Stress distribution in end block; Investigations on anchorage zone stresses by IS code method; Anchorage zone reinforcements; Design of anchorage and end block.
Text books	Text Books:
and Reference books	 [T1] KrishnaRaju, N. Pre-stressed Concrete. Tata Mc Graw - Hill, NDLS, 2012. [T2] Lin, T.Y. and Burns, N.E.D.H. Design of Prestressed Concrete Structures, John Wiley, LN, UK, 2010
	Reference Books:
	 [R1] RajaGopalan, N. <i>Prestressed Concrete</i>, Narosa, NDLS, 2005 [R2] Ramamrutham, S. <i>Prestressed Concrete Structures</i>, Dhanpat Rai, NDLS, 2009. [R3] IS1343-2012: Prestressed Concrete Code.
E-resources and other digital material	www.nptel.ac.in/courses/105106117 nptel.ac.in/courses/105106118 www.nptelvidoes.in/2012/11prestressedconcrete-structures/html

17CE4704/B CONSTRUCTION EQUIPMENT AND AUTOMATION

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3 - 0 - 0
Prerequisites:	17CE3401 - Building	Continuous Evaluation:	30
	Materials and Construction	Semester end Evaluation:	70
		Total Marks:	100

	Upon	succe	ssful	comp	letion	of the	e cour	se, th	e stud	lent w	ill be	able (t o:		
Course	CO1		bly the ivities	workir	ng proc	cedures	of Eq	uipmei	nts for	earthw	vork &	other	constru	iction	
Outcomes	CO2		lerstan ipment		rking	proce	dures	of r	nateria	ıl har	ndling	and	produ	ction	
	CO3		Apply the concept & procedure of automation systems and Identify Fire safety Equipment												
	CO4	Anal	nalyze the various processes of HVAC & Security												
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
Outcomes towards achievement	CO1	L				Н	Μ	L	н	Μ	н				L
of Program Outcomes	CO2	L				Н	Μ	L	Н	Μ	Н				Μ
	CO3	Μ	Μ			Η	Н	L	Н	Μ	Н			L	Μ
(L – Low, M – Medium, H – High)	CO4	Μ	Μ			н	н	L	н	Μ	н			L	Μ
Course Content	EQUI Funda Work Moven OTHI Equipt Comptor Defor Defor Defor Defor Defor Defor Defor Defor Defor Deformance and the second	 UNIT – I EQUIPMENT FOR EARTHWORK: Fundamentals of Earth Work Operations - Earth Moving Operations - Types of Earth Work Equipment - Tractors, Motor Graders, Scrapers, Front end Waders, Earth Movers. OTHER CONSTRUCTION EQUIPMENTS: Equipment for Dredging, Trenching, Tunneling, Drilling, Blasting - Equipment for Compaction - Erection Equipment - Types of pumps used in Construction - Equipment for Dewatering and Grouting – Foundation and Pile Driving Equipment – Equipment for Demolition, Road making Equipments UNIT – II MATERIALS HANDLING EQUIPMENT: Cranes, Hoists, Forklifts and related equipment - Portable Material Bins – Conveyors 													

	EQUIPMENT FOR PRODUCTION OF AGGREGATE AND CONCRETING Crushers and crushing Plants, Compressor, Feeders, Screening Equipment, Handling Equipment, Batching and Mixing Equipment, Hauling, Pouring and Pumping Equipment, Transporters.
	UNIT – III
	INTRODUCTION BUILDING AUTOMATION SYSTEMS Concept and application of Building Automation System, requirements and design considerations and its effect on functional efficiency, architecture and components of BAS.
	FIRE ALARM SYSTEM DETAILS STANDARDS Fundamentals: Fire modes, Components, and Principles of Operation. FAS Components: Different fire sensors, smoke detectors and their types, Fire control panels, design considerations for the FA system. Field Components, Panel Components, Applications. FAS Architectures, loop, Examples. Fire Standards: IS Concept of fire & alarm system.
	UNIT - IV
	ACCESS-CONTROLSECURITY-SYSTEMS Access Control System: Components, Design. CCTV: Camera: Operation & types, Camera Selection Criteria, Camera Applications, Network design, Storage design. Components. Security Systems, Concepts, Components, Technology, Advanced Applications, Security system design.
	HVAC – HEATING, VENTILATION & AIR CONDITIONING SYSTEM HVAC basic processes, Air Properties, Psychometric Chart, Heat Transfer- mechanisms, Human comfort zones, Effect of Heat, Humidity, Heat loss. Heating Process & Applications, Cooling Process & Applications, Ventilation Process & Applications. Instrumentation Basics, Field components & use. Air conditioning Components.
Text books	Text Books:
and Reference books	[T1] Sharma S.C. Construction Equipment and Management, Khanna, NDLS, 1988.[T2] Deodhar, S.V. Construction Equipment and Job Planning, Khanna, NDLS, 1988.
	 Reference Books: [R1] Varma, M., Construction Equipment and its planning and Application, Metropolitan, NDLS. 1983. [R2] Gagnon. R. Design of Special Hazards and Fire Alarm Systems, Thomson Delmar, NY,
	 [R2] Odgholi, R. Design of Spectra Hazards and The Hazards Systems, Homson Denhar, R1, US, 2007. [R3] Levenhagen, Spethmann. J.I, Donald . <i>HVAC Controls and Systems</i>, McGraw-Hill, SG, 1994.
E-resources and other digital material	 [1] http://nptel.ac.in/video.php [2]https://buildingsolutions.honeywell.com/en-US/Pages/default.aspx [3]http://www.isa.org

17CE4704/C OPEN CHANNEL FLOW AND RIVER ENEINEERING

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3 - 0 - 0
Prerequisites:	17CE3404– Hydraulics &	Continuous Evaluation:	30
	Hydraulic Machines	Semester end Evaluation:	70
		Total Marks:	100

	Upon	pon successful completion of the course, the student will be able to:													
	CO1	App	ly ene	rgy pr	rincipl	es and	l analy	ze U1	niform	flow					
Course	CO2	Eval	uate (Gradua	ally va	ried f	low ar	nd Raj	pidly v	varied	flow	profile	es.		
Outcomes	CO3	Und	Understand the behavior of flow through non-prismatic channels.												
	CO4	Und	Understand the concept of analysis of river flow hydraulics.												
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
Outcomes towards achievement	CO1	Н	М	Н											Н
of Program Outcomes	CO2	Н	М	Н											Н
(L – Low, M - Medium,	CO3	Н	М	Н										М	Н
H – High)	CO4	Н	М	Н										М	Н
Course Content	UNIT	Ι													
	Basic form Energy STEA Shear formu Comp UNIT GRAI Gradu	OPEN CHANNEL FLOW Basic concepts of free surface flow; Velocity and Pressure distribution; Differential form of continuity and momentum equations; Energy principles and applications; Energy equation; energy and momentum correction coefficients. STEADY UNIFORM FLOW Shear stress on the boundary; chezy's equation amdn Mannings formula; Resistance formulae for practical use; Equivalent roughness; Uniform flow computations; Computation of Normal depth; Compound Sections UNIT II GRADUALLY VARIED FLOW													
	Comp Graph	utatio	n of g	gradua	ally v	aried	flow	in Pr							

	RAPIDLY VARIED FLOW Application of Momentum equation; Hydraulic Jump in horizontal and sloping rectangular channels, Basic characteristics of the Jump; location and length of jump; Jump as energy dissipater; Control of Jump by Sills.
	UNIT – III
	FLOW THROUGH NON-PRISMATIC CHANNELS Sudden Transitions; Subcritical flow through sudden Transitions; Contractions and Expansions in Supercritical flow; constrictions; Subcritical flow through Constrictions; Backwater effect due to Constriction.
	RAPIDLY VARIED UNSTEADY FLOW Waves and classification; Celerity of waves; Moving Hydraulic Jump; Surges; Equations of motion; Method of Characteristics.
	UNIT IV
	FLUVIAL HYDRAULICS Basic characteristics of river beds and sediments, Initiation of motion; regimes of flow; Resistance to flow in alluvial streams; Theories of Bed Load, Suspended Load and Total Load.
	RIVER ENGINEERING Classification of Rivers; Meandering - Causes; Features of Meandering – Factors controlling process of Meandering; Cutoffs; Guide Banks; Groynes; River training and its objectives; Classification of river training works; Methods river training works.
Text books and Reference books	 Text Books: [1] Subramanya, K. "Flow in Open Channels", 3rd Edition, Tata McGraw Hill Education Private Limited, New Delhi, 2008. [2] Punmia, B.C. and Pande B.B. Lal, "Irrigation and Water Power Engineering", Laxmi Publications, New Delhi, 2010.
	 Reference Books: [1 Chow, V.T. "Open Channel Hydraulics", Mc Graw Hill Book Company, Inc. London, Reprint, Blackburn Press, 2009. [2] Garde and Ranga Raju, K.G., "Mechanics of Sediment Transportation and Alluvial Stream Problems", Wiley Eastern, New Delhi, 1979.
E-resources and other digital material	 [1] IIT/Kharagpur – "www.nptel.ac.in / courses/105105110/" [2] IIT/Roorkee – "www.nptel.ac.in/courses/105107059/"

17CE4704/D ENVIRONMENTAL GEOTECHNOLOGY

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3 - 0 - 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

	Upon	succe	ssful	compl	etion	of the	e cour	se, th	e stud	lent w	ill be	able t	0:		
	CO1	Und	erstan	d conc	cepts a	and pr	inciple	es of e	enviro	nment	al geo	techn	ology		
Course Outcomes	CO2	App facil	•	conc	epts i	n evo	lving	vari	ous c	ompoi	nents	of wa	ste co	ontain	ment
	CO3	Eval	uate a	nd rer	nediat	e con	tamina	ated si	tes						
	CO4	Und	erstan	d geot	echni	cal re-	use of	fwast	e						
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
Outcomes towards achievement	CO1	Η						Н							Н
of Program Outcomes	CO2	Н		Н			Н								Н
Outcomes	CO3	Н			Н	L									
(L – Low, M - Medium, H – High)	CO4	Н				L		L							Н
Course Content	FUNE Introd Types SOUF Waste strateg UNIT SOIL Soil m	UNIT - I FUNDAMENTALS OF ENVIRONMENTAL GEOTECHNOLOGY Introduction; Scope of Environmental Geotechnology; Sources of contamination; Types of contaminants; Impact of subsurface contamination SOURCES AND CHARACTERISTICS OF WASTES; Waste characterization; Environmental concerns with wastes; Waste management strategies; Engineered waste disposal facilities UNIT - II SOIL - WATER INTERACTION; Soil mineralogy characterization and its significance in determining soil behavior; Soil-water interaction and concepts of double layer; Forces of interaction between soil particles.													

	 CONTAMINANT TRANSPORT Soil-water-contaminant interactions and its implications; Factors effecting retention and transport of contaminants UNIT - III CONTAINMENT FACILITY; Concept and principles of waste containment; Site selection criteria for containment facility; Different components of waste containment system; Design of waste containment facilities CONTAMINATED SITE ASSESSMENT Need for contaminated site characterization, Characterization methods – Electromagnetic resistivity; Ground penetrating radar; Electrochemical and electro-
	optical sensing methods UNIT - IV CONTAMINATED SITE REMEDIATION: Remediation methods for subsurface
	 contamination; Selection and planning of remediation methods, bio – remediation, incineration, soil washing, electro kinetics, soil heating, RECYCLING AND REUSE
	Geotechnical reuse of waste materials; Waste characteristics for soil replacement; Waste materials suitable for geotechnical construction
Text books and Reference books	 Text Books: [T1] Sharma, H.D. and Reddy, K.R., <i>Geoenvironmental Engineering</i>, John Wiley.NY,USA, 2004. [T2] Gulhati, S.K. and Datta M., <i>Geotechnical Engineering</i>, McGraw Hill India, NDLS, 2005
	Reference Books:
	 [R1] Rowe, R. K Geotechnical and Geoenvironmental Engineering Handbook, Kluwer Academic, AM, Netherland, 2001. [R2] Reddy, L.N. and Inyang, H.I Geoenvironmental Engineering: Principles and Applications, CRC Press, FL, USA 2000. [R3] Mohamed, A.M.O. and Antia, H.E., Geoenvironmental Engineering, Elsevier, AM, Netherlands, 1998.
E-resources and other digital material	[1] https://nptel.ac.in/courses/105102160/[2] https://nptel.ac.in/courses/105103025/

17CE4704/E TRAFFIC ENGINEERING

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3 - 0 - 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

	Upon	succe	ssful	comp	etion	of the	e cour	se, th	e stud	lent w	ill be	able t	0:		
	CO1	Anal	lyze tł	ne traf	fic flo	w and	l cond	uct ne	cessar	y stuc	lies.				
Course	CO2	Eval	Evaluate traffic stream characteristics.												
Outcomes	CO3	CO3 Analyze highway capacity.													
	CO4	CO4 Analyze traffic signal systems.													
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
Outcomes towards	CO1	Н	Н			Н									
achievement	CO2	Н	Н			Н									
of Program Outcomes	CO3	Н	Н			Η									
(L – Low, M - Medium, H – High)	CO4	H H H H													
Course Content	UNIT TRAF Basic Speed Measu Object Metho time d ANAI Preser distrib studie	FFIC traffic and irementives, ods of ata co LYSIS ntation	Char dens nt and Defir condu llection OF T	acteria ity, 7 Anal nition acting on. FRAF speed entile	stics - raffic ysis - of Sj speec FIC I stud speed	Speed Volum pot S l studi DATA y dat s; He	d, Vol am r me Str peed, es. In a: cu at wa	ume a nodels udies time trusive mulat	and de s, mo - Objo mean e and	nsity. oving ectives spee non-i requen	obsen s, Met ed and ntrusiv	ver i hods; l spac ve tecl	netho Speec ce me hnolog fittir	d. Ti d stud can sj gies, t	raffic ies – peed; ravel

UNIT-II

HIGHWAY CAPACITY AND LEVEL OF SERVICE

Basic definitions related to capacity; Level of service concept; Factors affecting capacity and level of service; Computation of capacity and level of service for two lane highways, Urban streets, Multilane highways and freeways.

PARKING ANALYSIS

Types of parking facilities – On-street parking and Off-street Parking facilities; Parking studies and analysis- Parking Inventory Study, Parking Usage Study By Patrolling, Questionnaire Survey, Cordon Surveys; Evaluation of parking parameters; Parking accumulation, Parking Load, Parking Turnover, Parking Index, Parking Volume.

UNIT-III

TRAFFIC SAFETY

Traffic Safety -Accident studies and analysis; Causes of accidents - The Road, The vehicle, The road user and the Environment; Engineering, Enforcement and Education measures for the prevention of accidents.

TRAFFIC SIGNALS

Traffic Signals –Types of Signals; design principles of a traffic signal, capacity and level of service of a signalized intersection, Principles of Phasing; Timing Diagram; Design of Isolated Traffic Signal by Webster method, Warrants for signalization. Signal Coordination - Signal Coordination methods, Simultaneous, Alternate, Simple progression and Flexible progression Systems.

UNIT-IV

TRAFFIC AND ENVIRONMENT

Detrimental effects of Traffic on Environment, Air pollution; Noise Pollution; Measures to curtail environmental degradation due to traffic.

SUSTAINABLE TRANSPORTATION AND THE ROLE OF TECHNOLOGY

Sustainable Transportation: Sustainable modes, Transit Oriented Development, ITS based benefits for Environment.

Text books	Text Books:
and Reference	

books	[T1] Kadiyali, L.R., "Traffic Engineering and Transport Planning" Khanna Publishers,
	New Delhi, 2006.

[T2] Principles of Highway Engineering and Traffic Analysis- Fred L. Mannering, Scott S.Washburn and Walter P.Kilareski. Wiley India.

	Reference Books:
	 [R1] Transportation Engineering - An Introduction - C.Jotin Khisty, Prentice Hall Publication, 2003. [R2] Principles of Transportation Engineering- P.Chakraoborthy and Animesh Das, Prentic Hall India. [R3] Indian Highway Capacity Manual (2017), Central road research institute, New Delhi
E-resources and other digital material	http://nptel.ac.in/syllabus/syllabus.php?subjectId=105101008 http://nptel.ac.in/syllabus/syllabus.php?subjectId=105102019

17CE4705/A FINITE ELEMENT ANALYSIS

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3 - 0 - 0
Prerequisites:	17MA1101- Matrix Algebra &	Continuous Evaluation:	30
	Basic Mathematics courses 17CE3503 - Structural	Semester end Evaluation:	70
	Analysis	Total Marks:	100

-

	Upon successful completion of the course, the student will be able to:														
	CO1	App	ly elas	sticity	princi	iples t	o finit	e elen	nent a	nalysi	S				
Course Outcomes	CO2	App	ly fini	te elei	nent f	ormul	ation	techni	ques						
	CO3	App	Apply stiffness matrix formulation using different element configurations												
CO4 Analyze trusses and beams using finite element analysis															
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
Outcomes towards achievement	CO1	L		М		L								L	
of Program	CO2	L												L	
Outcomes	CO3	Μ		L		L								Μ	
(L – Low, M – Medium, H – High)	CO4	М		М		L								М	
Course Content	UNIT INTR Introd Steps FINIT Virtua Displa UNIT ELEM Natura Eleme Isoper	ODU uction in Fin TE EL 1 Wo cement cement - II IENT al Coo nts,	, Bas ite Ele E ME tk and nt App PRO ordina Solid	ic Con ement NT F d Var proach PER tes, T Ele	ncepts Analy ORM iationa , Stiff FIES Friang	s of F /sis (ULA) al Prin fness I ular H	inite I FION nciple Matrix	Eleme TEC , Gale and H	nt An HNI(erkin Bound	alysis JUES Metho ary Co gular,	, Intro od, Fi: onditi Lagr	nite E ons	lemen	nt Me Serend	thod:

	NUMERICAL INTEGRATION One Dimensional, Numerical Integration: Two and Three Dimensional UNIT – III ANALYSIS OF TRUSSES Stiffness of Truss Members, Analysis of Truss
	ANALYSIS OF BEAMS Stiffness of Beam Members, Finite Element Analysis of Continuous Beam
	UNIT – IV
	FEM FOR TWO DIMENSIONAL PROBLEMS Constant Strain Triangle, Linear Strain Triangle, Rectangular Elements, Numerical Evaluation of Element Stiffness
	FEM FOR THREE DIMENSIONAL SOLIDS Finite Element Formulation for 3 Dimensional Elements
Text books and	Text Books:
Reference books	 [T1] Cook, R.D. Malkus, D.S and Plesha. <i>Concepts in Finite Element Analysis</i>, John Wiley, NY, US, 2004. [T2] Rao, S.S. <i>Finite Elemen Analysis</i>, Elsevier Butterworth-Heinemann, NY, US, 2017
	Reference Books:
	 [R1] Logan, D. L. <i>AFirst Course in the Finite Element Method</i>, Thomson Engineering, CAN, 2001. [R2] Jalaudeen, M. D. <i>Finite Element Analysis in Engineering</i>, Anuradha, MAS, 2013.
E-resources and other digital material	[1] https://nptel.ac.in/courses/105/105/105105041/

17CE4705/B REPAIR AND REHABILITATION OF STRUCTURES

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3 - 0 - 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

	Upon	succe	ssful	comp	etion	of the	e cour	se, th	e stud	lent w	ill be	able t	t o:		
	CO1	Und	erstan	d the o	causes	for d	eterio	ration	of str	ucture	s				
Course	CO2	Analyze damage to structures													
Outcomes	CO3	Apply the methods of reinforcement protection and repair materials													
	CO4 Apply the techniques for repair and methods of strengthening														
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
Outcomes towards	CO1		Н												Н
achievement	CO2				Н										Н
of Program Outcomes	CO3			Н											Н
(L – Low, M - Medium, H – High)	CO4			Н										Н	
Course Content	UNIT INTR Introdi Impor CAUS Cause structu UNIT SEMI Core T NON Rebou Test	ODU(uction tance - SES O s of 1 ures; 1 - II DES' Test, L DEST	; Def of Ma F DA Distre Effect TRUC CRUC	finition intena MAG ss in of Ch CTIVI est, CA TIVE	emica E TES E TES APO t	Facets STR etures al and STS F est, Pe TS F(of Ma UCT - Ex Marin OR D enetra	ainten URES trinsic ie Env DAMA tion T	ance c and rironm AGE A ests GE A	Intrin nent of ASSES	nsic c n struc SSME SMEI	auses etures NT	for o	damag	ge of

	UNIT - III
	REINFORCEMENT PROTECTION Methods of corrosion prevention - corrosion inhibitors, corrosion resistant steels, coatings and cathodic protection
	REPAIR MATERIALS Special concretes and mortar, concrete chemicals, special elements for accelerated strength gain, Expansive cement, polymer concrete, sulphur infiltrated concrete, Ferro cement, Fibre reinforced concrete
	UNIT - IV
	TECHNIQUES FOR REPAIR Crack repair techniques – Crack Stitching, Mortar and dry pack, vacuum concrete, Shotcreting, Epoxy injection, Mortar repair for cracks,
	METHODS OF STRENGTHENING Repairs to overcome low member strength – Jacketing, blanketing
Text books and	Text Books:
Reference books	[T1] CPWD Hand book on Repair and Rehabilitation of RCC Buildings, NDLS 2008[T2] Santha kumar A.R. <i>Concrete Technology</i>, Oxford, LN, U.K, 2006
	Reference Books:
	[R1] Edwards, S.C., Shaw, J.D.N. and Allen, R.T. Repair of Concrete Structures, Span Press, GW, UK, 1993
	[R2] Jacob Feld and Kenneth L Carper, Structural Failures, John Wiley & Sons, NY. US,1997
E-resources and other digital material	[1] http://nptel.ac.in/courses/114106035/38

17CE4705/C DISASTER PREPAREDNESS AND PLANNING MANAGEMENT

Course Category:	Programme Elective	Credits:	2
Course Type:	Theory	Lecture - Tutorial -Practice:	2 - 0 - 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

	Upon	Upon successful completion of the course, the student will be able to:													
	CO1	Und	erstai	nd the	vuln	erabil	ity an	d risl	x for a	a give	n soci	ety			
Course	CO2	Eval	uate	the da	mage	e & lif	e loss	durin	ng dis	asters					
Outcomes	CO3	Ana	Analyze the requirement of rehabilitation or retrofitting post disaster												
	CO4	Eval	uate	disast	er mi	tigatio	on pro	ogram	ime.						
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
Outcomes towards achievement of Program Outcomes	CO1	L	Μ			L									М
	CO2	L	Μ			L									Μ
	CO3	L	Μ			Н									М
(L – Low, M - Medium, H – High)	CO4	L	М			L									М
Course Content	INTR Conce freque DISA Disast earthq manm radiati vulner UNIT TROI	UNIT - I INTRODUCTION TO HAZARDS Concepts and definitions: disaster, hazard, vulnerability, resilience, risks severity, frequency and details, capacity, impact, prevention, mitigation. DISASTERS Disasters classification; natural disasters (floods, draught, cyclones, volcanoes, earthquakes, tsunami, landslides, coastal erosion, soil erosion, forest fires etc.); manmade disasters (industrial pollution, artificial flooding in urban areas, nuclear radiation, chemical spills, transportation accidents, terrorist strikes, etc.); hazard and vulnerability profile of India, mountain and coastal areas, ecological fragility. UNIT – II TROPICAL IMPACT OFDISASTER Disaster impacts (environmental, physical, social, ecological, economic, political,											etc.); clear l and tical,		

	GLOBAL IMPACT OF DISASTERS
	Hazard locations; global and national disaster trends; climate change and urban disasters.
	UNIT-III
	DISASTER MITIGATION & POST DISASTER ISSUES
	DISASTER MITIGATION
	Disaster management cycle – its phases; prevention, mitigation, preparedness, relief and recovery; structural and non-structural measures; risk analysis, vulnerability and capacity assessment; early warning systems,
	POST DISASTER ISSUES
	Post disaster environmental response (water, sanitation, food safety, waste management, disease control, security, communications); Roles and responsibilities of government, community, local institutions, NGOs and other stakeholders; Policies and legislation for disaster risk reduction, DRR programmes in India and the activities of National Disaster Management Authority. Unit - IV:
	DISASTERS, ENVIRONMENT AND DEVELOPMENT Disasters due to Developmental activities, factors affecting vulnerability such as impact of developmental projects and environmental modifications (including of dams, land use changes, urbanization etc.)
	SUSTAINABLE DEVELPMENT Sustainable and environmental friendly recovery; reconstruction and development methods.
Text books and Reference books	 Text Books: [T1] Subramanian, R., <i>Disaster Management</i>, Vikash Publishing House Pvt. Ltd., Noida, 2018 [T2] Sahni, P. and Ariyabandu, M. M., <i>Disaster Risk Reduction in South Asia</i>, Prentice Hall, NDLS, 2004 Reference Books: [R1] Carter, W.N., <i>Disaster Management: A Disaster Manager's Handbook</i>, Manila, ADB, 2006. [R2] Andrew, C. and Spence, R., <i>Earthquake Protection</i>, John-Wiley & Sons, NY, 2002. [R3] Sinvhal, A., <i>Understanding Earthquake Disaster</i>, McGraw Hill, NDLS, 2011.
E-resources and other digital material	Open web

17CE4705/D HIGHWAY SAFETY

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3 - 0 - 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

	Upon successful completion of the course, the student will be able to:														
	CO1	Unde	erstan	d the 1	oad a	ccider	its and	l road	l safet	y imp	rovem	ent st	rategie	es	
Course	CO2	Anal	yze th	ne cras	sh data	a using	g stati	istical	metho	ods &	condu	ict roa	d safe	ty auc	lits
Outcomes	CO3		Understand the mechanism needed for crash reconstruction based on case studies												
	CO4	App	y acci	ident 1	nitiga	tion n	neasur	res in v	view c	of safe	ty of ı	iser of	n a hig	ghway	
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS 01	PS O2
Outcomes towards	CO1				L										
achievement of Program	CO2		Н	Н	М	L									L
Program Outcomes	CO3			Μ		L									L
(L – Low, M - Medium, H – High)	CO4		М	М	Н							М			
Course Content	UNIT INTR Road human SAFE Road s road sa UNIT STAT Before Regress Compa	ODUC accide factor TY M safety afety p II ISTIC s-after ssion	ents, t rs, veh ANA mana lan, sa CAL I metho Metho	rends, nicle f GEM agement afety of NTEH ods in ods, 1	caus actors ENT a nt sys data no RPRE crash Poisso	es, co SYST tem, 1 eeds. TATI n anal n Dis	EMS coad s CON A ysis, s stribut	n and AND afety ND A statisti	STRA impro	ATEG overne YSIS ethods Squar	GIES nt stra OF C s for t ed D	ategies RAS traffic istribu	s, eler H DA safet <u></u> ttion,	nents TA y anal	of a ysis:

	ROAD SAFETY AUDITS Key elements of a road safety audit, Road Safety Audits and Investigations, Crash investigation and analysis, Describe methods for identifying hazardous road locations, Case Studies.
	UNIT-III
	CRASH RECONSTRUCTION Describe the basic information that can be obtained from the roadway surface, Understand basic physics related to crash reconstruction.
	CASE STUDIES FOR CRASHES AND ACCIDENTS Speed for various skid, friction, and drag, and acceleration scenarios, crash vs accident, Case Studies.
	UNIT-IV
	ACCIDENT MITIGATION MEASURES Accident prevention by better planning, Accident prevention by better design of roads, Crash Countermeasures, Highway operation and accident control measures, Traffic calming.
	TRAFIC MANAGEMENT EDUCATION AND ENFORCEMENT Traffic management measures and their influence in accident prevention, legislation, enforcement, education and propaganda. Salient features of Motor vehicle act, 2019: registration and licensing authorities in India: Their powers and duties, legal requirements to be met for driving various classes of vehicles. classification of traffic offences. Penalties and appeals.
Text books	Text Books:
and Reference books	[T1] Kadiyali,L.R. <i>Trafffic Engineering and Transport Planning</i> , Khanna , NDLS, 2017
	2017. [T2] Khanna, S.K. and Justo, C E G., <i>Highway Engineering</i> . Nem Chand, RR, 2001
	Reference Books:
	[R1] Hauer, E., Observational Before-After Studies in Road Safety, Pergamon, Turkey, 1997
	[R2] Stannard Baker. J, <i>Traffic Accident Investigation Manual</i> , The traffic Institute Northwestern University, IL, US, 2019.
	[R3] Shinar, D., Traffic safety and human behavior, Emerald, WY, UK, 2017.
E-resources and other digital material	 [E1] https://nptel.ac.in/content/storage2/courses/105101008/downloads/cete_42.pdf [E2] https://nptel.ac.in/courses/105101008/downloads/cete_42.pdf [E3] https://roadsafety.piarc.org/en/road-safety-management [E4]
material	http://erso.swov.nl/knowledge/content/10_rsm/the_road_safety_management_system.html [E5] http://www.nimhans.ac.in/sites/default/files/UL_BR_b007_Summery%20rprt.pdf [E6] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2700566/ [E7] https://safety.fhwa.dot.gov/provencountermeasures/

17CE4705/E ENVIRONMENTAL IMPACT ASSESSMENT

Course Category:	Programme Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3 - 0 - 0
Prerequisites:	17MC1407A - Environmental	Continuous Evaluation:	30
	Studies	Semester end Evaluation:	70
		Total Marks:	100

	Upon	Upon successful completion of the course, the student will be able to:													
	CO1	Und	erstan	d the	Conce	pt of]	EIA, E	EIA m	ethod	ologie	s.				
Course	CO2	Ana	Analyze the effect on different sources on developmental activities.												
Outcomes	CO3	Ana	Analyze the effect of development on flora and fauna.												
	CO4	Und	erstan	d the	differe	ent act	s and	case s	tudies						
									1	i.	1				
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS 02
Outcomes		1	2	3	4	5	U	/	0	9	10	11	12	UI	02
towards	CO1	Н													М
achievement of Program Outcomes	CO2	Н						Н							M
	CO3	Н						Н							М
(L – Low, M -											Н				М
Medium, H – High)	CO4														
Course	UNIT	– I	ļ	1	ļ	ļ	<u></u>	<u></u>	<u></u>	<u></u>	<u> </u>		<u> </u>	<u> </u>	
Content		ODU	CTIO	N T											
	INTR Salien				. EIA	Proce	edure -	– Ana	lvtica	l func	tions of	of EIA	- cla	ssific	ation
	and p	redict	ion o	of imp	oacts	-Elem	ents	of EI	Ă -	Factor	rs aff	ecting	EIA	- In	npact
	evalua enviro			-		eparat	ion of	envii	ronme	ntal b	ase m	ap -	Classi	ficatio	on of
			-												
	EIA N						2.6.1				.1		4 11	. 1	
	Criteri matrix														
	overla											1441109	11140		uio a,
	UNIT	– II													
	ENVI		MEN'	TAL	IMP	ACT	ASS	ESSN	IENT	ON	SOI	LA	ND (GRO	UND
	WAT Introd		Pre	edictio	n an	d ass	essme	ent -	Soil	anal	ity _N	Aetho	dolog	v for	• the
	minou	400101	, 110		ull	- ubb	U 551110	110	5011	Yuur				, 101	

	assessment of soil and groundwater - Delineation of study area - Identification of activities.
	ENVIRONMENTAL IMPACT ASSESSMENT OF SURFACE WATER AND AIR Impact prediction - Assessment of impact significance - Identification and incorporationof mitigation measures - EIA in surface water, air and biological environment:Methodology for the assessment of impacts on surface water environment. Air pollutionsources, Air pollution effect - Generalized approach for assessment of air pollution Impact
	UNIT - III ASSEMENT OF IMPACT ON VEGETATION AND WILDLIFE Assessment of impact of developmental activities on vegetation and wildlife - Environmental impact of deforestation – Causes and effects of deforestation.
	ENVIRONMENTAL AUDIT
	Environmental audit and environmental legislation - Objectives of environmental audit - Types of environmental audit - Audit protocol - Stages of environmental audit - Onsite activities - Evaluation of audit data and preparation of audit report.
	UNIT - IV
	ENVIRONMENTAL ACTS: Post audit activities - The Environmental protection act - The water act - The air act - Wild life act.
	CASE STUDIES
	Case studies and preparation of environmental impact assessment statement for various industries.
Text books	Text Books:
and Reference books	 [T1] Anjaneyulu, Y., Environmental Impact Assessment Methodologies, B.S. Publications, HYB, 2010. [T2] Glynn. J, and Gary W. Heinke, Environmental Science and Engineering, PHI, NDLS, 1996.
	 Reference Books: [R1] Dhameja,S.K., Environmental Engineering and Management, Kataria, NDLS, 2010. [R2] Bhatia,H.S., A Text Book of Environmental Pollution and Control, Galgotia NDLS, 2003.
E-resources and other digital material	https://nptel.ac.in/courses/120/108/120108004/

17CE3706 ESTIMATION, COSTING AND VALUATION

Course Category:	Programme Core	Credits:	2
Course Type:	Theory	Lecture - Tutorial -Practice:	2 - 0 - 0
Prerequisites:	Building planning and	Continuous Evaluation:	30
	Design lab-	Semester end Evaluation:	70
	17CE3452	Total Marks:	100

	Upon successful completion of the course, the student will be able to:														
Course	CO1		erstan dings.		Draw	vings,	Proce	edures	and	differ	ent E	stimat	ting n	nethoo	ls of
Outcomes	CO2	App	Apply suitableprocedures to estimate R.C.C works, Road and Canal works.												
	CO3		aluate the rates for different civil engineering works and apply ecifications												
	CO4		valuate valuation of buildings based on rent and understand PWD rocedures												
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
Outcomes towards	CO1	L		н											
achievement	CO2	L		Н											
of Program Outcomes	CO3	L		н										Μ	
(L – Low, M - Medium, H – High)	CO4	L		Н							Μ				
Course Content	PROC Introd of mea ESTIN ESTIN	NIT - I ROCEDURE AND METHODS OF BUILDING ESTIMATES roduction, Main items of work, Deduction for openings Degree of accuracy; Units measurement. Individual wall method; Centre line method ;comparison TIMATE OF BUILDINGS: timate of RCC framed residential building with footings, NIT - II STIMATE OF RCC WORKS AND ROAD ESTIMATE andard hooks and cranks; RCC beam; Estimate of earthwork; Estimate of earthwork													

	CANAL ESTIMATE
	Earthwork in canals, Estimate of earthwork in irrigation channel both in banking and cutting
	UNIT - III
	SPECIFICATIONS Purpose and method of writing specifications; Detailed Specifications for Brick work; R.C.C work; Plastering;
	ANALYSIS OF RATES Task or out - turn work; Labour and materials required for different works; Rates of materials and Labour; Preparing analysis of rates for the following items of work: RCC slab Works ,Brick work in super structure .
	UNIT – IV
	PWD ACCOUNTS AND PROCEDURE OF WORKS Organization of Engineering department; Contract; Tender; Tender notice; Earnest money; Security money; Measurement book; Revised Estimate; Supplementary estimate.
	VALUATION OF BUILDINGS Introduction, Methods of valuation; Out goings; Depreciation; Gross income; Net income; Scrap value; Salvage value; Obsolescence; sinking fund, Capitalized value; Years purchase; :Methods of depreciation; Valuation of building based on rents
Text books and	Text Books:
Reference books	[T1] Dutta, B.N, <i>Estimating & Costing in Civil Engineering</i>, U. B. S., NDLS, 2016.[T2] Rangwala. <i>Estimating, Costing & Valuation</i>, Universal, NDLS, 2017.
	 Reference Books: [R1] D. D. Kohli and R. C. Kohli., Estimating and Costing, S. Chand Publications-New Delhi-2013 [R2] Chakrborthy, M. <i>Estimating & costing, Variuos, NDLS, 2012.</i>
E-resources and other digital material	http://nptel.ac.in/courses/105103093/15

17CE4751 COMPUTER APPLICATIONS IN CIVIL ENGINEERING LAB-II

Course Category:	Programme Core	Credits:	1
Course Type:	Practical	Lecture - Tutorial -Practice:	0 - 0 - 2
Prerequisites:	17CE3509 Design of Concrete	Continuous Evaluation:	30
	Structures	Semester end Evaluation:	70
		Total Marks:	100

	Upon	succe	ssful	comp	letion	of th	e cour	se, th	e stud	lent w	ill be	able (20:			
Course	CO1	CO1 Evaluate cross sectional and reinforcement requirements of various structural elements by using STAAD.Pro														
Outcomes	CO2	Evaluate quantities and prepare rate analysis for various works in construction of a building using Spread Sheets.														
Contributio n of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	
Outcomes towards achievement	CO 1	Μ		Μ		н								н	L	
of Program Outcomes														L	Н	
(L – Low, M - Medium, H – High)	CO2	Η		L		L										
Course Content	Analy Softwa 1. Des 2. Des 3. Des 4. De Ass 5. Des 6. Des 7. Des PAR	PART-A Analysis of the following concrete & steel structural elements using STAAD. Pro Software. 1. Design of continuous beam. 2. Design of plane frame 3. Design of space frame. 4. Design of G+4 Residential building: Creating model from the given drawing, Assigning Loads and Load Combinations 5. Design of G+4 Residential building: Preparation of detail drawing 6. Design of G+4 Residential building: Preparation of Design Documents 7. Design of Roof Truss PART – B 1. Estimate & Working out rates using spread sheets for the different items in a single														

17CE4801/A EARTHQUAKE RESISTNAT DESIGN

Course Category:	Programme Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3 - 0 - 0
Prerequisites:	Nil	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

	Upon	succe	ssful	compl	etion	of the	e cour	se, th	e stud	lent w	ill be	able t	0:		
	CO1	unde	erstanc	l abou	t an E	ngine	ering	seismo	ology						
Course Outcomes	CO2	earth		e cau	0	0	-					lynam ic re			
	CO3	codal provisions and ductility design for RC elements													er IS
	CO4														
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
Outcomes towards achievement	CO1	Н												Н	
of Program Outcomes	CO2		Η		М									Н	
(L – Low, M -	CO3		Н		Μ									Н	
Medium, H – High)	CO4		Н		М									Н	
Course Content	UNIT- INTRO Introd effects EFFE Strong earthq UNIT- SEISM Introd shear Proble	DDUC uction s of ea CTS (g grou uake p II IIC-R uction wall o	, Ter rthqua OF G und n proble ESIST ; Late r bear	minol akes, r ROUI notion ms in CANT I eral lo ing wa	ogy, ecord ND M , seis India, BUILI pad re all sys	Classi ing of OTIC mic h tsuna DING sisting	ficatio an ea DN: nazard mi. ARCH g syste	on of rthqua s, liq IITEC ems-	Earth ike, di uefac TURF mome	hquak istribu tion, E ent res	tion o engine	f earth eering fram	nquake cons e, bui	es. iderat	with

	 BUILDING CHARACTERISTICS Mode shape and fundamental period, building frequency and ground period, damping, ductility, seismic weight, hyperstability/redundancy, non-structural elements, foundation soil/ liquefaction. Foundations; Quality of construction and materials – quality of concrete, construction joints, general detailing requirements. UNIT-III DESIGN FORCES FOR BUILDINGS Introduction; Equivalent static method; Mode superposition technique; Dynamic inelastic-time history analysis; Advantages and disadvantages of these methods; Determination of lateral forces as per IS 1893(Part 1) – Equivalent static method, Model analysis using response spectrum. DUCTILITYDESIGN OF RC ELEMENTS: Introduction; Impact of ductility; Requirements for ductility; Assessment of ductility–Member/element ductility, Structural ductility; Factor affecting ductility; Ductility factors; Ductility considerations as per IS13920. UNIT-IV EARTHQUAKE RESISTANT DESIGN OF RC BUILDING Determination of lateral forces on an intermediate plane frame using Equivalent static method and Model analysis using response spectrum; Analysis of the intermediate frame for various load combinations as per IS1893(Part 1); Identification of design forces and moments in the members; Design and detailing of typical flexural member, typical column, footing and detailing of an exterior joint as per IS13920. BASE ISOLATION OF STRUCTURES: Introduction; Considerations for seismic isolation; Basic elements of seismic isolation; seismic-isolation design principle; Feasibility of seismic isolation; Seismic-isolation configurations.
Text books and Reference books	 Text Books: [T1] Agarwal, P. and Shrikhande, M. <i>Earthquake resistant design of structures</i>, PHI, NDLS, 2006. [T2] Paulay, T. and Priestley, M.J.N, <i>Seismic design of reinforced concrete and masonry buildings</i>, John Wiley, LN, UK, 1991. [T3] Mukhopadhyay. M, <i>Vibrations, dynamics and structural systems</i>, Oxford and IBH, NDLS, 2000. Reference Books: [R1] Krishna. J, Chandrasekharan, A.R, Chandra. B, <i>Elements of Earthquake Engineering</i>, South Asian, NDLS, 1994. [R2] IS:1893(Part-I):<i>Criteria for Earthquake Resistant Design of Structures</i>, 2016 [R3] IS:13920, <i>Ductile Detailing of Reinforced Concrete Structures subjected to Seismic forces</i>- Code of Practice, 1993
E-resources and other digital material	http://onlinecourses.nptel.ac.in nptel.ac.in/courses/105101004; nptel.ac.in/courses/105101004/4; nptel.ac.in/courses/105108074

17CE4801/B GROUND IMPROVEMENT TECHNIQUES

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3 - 0 - 0
Prerequisites:	17CE3608 - Foundation	Continuous Evaluation:	30
	Engineering	Semester end Evaluation:	70
		Total Marks:	100

	Upon	succe	ssful	compl	etion	of the	e cour	se, th	e stud	lent w	ill be	able t	:0:		
	CO1														
Course	CO2	App	ly suit	able g	round	l impr	oveme	ent tec	hniqu	e for a	a give	n site			
Outcomes	CO3	App	ly diff	erent	grouti	ng tec	hniqu	es, ge	otexti	les an	d their	funct	ions		
	CO4	expa	Evaluate the expansivity of soils and recommended types of foundations for expansive soils and suggest soil stabilization techniques based on field conditions												
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
Outcomes towards achievement	CO1	Н	М	Н		Н						Н			Μ
of Program	CO2	н		Н		н						Н			Μ
Outcomes	CO3	Н	Μ	н								н		Μ	Μ
(L – Low, M – Medium, H – High)	CO4	н	Μ	н	н	н								Μ	Μ
Course Content	UNIT INTR Need Mecha GROU In pla Vibro- UNIT DENS Introd Prefab	ODU(of (anical, UND l ce de Comp - II SIFIC. uction	Groun Hydr IMPR ensific paction ATIO	d Im caulic, COVE ation n Piles ON MI eloadin	Physi MEN by D s and D s and D	co-ch T ME Dynam Blastin DD IN	emica ZTHO ic Co ng. COH	l, Elec DS IN mpac	etrical NGRA tion, YE SO	, Ther ANUI Vibro PILS	mal m L AR S flotati	on, C	s.	ction	pile,

Γ	
	GROUTING TECHNIQUES Grouting in soil, Desirable characteristics, Grouting pressure, Grouting methods.
	UNIT - III
	GEOSYNTHETICS Introduction – Type of geosynthetics: Functions and their applications, geogrid – functions.
	REINFORCED EARTH Principles – Components of reinforced earth – factors – governing design of reinforced earth walls – design principles of reinforced earth walls.
	UNIT - IV
	EXPANSIVE SOILS Problems of expansive soils, Identification tests for expansive soils, I.S. test methods for swelling – pressure of a soil, Improvement methods for expansive soils.
	SOIL STABILIZATION Types of soil stabilization, Lime stabilization - Base exchange mechanism, Pozzolanic reaction, lime-soil interaction. Lime stabilization mix design, Cement stabilization: Mechanism, amount, age and curing.
Text books and Reference	Text Books:
books	 [T1] Hausmann, M.R., <i>Engineering Principles of Ground Modification</i>, McGraw-Hill International Editions, NY, US, 1990. [T2] Purushothama, R. P., <i>Ground Improvement Techniques</i>, Tata McGrawHill, NDLS, 1995.
	Reference Books:
	 [R1] Chattopadhyay, B. C. and Maity, J., Ground Control and Improvement Techniques, PEEDOT, HWH, 2011. [R2] Korner, R. M., Design with Geosynthetics, Prentice Hall, NJ, US, 2002. [R3] Han, J., Principles and Practice of Ground Improvement, John Wiley, NJ, US 2015.
E-resources and other digital material	[1] https://nptel.ac.in/courses/105108075/

17 CE 4801/C GROUND WATER HYDROLOGY

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3 - 0 - 0
Prerequisites:	17CE4801/3 - Irrigation	Continuous Evaluation:	30
	Structures	Semester end Evaluation:	70
		Total Marks:	100

	Upon	succe	ssful	comp	letion	of the	e cour	se, th	e stud	lent w	ill be	able (:		
Course	CO1	Unde	erstand	comp	onents	, fluctu	ations	and bu	ldgetin	g of gr	ound v	water.			
Outcomes	CO2	Eval	uate an	d Desi	ign of v	wells a	d asses	sment	of gro	und wa	ater qu	ality.			
	CO3 Evaluate sea water intrusion.														
	CO4														
Contribution of Course		PO PO<													
Outcomes towards	CO1	Н						М			L				
achievement	CO2	Н		М	М									М	
of Program Outcomes	CO3	Н		М	М									Н	
(L – Low, M – Medium, H – High)	CO4	Н		Н		М		М			L			Н	
Course Content	UNIT	– I						•		•		•		•	
	INTR Gener water, level f Occu Origin flow c measu UNIT	al Wa Com luctua U RRE & ag lirection remen – II	tter Ba ponen ations. ENCE e of g ons, g nt- Pre	alance tts of AND round eneral climin	e, Reg groun MOV water l flow ary an	ional d wat V EMH , Hete equat d cher	Grour er stu ENT (erogen ions t mical	nd Wa dies, (DF GI eity & hrougl metho	ter Ba Groun ROUN Anisc h porc ods.	alance d wat	, Dist er buo ATEF	lgeting R: und wa	g, Gro ater flo	ound v	water tes &
	MET Gener										es, D	epth S	Sound	ing C	Curve

	method-Cumulative curve method, inverse slope method, schlumberger method.
	GROUND WATER ASSESSMENT & BUDGETING: Discharge by wells, Safe yield & overdraft, Calculation of safe yield- Hill method hardening
	method, Haley's method, Simpson's method, calculation of Ground Water Storage capacity and
	ground water potential.
	UNIT-III
	METHODS OF WELL DESIGN AND GRAVEL PACKING: General – Steps involved in the design of a tube well- Mechanical Analysis- Methodology- Effective grain size- Well Screen length-Well screen slot openings well screen diameter-Head losses through the screens-gravel packing and formation stabilization.
	GROUND WATER QUALITY: General- common impurities- Suspended impurities –dissolved impurities – Salts- metals and their compounds-chemical analysis-pH-Total dissolved solids, Hardness, Electrical Conductivity.
	UNIT-IV
	SEA WATER INTRUSION IN COSTAL AQUIFERS: Physical characteristics of water intrusion, causes of salinity and its causes, recognition of sea water in ground water, relationship between salt water and fresh water- Ghyben-Herzdarg concept.
	ARTIFICIAL RECHARGE: Purpose of artificial recharge, direct benefits of artificial recharge, benefits of conjunctive use of all water resources, principles adopted in recharge, factors to be considered in selection of artificial recharge sites, sources of recharge water, Artificial recharge techniques.
Text books	Text Books:
and Reference	[T1] Ramakrishnan. S, Ground Water, SCITECH Publications India Pvt. Ltd, 2011.
books	Reference Books:
	 [R1] Rastogi, A.K., Numerical Groundwater Hydrology, Penram International Publishing India Pvt. Ltd, 2007 [R2] Raghunath, H M., <i>Ground water</i>, New Age International Publishers, 2011. [R3] Journals in Ground Water.
E-resources and other digital material	http://nptel.ac.in

17CE4801/D AIR POLLUTION AND CONTROL

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3 - 0 - 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

	Upon	succe	ssful	comp	letion	of the	e cour	se, th	e stud	lent w	ill be	able t	:0:			
	CO1	Und	erstan	d vari	ous ty	pes of	air po	ollutar	nts and	d their	effect	ts				
Course Outcomes	CO2			d the gical p	1		phe	nomer	non o	of air	pollu	tants	with	regar	d to	
	CO3		valuate the sampling of pollutants from chimney stacks and ambien nosphere													
	CO4	Analyze various types of air pollution controlling equipment														
Contribution of Course		PO 1														
Outcomes towards achievement of	CO1	Н													М	
Program	CO2	Н													Μ	
Outcomes	CO3	Н	Н	L											Μ	
(L – Low, M – Medium, H – High)	CO4	н		н	L										Μ	
Course Content	INTR Comp episod CLAS Classi polluta health UNIT	UNIT - I INTRODUCTION TO AIR POLLUTION Composition of air, Air pollution-definition, Prominent air pollution disasters / episodes, Sources of air pollution - Stationary and mobile sources. CLASSIFICATION AND EFFECTS OF AIR POLLUTION Classification - Natural Contaminants; Particulate Matter Aerosols and Gaseous pollutants; Primary and secondary pollutants, Effects of air pollutants on human health; Effects on plants and economic effects. UNIT - II METEOROLOGY AND AIR POLLUTION														

	wind speed, Atmospheric stability, temperature inversions, Mixing height,
	precipitation and humidity
	MEASUREMENT OF METEOROLOGICAL PARAMETERS Wind direction recorder, Wind speed recorder, Humidity Measurement, Temperature measurement; Wind Rose; Plume behavior.
	UNIT - III:
	STACK SAMPLING Stack sampler; Sampling Procedure-Sampling point – size - Isokinetic Conditions, sampling of Particulate matter and Gases.
	AMBIENT AIR SAMPLING Sampling methods- Sedimentation, filtration, impingement methods, electrostatic precipitation and thermal precipitation. Sampling suspended particulates by high volume sampler. Sampling SO2 and NOx and Carbon Monoxide gases. –Indian standard methods of analysis of SO2 and NOx gases Air Quality and Emission standards
	UNIT - IV
	METHODS OF CONTROLLING AIR POLLUTION Different means of control of effluent discharges into the atmosphere. Control of Particulate matter by equipment -Settling chamber, inertial separators-fabric filters, wet scrubbers-Electrostatic Precipitators
	CONTROL OF GASEOUS POLLUTANTS Controlling methods of Gaseous Emissions- combustion, adsorption, absorption, closed collections and recovery systems- Control of SO2 and NOx gases.
Text books and Reference books	 Text Books: 1. Rao, M.N and Rao, H.N, <i>Air Pollution and Control</i>, Tata McGraw Hill, NDLS, 2007 2. Environmental Engineering and Management, (2nd Edition), Suresh. S.K., Kartarai & Sons, 2005.
	Reference Books: 1. Trivedy, R.K., <i>An Introduction to Air pollution</i> , B.S. Publications, 2005. 2. Wark and Warner, <i>Air pollution</i> , Addison-Wesley, NDLS, 2010.
E-resources and other digital material	http://nptel.ac.in/courses/webcourse-contents/ IITdelhi/Environmental%20Air%20Pollution/

17CE4801/E URBAN TRANSPORT PLANNING

Course Category:	Programme Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3 - 0 - 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

	Upon successful completion of the course, the student will be able to:														
	CO1	Analyze various stages in transport Planning Process													
Course	CO2	Apply various methods for data collection													
Outcomes	CO3	Appl	Apply and finalize the route choice and network design												
	CO4	App	Apply various methods for economic evaluation of transport projects												
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
Outcomes towards	CO1			Н											Μ
achievement	CO2	Н	Н									Н			Μ
of Program Outcomes	CO3	Н	Η	Н		Н								Μ	
(L – Low, M - Medium, H – High)	CO4	Н							Н					Μ	Μ
Course Content	Image: Construct of the systemImage: Construct of the systemUNIT-ITRANSPORT PLANNING PROCESSSystems Approach to Transport Planning, Stages in Transport Planning, Survey and analysis of Existing Conditions, Forecast Analysis of Future Conditions and plan synthesis, Evaluation, Program Adoption and Implementation, Continuing Study, Citizen Participation, Difficulties in the Transport Planning Process.TRANSPORTATION SURVEYStudy Area, Zoning, Type of Surveys, Home Interview Surveys, Commercial Vehicle Surveys, Road Side Interview Surveys, Public Transport Surveys, Inventory of Transport Facilities, Expansion of Data from SamplesUNIT-II														

Factors governing trip generation and attraction rates - Multiple linear regression analysis, Category analysis - Critical appraisal of techniques.
TRIP DISTRIBUTION
Uniform factor method, average factor methods - Gravity model and its calibration – opportunity model.
UNIT-III
TRIP ASSIGNMENT
Traffic assignment - General principles - Assignment techniques - Multiple root assignment Capacity - Restraint assignment - Diversion curves
MODAL SPLIT
Modal split - Advantages and limitations, Earlier Modal split models, trip end type models, trip interchange models, logit model, Multinomial logit model,
UNIT-IV
ECONOMIC EVALUATION OF TRANSPORTATION PLANS
Economic evaluation techniques – Road user cost, Benefit cost ratio method.
RETURN METHODS
Net present value method, internal rate of return method, comparison of various methods
 Text Books : [T1] Kadiyali, L.R., <i>Traffic Engineering and Transport Planning</i>, Khanna, NDLS, 2006. [T2] Paque, J.R., Ashford, N.J. Wright, P.L.H. <i>Transportation Engineering Planning and Design</i>, NY, 2000
Reference Books: [R1] Dicky,J.W. <i>Metropolitan Transportation Planning</i> , Tata McGraw, NDLS, 2000 [R2] Bruton, M.J. <i>An Introduction to Transportation Planning</i> , LN,UK, 2001.
 [1] http://nptel.ac.in/courses/105106058/ [2] http://nptel.ac.in/courses/105107067/ [3] https://ocw.mit.edu/courses/urban-studies-and-planning/11-540j-urban-transportation-planning-fall-2006/ [4] http://nptel.ac.in/courses/105104098/

17CE2802/A WATER QUALITY ENGINEERING

Course Category:	Open Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3 - 0 - 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

	Upon successful completion of the course, the student will be able to:														
	CO1	Anal	Analyze characteristics of water												
Course	CO2	Apply the standards of water quality and treatment process													
Outcomes	CO3	Ana	Analyze pollution status of in water bodies												
	CO4		Understand the quality behavior of due to discharge of waste load by modeling and monitoring												
Contribution of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS 01	PS O2
Outcomes towards achievement of	CO1	М	М		М		Н	Н							Н
Program Outcomes	CO2	М	М		М		Н	Н	М						Н
(L – Low, M -	CO3	L	Н		М		Н	Н	Μ						М
Medium, H – High)	CO4	М	L		М		Н	Н							М
Course Content	CO4 M L M H														
	Bioch									-	-				

Fertilisers etc	•
-----------------	---

Text books Reference books

	WATER-TREATMENT PROCESSES AND WATER QUALITY STANDARDS Theory and Application- aeration, solid separation, settling operations, Coagulation and flocculation, softening, filtration, disinfection, Different types of settling, sedimentation tank design, Coagulation and flocculation, stability of colloids, destabilization in water treatment, transport of colloidal particles. Other Water- Treatment processes: Dissolved Solids Removal. Water Quality Criteria, Guidelines, and Standards for Various uses.
	UNIT-III
	WATER POLLUTION Natural factors affecting water quality and pollution from various wastes, mechanisms of surface water pollution, point and Non-point sources, Effect of Geological formations on Water quality.
	WATER QUALITY IN RECEIVING WATER BODIES Lakes and Impoundments, Stratification and Eutrophication, Water Quality in Rivers, self purification and Reaeration, Dissolved Oxygen Balance in Rivers, Thermal Pollutions.
	UNIT-IV
	GROUND WATER QUALITY Sources and Mechanisms of groundwater Pollution. Groundwater Pollution from Landfills and Waste Dumps.
	WATER QUALITY MODELING Modeling and Monitoring, evolution of water quality models, types of water quality models, DO and BOD in streams, Transformation and transport processes, Oxygen transfer, Turbulent mixing,
	WATER LAW
	Groundwater ownership, Prior appropriation, Permit systems, acquisition and use of rights, Uncertainty concepts in Water Resources Planning - Legal aspects of environment systems, Principles of law applied to water rights and water allocation, control acts and legislation.
and	 Text Books: [T1] Garg S.K <i>Environmental Engineering Vol. I</i>, Khanna, NDLS, 2017 [T2] Peavy, S. Rowe, D. and Tchobanoglous, G. <i>Environmental Engineering</i>, McGraw Hill, N.Y. 1985.
	 [T3] Weber Jr. W.J., <i>Physicochemical Processes for Water Quality Control</i>. John Wiley , NY,US,1972 [T4] I.S. 10500: 2012, Drinking Water Standards 2012
	Reference Books: [R1] Tebutt T.H.Y. Principles of Water Quality Control Pergamon, Turkey, 1992

	 [R2]Masters G.M. Introduction to Environmental Engineering and Science, PHI, NDLS, 1994. [R3] Garg S.K. Water supply Engineering Vol.I, Khanna, NDLS. 2003
E-resources and other digital material	 [1] https://nptel.ac.in/courses/105/106/105106119 [2] http://cpcb.nic.in; [3] http://wrmin.nic.in