# M. Tech.

# COMPUTER SCIENCE AND ENGINEERING SYLLABUS



## Department of Computer Science and Engineering (M. Tech. CSE Programme Accredited by NBA)

## VELAGAPUDI RAMAKRISHNA SIDDHARTHA ENGINEERING COLLEGE

(An Autonomous, ISO 9001:2015 Certified Institution) (Approved by AICTE, Accredited by NAAC with 'A' Grade, Affiliated to JNTUK, Kakinada) (Sponsored by Siddhartha Academy of General & Technical Education)

> Kanuru, Vijayawada Andhra Pradesh - 520007, INDIA. www.vrsiddhartha.ac.in

## **INSTITUTE VISION**

To nurture excellence in various fields of engineering by imparting timeless core values to the learners and to mould the institution into a centre of academic excellence and advanced research.

## **INSTITUTE MISSION**

To impart high quality technical education in order to mould the learners into globally competitive technocrats who are professionally deft, intellectually adept and socially responsible. The institution strives to make the learners inculcate and imbibe pragmatic perception and proactive nature so as to enable them to acquire a vision for exploration and an insight for advanced enquiry.

## **DEPARTMENT VISION**

The department vision is clearly defined and is in line with the college's vision. The vision of the department is:

"To evolve as a centre of academic excellence and advanced research in Computer Science and Engineering discipline."

## **DEPARTMENT MISSION**

This mission of the Department is concise and supports the College's mission. The mission of the Computer Science and Engineering Department is:

"To inculcate students with profound understanding of fundamentals related to discipline, attitudes, skills, and their application in solving real world problems, with an inclination towards societal issues and research."

## **Program Educational Objectives(PG)**

We have program educational objectives for our Computer Science and Engineering Program. Program educational objectives are broad statements that describe the career and professional accomplishments that the program is preparing graduates to achieve.

## **Our Computer Science and Engineering program objectives**

- I. Will solve wide range of computing related problems to fulfil the needs of industry and society.
- II. Will have successful careers in academia, research and industry.
- III. Will communicate effectively, work in collaboration and practice the profession in accordance with professional standards and ethical practices.

#### **PROGRAM OUTCOMES**

**PO1:** An Ability to independently carryout research/ investigation and development work to solve Practical Problems. [Problem solving and Research skills]

**PO2:** An ability to write and present a substantial technical report/document. [Communication]

**PO3:** Able to demonstrate a degree of mastery over the area as per the specialization of the program. [Lifelong Learning]

#### **Program Specific Outcomes**

**PSO1:** An ability to learn the state of art emerging technologies related to computer science and apply the learned concepts in related fields.

**PSO2:** Have a clear understanding of professional and ethical responsibility

#### VELAGAPUDI RAMAKRISHNA SIDDHARTHA ENGINEERING COLLEGE **COMPUTER SCIENCE AND ENGINEERING** SCHEME OF INSTRUCTION FOR TWO YEAR PG PROGRAM [M. TECH 19] **SEMESTER I Contact Hours: 23** Р С CE S.No Т SE Course Course Title of the L Т Code Course Category Programme 19CSCS1001 Data Structures 3 0 0 3 40 60 100 1. Core - I and Algorithms Programme 19CSCS1002 Machine 3 3 40 60 100 2. 0 0 Core - II Learning Programme 19CSCS1003 Wireless and 100 3 60 3. 0 0 3 40 Core - III Mobile Networks Programme 19CSCS1014 A. Image 3 0 0 3 40 60 100 4. Elective - I Processing and Pattern Recognition B. Embedded Software Design and Validation C. Advances in Operating System Design D. Bioinformatics E. Industry need based elective Programme 19CSCS1015 A. Data 5. 3 0 0 3 40 60 100 Elective -Science Π B. Information Retrieval Systems C. Natural Language Processing D. Graph Theory E. Industry need based

|    |                                 |            | Elective                                        |    |   |   |     |     |     |     |
|----|---------------------------------|------------|-------------------------------------------------|----|---|---|-----|-----|-----|-----|
| 6. | Mandatory<br>Learning<br>Course | 19MTMC1026 | Research<br>Methodology<br>and IPR              | 2  | 0 | 0 | -   | 40  | 60  | 100 |
| 7. | Laboratory<br>- I               | 19CSCS1051 | Data Structures<br>and Algorithms<br>Laboratory | 0  | 0 | 3 | 1.5 | 40  | 60  | 100 |
| 8. | Laboratory<br>- II              | 19CSCS1052 | Machine<br>Learning<br>Laboratory               | 0  | 0 | 3 | 1.5 | 40  | 60  | 100 |
|    |                                 |            | Total                                           | 17 | 0 | 6 | 18  | 320 | 480 | 800 |

L – Lecture, T – Tutorial, P – Practical, C – Credits

**CE** - Continuous Evaluation, SE - Semester-end Evaluation, T – Total Marks

| SEME | STER II                        |                |                                                                                                                                                                                                                                                                |   |   |   | Co  | ntact | Hou | rs: 2 |
|------|--------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|-----|-------|-----|-------|
| S.No | Course<br>Category             | Course<br>Code | Course                                                                                                                                                                                                                                                         | L | T | Р | С   | CE    | SE  | Т     |
| 1.   | Programme<br>Core – IV         | 19CSCS2001     | High Performance<br>Computing                                                                                                                                                                                                                                  | 3 | 0 | 0 | 3   | 40    | 60  | 100   |
| 2.   | Programme<br>Core – V          | 19CSCS2002     | Cloud Computing                                                                                                                                                                                                                                                | 3 | 0 | 0 | 3   | 40    | 60  | 100   |
| 3.   | Programme<br>Core – VI         | 19CSCS2003     | Cyber Security                                                                                                                                                                                                                                                 | 3 | 0 | 0 | 3   | 40    | 60  | 100   |
| 4.   | Programme<br>Elective –<br>III | 19CSCS2014     | <ul> <li>A. Internet of<br/>Things</li> <li>B. Digital</li> <li>Forensics</li> <li>C. Geographic</li> <li>Information</li> <li>System</li> <li>D. Algorithms</li> <li>for</li> <li>Bioinformatics</li> <li>E. Industry need</li> <li>based Elective</li> </ul> | 3 | 0 | 0 | 3   | 40    | 60  | 100   |
| 5.   | Programme<br>Elective –<br>IV  | 19CSCS2015     | A Blockchain<br>Technologies<br>B Software<br>Defined Networks<br>C Open source<br>programming<br>D Modern<br>Software<br>Engineering<br>E Industry need<br>based Elective                                                                                     | 3 | 0 | 0 | 3   | 40    | 60  | 100   |
| 6.   | Audit<br>Course                | 19MTAC2036     | Technical Report<br>Writing                                                                                                                                                                                                                                    | 2 | 0 | 0 | -   | 0     | 0   | 0     |
| 7.   | Term<br>Paper                  | 19CSCS2063     | Term Paper#                                                                                                                                                                                                                                                    | 0 | 0 | 2 | 1   | 40    | 60  | 100   |
| 8.   | Laboratory<br>- I              | 19CSCS2051     | High Performance<br>Computing<br>Laboratory                                                                                                                                                                                                                    | 0 | 0 | 3 | 1.5 | 40    | 60  | 100   |
| 9.   | Laboratory<br>- II             | 19CSCS2052     | Cloud Computing<br>Laboratory                                                                                                                                                                                                                                  | 0 | 0 | 3 | 1.5 | 40    | 60  | 100   |

| Total 17 | 0 | 8 | 19 | 320 | 480 | 800 |  |
|----------|---|---|----|-----|-----|-----|--|
|----------|---|---|----|-----|-----|-----|--|

L – Lecture, T – Tutorial, P – Practical, C – Credits

**CE** - Continuous Evaluation, SE - Semester-end Evaluation, T – Total Marks

\*Students to be encouraged to go industrial training for at least Six weeks during semester break

#Students should conduct the Literature Survey for the proposed research topic and they need to develop a proto type or simulation based (must be outcome oriented) – the same to be presented in any conference (national or international)

| Sen | emester III Contact Hours: 24 |                              |            |                                                                                                                                                                                                                                                  |   |   |    |    |    |          |     |
|-----|-------------------------------|------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|----|----|----|----------|-----|
| S.  | No                            | Course                       | Course     | Course                                                                                                                                                                                                                                           | L | Т | Р  | C  | CE | SE       | Т   |
|     |                               | Category                     | Code       |                                                                                                                                                                                                                                                  |   |   |    |    |    |          |     |
|     | 1.                            | Programme<br>Elective -<br>V | 19CSCS3011 | <ul> <li>A. Joy of</li> <li>Computing using</li> <li>Python</li> <li>B. User Interface</li> <li>Design</li> <li>C. Deep Learning</li> <li>D. Data</li> <li>Visualization</li> <li>E. Industry</li> <li>offered</li> <li>Cartification</li> </ul> | 0 | 0 | 0  | 3  | -  | 10<br>0# | 100 |
|     | 2                             | Project                      | 19CSCS3061 | $\frac{\text{Certification}}{\text{Project} - \text{Part } \Delta^*}$                                                                                                                                                                            | 0 | 0 | 20 | 10 | 10 | (0)      | 100 |
|     | ∠.                            | Part-A                       |            |                                                                                                                                                                                                                                                  | U | U | 20 | 10 | 40 | 60       | 100 |
|     | 3.                            | Internship                   | 19CSCS3052 | Internship (After<br>II Sem)                                                                                                                                                                                                                     | 0 | 0 | 4  | 2  | -  | 10<br>0  | 100 |
|     |                               |                              |            | Total                                                                                                                                                                                                                                            | 0 | 0 | 24 | 15 | 40 | 260      | 300 |

L – Lecture, T – Tutorial, P – Practical, C – Credits

**CE** - Continuous Evaluation, SE - Semester-end Evaluation, T – Total Marks

# Evaluation done by MOOC's providers will be considered

#### \*To be continued in the IV Semester

Program Elective V may be completed in semester I or II by satisfying the pre-requisites those who are going for industrial project.

| Seme | Semester IV Contact Hours: 32 |                |                  |   |   |    |    |    |    |     |
|------|-------------------------------|----------------|------------------|---|---|----|----|----|----|-----|
| S.No | Course<br>Category            | Course<br>Code | Course           | L | Т | Р  | С  | CE | SE | Т   |
| 1.   | Project<br>Part-B             | 19CSCS4061     | Project - Part B | 0 | 0 | 32 | 16 | 40 | 60 | 100 |
|      |                               |                | Total            | 0 | 0 | 32 | 16 | 40 | 60 | 100 |

L – Lecture, T – Tutorial, P – Practical, C – Credits

**CE** - Continuous Evaluation, **SE** - Semester-end Evaluation, **T** – Total Marks

**Total Credits: 68** 

| Semester | Credits |
|----------|---------|
| 1        | 18      |
| 2        | 19      |
| 3        | 15      |
| 4        | 16      |

#### 19CSCS1001 DATASTRUCTURES AND ALGORITHMS

| <b>Course Category:</b> | Programme Core   | Credits:                            | 3         |
|-------------------------|------------------|-------------------------------------|-----------|
| <b>Course Type:</b>     | Theory           | <b>Lecture - Tutorial-Practice:</b> | 3 - 0 - 0 |
| <b>Prerequisites:</b>   | Programming in C | <b>Continuous Evaluation:</b>       | 40        |
|                         |                  | Semester end Evaluation:            | 60        |
|                         |                  | <b>Total Marks:</b>                 | 100       |

#### **COURSE OUTCOMES**

Upon successful completion of the course, the student will be able to:

| <b>CO1</b> | Implement various tree | operations |
|------------|------------------------|------------|
|------------|------------------------|------------|

| CO2 | Compare | greedv | and | dvnamic   | algorithms |
|-----|---------|--------|-----|-----------|------------|
|     | Compare | 8      |     | a j manne |            |

- **CO3** Understand graph algorithms and their applications
- **CO4** Implement number theoretic algorithms

**CO5** Analyze string matching and Approximate algorithms.

#### Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)

|     | PO 1 | PO 2 | PO 3 | PSO 1 | PSO 2 |
|-----|------|------|------|-------|-------|
| CO1 | 3    |      |      | 3     |       |
| CO2 |      |      | 1    |       |       |
| CO3 |      | 2    |      |       |       |
| CO4 |      |      | 1    | 3     |       |
| CO5 |      | 2    | 2    |       |       |

#### UNIT I

**Binary Search Trees:** BST, Querying BST, Insertion and Deletion, Randomly built binary search trees.

AVL Trees: Properties of AVL trees, Rotations, Insertion, Deletion.

**B-Trees:** Definition of B-trees, Basic operations on B-Trees, Deleting a key from a B-tree.

## UNIT II

**Dynamic Programming:** Matrix Chain Multiplication, Elements of dynamic programming, longest common subsequences, optimal binary search trees.

**Greedy Algorithms:** An activity-selection problem, Elements of the greedy strategy, Huffman codes.

Amortized Analysis: Aggregate analysis, The Accounting method, Potential method, dynamic tables.

## UNIT III

**Single-Source Shortest Paths:** Bellman-Ford Algorithm, Single-source shortest paths in directed acyclic graphs, Dijkstra's algorithm.

All-Pairs Shortest Paths: Floyd-Warshall algorithm.

**String Matching:** The naïve string-matching algorithm, Rabin-Karp algorithm, String matching with finite automata, Knuth-Morris-Pratt algorithm.

## UNIT IV

**NP-Completeness:** Polynomial time, Polynomial time verification, NP-completeness and reducibility, NP-complete problems

**Approximate Algorithms:** The vertex-cover problem, Travelling – salesman problem, Set-covering problem, Randomization and linear programming, subset- sum problem.

## TEXT BOOKS

[1] Cormen, Leiserson, Rivest, and Stein, "Introduction to Algorithms", Third Edition, McGraw Hill, 2010.

## **REFERENCE BOOKS**

- [1] Robert Sedgewick Philippe Flajolet, "An Introduction to the Analysis of Algorithms", First Edition, McGraw Hill, 1995.
- [2] Mark Allen Weiss, "Data Structures and Algorithm Analysis in C", 2<sup>nd</sup> edition, Pearson Education.
- [3] Horowitz Sahni and Anderson-Freed," Fundamentals of Data Structures in C",

2nd edition, Universities Press.

[4] Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman, "Data Structures and Algorithms", Pearson; 1st edition

#### **E-RESOURCES AND OTHER DIGITAL MATERIAL**

- [1] Dr.P.P. Chakraborty, IIT Kharagpur, May 19, 2010, Data Structures, NPTEL, Available:www.youtube.com/ watch? v=S47aSEqm\_0I
- [2] Dr. Naveen Garg, IIT Delhi, Sep 24, 2008, Data Strucutres, NPTEL, Available:http://nptel.iitm.ac.in,

http://freevideolectures.com/ Course /2279/Data-Structures-And-Algorithms

- [3] Shai Simonson, Jun 16, 2014, Data Structures, NPTEL, Available: http://nptel.ac.in/video.php? subjectId=106102064
- [4] https://nptel.ac.in/courses/106101060/
- [5]https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j-design-and-analysis-of-algorithms-spring-2015/
- [6] https://theory.stanford.edu/~tim/videos.html

|                     |                                                                                   | <b>19C</b> S                                       | SCS1002                 |                                     |                |  |  |  |  |
|---------------------|-----------------------------------------------------------------------------------|----------------------------------------------------|-------------------------|-------------------------------------|----------------|--|--|--|--|
|                     |                                                                                   | MACHIN                                             | E LEARNIN               | G                                   |                |  |  |  |  |
| Course C            | ategory:                                                                          | Programme Core                                     |                         | Credits                             |                |  |  |  |  |
| <b>Course</b> T     | ype:                                                                              | Theory                                             | Lecture -T              | <b>Lecture - Tutorial-Practice:</b> |                |  |  |  |  |
| Prerequis           | sites:                                                                            | Data Mining                                        | Contin                  | <b>Continuous Evaluation:</b>       |                |  |  |  |  |
|                     |                                                                                   |                                                    | Semester                | end Evaluatio                       | <b>n:</b> 60   |  |  |  |  |
|                     |                                                                                   |                                                    |                         | Total Mark                          | <b>as:</b> 100 |  |  |  |  |
| COURS               | E OUTCO                                                                           | MES                                                |                         |                                     |                |  |  |  |  |
| Upon suc            | ccessful con                                                                      | mpletion of the co                                 | urse, the stude         | nt will be able t                   | 0:             |  |  |  |  |
| <b>CO1</b>          | O1 Identify instance based learning algorithms                                    |                                                    |                         |                                     |                |  |  |  |  |
| CO2                 | Design neural network to solve classification and function approximation problems |                                                    |                         |                                     |                |  |  |  |  |
| <b>CO3</b>          | Build opt                                                                         | Build optimal classifiers using genetic algorithms |                         |                                     |                |  |  |  |  |
| CO4                 | Analyze p                                                                         | probabilistic metho                                | ods for learnin         | g                                   |                |  |  |  |  |
| Contribu<br>Outcome | ution of Co<br>es (1 – Low                                                        | ourse Outcomes t<br>v, 2 - Medium, 3 -             | owards achie<br>– High) | vement of Prog                      | ram            |  |  |  |  |
|                     | <b>PO</b> 1                                                                       | PO 2                                               | <b>PO 3</b>             | PSO 1                               | PSO 2          |  |  |  |  |
| CO1                 | 2                                                                                 |                                                    | 2                       | 2                                   |                |  |  |  |  |
| CO2                 | 2                                                                                 |                                                    | 2                       | 2                                   |                |  |  |  |  |
| CO3                 | 2                                                                                 |                                                    | 2                       | 2                                   |                |  |  |  |  |
| CO4                 | 2                                                                                 |                                                    | 2                       | 2                                   |                |  |  |  |  |

#### UNIT I

**Introduction** - Well-posed learning problems, Designing a learning system, Perspectives and issues in machine learning

Concept learning and the general to specific ordering - Concept learning as

search, General-to-specific ordering of hypotheses, Find-S: finding a maximally specific hypothesis, List then eliminate algorithm, Candidate elimination learning algorithm

## UNIT II

**Decision Tree learning** – Introduction, Decision tree representation, Appropriate problems for decision tree learning, The basic decision tree learning algorithm, Hypothesis space search in decision tree learning, Inductive bias in decision tree learning, Issues in decision tree learning

Artificial Neural Networks – Neural network representation, Appropriate problems for neural network learning, Perceptrons- Gradient descent and the Delta rule, Multilayer networks and the back propagation algorithm

**Evaluation Hypotheses** – Estimation hypothesis accuracy, Basics of sampling theory, A general approach for deriving confidence intervals

## UNIT III

**Bayesian learning** – Bayes theorem, Bayes theorem and concept learning, Bayes optimal classifier, Naïve Bayes classifier, Bayesian belief networks- Conditional independence, Learning Bayesian belief networks, The EM algorithm- general statement of EM algorithm,

**Computational learning theory** – Sample complexity for Finite Hypothesis Space, Sample Complexity for infinite Hypothesis Spaces- Shattering a Set of Instances

**Instance-Based Learning-** k -Nearest Neighbour Learning- Locally Weighted Regression, Case-Based Reasoning

## UNIT IV

Genetic Algorithms – An illustrative Example, Genetic Programming-**Representing Programs, Illustrative Example**, Models of Evolution and Learning

Learning Sets of Rules – Sequential Covering Algorithms- General to Specific Beam Search, Learning First Order Rules, Learning Sets of First Order Rules: FOIL [CO3,CO4]

## TEXT BOOKS

[1] Tom M. Mitchell, "Machine Learning", McGraw Hill, Indian Edition, 2017.

[2] William W Hsieh, "Machine Learning Methods in the Environmental Sciences, Neural Networks and kernels" Cambridge Univ Press, 1st Edition.

### **E-RESOURCES AND OTHER DIGITAL MATERIAL**

- [1] Evaluating a hypothesis, Stanford University, https://www.coursera.org/learn/machine-learning/lecture/yfbJY/evaluating-ahypothesis, Last accessed on 26-8-2019
- [2] Balaraman Ravindran, NPTEL Lecture 1 Introduction to Machine Learning, https://www.youtube.com/watch?v=fC7V8QsPBec, Last accessed on 26-8-2019
- [3] Benchmarking Neural Networks on Oracle Cloud Infrastructure with Mapr, https://mapr.com/whitepapers/benchmarking-neural-networks-on-oraclecloud-infrastructure-with-mapr/ Last accessed on 26-8-2019
- [4] George Crump, Dealing with The AI and Analytics Data Explosion https://mapr.com/whitepapers/dealing-with-the-ai-and-analytics-dataexplosion/ Last accessed on 26-8-2019

## 19CSCS1003 WIRELESS AND MOBILE NETWORKS

| <b>Course Category:</b> | Programme Core    | Credits:                      | 3         |
|-------------------------|-------------------|-------------------------------|-----------|
| <b>Course Type:</b>     | Theory            | Lecture -Tutorial-Practice:   | 3 - 0 - 0 |
| <b>Prerequisites:</b>   | Computer Networks | <b>Continuous Evaluation:</b> | 40        |
|                         |                   | Semester end Evaluation:      | 60        |
|                         |                   | Total Marks:                  | 100       |

### **COURSE OUTCOMES**

Upon successful completion of the course, the student will be able to:

| <b>CO1</b> | Understand the concepts of wireless communication.   |
|------------|------------------------------------------------------|
| CO2        | Analyze WPAN, WMAN and WWAN technologies             |
| CO3        | Compare 3G and 4G technologies of communications.    |
| CO4        | Familiarize with concepts of Wireless Adhoc Networks |

#### Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)

|            | PO 1 | PO 2 | <b>PO 3</b> | PSO 1 | PSO 2 |
|------------|------|------|-------------|-------|-------|
| CO1        |      |      | 2           |       |       |
| CO2        |      |      | 2           | 1     |       |
| CO3        | 1    |      | 3           | 2     |       |
| <b>CO4</b> | 1    |      |             | 2     |       |

#### **COURSE CONTENT**

#### UNIT I

**Fundamentals of Wireless Communication:** Digital Communications, Wireless Communication Systems, Wireless Media, Frequency Spectrum, Technologies in Digital Wireless Communication, Wireless Communication Channel Specifications, Types of Wireless Communication Systems **Introduction to Mobile Communications:** Growth of Mobile Communications, A Little History, Mobile Communication fundamentals, Mobile Data, WiFi, Bluetooth, Cable Systems, Wireless Migration Options

#### UNIT II

Wireless Personal Area Networks (WPAN): WPAN, Network Architecture, WPAN Components, WPAN Technologies and Protocols, WPAN Applications

**Wireless Metropolitan Area Networks (WMAN):** WMAN, WMAN Architecture, Network Protocols, Broadband Wireless Networks, WMAN Applications

Wireless Wide Area Networks (WWAN): Cellular Networks, Satellite Networks, WLAN Versus WWAN, Interworking of WLAN and WWAN, WWAN Applications

## UNIT III

**Third Generation (3G) Overview:** Introduction, UMTS, Services, Air Interface, 3GPP release 1999 Network architecture, Release 4 architecture, Release 5 All-IP architecture, Overview CDMA2000, TD-CDMA, TD-SCDMA, Commonality among WCDMA, CDMA2000,TD-CDMA and TD-SCDMA

**Long-Term Evolution:** LTE Ecosystem, Standards, Radio Spectrum, LTE Architecture, UE, eNodeB, Core Network, Radio Channel Components, TD-LTE, MIMO, LTE Scheduler, Carrier aggregation, Cell Search, Cell Reselection, Attach and Default Bearer Activation, Handover, SONs, Relay Cells, HetNET, RRH, VoLTE, LTE Advanced

## UNIT IV

Wireless Adhoc Networks: Wireless Adhoc Networks, Mobile Adhoc Networks, Wireless Sensor Networks, Wireless Mesh Networks, Vehicular Adhoc Networks **Research Issues in Wireless Networks:** Modulation, Radio Resource Management, Channel Allocation, Error Control and coding, Congestion Control, Routing, Addressing, Network Access Control, Flow Control, Security and Privacy, QoS Management, Power Management, Cross Layer Control, Network Modelling, Simulation Modelling, Network Measurements.

#### **TEXT BOOKS**

[1] Dr. Sunilkumar, et al "Wireless and Mobile Networks: Concepts and

Protocols", Wiley India, 2014

[2] Clint Smith, Daniel Collins, "Wireless Networks-Design and Integration for LTE,EVDO,HSPA and WIMAX", Third Edition, McGraw Hill, 2014 UNIT -III

#### **REFERENCE BOOKS**

- [1] Raj Kamal, "Mobile Computing", Second Edition, Oxford University Press, 2012
- [2] Asoke K.Talukder, Roopa R. Yavagal, "Mobile Computing Technology, Applications and Service Creation" McGraw Hill, 2007
- [3] Iti Saha Misra, "Wireless Communications and Networks- 3G and Beyond", 2nd Edition, McGraw Hill, 2013
- [4] William Stallings "Wireless Communications and Networks", Second Edition, Pearson Education, 2007

#### **E-RESOURCES AND OTHER DIGITAL MATERIAL**

- Sciencedirect.com, 'Mobile Networks', 2019. [Online] Available: https://www.sciencedirect.com/topics/computer-science/mobilenetworks. [Accessed: 28- Aug- 2019].
- [2] Springer.com, 'The Journal of SPECIAL ISSUES on Mobility of Systems, Users, Data and Computing: Mobile Networks and Applications, 2019. [Online]. Available: https://link.springer.com/journal/11036. [Accessed: 28-Aug- 2019].

|                     |                                                                    | <b>19CSC</b>                               | S1014A              |                           |           |  |  |  |
|---------------------|--------------------------------------------------------------------|--------------------------------------------|---------------------|---------------------------|-----------|--|--|--|
| -                   | IMAGE P                                                            | ROCESSING AND                              | PATTER              | N RECOGNITION             | N         |  |  |  |
| Course C            | ategory:                                                           | Programme                                  |                     | Credits:                  | 3         |  |  |  |
|                     |                                                                    | Elective                                   |                     |                           |           |  |  |  |
| Course T            | ype:                                                               | Theory                                     | Lecture -'          | <b>Futorial-Practice:</b> | 3 - 0 - 0 |  |  |  |
| Prerequis           | sites:                                                             | Computer                                   | Conti               | nuous Evaluation:         | 40        |  |  |  |
|                     |                                                                    | Graphics, Basic                            | Semeste             | er end Evaluation:        | 60        |  |  |  |
|                     |                                                                    | knowledge of -                             |                     | Total Marks:              | 100       |  |  |  |
|                     |                                                                    | rendem veriebles                           |                     |                           |           |  |  |  |
|                     |                                                                    | Talluolli valtaoles                        |                     |                           |           |  |  |  |
| COURS               | E OUTCC                                                            | OMES                                       |                     |                           |           |  |  |  |
| Upon suc            | ccessful co                                                        | mpletion of the cour                       | se, the stud        | ent will be able to:      |           |  |  |  |
| 001                 | Understa                                                           | nd the fundamental                         | concepts an         | nd basic relations a      | mong the  |  |  |  |
| COI                 | pixels.                                                            |                                            |                     |                           |           |  |  |  |
| CO2                 | Analyze                                                            | the Spatial and F                          | requency c          | lomain concepts for       | or image  |  |  |  |
|                     | enhancen                                                           | nent.                                      |                     |                           |           |  |  |  |
| CO3                 | Identify t                                                         | he Image restoration                       | n and Imag          | e segmentation tech       | nique for |  |  |  |
| 005                 | image.                                                             |                                            |                     |                           |           |  |  |  |
| CO4                 | Understand the basic of Pattern recognition and Feature Extraction |                                            |                     |                           |           |  |  |  |
| Contribu<br>Outcome | ution of Co<br>es (1 – Lov                                         | ourse Outcomes tov<br>v, 2 - Medium, 3 – 1 | vards achi<br>High) | evement of Program        | m         |  |  |  |
|                     | PO 1                                                               | PO 2                                       | PO 3                | PSO 1                     | PSO 2     |  |  |  |
| CO1                 | 3                                                                  |                                            | 3                   | 3                         |           |  |  |  |
| CO2                 | 3                                                                  |                                            | 3                   | 3                         |           |  |  |  |
| CO3                 | 3                                                                  |                                            | 3                   | 3                         |           |  |  |  |
| CO4                 | 3                                                                  | 3 3 3                                      |                     |                           |           |  |  |  |
| <u> </u>            | 1                                                                  |                                            |                     | 1 1                       |           |  |  |  |

## UNIT I

**Introduction:** Digital Image Processing, Fundamental Steps in Digital Image Processing, Components of an Image Processing System

**Digital Image Fundamentals:** Elements of Visual Perception, Image Sensing and Acquisition, Image Sampling and Quantization, Some basic Relationships between Pixels

## UNIT II

**Intensity transformations:** Some Basic intensity Transformation functions, Histogram Processing, Smoothing and Sharpening.

**Spatial and Frequency Filtering for Image Enhancement:** Fundamentals of Spatial Filtering, Smoothing spatial Filters, Sharpening spatial Filters, Fundamentals of Frequency Filtering, Smoothing frequency-domain Filters, Sharpening Frequency-domain Filters

## UNIT III

**Image restoration:** A model of the image degradation/restoration process, noise models, restoration in the presence of noise–only spatial filtering, Weiner filtering, constrained least squares filtering

**Image Segmentation:** Fundamentals, Point, Line and Edge Detection, Thresholding, Region-Based Segmentation, Color Image Processing: Color fundamentals, color models, pseudo color image processing, basics of full – color image processing.

## UNIT IV

**Feature Extraction And Dimension Reduction:** Color, Texture, Shape, Local Features, Spatial and frequency domain, HOG, Corner Detection, SIFT and SURF, Hough Transform, Principal Component Analysis.

**Pattern Recognition:** The Unsupervised Clustering Algorithm, K-NN, Support Vector Machine, Neural Networks, Deep Learning-Overview.

## TEXT BOOKS

- Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing. 4ed, PHI/Pearson Education, 2018.
- [2] Richard O. Duda, Peter E. Hart and David G. Stroke Pattern Classifications. 2

#### Edition Wiley Student Edition 2006

[3] Research Publications on feature extraction and pattern recognition.

#### **REFERENCE BOOKS**

- S. Jayaraman, S. Esakkirajan And T.Veerakumar, "Digital Image Processing" 3Ed, Tata McGraw - Hill Education Pvt. Ltd, 2010.
- [2] A.K.Jain, "Fundamentals of Digital Image Processing", Prentice Hall India, 2000
- [3] Devi V.S.; Murty, M.N. Pattern Recognition: An Introduction, Universities Press, Hyderabad. 2011.

## **E-RESOURCES AND OTHER DIGITAL MATERIAL**

- [1] Lecture Series on Digital Image Processing by Prof. P.K.Biswas, IIT Khargapur Available at: http://nptel.ac.in/courses/117105079/1
- [2] Lecture Series on Pattern Recognition and Application by Prof. P.K.Biswas, IIT Khargapur Available at: https://nptel.ac.in/courses/117105101/

|                 |                                                                   | <b>19CS</b>          | SCS1014B                            |           |  |  |
|-----------------|-------------------------------------------------------------------|----------------------|-------------------------------------|-----------|--|--|
|                 | EMBEDI                                                            | DED SOFTWARF         | <b>E DESIGN AND VALIDATION</b>      | I         |  |  |
| <b>Course</b> C | ategory:                                                          | Programme            | Credits:                            | 3         |  |  |
| - •             |                                                                   | Elective             |                                     |           |  |  |
| Course T        | ype:                                                              | Theory               | <b>Lecture - Tutorial-Practice:</b> | 3 - 0 - 0 |  |  |
| Prerequis       | sites:                                                            | Computer             | <b>Continuous Evaluation:</b>       | 40        |  |  |
| -               |                                                                   | Organization         | Semester end Evaluation:            | 60        |  |  |
|                 |                                                                   |                      | <b>Total Marks:</b>                 | 100       |  |  |
|                 |                                                                   |                      |                                     |           |  |  |
| COURS           | E OUTCO                                                           | OMES                 |                                     |           |  |  |
| Upon suc        | cessful co                                                        | mpletion of the co   | urse, the student will be able to:  |           |  |  |
| CO1             | Understa                                                          | and the different co | mponents for an embedded syste      | m.        |  |  |
| CO2             | Illustrate different devices used in embedded systems.            |                      |                                     |           |  |  |
| CO3             | Summarize different services used in real time operating systems. |                      |                                     |           |  |  |
| CO4             | Compare various embedded software development tools.              |                      |                                     |           |  |  |
| Contribu        | tion of C                                                         | auna Antaamaa t      | awards ashiovament of Dragon        |           |  |  |

#### Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)

|     | PO 1 | PO 2 | <b>PO 3</b> | PSO 1 | PSO 2 |
|-----|------|------|-------------|-------|-------|
| CO1 | 1    |      | 2           | 2     |       |
| CO2 | 1    |      | 2           | 2     |       |
| CO3 | 1    |      | 2           | 2     |       |
| CO4 | 1    |      | 2           | 2     |       |

#### **COURSE CONTENT**

#### UNIT I

Introduction to Embedded Systems: Embedded systems; Processor embedded into a system; Embedded hardware units and devices in a system; Embedded software in a system; Examples of embedded systems; Embedded System-on-Chip (SoC) and use of VLSI circuit design technology; Complex systems design and processors; Design process in embedded system. Formalization of system design; Design process and design examples; Classification of embedded systems; Skills required for an embedded system designer.

## UNIT II

**Devices:** I/O types and examples; Serial communication devices; Parallel device ports;Sophisticated interfacing features in device ports. Wireless devices; Timer and counting devices; Watchdog timer; Real time clock.

**Device Drivers and Interrupts Service Mechanism:** Device access without interrupts; ISR concept; Interrupt sources; Interrupt servicing mechanism; Multiple interrupts; Context and the periods for context-switching, interrupt latency and deadline.

## UNIT III

**8051** Architecture, Memory Organizations and Real World Interfacing : 8051 Architecture; Real world interfacing, Processor and Memory Organization.

**Program Modeling Concepts, Processes, Threads, and Tasks:** Program models; DFG models; State machine programming models for event controlled program flow; Modeling of multiprocessor systems. Multiple processes in an application; Multiple threads in an application; Tasks and task states; Task and data; Distinctions between functions, ISRs and tasks.

## UNIT IV

**Real-time Operating systems:** Operating System services; Process management; Timer functions; Event functions; Memory management; Device, file and I/O sub-systems management; Interrupt routines in RTOS environment and handling of interrupt source calls.

**Embedded SoftwareDevelopment, Tools:** Introduction; Host and target machines; Linking and locating software; Getting embedded software in to the target system; Issues in hardware software design and co-design; Testing on host machine; Simulators; Laboratory tools.

## TEXT BOOKS

 Rajkamal, Embedded Systems Architecture, Programming and Design. 2 ed, TMH, 2008.

#### **REFERENCE BOOKS**

- [1] Wayne Wolf, Computers as Components Principles of Embedded Computer System Design. Elsevier, 2005.
- [2] Steve Heath, Embedded Systems Design. 2 ed, Elsevier, 2003.
- [3] Dr. K.V.K.K. Prasad, Embedded/ Real-Time Systems: Concepts, Design and Programming The Ultimate Reference. Dreamtech. Press, 2004.

## **E-RESOURCES AND OTHER DIGITAL MATERIAL**

[1] https://nptel.ac.in/courses/108102045/

[2] https://tinyurl.com/yxfbpahn

|                   | ADVA                                                                                                          | 19CSC<br>ANCES IN OPERA                                                         | CS1014C<br>ATING SYS | TEM DESIGN                        |           |  |  |  |  |
|-------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------|-----------------------------------|-----------|--|--|--|--|
| Course C          | Category:                                                                                                     | Programme<br>Elective                                                           |                      | Credits:                          | 3         |  |  |  |  |
| <b>Course</b> T   | ype:                                                                                                          | Theory                                                                          | Lecture -T           | <b>Sutorial-Practice:</b>         | 3 - 0 - 0 |  |  |  |  |
| Prerequi          | sites:                                                                                                        | Introduction                                                                    | Contin               | uous Evaluation:                  | 40        |  |  |  |  |
|                   |                                                                                                               | to operating systems                                                            | Semester             | r end Evaluation:<br>Total Marks: | 60<br>100 |  |  |  |  |
| COURS             | E OUTCO                                                                                                       | OMES                                                                            |                      |                                   |           |  |  |  |  |
| Upon su           | ccessful co                                                                                                   | mpletion of the cour                                                            | rse, the stude       | ent will be able to:              |           |  |  |  |  |
| CO1               | Demonstrate the mutual exclusion, deadlock detection and agreement protocols of distributed operating system. |                                                                                 |                      |                                   |           |  |  |  |  |
| CO2               | Learn th systems.                                                                                             | Learn the various resource management techniques for distributed systems.       |                      |                                   |           |  |  |  |  |
| CO3               | Identify system.                                                                                              | Identify the different features of real time and mobile operating system.       |                      |                                   |           |  |  |  |  |
| CO4               | Modify features                                                                                               | Modify existing open source kernels in terms of functionality or features used. |                      |                                   |           |  |  |  |  |
| Contrib<br>Outcom | ution of C<br>es (1 – Lov                                                                                     | ourse Outcomes to<br>w, 2 - Medium, 3 –                                         | wards achie<br>High) | vement of Progra                  | m         |  |  |  |  |
|                   | PO 1                                                                                                          | PO 2                                                                            | PO 3                 | PSO 1                             | PSO 2     |  |  |  |  |
| CO1               | 3                                                                                                             |                                                                                 |                      |                                   |           |  |  |  |  |
| CO2               |                                                                                                               | 2                                                                               |                      |                                   |           |  |  |  |  |
| CO3               |                                                                                                               |                                                                                 | 1                    |                                   |           |  |  |  |  |
| <b>CO</b> 4       |                                                                                                               |                                                                                 |                      | 1                                 |           |  |  |  |  |
| <b>CO4</b>        |                                                                                                               |                                                                                 |                      | 1                                 |           |  |  |  |  |

## UNIT-I

**Operating System Overview, Process description & Control**: Operating System Objectives and Functions, The Evolution of Operating Systems, Major Achievements, Developments Leading to Modern Operating Systems, Microsoft Windows Overview, Traditional UNIX Systems, Modern UNIX Systems, What is a Process?, Process States, Process Description, Process Control, Execution of the Operating System, Security Issues.

## UNIT II

Threads, SMP, and Microkernel, Virtual Memory: Processes and Threads, Symmetric Multiprocessing (SMP), Micro Kernels, Windows Vista Thread and SMP Hours Management, Linux Process and Thread Management. Hardware and Control Structures, Operating System Software, UNIX Memory Management, Windows Vista Memory Management, Summary.

## UNIT III

**Multiprocessor and Real-Time Scheduling:** Multiprocessor Scheduling, Real-Time Scheduling, Linux Scheduling, UNIX PreclsSl) Scheduling, Windows Vista Hours Scheduling, Process Migration, Distributed Global States, Distributed Mutual Exclusion, Distributed Deadlock.

## UNIT IV

**Kernel Organization:** Using Kernel Services, Daemons, Starting the Kernel, Control in the Machine, Modules and Device Management, MODULE Organization, MODULE Installation and Removal, Process and Resource Management, Running Process Manager, Creating a new Task , IPC and Synchronization, The Scheduler, Memory Manager , The Virtual Address Space, The Page Fault Handler , File Management. The windows NT/2000/XP kernel: Introduction, The NT kernel, Objects, Threads, Multiplication Synchronization, Traps, Interrupts and Exceptions, The NT executive, Object Manager, Process and Thread Manager , Virtual Memory Manager, I/o Manager, The cache Manager Kernel local procedure calls and IPC, The native API, subsystems.

#### **TEXT BOOKS**

- [1] William Stallings, "Operating Systems: Internals and Design Principles", 6th Edition, Prentice Hall, 2013.
- [2] Gary Nutt, "Operating Systems", 3rd Edition, Pearson, 2014.

#### **REFERENCE BOOKS**

- [1] Silberschatz, Galvin, Gagne, "Operating System Concepts", 8th Edition, Wiley, 2008
- [2] Andrew S. Tanenbaum, Albert S. Woodhull, "Operating Systems, Design and Implementation", 3rd Edition, Prentice Hall, 2006.
- [3] Pradeep K Sinha, " Distribute Operating Systems, Concept and Design", PHI, 2007

#### **E-RESOURCES AND OTHER DIGITAL MATERIAL**

- [1] Prof. P.K. Biswas sir, Ph.D.(IIT Kharagpur), Video Lectures on "Operating Systems"
- [2] http://nptel.ac.in/courses/Webcourse-contents/IISc- BANG/ Operating % 20 Systems/New\_index1.html
- [3] http://www.ics.uci.edu/~ics143/lectures.html,2013
- [4] http://web.stanford.edu/~ouster/cgi-bin/cs140-winter16/index.php.

| 19CSCS1014D           |                                                  |                   |                 |                   |                |  |  |
|-----------------------|--------------------------------------------------|-------------------|-----------------|-------------------|----------------|--|--|
|                       |                                                  | BIOINF            | ORMATICS        |                   |                |  |  |
| Course C              | ategory: P                                       | rogramme          |                 | Credi             | ts: 3          |  |  |
|                       | E                                                | lective           |                 |                   |                |  |  |
| Course T              | ype: T                                           | heory             | Lecture -T      | utorial-Practic   | e: $3 - 0 - 0$ |  |  |
| <b>Prerequisites:</b> |                                                  | iology for        | Contin          | uous Evaluatio    | on: 40         |  |  |
|                       |                                                  | ngineers          | Semester        | end Evaluatio     | on: 60         |  |  |
|                       |                                                  |                   |                 | Total Marl        | <b>ks:</b> 100 |  |  |
|                       |                                                  |                   |                 |                   |                |  |  |
| COURSI                | E OUTCOM                                         | IES               |                 |                   |                |  |  |
| Upon suc              | cessful comp                                     | oletion of the co | urse, the stude | nt will be able t | :0:            |  |  |
| <b>CO1</b>            | Understand                                       | the biological s  | equence and s   | tructural databa  | ses.           |  |  |
| CO2                   | Analyze the genome information and DNA sequence. |                   |                 |                   |                |  |  |
| CO3                   | Compare pa                                       | air-wise and mu   | ltiple sequence | e alignment met   | hods.          |  |  |
| CO4                   | Apply second                                     | ndary structures  | on DNA data     |                   |                |  |  |
| Contribu              | tion of Cou                                      | rse Outcomes t    | owards achie    | vement of Prog    | gram           |  |  |
| Outcome               | es (1 – Low,                                     | 2 - Medium, 3 -   | – High)         |                   | -<br>-         |  |  |
|                       | PO 1                                             | PO 2              | PO 3            | PSO 1             | PSO 2          |  |  |
| CO1                   | 3                                                |                   | 1               |                   |                |  |  |
| CO2                   | 3                                                |                   | 1               | 2                 |                |  |  |
| CO3                   | 3                                                |                   | 1               | 2                 |                |  |  |

3

1

#### UNIT-I

**CO4** 

Introduction: Definitions, Sequencing, Biological sequence/structure, Genome

1

Projects, Pattern recognition and prediction, Folding problem, Sequence Analysis, Homology and Analogy.

**Protein Information Resources:** Biological databases, Primary sequence databases, Protein Sequence databases, Secondary databases, Protein pattern databases, and Structure classification databases.

## UNIT II

Genome Information Resources: DNA sequence databases, specialized genomic resources

**DNA Sequence analysis:** Importance of DNA analysis, Gene structure and DNA sequences, Features of DNA sequence analysis, EST (Expressed Sequence Tag) searches, Gene hunting, Profile of a cell, EST analysis, Effects of EST data on DNA databases

## UNIT III

**Pair wise alignment techniques:** Database searching, Alphabets and complexity, Algorithm and programs, Comparing two sequences, sub-sequences, Identity and similarity, The Dot plot, Local and global similarity, different alignment techniques, Dynamic Programming, Pair wise database searching.

**Multiple sequence alignment:** Definition and Goal, The consensus, computational complexity, Manual methods, Simultaneous methods, Progressive methods, Databases of Multiple alignments and searching.

## UNIT IV

**Secondary database searching**: Importance and need of secondary database searches, secondary database structure and building a sequence search protocol

**Analysis packages:** Analysis package structure, commercial databases, commercial software, comprehensive packages, packages specializing in DNA analysis, Intranet Packages, Internet Packages.

## TEXT BOOKS

[1] T K Attwood & D J Parry-Smith, Introduction to Bioinformatics, Addison Wesley Longman. Bioinformatics –A Beginners Guide by Jean-Michel Claveriw, CerdricNotredame, WEILEY dreamtech India Pvt. Ltd.

#### **REFERENCE BOOKS**

[1] Bioinformatics- A Beginner's Guide, Jean-Michel Claveriw, CerdricNotredame, WILEY DreamTech India Pvt. Ltd

[2] Sequence Analysis in A Nutshell, Scott Markel & Darryl Leon, O'REILLY

#### **E-RESOURCES AND OTHER DIGITAL MATERIAL**

- [1] www.rcsb.org
- [2] http://cebib.uonbi.ac.ke/uon\_eresources
- [3] Prof. Todd Mezzulo, June 29, 2003, "Sequence analysis" https://www.bioinformatics.org/
- [4] Protein Secondary Structure Databases: http://cybionix.com/bioinformatics/databases/
- [5] Dong Xu, University of Missouri, Columbia, Missour, University of Missouri, Columbia, Missouri;Protein Databases on the Internet https://www.ncbi.nlm.nih.gov/

|                     |                                                                                   | 19CSC<br>DATA S                            | S1015A<br>CIENCE         |                     |           |  |  |  |
|---------------------|-----------------------------------------------------------------------------------|--------------------------------------------|--------------------------|---------------------|-----------|--|--|--|
| Course Ca           | ategory:                                                                          | Programme<br>Elective                      |                          | Credits:            | 3         |  |  |  |
| Course Ty           | ype:                                                                              | Theory                                     | Lecture -T               | utorial-Practice:   | 3 - 0 - 0 |  |  |  |
| Prerequisites:      |                                                                                   | Database                                   | Contin                   | uous Evaluation:    | 40        |  |  |  |
|                     |                                                                                   | Management                                 | Semester end Evaluation: |                     | 60        |  |  |  |
|                     |                                                                                   | Systems                                    |                          | <b>Total Marks:</b> | 100       |  |  |  |
| COURSI              | E OUTCO                                                                           | OMES                                       |                          |                     |           |  |  |  |
| Upon suc            | cessful co                                                                        | mpletion of the cour                       | se, the stude            | nt will be able to: |           |  |  |  |
| CO1                 | Understa                                                                          | nd the concepts of D                       | ata Science              |                     |           |  |  |  |
| CO2                 | Apply Data Science algorithms for Big Data.                                       |                                            |                          |                     |           |  |  |  |
| CO3                 | Apply advanced Analytical Theory and Methods on Time series and<br>Text databases |                                            |                          |                     |           |  |  |  |
| CO4                 | Solve the Data Science problems using various technologies and tools              |                                            |                          |                     |           |  |  |  |
| Contribu<br>Outcome | ition of Co<br>es (1 – Lov                                                        | ourse Outcomes tow<br>w, 2 - Medium, 3 – 1 | vards achie<br>High)     | vement of Progra    | m         |  |  |  |
|                     | PO 1                                                                              | PO 2                                       | PO 3                     | PSO 1               | PSO 2     |  |  |  |
| CO1                 | 2                                                                                 |                                            |                          |                     |           |  |  |  |
| CO2                 | 3                                                                                 |                                            | 1                        |                     | 2         |  |  |  |
| CO3                 | 3                                                                                 |                                            | 1                        |                     | 2         |  |  |  |
| <b>CO4</b>          | 3                                                                                 | 3 1 2                                      |                          |                     |           |  |  |  |

## UNIT-I

**Introduction to Big Data Analytics:** Big Data Overview, State of the Practice in Analytics, Key Roles for the New Big Data Ecosystem, Examples of Big Data Analytics

**Data Analytics Lifecycle:** Data Analytics Lifecycle Overview, Discovery, Data Preparation, Model Planning, Model Building, Communicate Results, Operationalize.

**Basic Data Analytics Methods:** Introduction to R, Exploratory Data Analysis, Statistical Methods for Evaluation

#### UNIT II

Advanced Analytical Theory and Methods-Clustering: k-means, additional algorithms;

**Association Rules**: Apriori Algorithm, Evaluation of Candidate Rules, Applications of Association Rules, Transactions in a Grocery Store, Validation and Testing;

**Regression:** Linear Regression, Logistic Regression, Additional Regression Models

#### UNIT III

Advanced Analytical Theory and Methods-Classification: Decision Trees, Naïve Bayes;

Advanced Analytical Theory and Methods-Time Series Analysis: Overview of Time Series Analysis, ARIMA Model;

Advanced Analytical Theory and Methods-Text Analysis: Text Analysis Steps, Text Analysis Example, Collecting Raw Text, Representing Text, Term Frequency—Inverse Document Frequency (TFIDF), Categorizing Documents by Topics, Determining Sentiments

#### UNIT IV

Hadoop- Analytics for Unstructured Data- Use Cases, MapReduce, Apache

#### Hadoop, YARN

The Hadoop Ecosystem-Pig, Hive, HBase,

**In-Database Analytics-**SQL Essentials, Joins, Set Operations, Grouping Extensions

**Putting It All Together:** Communicating and operationalizing an Analytics Project, Creating the final deliverables, and Data Visualization basics.

#### **TEXT BOOKS**

[1] Data Science and Big Data Analytics, EMC2 Education Services, wiley, 2015

#### **REFERENCE BOOKS**

- [1] Vignesh Prajapati, Big Data Analytics with R and Hadoop, packet publishing, 2013Bill
   [2] John A. Rice, Mathematical Statistics and Data Analysis, 3rd Edition, Cengage
- [3] Tom White, Hadoop: The Definitive Guide, 4rd Edition, O'reilly Publication, 2015
- [4] Franks, Taming, The Big Data Tidal Wave, 1st Edition, Wiley, 2012.
- [5] Frank J. Ohlhorst, Big Data Analytics, 1st Edition, Wiley, 2012.

#### **E-RESOURCES AND OTHER DIGITAL MATERIAL**

[1] Prof, Nandan Sudarsan, and Prof. B. Ravindran, IIT Madras, NOC: Introduction to Data Analytics Video Lectures,

https://nptel.ac.in/courses/110106064/, last accessed on 18-09-2019.

[2] Prof Sankar Narasaimhan, and Prof Raghunathan Rengasamy, IIT Madars, NOC:Data Science for Engineers, https://nptel.ac.in/courses/106106179/, last accessed on 18-09-2019.

|                         |                                                                        | <b>19CSC</b>                            | CS1015B              |                      |           |  |  |  |
|-------------------------|------------------------------------------------------------------------|-----------------------------------------|----------------------|----------------------|-----------|--|--|--|
|                         | IN                                                                     | FORMATION RE                            | TRIEVAL              | SYSTEMS              |           |  |  |  |
| <b>Course Category:</b> |                                                                        | Programme                               |                      | Credits:             | 3         |  |  |  |
|                         |                                                                        | Elective                                |                      |                      |           |  |  |  |
| Course Ty               | ype:                                                                   | Theory                                  | Lecture -T           | utorial-Practice:    | 3 - 0 - 0 |  |  |  |
| Prerequisites:          |                                                                        | Data structures                         | Contin               | uous Evaluation:     | 40        |  |  |  |
|                         |                                                                        |                                         | Semester             | r end Evaluation:    | 60        |  |  |  |
|                         |                                                                        |                                         |                      | <b>Total Marks:</b>  | 100       |  |  |  |
| COUDO                   |                                                                        |                                         |                      |                      |           |  |  |  |
| COURSI                  | E OUTCO                                                                | OMES                                    |                      |                      |           |  |  |  |
| Upon suc                | cessful con                                                            | mpletion of the cou                     | rse, the stude       | ent will be able to: |           |  |  |  |
| <b>CO1</b>              | Understar                                                              | nd the overview of                      | Information          | Retrieval Systems    |           |  |  |  |
| CO2                     | Compute the process of indexing and Information Extraction.            |                                         |                      |                      |           |  |  |  |
| CO3                     | Analyze the concepts of term clustering and Information Visualization. |                                         |                      |                      |           |  |  |  |
| CO4                     | Implemer                                                               | nt various text searc                   | h algorithms         |                      |           |  |  |  |
| Contribu<br>Outcome     | ition of Co<br>es (1 – Lov                                             | ourse Outcomes to<br>v, 2 - Medium, 3 – | wards achie<br>High) | vement of Program    | m         |  |  |  |
|                         | PO 1                                                                   | PO 2                                    | <b>PO 3</b>          | PSO 1                | PSO 2     |  |  |  |
| CO1                     | 2                                                                      |                                         |                      |                      |           |  |  |  |
| CO2                     | 3                                                                      |                                         |                      |                      |           |  |  |  |
| CO3                     |                                                                        | 2                                       |                      |                      |           |  |  |  |
| <b>CO</b> 4             | 1                                                                      |                                         |                      |                      |           |  |  |  |

#### UNIT I

**Introduction:** Definition, Objectives, Functional Overview, Relationship to DBMS, Digital libraries and Data Warehouses.

#### Information Retrieval System Capabilities: Search, Browse

#### UNIT II

**Cataloguing and Indexing:** Objectives, Indexing Process, Automatic Indexing, Information Extraction.

**Data Structures:** Introduction, Stemming Algorithms, Inverted file structures, Ngram data structure, PAT data structure, Signature file structure, Hypertext data structure.

#### UNIT III

Automatic Indexing: Statistical indexing: Probabilistic Weighting, Vector Weighting, Natural language, Concept indexing

#### **Document and Term Clustering:**

Introduction, Thesaurus generation, Item clustering, Hierarchy of clusters.

#### UNIT – IV

**User Search Techniques:** Search statements and binding, Similarity measures and ranking, Relevance feedback, Selective dissemination of information search, weighted searches of Boolean systems, Searching the Internet and hypertext.

**Text Search Algorithms:** Introduction, Software text search algorithms, Hardware text search systems.

**Information System Evaluation:** Introduction, Measures used in system evaluation, Measurement example – TREC results.

#### **TEXT BOOKS**

[1] M. T. M. Gerald J Kowalski, Information Storage and Retrieval Systems: Springer International Edition, 2018

#### **REFERENCE BOOKS**

- [1] W. B. Frakes, Ricardo Baeza-Yates, Information Retrieval Data Structures and Algorithms: Prentice Hall PTR, 2016.
- [2] R. Baeza-Yates, Modern Information Retrival: Pearson Education, 2000.
- [3] R. Korfhage, Information Storage & Retrieval: John Wiley & Sons, 2006

#### **E-RESOURCES AND OTHER DIGITAL MATERIAL**

[1] https://nlp.stanford.edu/IR-book/pdf/01bool.pdf

[2]http://shodhganga.inflibnet.ac.in/jspui/bitstream/10603/141878/10/10\_chapter0 2.pdf
|            |                                                               | 1905               | SCS1015C          |                     |           |  |  |
|------------|---------------------------------------------------------------|--------------------|-------------------|---------------------|-----------|--|--|
|            | N                                                             | ATURAL LANC        | <b>GUAGE PROC</b> | CESSING             |           |  |  |
| Course C   | ategory:                                                      | Programme          |                   | Credits:            | 3         |  |  |
|            |                                                               | Elective           |                   |                     |           |  |  |
| Course T   | ype:                                                          | Theory             | Lecture -T        | utorial-Practice:   | 3 - 0 - 0 |  |  |
| Prerequis  | sites:                                                        | Artificial         | Contin            | uous Evaluation:    | 40        |  |  |
|            |                                                               | Intelligence       | Semester          | end Evaluation:     | 60        |  |  |
|            |                                                               |                    |                   | 100                 |           |  |  |
|            |                                                               |                    |                   |                     |           |  |  |
| COURS      | E OUTCO                                                       | DMES               |                   |                     |           |  |  |
| Upon suc   | ccessful co                                                   | mpletion of the co | ourse, the stude  | nt will be able to: |           |  |  |
| <b>CO1</b> | Understand the basic Notation in natural language processing. |                    |                   |                     |           |  |  |
| CO2        | Solve NLP sub problems using tokenizing and tagging           |                    |                   |                     |           |  |  |
| CO3        | Apply va                                                      | rious Parsing Tec  | hniques in NLI    | P.                  |           |  |  |
| CO4        | Analyze the semantic of sentences                             |                    |                   |                     |           |  |  |
| Contribu   | ution of C                                                    | ourse Outcomes     | towards achie     | vement of Progra    | ım        |  |  |
| Outcom     | es (1 – Lo <sup>3</sup>                                       | w, 2 - Medium, 3   | – High)           | _                   |           |  |  |
|            | PO 1                                                          | PO 2               | PO 3              | PSO 1               | PSO 2     |  |  |
| <b>CO1</b> | 1                                                             |                    |                   |                     |           |  |  |
| CO2        | 2                                                             |                    |                   | 1                   |           |  |  |
| CO3        | 3                                                             |                    |                   | 1                   |           |  |  |

2

#### UNIT I

**CO4** 

Introduction – Models and Algorithms, Regular Expressions and Automata -Regular Expression - Basic Regular Expression Patterns, Disjunction, grouping, and precedence, Finite State Automata – using an FSA to recognize sheeptalk, formal languages, Non-Deterministic FSAs, Using an NFAs to accept strings, Recognition as search, Relating Deterministic and Non Deterministic Automata. Regular Languages and FSAs,

**Morphology and Finite-State Transducers** survey of English Morphology -Inflectional Morphology, Derivational Morphology, Finite-State Morphological Parsing – The lexicon and Morphotactics, Morphological parsing with finite state transducers, orthographic rules and finite state transducers, Combining an FST Lexicon and Rules, thePorter Stemmer, Human Morphological Processing.

## UNIT II

**N-grams**- Counting Words in Corpora, Unsmoothed N-grams, Smoothing – Add-One smoothing, witten-Bell Discounting, Good-Turing Discounting, Backoff, Deleted Interpolation, N-Grams for spelling and Pronunciation, context-sensitive spelling error correction, N-grams for pronunciation Modelling.

**Word Classes and Part-of-Speech Tagging**- English Word Classes, Tagsets for English, Part of Speech Tagging, Rule-Based Part of Speech Tagging, Stochastic Part of Speech Tagging

#### UNIT III

**Context Free Grammars for English**- Constituency, Context-Free Rules and Trees, Sentence- Level Constructions, the Noun Phrase, Coordination, Agreement, The Verb phrase and Sub Categorization, Auxiliaries, spoken language syntax, grammar equivalence and normal form, finite state and context free grammars, grammars and human processing.

**Parsing with Context Free Grammars** – Parsing as Search – top-down parsing, bottom-up parsing, comparing top-down and bottom-up parsing, A Basic Top-Down Parser, problems with the basic top down parser, left recursion, ambiguity, repeated parsing of subtrees, The Earley Algorithm, Finite State Parsing Methods.

#### UNIT IV

**Semantic Analysis** –Syntax, Driven Semantic Analysis – semantic augmentations to context free grammar rules, quantifier scoping and the translation for complex terms, attachments for a fragment of English, sentences, noun phrases, verb phrases, prepositional phrases, integrating semantic analysis into the early parser. **Lexical Semantics:** Relations among lexemes and their senses, homonymy,

polysemy, synonymy, hyponymy, wordnet, the internal structures of words.

#### **TEXT BOOKS**

 D. Jurafsky and J. Martin, "Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition" low price edition, Pearson Education, 2005.

#### **REFERENCE BOOKS**

[1] C. Manning and H. Schutze, "Foundations of Statistical Natural Language Processing", MIT Press, 1999.

[2] James Allen. "Natural Language Understanding", Addison Wesley, 1995.

## **E-RESOURCES AND OTHER DIGITAL MATERIAL**

[1] http://nptel.iitm.ac.in/courses/106101007/

[2] https://nptel.ac.in/courses/106105158/#

|                                                |                                                                  | 19CSC<br>GRAPH /                           | S1015D<br>Theory               |                                                   |                                                |  |  |
|------------------------------------------------|------------------------------------------------------------------|--------------------------------------------|--------------------------------|---------------------------------------------------|------------------------------------------------|--|--|
| Course Category:Programme<br>ElectiveCredits:3 |                                                                  |                                            |                                |                                                   |                                                |  |  |
| Course T                                       | vpe:                                                             | Theory                                     | Lecture - Tutorial-Practice: 3 |                                                   | e: 3 - 0 - 0                                   |  |  |
| Prerequis                                      | ites:                                                            | Data Structures                            | Contin<br>Semeste              | nuous Evaluatio<br>er end Evaluatio<br>Total Mark | <b>n:</b> 40<br><b>n:</b> 60<br><b>cs:</b> 100 |  |  |
| COURSI                                         | E OUTCC                                                          | OMES                                       |                                |                                                   |                                                |  |  |
| Upon suc                                       | cessful co                                                       | mpletion of the cour                       | se, the stud                   | ent will be able t                                | 0:                                             |  |  |
| CO1                                            | Understa<br>propertie                                            | nd various types of s.                     | f graph A                      | lgorithms and g                                   | raph theory                                    |  |  |
| CO2                                            | Analyze                                                          | the NP – complete p                        | roblems.                       |                                                   |                                                |  |  |
| CO3                                            | Distinguish the features of the various tree matching algorithms |                                            |                                |                                                   |                                                |  |  |
| CO4                                            | Understand the linear programming principles and its conversion. |                                            |                                |                                                   |                                                |  |  |
| Contribu<br>Outcome                            | ition of Co<br>es (1 – Lov                                       | ourse Outcomes tov<br>w, 2 - Medium, 3 – 1 | vards achi<br>High)            | evement of Prog                                   | ram                                            |  |  |
|                                                | PO 1                                                             | PO 2                                       | <b>PO 3</b>                    | PSO 1                                             | PSO 2                                          |  |  |
| CO1                                            | 2                                                                |                                            | 1                              | 1                                                 |                                                |  |  |
| CO2                                            | 3                                                                |                                            | 2                              | 3                                                 |                                                |  |  |
| CO3                                            | 2                                                                |                                            | 2                              | 2                                                 |                                                |  |  |
| CO4                                            | 1                                                                |                                            | 1                              | 1                                                 |                                                |  |  |
| COURSE<br>UNIT I<br>Basic de                   | CONTEN                                                           | T<br>Degree of vertic                      | ces Com                        | nlement of a                                      | oranh Self                                     |  |  |

complementary graph, some eccentricity properties of graphs. Tree, spanning tree. Directed graphs standard definitions; strongly, weakly, unilaterally connected digraphs, deadlock communication network. Matrix representation of graph and digraphs. Some properties

#### UNIT II

Eulerian graphs and standard results relating to characterization. Hamiltonian graph-standard theorems (Dirac theorem, Chavathal theorem, closure of graph).Non Hamiltonian graph with maximum number of edges. Self-centered graphs and related simple theorems. Chromatic number; Vertex and edge - application to coloring. Planar graphs, Euler's formula, maximum number of edges in a planar graph. Five colour theorem.

## UNIT III

DFS-BFS algorithm, shortest path algorithm, min-spanning tree and maxspanning tree algorithm, planarity algorithm. Matching theory, maximal matching and algorithms for maximal matching. Perfect matching (only properties and applications to regular graphs).

Flows in graphs, Ranking of participants in tournaments, simple properties and theorems on strongly connected tournaments. Application of Eulerian digraphs. PERT-CPM. Complexity of algorithms; P-NP- NPC-NP hard problems and examples.

## UNIT IV

Linear- Integer Linear programming, Conversion of TSP, maxflow, Knapsack scheduling, shortest path problems for Linear programming types - branch bound method to solve Knapsack problems- critical path and linear programming conversion- Floor shop scheduling problem- Personal assignment problem.

Dynamic programming- TSP- compartment problems- Best investment problems

## TEXT BOOKS

- [1] C.Papadimitriou&K.Steiglitz, "Combinatorial Optimization", Prentice Hall, 1982.
- [2] H.Gerez, "Algorithms for VLSI Design Automation", John Wiley, 1999

#### **REFERENCE BOOKS**

[1] B.Korte&J.Vygen, "Combinatorial Optimization", Springer-Verlag, 2000

## **E-RESOURCES AND OTHER DIGITAL MATERIAL**

[1] https://www.hackerearth.com/practice/notes/graph-theory-part-i/

[2] https://www.hackerearth.com/practice/notes/graph-theory-part-ii/

[3] https://onlinelibrary.wiley.com/journal/10970118

|                   |                                                                                           | <b>19M</b>                                      | ГМС1026                 |                          |           |  |  |
|-------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------|--------------------------|-----------|--|--|
|                   | RE                                                                                        | SEARCH METI                                     | HODOLOGY                | AND IPR                  |           |  |  |
| Course C          | Category:                                                                                 | Programme Core                                  |                         | Credits                  | : -       |  |  |
| Course T          | ype:                                                                                      | Theory                                          | Lecture -               | <b>Futorial-Practice</b> | 2 - 0 - 0 |  |  |
| Prerequi          | sites:                                                                                    |                                                 | Contir                  | uous Evaluation          | 40        |  |  |
|                   |                                                                                           |                                                 | Semeste                 | r end Evaluation         | 60        |  |  |
|                   |                                                                                           |                                                 |                         | <b>Total Marks</b>       | 100       |  |  |
|                   |                                                                                           |                                                 |                         |                          |           |  |  |
| COURS             | E OUTCO                                                                                   | OMES                                            |                         |                          |           |  |  |
| Upon su           | ccessful con                                                                              | mpletion of the co                              | urse, the stud          | ent will be able to:     |           |  |  |
| CO1               | Acquire an overview of the research methodology and techniques to define research problem |                                                 |                         |                          |           |  |  |
| CO2               | Review th                                                                                 | Review the literature and identify the problem. |                         |                          |           |  |  |
| CO3               | Analyze t                                                                                 | he optimum samp                                 | oling techniqu          | es for collected da      | ta.       |  |  |
| CO4               | Apply var                                                                                 | rious forms of the                              | intellectual p          | roperties for resear     | ch work.  |  |  |
| Contrib<br>Outcom | ution of Co<br>es (1 – Lov                                                                | ourse Outcomes t<br>v, 2 - Medium, 3 -          | owards achie<br>– High) | evement of Progra        | am        |  |  |
|                   | <b>PO 1</b>                                                                               | PO 2                                            | <b>PO 3</b>             | PSO 1                    | PSO 2     |  |  |
| CO1               | 3                                                                                         |                                                 | 2                       |                          |           |  |  |
| CO2               | 2                                                                                         |                                                 | 2                       |                          |           |  |  |
| CO3               | 2                                                                                         | 2                                               | 2                       |                          |           |  |  |

| CO4 | 2 | 2    | 2 |
|-----|---|------|---|
|     |   | <br> |   |

#### UNIT I

**Research Methodology**: Introduction, Meaning of Research, Objectives of Research, Motivation in Research, Research Approaches, Significance of Research, Research and Scientific Methods, Research Process, Criteria of Good

Research, and Problems Encountered by Researchers in India.

**Research Problem:** Defining the Research Problem, Selecting the Problem, Necessity of Defining the Problem, Technique Involved in Defining a Problem, an Illustration.

#### UNIT II

**Reviewing the literature**: Place of the literature review in research, improving research methodology, broadening knowledge base in research area, enabling contextual findings.

**Research Design**: Meaning of Research Design, Need for Research Design, Features of a Good Design, Important Concepts Relating to Research Design, Basic Principles of experimental Designs, Important Experimental Designs.

#### UNIT III

**Design of Sampling**: Introduction, Sample Design, Sampling and Non-sampling Errors, Sample Survey versus Census Survey, Measurement and Scaling: Qualitative and Quantitative Data, Classifications of Measurement Scales, Goodness of Measurement Scales, sources of error in measurement tools.

**Data Collection**: Experimental and Surveys, Collection of Primary Data, Collection of Secondary Data, Selection of Appropriate Method for Data Collection, Case Study Method **Testing of Hypotheses**: Hypothesis, Basic Concepts, Testing of Hypothesis, Test Statistics and Critical Region, Critical Value and Decision Rule, Procedure for Hypothesis Testing

#### UNIT – IV

**Interpretation and Report Writing**: Meaning of Interpretation, Technique of Interpretation, Precaution in Interpretation, and Significance of Report Writing **Intellectual Property:** The Concept, Intellectual Property System in India, Development of TRIPS Complied Regime in India, Patents Act, 1970, Trade Mark Act, 1999, The Designs Act, 2000, The Geographical Indications of Goods (Registration and Protection) Act1999, Copyright Act, 1957, Trade Secrets, Utility Models WTO, Paris Convention for the Protection of Industrial Property, National Treatment, Right of Priority, Common Rules, Patents, Marks, Industrial Designs, Trade Names, Indications of Source, Unfair Competition, Patent Cooperation Treaty (PCT), Trade Related Aspects of Intellectual Property Rights(TRIPS) Agreement.

#### TEXT BOOKS

[1] Research methodology: Methods and Techniques, C.R. Kothari, GauravGarg,

New Age International, 4th Edition, 2018.

- [2] Research Methodology a step-by-step guide for beginners. Ranjit Kumar, SAGE Publications Ltd.,3rd Edition, 2011
- [3] Study Material, Professional Programme Intellectual Property Rights, Law and Practice, The Institute of Company Secretaries of India, Statutory Body under an Act of Parliament, September 2013

#### **REFERENCE BOOKS**

- [1] An introduction to Research Methodology, Garg B.L et al ,RBSA Publishers 2002
- [2] An Introduction to Multivariate Statistical Analysis Anderson T.W, Wiley 3rd Edition,
- [3] Research Methodology, Sinha, S.C, Dhiman, EssEss Publications2002
- [4] Research Methods: the concise knowledge base ,Trochim ,Atomic Dog Publishing ,2005
- [5] How to Write and Publish a Scientific Paper, Day R.A, Cambridge University Press 1992
- [6] Conducting Research Literature Reviews: From the Internet to Paper, Fink A, Sage Publications, 2009
- [7] Proposal Writing, Coley S.M. Scheinberg, C.A, Sage Publications, 1990
- [8] Intellectual Property Rights in the Global Economy, Keith Eugene Maskus, Institute for International Economics.

#### **E-RESOURCES AND OTHER DIGITAL MATERIAL**

[1]https://www.enago.com/academy/intellectual-property-rights-what researchers-need-to-know/

[2] https://nptel.ac.in/courses/107/108/107108011/

|                 |                                                    |            | <b>19C</b> \$ | SCS1051         |                             |       |  |  |
|-----------------|----------------------------------------------------|------------|---------------|-----------------|-----------------------------|-------|--|--|
| D               | ATA STRU                                           | JCTU       | JRES AND      | ALGORITH        | MS LABORATO                 | RY    |  |  |
| Course C        | Category:                                          | Prog       | ramme Core    |                 | Credits                     | 1.5   |  |  |
| <b>Course</b> T | ype:                                               | Labo       | oratory       | Lecture -T      | Lecture -Tutorial-Practice: |       |  |  |
| Prerequi        | sites:                                             |            |               | Contin          | uous Evaluation:            | 40    |  |  |
|                 |                                                    |            |               | Semester        | r end Evaluation:           | 60    |  |  |
|                 |                                                    |            |               |                 | <b>Total Marks</b> :        | 100   |  |  |
| COURS           | E OUTCO                                            | <b>MES</b> |               |                 |                             |       |  |  |
| Upon su         | ccessful co                                        | mplet      | ion of the co | urse, the stude | ent will be able to:        |       |  |  |
| CO1             | Implement various tree operations                  |            |               |                 |                             |       |  |  |
| CO2             | Compare greedy and dynamic algorithms              |            |               |                 |                             |       |  |  |
| CO3             | Understand graph algorithms and their applications |            |               |                 |                             |       |  |  |
| CO4             | Implement number theoretic algorithms              |            |               |                 |                             |       |  |  |
| Contrib         | ution of Co                                        | ourse      | Outcomes t    | owards achie    | vement of Progra            | ım    |  |  |
| Outcom          | es (1 – Lov                                        | v, 2 -     | Medium, 3 -   | – High)         |                             |       |  |  |
|                 | PO 1                                               |            | PO 2          | <b>PO 3</b>     | PSO 1                       | PSO 2 |  |  |
| CO1             | 3                                                  |            |               |                 | 3                           |       |  |  |
| CO2             |                                                    |            |               | 1               |                             |       |  |  |
| CO3             |                                                    |            | 2             |                 |                             |       |  |  |

1

3

#### **COURSE CONTENT**

**CO4** 

Task 1: Implement Binary Search Tree operations

Task 2: Evaluate expressions by implementing expression trees

Task 3: Implement sorting algorithm using B-Trees

Task 4: Implement a data compression algorithm using Huffman coding

Task 5: Implementing matrix chain multiplication using dynamic programming

- Task 6: Implement Sequence alignment algorithm for biological sequences
- Task 7: Implement greedy algorithm for shortest job first (SJF) CPU scheduling algorithm
- Task 8: Implement Bellman-Ford algorithm using adjacency matrix
- Task 9: Implement distance vector routing algorithm
- Task 10: To check whether the graph is DAG or not
- Task 11: Implement Finite automata based string search algorithm
- Task 12: Implement Aho-Corasick string matching algorithm
- Task 13: Implement Hamiltonian Path using Java
- Task 14: Implement 0/1 Knapsack problem
- Task 15: Implement travelling salesman problem

## TEXT BOOKS

[1] Cormen, Leiserson, Rivest, and Stein, "Introduction to Algorithms", Third Edition, McGraw Hill, 2010.

## **REFERENCE BOOKS**

- [1] Robert Sedgewick Philippe Flajolet, "An Introduction to the Analysis of Algorithms", First Edition, McGraw Hill, 1995.
- [2] Mark Allen Weiss, "Data Structures and Algorithm Analysis in C", 2nd edition, Pearson Education.
- [3] Horowitz Sahni and Anderson-Freed," Fundamentals of Data Structures in C", 2nd edition, Universities Press.

## **E-RESOURCES AND OTHER DIGITAL MATERIAL**

- [1] MHRD VIRTUAL LABS, IIT KHARAGPUR, 14.05.2015, Available: http://cse.iitkgp.ac.in/~rkumar/pds-vlab/
- [2] MHRD VIRTUAL LABS, IIIT HYDERABAD, 14.05.2015, Available: http://cse01-iiith.vlabs.ac.in/
- [3] Prof. Naveen Garg, IIT Delhi, August 27, 2011, "AVL Trees" http://nptel.iitm.ac.in [NPTEL]
- [4] Prof. Pradip K. Das, Jun 9, 2014, www.it4next gen.com/ free-computerscience-lectures-by-nptel.html

## [5] IIT Delhi, http://nptel.ac.in/courses/106102064/25[6] IIT Guwahati B-Tree Construction, nptel.ac.in/courses/ 106103069/21

| 19CSCS1052                  |
|-----------------------------|
| MACHINE LEARNING LABORATORY |

| <b>Course Category:</b> | Programme Core | Credits:                            | 1.5       |
|-------------------------|----------------|-------------------------------------|-----------|
| <b>Course Type:</b>     | Laboratory     | <b>Lecture - Tutorial-Practice:</b> | 0 - 0 - 3 |
| Prerequisites:          | Data Mining    | <b>Continuous Evaluation:</b>       | 40        |
| -                       |                | Semester end Evaluation:            | 60        |
|                         |                | <b>Total Marks:</b>                 | 100       |

#### **COURSE OUTCOMES**

Upon successful completion of the course, the student will be able to:

| <b>CO1</b> | Identify instance based learning algorithms                                       |
|------------|-----------------------------------------------------------------------------------|
| CO2        | Design neural network to solve classification and function approximation problems |
| CO3        | Build optimal classifiers using genetic algorithms                                |
| CO4        | Analyze probabilistic methods for learning                                        |

#### Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2 - Medium, 3 – High)

|            | <b>PO 1</b> | PO 2 | PO 3 | PSO 1 | PSO 2 |
|------------|-------------|------|------|-------|-------|
| <b>CO1</b> | 2           |      | 2    | 2     |       |
| CO2        | 2           |      | 2    | 2     |       |
| CO3        | 2           |      | 2    | 2     |       |
| CO4        | 2           |      | 2    | 2     |       |

#### **COURSE CONTENT**

Task 1: Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on a given set of training data samples. Read the training data from a .CSV file.

Task 2: For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples

Task 3: Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.

Task 4: Build an Artificial Neural Network by implementing the Back propagation algorithm and test the same using appropriate data sets.

Task 5: Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.

Task 6: Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the accuracy, precision, and recall for your data set.

Task 7: Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API.

Task 8: Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set for clustering using k-Means algorithm. Compare the results of these two algorithms and comment on the quality of clustering. You can add Java/Python ML library classes/API in the program.

Task 9: Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem.

Task 10: Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs

## TEXT BOOKS

[1] John Anderson, Hands On Machine Learning with Python 1st Edition, AI Sciences Publisher, 2018

#### **REFERENCE BOOKS**

[1] Michael Bowles, Machine Learning in Python: Essential Techniques for Predictive Analysis 1st Edition, John Wiley,2015

#### **E-RESOURCES AND OTHER DIGITAL MATERIAL**

[1] Evaluating a hypothesis, Stanford University,

https://www.coursera.org/learn/machine-learning/lecture/yfbJY/evaluating-ahypothesis , Last accessed on 26-8-2019

- [2] Balaraman Ravindran, NPTEL Lecture 1 Introduction to Machine Learning, https://www.youtube.com/watch?v=fC7V8QsPBec, Last accessed on 26-8-2019
- [3] Benchmarking Neural Networks on Oracle Cloud Infrastructure with Mapr, https://mapr.com/whitepapers/benchmarking-neural-networks-on-oracle-cloudinfrastructure-with-mapr/ Last accessed on 26-8-2019
- [4] George Crump, Dealing with The AI and Analytics Data Explosionhttps://mapr.com/whitepapers/dealing-with-the-ai-and-analytics-data-explosion/ Last accessed on 26-8-2019

# **SEMESTER II**

|                     |                                                                                                                       | <b>19CS</b>                                               | CS2001                                 |                      |           |  |  |
|---------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------|----------------------|-----------|--|--|
|                     | ŀ                                                                                                                     | HIGH PERFORM                                              | ANCE CON                               | IPUTING              |           |  |  |
| <b>Course</b> C     | ategory:                                                                                                              | Programme Core                                            |                                        | Credits:             | 3         |  |  |
| <b>Course</b> T     | ype:                                                                                                                  | Theory                                                    | Theory Lecture -Tutorial-Practice:     |                      | 3 - 0 - 0 |  |  |
| Prerequis           | sites:                                                                                                                | Data Structures                                           | Data Structures, Continuous Evaluation |                      | 40        |  |  |
|                     |                                                                                                                       | Computer                                                  | Semester                               | r end Evaluation:    | 60        |  |  |
|                     |                                                                                                                       | Organization                                              |                                        | <b>Total Marks:</b>  | 100       |  |  |
|                     |                                                                                                                       | & Architecture                                            |                                        |                      |           |  |  |
| COURS               | E OUTCO                                                                                                               | OMES                                                      |                                        |                      |           |  |  |
| Upon suc            | cessful co                                                                                                            | mpletion of the cou                                       | urse, the stude                        | ent will be able to: |           |  |  |
| CO1                 | Understand the parallel programming platforms and parallel algorithms on parallel computer systems.                   |                                                           |                                        |                      |           |  |  |
| CO2                 | Analyze t                                                                                                             | Analyze the working group communication operations of MPI |                                        |                      |           |  |  |
| CO3                 | Understand the accelerator technologies of GPGPU's with CUDA, OpenCL.                                                 |                                                           |                                        |                      |           |  |  |
| CO4                 | <b>CO4</b> Implement algorithms for Matrix, Sorting and Graphs using OpenMP, Pthreads, MPI and CUDA Language/Library. |                                                           |                                        |                      |           |  |  |
| Contribu<br>Outcome | ution of Co<br>es (1 – Lov                                                                                            | ourse Outcomes to<br>w, 2 - Medium, 3 –                   | owards achie<br>High)                  | evement of Progra    | m         |  |  |
|                     | PO 1                                                                                                                  | PO 2                                                      | <b>PO 3</b>                            | PSO 1                | PSO 2     |  |  |
| CO1                 |                                                                                                                       |                                                           | 3                                      | 2                    |           |  |  |
| CO2                 | 1                                                                                                                     |                                                           | 3                                      | 2                    |           |  |  |

**CO3** 

**CO4** 

## UNIT I

**Parallel Programming Platforms:** Implicit parallelism: Trends in Microprocessor Architectures, Limitations of memory system performance, Dichotomy of parallel computing platforms, physical organization of parallel platforms, Routing mechanisms for interconnection networks.

**Principles of Parallel Algorithm Design:** Preliminaries, decomposition Techniques, Characteristics of tasks and interactions, mapping techniques for load balancing, parallel algorithm models.

## UNIT II

**Basic communication operations:** One-to-All Broadcast and All-to-One Reduction, All-to-All Broadcast and Reduction, All-Reduce and Prefix-Sum Operations, Scatter and Gather.

Analytical modeling of parallel programs: sources of overhead in parallel programs, performance metrics for parallel systems.

**Introduction to Heterogeneous Computing:** Introduction to OPenCL, Platform and Devices, The Execution Environment, Memory Model, Writing Kernels.

## UNIT III

**Programming using the message passing paradigm:** Principles of Message passing programming, The building blocks: Send and Receive Operations, MPI: the message passing interface, collective communication and computation Operations.

**Programming shared address space platforms:** Thread Basics, why Threads, The POSIX Thread API, Thread Basics: Creation and Termination, OpenMP: a standard for Directive based Parallel Programming.

## UNIT IV

**Dense Matrix Algorithms:** Matrix-Vector Multiplication, Matrix – Matrix Multiplication.

**Sorting:** Issues in Sorting on Parallel Computers, Sorting Networks, Bubble sort and its variants.

**Graph Algorithms:** Minimum Spanning Tree: Prim's Algorithm, Single-Source shortest paths: Dijkstra's Algorithm.

**Introduction to General-Purpose GPU programming (CUDA):** The age of parallel processing, The Rise of GPU computing, CUDA, Applications of CUDA, Development Environment, Introduction to CUDA C, Parallel Programming in CUDA C.

#### **TEXT BOOKS**

- [1] AnanthGrama, Anshul Gupta, George Karypis, Vipin Kumar: Introduction to Parallel Computing, Second Edition Pearson Education, 2016.(Chapters:1-10)
- [2] Jason Sanders, Edward Kandrot, CUDA By Example An Introduction to General-Purpose GPU Programming, Addison Wesley, 2011. (Chapters:1-4)
- [3] Benedict R Gaster, Lee Howes, David R KaeliPerhaad Mistry Dana Schaa, *Heterogeneous Computing* with OpenCL McGraw-Hill, Inc. Newyork, 2012(Chapters-2)

#### **REFERENCE BOOKS**

- [1] Michael J. Quinn, Parallel Programming in C with MPI and OpenMP McGraw-Hill International Editions, Computer Science Series, 2004.
- [2] David B. Kirk, Wen-mei W. Hwu, Programming Massively Parallel Processors
   A Hands-on Approach, Third Edition, Morgan Kaufmann, 2016.

#### **E-RESOURCES AND OTHER DIGITAL MATERIAL**

- [1] nptel.ac.in/courses/106108055/
- [2] http://www.nvidia.com/object/cuda\_home\_new.html
- [3]http://www.icrar.org/research/postgraduuate/igh-performance-computinghonours-course
- [4] http://www.openCL.org

| Programme Core<br>Theory<br>Computer<br>Networks<br>OMES<br>ompletion of the cor<br>and the evolution of<br>ure<br>and characterize dif<br>nodels<br>the various technol<br>n.<br>the security issues | Lecture -<br>Contin<br>Semeste                                                                                             | Credits:<br><b>Futorial-Practice:</b><br><b>nuous Evaluation:</b><br><b>or end Evaluation:</b><br><b>Total Marks:</b><br>ent will be able to:<br>uting paradigm and<br>deployment models<br>s of cloud computin<br>puting.<br><b>evement of Progra</b> | 3<br>3 - 0 - 0<br>40<br>60<br>100<br>its<br>s and<br>g |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Theory<br>Computer<br>Networks<br>OMES<br>ompletion of the cor<br>and the evolution of<br>ure<br>and characterize dir<br>nodels<br>the various technol<br>n.<br>the security issues                   | Lecture - T<br>Contin<br>Semeste                                                                                           | Futorial-Practice:         nuous Evaluation:         r end Evaluation:         Total Marks:         ent will be able to:         uting paradigm and         deployment models         s of cloud computin         puting.         evement of Progra    | 3 - 0 - 0<br>40<br>60<br>100<br>its<br>and<br>g        |
| Computer<br>Networks<br>OMES<br>ompletion of the cor<br>and the evolution of<br>ure<br>and characterize dir<br>nodels<br>the various technol<br>n.<br>the security issues                             | Contin<br>Semeste<br>urse, the stude<br>f cloud compu<br>fferent cloud<br>logical drivers<br>in cloud comp<br>owards achie | nuous Evaluation:<br>r end Evaluation:<br>Total Marks:<br>ent will be able to:<br>uting paradigm and<br>deployment models<br>s of cloud computin<br>puting.<br>evement of Progra                                                                       | 40<br>60<br>100<br>its<br>g                            |
| Networks OMES Ompletion of the cor and the evolution of ure and characterize di nodels the various technol n. the security issues Course Outcomes t                                                   | Semeste<br>urse, the stude<br>f cloud compu<br>fferent cloud<br>ogical drivers<br>in cloud comp<br>owards achie            | ent will be able to:<br>uting paradigm and<br>deployment models<br>s of cloud computin<br>puting.                                                                                                                                                      | 60<br>100<br>its<br>and<br>g                           |
| OMES<br>ompletion of the cor<br>and the evolution of<br>ure<br>and characterize dir<br>nodels<br>the various technol<br>n.<br>the security issues                                                     | urse, the stude<br>f cloud compu<br>fferent cloud<br>logical drivers<br>in cloud comp<br>owards achie                      | Total Marks:<br>ent will be able to:<br>uting paradigm and<br>deployment models<br>s of cloud computin<br>puting.                                                                                                                                      | 100<br>its<br>and<br>g                                 |
| OMES<br>ompletion of the cor<br>and the evolution of<br>ure<br>and characterize dir<br>nodels<br>the various technol<br>n.<br>the security issues                                                     | urse, the stude<br>f cloud compu<br>fferent cloud<br>logical drivers<br>in cloud comp<br>owards achie                      | ent will be able to:<br>uting paradigm and<br>deployment models<br>s of cloud computin<br>puting.                                                                                                                                                      | its<br>s and<br>g                                      |
| OMES<br>ompletion of the cor<br>and the evolution of<br>ure<br>and characterize dir<br>nodels<br>the various technol<br>n.<br>the security issues                                                     | urse, the stude<br>f cloud compu<br>fferent cloud<br>logical drivers<br>in cloud comp<br>owards achie                      | ent will be able to:<br>uting paradigm and<br>deployment models<br>s of cloud computin<br>puting.                                                                                                                                                      | its<br>s and<br>g                                      |
| ompletion of the con<br>and the evolution of<br>oure<br>and characterize dia<br>nodels<br>the various technol<br>n.<br>the security issues                                                            | urse, the stude<br>f cloud compu<br>fferent cloud<br>logical drivers<br>in cloud comp<br>owards achie                      | ent will be able to:<br>uting paradigm and<br>deployment models<br>s of cloud computin<br>puting.                                                                                                                                                      | its<br>and<br>g                                        |
| and the evolution of<br>ture<br>and characterize di-<br>nodels<br>the various technol<br>n.<br>the security issues                                                                                    | f cloud compu<br>fferent cloud<br>logical drivers<br>in cloud comp<br>owards achie                                         | uting paradigm and<br>deployment models<br>s of cloud computin<br>puting.<br>evement of Progra                                                                                                                                                         | its<br>and<br>g                                        |
| and characterize dia<br>nodels<br>the various technol<br>n.<br>the security issues                                                                                                                    | fferent cloud<br>ogical drivers<br>in cloud comp<br>owards achie                                                           | deployment models<br>s of cloud computin<br>puting.<br>evement of Progra                                                                                                                                                                               | s and<br>g                                             |
| the various technol<br>n.<br>the security issues<br><b>Course Outcomes t</b>                                                                                                                          | ogical drivers<br>in cloud comp<br>owards achie                                                                            | s of cloud computin<br>puting.<br>evement of Progra                                                                                                                                                                                                    | m                                                      |
| the security issues                                                                                                                                                                                   | in cloud comj<br>owards achie                                                                                              | puting.<br>evement of Progra                                                                                                                                                                                                                           | m                                                      |
| course Outcomes t                                                                                                                                                                                     | owards achie                                                                                                               | evement of Progra                                                                                                                                                                                                                                      | m                                                      |
| w, 2 - Medium, 3 -                                                                                                                                                                                    | – High)                                                                                                                    | 0                                                                                                                                                                                                                                                      |                                                        |
| PO 2                                                                                                                                                                                                  | <b>PO 3</b>                                                                                                                | PSO 1                                                                                                                                                                                                                                                  | PSO 2                                                  |
|                                                                                                                                                                                                       | 2                                                                                                                          |                                                                                                                                                                                                                                                        |                                                        |
|                                                                                                                                                                                                       | 2                                                                                                                          | 1                                                                                                                                                                                                                                                      |                                                        |
|                                                                                                                                                                                                       | 3                                                                                                                          | 2                                                                                                                                                                                                                                                      |                                                        |
|                                                                                                                                                                                                       |                                                                                                                            | 2                                                                                                                                                                                                                                                      |                                                        |
|                                                                                                                                                                                                       |                                                                                                                            | 2<br>2<br>3                                                                                                                                                                                                                                            | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

## UNIT - I

#### Introduction

High-Performance Computing, ParallelComputing, DistributedComputing, Cluster Computing, Grid Computing, Cloud Computing, Biocomputing, Mobile Computing, Quantum Computing, Optical Computing, Nanocomputing, Network Computing

#### **Cloud Computing Fundamentals**

Motivation for Cloud Computing: The Need for Cloud Computing.

Defining Cloud Computing: NIST Definition of Cloud Computing, Cloud Computing Is a Service, Cloud Computing Is a Platform

5-4-3 Principles of Cloud computing: Five Essential Characteristics, Four Cloud Deployment Models, Three Service Offering Models

Cloud Ecosystem, Requirements for Cloud Services, Cloud Application, Benefits and Drawbacks

## UNIT - II

## **Cloud Computing Architecture and Management**

Cloud Architecture, Anatomy of the Cloud, Network Connectivity in Cloud Computing, Applications on the Cloud, Managing the Cloud, Migrating Application to Cloud

#### **Cloud Deployment Models**

Private Cloud, Public Cloud, Community Cloud, Hybrid Cloud

## **Cloud Service Models**

Infrastructure as a Service, Platform as a Service, Software as a Service, Other Cloud Service Models

## UNIT - III

## **Technological Drivers for Cloud Computing**

SOA and Cloud: SOA and SOC, Benefits of SOA, Technologies Used by SOA, Similarities and Differences between SOA and Cloud Computing.

Virtualization: Approaches in Virtualization, Hypervisor and Its Role, Types of Virtualization, Multicore Technology, Memory and Storage Technologies, Networking Technologies Web 2.0, Web 3.0

#### **Operating Systems**

Role of OS in Cloud Computing, Features of Cloud OS, Cloud OS Requirements, Cloud-Based OS Application Environment

#### UNIT –IV

#### **Application Environment**

Need for Effective ADE, Application Development Methodologies, Power of Cloud Computing in Application Development,

Cloud Computing APIs: Rackspace, IBM, Intel

#### **Networking for Cloud Computing**

Overview of Data Center Environment, Networking Issues in Data Centers

#### Security Aspects

Data Security, Virutalization Security, Network Security Platform-Related Security

Security Issues in Cloud Service Models, Software-as-a-Service Security Issues, Platform-as-a-Service Security Issues, Infrastructure-as-a-Service Security Issues

## TEXT BOOKS

[1] K. Chandrasekaran, Essentials of Cloud Computing, CRC Press, 2015

## **REFERENCE BOOKS**

- [1] Barrie Sosinsky, Cloud Computing Bible, Wiley-India, 2010
- [2] RajkumarBuyya, James Broberg, Andrzej M. Goscinski, Cloud Computing: Principles and Paradigms, Wiley, 2011
- [3] Nikos Antonopoulos, Lee Gillam, Cloud Computing: Principles, Systems and Applications, Springer, 2012

## **E-RESOURCES & OTHER MATERIAL**

[1] https://azure.microsoft.com/en-in/overview/ [Accessed: 20/02/2020]

- [2] https://www.ibm.com/cloud/learn/cloud-computing [Accessed: 20/02/2020]
- [3] https://aws.amazon.com/what-is-cloud-computing/ [Accessed: 20/02/2020]

#### **19CSCS2003 CYBER SECURITY Course Category:** Programme Core Credits: 3 **Course Type:** Theory 3 - 0 - 0 **Lecture - Tutorial-Practice:** Cryptography and **Prerequisites: Continuous Evaluation:** 40 Network Security **Semester end Evaluation:** 60 **Total Marks:** 100 **COURSE OUTCOMES** Upon successful completion of the course, the student will be able to: **CO1** Understand the classification of cyber crimes. Assess various security attacks. **CO2** Understand the process to counter the cyber crimes. **CO3** Analyze various tools and methods used in cyber crimes **CO4 Contribution of Course Outcomes towards achievement of Program** Outcomes (1 – Low, 2 - Medium, 3 – High)

|            | <b>PO 1</b> | PO 2 | <b>PO 3</b> | PSO 1 | PSO 2 |
|------------|-------------|------|-------------|-------|-------|
| CO1        | 3           |      | 2           |       |       |
| CO2        | 2           |      | 3           |       |       |
| CO3        | 3           |      | 3           |       |       |
| <b>CO4</b> | 2           |      | 2           |       | 2     |

## **COURSE CONTENT**

## UNIT I

**Introduction of Cybercrime**: Definition and Origins of the Word, Cybercrime and Information Security, Cybercriminals, **Classifications of Cybercrimes**: E-Mail Spoofing, Spamming, Internet Time Theft, Salami Attack/Salami Technique, Data Diddling, Forgery, Web Jacking, Hacking, Online Frauds, Pornographic Offenses, Software Piracy, Computer Sabotage, E-Mail Bombing/Mail Bombs, Computer Network Intrusions, Password Sniffing, Credit Card Frauds, Identity Theft.

## UNIT II

**Cyber offenses:** Criminals Plan: Categories of Cybercrime **Cyber Attacks:** Reconnaissance, Passive Attack, Active Attacks, Scanning/Scrutinizing gathered Information, Attack (Gaining and Maintaining the System Access), Social Engineering, and Classification of Social Engineering.

## UNIT III

**Cyberstalking**: Types of Stalkers, Cases Reported on Cyberstalking, Working of Stalking, Real-Life Incident of Cyber stalking, Cybercafe and Cybercrimes, Botnets: The Fuel for Cybercrime, Botnet, Attack Vector, **Tools and Methods**: Proxy Servers and Anonymizers, Phishing and Identity Theft : Working of Phishing, Identity Theft (ID Theft).

## UNIT IV

**Password Cracking**: Online Attacks, Offline Attacks, Strong, Weak and Random Passwords, Random Passwords, **Keyloggers and Spywares**: Software Keyloggers, Hardware Keyloggers, Antikeylogger, Spywares. Case Study : N-Map Tool, Nessus Vulnerability Tool

## TEXT BOOKS

- [1] Nina Godbole, Sunit Belapur, "Cyber Security Understanding Cyber Crimes, Computer Forensics and Legal Perspectives", 2<sup>nd</sup> edition, Wiley India Publications, April, 2011
- [2] William Stallings, Cryptography and Network Security: Principles and Practice. 7<sup>th</sup> Ed, Pearson Education, 2017

## **REFERENCE BOOKS**

- [1] "Fundamental on Cyber Security", CISCO
- [2] "Cyber Security Essentials", CISCO
- [3] "Security Analyst", NASSCOM
- [4] Michael McPhee, "Mastering Khali Linux for Web Penetration testing",Pact Publishing, 2017

#### **E-RESOURCES AND OTHER DIGITAL MATERIAL**

https://www.cybrary.it/catalog/career-path/cyber-security-engineer/
 https://www.edx.org/course/cybersecurity-fundamentals-2

|                         |                                                                     | 19CS<br>INTERNE                         | CS2014A<br>Г OF THING   | ïS                                                              |              |  |
|-------------------------|---------------------------------------------------------------------|-----------------------------------------|-------------------------|-----------------------------------------------------------------|--------------|--|
| <b>Course Category:</b> |                                                                     | Programme<br>Elective                   |                         | Credit                                                          |              |  |
| Course Type:            |                                                                     | Theory                                  | Lecture -T              | utorial-Practic                                                 | e: 3 - 0 - 0 |  |
| Prerequisites:          |                                                                     | Computer<br>Networks                    | Contin<br>Semester      | Continuous Evaluation<br>Semester end Evaluation<br>Total Marks |              |  |
| COURS                   | E OUTCO                                                             | MES                                     |                         |                                                                 |              |  |
| Upon suc                | ccessful con                                                        | npletion of the co                      | urse, the stude         | ent will be able t                                              | 0:           |  |
| <b>CO1</b>              | Understand the basic principles and architecture of IoT.            |                                         |                         |                                                                 |              |  |
| CO2                     | Illustrate Standards and Key Technologies in IoT                    |                                         |                         |                                                                 |              |  |
| CO3                     | Identify the structure of various physical devices used for IoT     |                                         |                         |                                                                 |              |  |
| CO4                     | Analyze security threats and reliability issues of IoT Technologies |                                         |                         |                                                                 |              |  |
| Contribu<br>Outcome     | ution of Co<br>es (1 – Low                                          | ourse Outcomes to<br>v, 2 - Medium, 3 - | owards achie<br>- High) | vement of Prog                                                  | gram         |  |
|                         | PO 1                                                                | PO 2                                    | PO 3                    | PSO 1                                                           | PSO 2        |  |
| CO1                     | 2                                                                   |                                         |                         |                                                                 |              |  |
| CO2                     |                                                                     |                                         | 1                       | 2                                                               |              |  |
| CO3                     | 3                                                                   |                                         |                         |                                                                 |              |  |

#### UNIT I

**CO4** 

**Introduction to Internet of Things** –Definition and Characteristics of IoT **IoT Architectures**: SOA based architecture and API based architecture **Physical Design of IoT** – Things in IoT, IoT Protocols

1

2

**Logical Design of IoT** – IoT Functional Blocks, IoT communication models, IoT Communication APIs

**IoT Enabling Technologies** – Wireless Sensor Networks, Cloud Computing, Big data analytics, Communication protocols, Embedded Systems,

**Domain Specific IoTs** – Home Automation, Cities, Environment, Energy, Retail, Logistics, Agriculture, Industry, Health and Lifestyle

#### UNIT II

IoT and M2M – Introduction, M2M, Difference between IoT and M2M

**SDN and NFV for IoT** - Software Defined Networking, Network Function Virtualization

**IoT Data Management and Analytics** - IoT and the Cloud, Real-Time Analytics in IoT and Fog Computing

**IoT Communication Protocols** - Network Layer, Transport and Application Layer

## UNIT III

**IoT System Management with NETCONF- YANG-** Need for IoT Systems Management, Simple Network Management Protocol (SNMP), Network Operator Requirements, NETCONF, YANG, NETOPEER

**IoT Physical Devices and Endpoints** – What is an IoT Device, Introduction to Raspberry Pi, Board, Raspberry Pi Interfaces (serial, SPI, I2C)

**Programming Raspberry PI with Python** – Controlling LED with Pi, Interfacing LED and Switch with Pi, Interfacing a light sensor with Pi.

## UNIT IV

Security and Privacy in the Internet of Things - Concepts, IoT Security overview, Security Frameworks for IoT, Privacy in IoT Networks

**IoT- Robustness and Reliability-** IoT Characteristics and Reliability Issues, Addressing Reliability

## TEXT BOOKS

- [1] Rajkumar Buyya, Amir Vahid Dastjerdi, "Internet of Things: Principles and Paradigms", 1<sup>st</sup> Edition, Morgan Kaufmann Publishing, 2016
- [2] Arshdeep Bahga, Vijay Madisetti "Internet of Things (A hands on approach)", 1<sup>ST</sup> edition, Universities Press, 2015

#### **REFERENCE BOOKS**

- [1] Matt Richardson & Shawn Wallace, "Getting Started with Raspberry Pi", O'Reilly (SPD), 2014
- [2] David Hanes, "IOT FUNDAMENTALS" 1<sup>ST</sup> Edition, CISCO PRESS, 2018
- [3] Perry Lea, "Internet of Things for Architects" Packt Publishing, 2018

#### **E-RESOURCES AND OTHER DIGITAL MATERIAL**

- [1] Prof. Sudip Misra, IIT Kharagpur "Introduction to Internet of things" [Web Content]. Available: http://nptel.ac.in/courses/106105166/ (Accessed on 14-5-19)
- [2] Review Article by Pallavi Sethi and Smruti R. Sarangi, "Internet of Things: Architectures, Protocols, and Applications" available at http://downloads.hindawi.com/journals/jece/2017/9324035.pdf

| 19CSCS2014B                                                                                                |                                                            |                 |                 |                              |                |  |  |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------|-----------------|------------------------------|----------------|--|--|
| DIGITAL FORENSICS                                                                                          |                                                            |                 |                 |                              |                |  |  |
| Course Ca                                                                                                  | ategory: Pro                                               | ogramme         |                 | Credi                        | its: 3         |  |  |
|                                                                                                            | Ele                                                        | ective          |                 |                              |                |  |  |
| Course Ty                                                                                                  | ype: Th                                                    | eory            | Lecture -T      | ture -Tutorial-Practice:     |                |  |  |
| Prerequis                                                                                                  | ites: Co                                                   | mputer          | Contin          | <b>Continuous Evaluation</b> |                |  |  |
|                                                                                                            | Ne                                                         | tworks          | Semester        | end Evaluation               | on: 60         |  |  |
|                                                                                                            |                                                            |                 |                 | Total Mar                    | <b>ks:</b> 100 |  |  |
|                                                                                                            |                                                            |                 |                 |                              |                |  |  |
| COURSI                                                                                                     | E OUTCOM                                                   | ES              |                 |                              |                |  |  |
| Upon suc                                                                                                   | cessful compl                                              | etion of the co | urse, the stude | nt will be able              | to:            |  |  |
| <b>CO1</b>                                                                                                 | Understand the concepts of cyber forensics related Issues. |                 |                 |                              |                |  |  |
| CO2                                                                                                        | Analyse the process of various forensic systems.           |                 |                 |                              |                |  |  |
| CO3                                                                                                        | Analyze Evidence capture mechanism and Recovery steps      |                 |                 |                              |                |  |  |
| CO4                                                                                                        | Evaluate and Report electronic communications evidences.   |                 |                 |                              |                |  |  |
| Contribution of Course Outcomes towards achievement of Program<br>Outcomes (1 – Low, 2 - Medium, 3 – High) |                                                            |                 |                 |                              |                |  |  |
|                                                                                                            | <b>PO</b> 1                                                | PO 2            | <b>PO 3</b>     | PSO 1                        | PSO 2          |  |  |
| CO1                                                                                                        | 3                                                          |                 | 3               |                              |                |  |  |
| CO2                                                                                                        | 3                                                          |                 | 3               |                              |                |  |  |
| CO3                                                                                                        | 2                                                          |                 | 3               |                              |                |  |  |
| <b>CO4</b>                                                                                                 | 2                                                          | 2               | 2               |                              | 2              |  |  |

#### UNIT I

#### Forensic overview:

Introduction, Use of Computer Forensics in Law Enforcement, Computer Forensics Assistance to Human Resources/ Employment Proceedings, Forensics

Services, Benefits of Professional Forensics Methodology, Steps Taken by Computer Forensics Specialists.

**Types of Forensics Systems:** Internet Security Systems, Intrusion Detection Systems, Firewall Security Systems, Storage Area Network Security Systems, Network Disaster Recovery Systems, Public Key Infrastructure Systems

#### UNIT II

**Data Recovery:** Defination, Data Backup and Recovery, The Role of Backup in Data Recovery, The Data-Recovery Solution, Hiding and Recovering Hidden Data

**Evidence Collection and Data Seizure**, Need of collection, Collection Options, Obstacles, Types of Evidence, The Rules of Evidence, Volatile Evidence, General Procedure, Collection and Archiving, Methods of Collection, Artifacts, Collection Steps.

#### UNIT III

**Duplication and Preservation of Digital Evidence**, Preserving the Digital Crime Scene, Computer Evidence Processing Steps, Legal Aspects of Collecting and Preserving Computer Forensic Evidence, Special Needs of Evidential Authentication.

**Computer Image Verification and Authentication:** Special Needs of Evidential Authentication,

Practical Consideration, Practical Implementation, **Reconstructing Past Events**: Introduction, Useable File Formats, Unusable File Formats, Converting Files.

#### UNIT IV

Forensic Analysis: Computer Forensic Analysis, Discovery of Electronic Evidence,

Electronic Document Discovery: A Powerful New Litigation Tool, Identification of Data, Timekeeping, Forensic Identification and Analysis of Technical Surveillance Devices.

**Network Forensics Scenario:** A Technical Approach, Destruction of Email, Damaging Computer Evidence, Tools Needed for Intrusion Response to the Destruction of Data, System Testing

#### TEXT BOOKS

[1] Marjie T.Britz, "Computer Forensics and Cyber Crime": An Introduction",

#### **REFERENCE BOOKS**

[1] Nelson, Phillips Enfinger, Steuart "Computer Forensics and Investigations", CENGAGE, 2015

#### **E-RESOURCES AND OTHER DIGITAL MATERIAL**

- [1] https://www.cybrary.it/glossary/d-the-glossary/digital-forensics/
- [2] https://www.udemy.com/topic/digital-forensics/

|                                                                                                            |                                                                | <b>19CS</b>        | CS2014C         |                               |                |  |
|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------|-----------------|-------------------------------|----------------|--|
|                                                                                                            | GEO                                                            | <b>GRAPHIC INF</b> | FORMATION       | N SYSTEM                      |                |  |
| <b>Course Category:</b>                                                                                    |                                                                | rogramme           |                 | Credi                         | its: 3         |  |
|                                                                                                            |                                                                | lective            |                 |                               |                |  |
| <b>Course Type:</b>                                                                                        |                                                                | heory              | Lecture -T      | Lecture -Tutorial-Practice:   |                |  |
| Prerequis                                                                                                  | ites: D                                                        | atabase            | Contin          | <b>Continuous Evaluation:</b> |                |  |
|                                                                                                            |                                                                | lanagement         | Semester        | end Evaluation                | on: 60         |  |
|                                                                                                            | S                                                              | ystems             |                 | <b>Total Mar</b>              | <b>ks:</b> 100 |  |
|                                                                                                            |                                                                |                    |                 |                               |                |  |
| COURSI                                                                                                     | E OUTCOM                                                       | ES                 |                 |                               |                |  |
| Upon suc                                                                                                   | cessful comp                                                   | oletion of the co  | urse, the stude | ent will be able              | to:            |  |
| <b>CO1</b>                                                                                                 | Understand the basic concepts of spatial and non spatial data. |                    |                 |                               |                |  |
| CO2                                                                                                        | Analyze database issues in GIS.                                |                    |                 |                               |                |  |
| CO3                                                                                                        | Create design principles for developing DEM and TIN            |                    |                 |                               |                |  |
| CO4                                                                                                        | Apply various real time problems in GIS                        |                    |                 |                               |                |  |
| Contribution of Course Outcomes towards achievement of Program<br>Outcomes (1 – Low, 2 - Medium, 3 – High) |                                                                |                    |                 |                               |                |  |
|                                                                                                            | PO 1                                                           | PO 2               | <b>PO 3</b>     | PSO 1                         | PSO 2          |  |
| CO1                                                                                                        | 1                                                              |                    |                 |                               |                |  |
| CO2                                                                                                        |                                                                |                    | 2               |                               |                |  |
| CO3                                                                                                        |                                                                | 1                  |                 | 3                             |                |  |
| CO4                                                                                                        |                                                                |                    | 3               | 2                             |                |  |

#### UNIT I

GIS: Definitions and Development – Computer Components of GIS (Hardware and Software) – General Data Base concepts of Spatial and Non Spatial data - Elements of Spatial data - Sources of Spatial data – Data quality for GIS – Errors

and Error variations in GIS

## UNIT II

GIS Data Management: Data Base Management Systems (DBMS) Data Base Models. Data input methods – Spatial Data structures: Raster data and Vector data – Structures GIS Data Analysis: Spatial measurement methods Reclassification – Buffering – Overlay Analysis

## UNIT III

Modeling Surfaces: Generation of DEM, DTM and TIN models – Spatial Interpolation – GIS output generation – Integration of Remote Sensing and GIS Principles of Global Positioning System (GPS).

## UNIT IV

GIS applications: GIS as a Decision Support System – GIS as a Land Information System GIS as a Disaster Management and Emergency Response System -Resource management applications - Facility Management application – Urban Management application.

## TEXT BOOKS

- [1] Aronoff S. Geographic Information System: A Management Perspective, DDL Publication, Ottawa. 1989.
- [2] Burrough P.A. Principles of Geographic Information Systems for Land Resource Assessment. Oxford University Press, New York, 1986.

## **REFERENCE BOOKS**

- [1] Fraser Taylor D.R. Geographic Information System. Pergamon Press, Oxford, 1991.
- [2] Maquire D. J.M.F. Goodchild and D.W. Rhind (eds.) Geographic Information Systems : Principles and Application. Taylor & Francis, Washington, 1991.
- [3] Mark S. Monmonier. Computer assisted Cartography. Prentice Hall, Englewood Cliff, New Jersey, 1982.
- [4] Peuquet D.J. and D.F. Marble, Introductory Reading in Geographic Information Systems. Taylor & Francis, Washington, 1990.
- [5] Star J. and J. Estes. Geographic Information Systems: An Introduction. Prentice Hall, Englewood, Cliff, New Jersey, 1994.

|           |                                                              | <b>19CS</b>       | CS2014D         |                               |                |  |  |
|-----------|--------------------------------------------------------------|-------------------|-----------------|-------------------------------|----------------|--|--|
|           | ALGO                                                         | <b>DRITHMS FO</b> | R BIOINFO       | RMATICS                       |                |  |  |
| Course Ca | ategory: Pro                                                 | ogramme           |                 | Credi                         | ts: 3          |  |  |
| Course T  | Ele<br>Ele                                                   | ective            | Lootuno T       | utorial Drastic               |                |  |  |
| Course I  | it age Di                                                    | eory              | Lecture - I     | Lecture - I utorial-Practice: |                |  |  |
| Prerequis | nes: Di                                                      | Bioinformatics    | Contin          | uous Evaluatio                | n: 60          |  |  |
|           |                                                              |                   | Semester        | Total Marl                    | <b>s</b> • 100 |  |  |
|           |                                                              |                   |                 |                               | 100            |  |  |
| COURSI    | E OUTCOMI                                                    | ES                |                 |                               |                |  |  |
| Upon suc  | cessful compl                                                | etion of the co   | urse. the stude | nt will be able t             | 0:             |  |  |
| -1        |                                                              |                   |                 |                               |                |  |  |
| CO1       | sequences.                                                   | Dynamic pr        | ogramming       | algorithing for               | biblogical     |  |  |
| CO2       | I have a small algorithms and their anglications             |                   |                 |                               |                |  |  |
| 02        | Understand graph algorithms and their applications           |                   |                 |                               |                |  |  |
| CO3       | Apply pattern matching and clustering with reference to      |                   |                 |                               |                |  |  |
|           | Bioinformatics                                               |                   |                 |                               |                |  |  |
| CO4       | Analyze evolutionary trees and phylogeny related algorithms. |                   |                 |                               |                |  |  |
| Contribu  | ition of Cours                                               | se Outcomes t     | owards achie    | vement of Prog                | gram           |  |  |
| Outcome   | es (1 – Low, 2                                               | - Medium, 3 -     | - High)         |                               |                |  |  |
|           | PO 1                                                         | PO 2              | <b>PO 3</b>     | PSO 1                         | PSO 2          |  |  |
|           |                                                              |                   |                 |                               |                |  |  |
| CO1       | 3                                                            |                   | 1               |                               |                |  |  |
| CO2       | 3                                                            |                   | 1               | 2                             |                |  |  |
|           |                                                              |                   |                 |                               |                |  |  |
| CO3       | 3                                                            |                   | 1               | 2                             |                |  |  |
| CO4       | 3                                                            | 1                 | 1               |                               |                |  |  |
|           |                                                              |                   |                 |                               |                |  |  |

## UNIT I

Algorithms and Complexity: Algorithms and Complexity of an Algorithm, Biological Algorithms versus Computer Algorithms, The Change Problem Correct versus Incorrect Algorithms Recursive Algorithms, Iterative versus Recursive Algorithms, Fast versus Slow Algorithms, Big-O Notation, Algorithm Design Techniques, Exhaustive Search Branch-and-Bound Algorithms, Greedy Algorithms, Dynamic Programming, Divide-and-Conquer Algorithms, Machine Learning, Randomized Algorithms, Tractable versus Intractable

**Exhaustive Search:** Exhaustive Search, Restriction Mapping Impractical Restriction Mapping Algorithms, A Practical Restriction Mapping Algorithm, Regulatory Motifs in DNA Sequences, The Motif Finding Problem Search Trees indexing Motifs Finding a Median String

## UNIT II

**Greedy Algorithms:** Genome Rearrangements Sorting by Reversals. Approximation Algorithms Breakpoints, A Different Face of Greed A Greedy Approach to Motif Finding. Dynamic Programming, Algorithms, The Power of DNA Sequence Comparison, The Change Problem, Revisited The Manhattan Tourist Problem, Edit Distance and Alignments Longest Common subsequences, Global Sequence Alignment Scoring Alignments, Local Sequence Alignment, Alignment with Gap Penalties, Multiple Alignment, Gene Prediction, Statistical Approaches to Gene Prediction, Similarity-Based Approaches to Gene Prediction Spliced Alignment .

## UNIT III

**Graph Algorithms**: Graphs and Genetics, DNA Sequencing Shortest Superstring Problem DNA Arrays as an Alternative Sequencing Technique Sequencing by Hybridization, SBH as a Hamiltonian Path Problem SBH as an Eulerian Path Problem, Fragment Assembly in DNA Sequencing, Protein Sequencing and Identification, The Peptide Sequencing Problem, Spectrum Graphs Protein Identification via Database Search Spectral Convolution, Spectral Alignment

#### UNIT IV

**Combinatorial Pattern Matching** : Repeat Finding , Hash Tables , Exact Pattern Matching , Keyword Trees, Suffix Trees, Heuristic Similarity Search Algorithms Approximate Pattern Matching, BLAST: Comparing a Sequence against a Database.

**Clustering and Trees**: Gene Expression Analysis, Hierarchical Clustering, k-Means Clustering and Corrupted Cliques, Evolutionary Trees, Distance-Based Tree Reconstruction, Reconstructing Trees from Additive Matrices, Evolutionary Trees and Hierarchical Clustering, Character-Based Tree Reconstruction, Small Parsimony Problem, Large Parsimony Problem

#### **TEXT BOOKS**

- [1] Neil C. Jones and Pavel A. Pevzner, "An Introduction to Bioinformatics Algorithms", MIT Press, 2005.
- [2] Gusfields D, "Algorithms on strings, trees and sequences: Computer Science and Computational Biology", Cambridge University Press, 1997.

#### **REFERENCE BOOKS**

- [1] Steffen Schulze-Kremer, "Molecular Bioinformatics: Algorithms and Applications", Walter de Gruyter, 1996.
- [2] Gary Benson, Roderic Page (Eds.), "Algorithms in Bioinformatics", Springer International Edition, 2004.
- [3] Richard Durbin, Sean R. Eddy, Anders Krogh, Graeme Mitchison. "Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acid", Cambridge University Press, 1999.
|                     |                            | <b>19CSC</b>                              | S2015A               |                      |           |
|---------------------|----------------------------|-------------------------------------------|----------------------|----------------------|-----------|
|                     |                            | <b>BLOCKCHAIN</b>                         | <b>FECHNOL</b>       | OGIES                |           |
| Course C            | ategory:                   | Programme                                 |                      | Credits              | 3         |
|                     |                            | Elective                                  |                      |                      |           |
| <b>Course</b> T     | ype:                       | Theory                                    | Lecture -T           | utorial-Practice:    | 3 - 0 - 0 |
| Prerequis           | sites:                     | Cryptography and                          | Contin               | uous Evaluation      | 40        |
|                     |                            | Network Security                          | Semester             | end Evaluation:      | 60        |
|                     |                            |                                           |                      | <b>Total Marks</b>   | 100       |
|                     |                            |                                           |                      |                      |           |
| COURS               | E OUTCO                    | OMES                                      |                      |                      |           |
| Upon suc            | ccessful co                | mpletion of the cour                      | se, the stude        | ent will be able to: |           |
| <b>CO1</b>          | Understa                   | nd the block chain a                      | rchitecture a        | nd design            |           |
| CO2                 | Analyze                    | the consensus protoc                      | cols Role in         | Block chain          |           |
| CO3                 | Understa                   | nd functioning of Bi                      | itcoins              |                      |           |
| CO4                 | Analyze                    | security and privacy                      | aspects of E         | Bitcoin              |           |
| Contribu<br>Outcome | ution of Co<br>es (1 – Lov | ourse Outcomes to<br>w, 2 - Medium, 3 – 1 | wards achie<br>High) | vement of Progra     | am        |
|                     | PO 1                       | PO 2                                      | PO 3                 | PSO 1                | PSO 2     |
| CO1                 | 2                          |                                           | 3                    |                      |           |
| CO2                 | 2                          |                                           | 2                    |                      |           |
| CO3                 | 2                          |                                           | 1                    |                      |           |
| CO4                 | 2                          |                                           | 1                    |                      | 2         |

#### UNIT I

**Blockchain:** Introduction, Structure of a Block, Block Header, Block Identifiers -Block Header Hash and Block Height, The Genesis Block, Linking Blocks in the Blockchain, Merkle Trees, Merkle Trees and Simplified Payment Verification (SPV).

**Mining and Consensus I**: Introduction, Bitcoin Economics and Currency Creation, De-centralized Consensus, Independent Verification of Transactions, Mining Nodes, Aggregating Transactions into Blocks, Transaction Age, Fees, and Priority

#### UNIT II

**Mining and Consensus II:** The Generation Transaction, Coin base Reward and Fees, Structure of the Generation Transaction, Coin base Data, Constructing the Block Header, Mining the Block, Proof-of-Work Algorithm, Difficulty Representation, Difficulty Target and Re-Targeting, Successfully Mining the Block, validating a New Block, Assembling and Selecting Chains of Blocks, Block chain Forks, Mining and the Hashing Race, The Extra Nonce Solution, Mining Pools, Consensus Attacks.

#### UNIT III

**Bitcoin:** Introduction, History, Bitcoin Uses, Users and Their Stories, Getting Started, Quick Start, getting your first bitcoins, Sending and receiving bitcoins,

**Bitcoin Functioning:** Transactions, Blocks, Mining, and the Block chain, Bitcoin Overview, buying a cup of coffee, Bitcoin Transactions, Common Transaction Forms, constructing a Transaction, Getting the right inputs, Creating the outputs, Adding the transaction to the ledger, Bitcoin Mining, mining transactions in blocks, Spending the transaction

#### UNIT IV

**Bitcoin Transactions:** Bitcoin Transactions, Common Transaction Forms, constructing a Transaction, Getting the right inputs, Creating the outputs, Adding the transaction to the ledger, Bitcoin Mining, mining transactions in blocks, Spending the transaction

**Bitcoin Network:** Peer-to-Peer Network Architecture, Nodes Types and Roles, The Extended Bitcoin Network, Network Discovery, Full Nodes, Simplified Payment Verification (SPV) Nodes.

Alert Messages Alt-Coins: CryptoNote, Bytecoin, Monero, Zerocash/Zerocoin,

Darkcoin, Namecoin, Bitmessage, Ethereum

#### **TEXT BOOKS**

[1] Andreas M. Antonopoulos, "Mastering Bitcoin", 2nd Edition, O'Reilly, 2017

#### **REFERENCE BOOKS**

- [1] Melanie Swan, "Blockchain –Blueprint For a New economy", 1st Edition, O'Reilly, 2018
- [2] Don TapScott, Alex Tapscott, "Block chain Revolution". 2nd Edition, Penguin publisher, 2018

#### **E-RESOURCES AND OTHER DIGITAL MATERIAL**

- [1] https://onlinecourses.nptel.ac.in/noc18\_cs47/announcements?force=true
- [2] Marco Iansiti, Karim R. Lakhani, "Truth About Blockchain", Harvard Bsiness Review, Harward University, Jan 2017

|                    |                            | <b>19CSC</b>                             | CS2015B              |                          |           |  |  |  |  |
|--------------------|----------------------------|------------------------------------------|----------------------|--------------------------|-----------|--|--|--|--|
|                    |                            | SOFTWARE DEF                             | INED NET             | WORKS                    |           |  |  |  |  |
| Course C           | ategory:                   | Programme                                |                      | Credits:                 | 3         |  |  |  |  |
|                    |                            | Elective                                 |                      |                          |           |  |  |  |  |
| Course T           | ype:                       | Theory                                   | Lecture -T           | <b>utorial-Practice:</b> | 3 - 0 - 0 |  |  |  |  |
| Prerequis          | sites:                     | Wireless &                               | Contin               | uous Evaluation:         | 40        |  |  |  |  |
|                    |                            | Mobile Networks                          | Semester             | r end Evaluation:        | 60        |  |  |  |  |
|                    |                            |                                          |                      | <b>Total Marks:</b>      | 100       |  |  |  |  |
|                    |                            |                                          |                      |                          |           |  |  |  |  |
| COURS              | E OUTCO                    | OMES                                     |                      |                          |           |  |  |  |  |
| Upon suc           | ccessful co                | mpletion of the cour                     | rse, the stude       | ent will be able to:     |           |  |  |  |  |
| CO1                | Understa                   | nd the concepts of v                     | vireless com         | munication.              |           |  |  |  |  |
| CO2                | Analyze                    | Analyze WPAN, WMAN and WWAN technologies |                      |                          |           |  |  |  |  |
| CO3                | Compare                    | 3G and 4G technol                        | ogies of com         | munications.             |           |  |  |  |  |
| CO4                | Familiari                  | ze with concepts of                      | Wireless Ad          | hoc Networks             |           |  |  |  |  |
| Contribu<br>Outcom | ution of Co<br>es (1 – Lov | ourse Outcomes to<br>w, 2 - Medium, 3 –  | wards achie<br>High) | vement of Progra         | m         |  |  |  |  |
|                    | PO 1                       | PO 2                                     | PO 3                 | PSO 1                    | PSO 2     |  |  |  |  |
| CO1                | 1                          |                                          |                      |                          |           |  |  |  |  |
| CO2                |                            | 2                                        |                      |                          |           |  |  |  |  |
| CO3                |                            | 2                                        |                      |                          |           |  |  |  |  |
| CO4                |                            |                                          | 1                    |                          |           |  |  |  |  |
|                    |                            |                                          |                      |                          |           |  |  |  |  |

#### UNIT I

# INTRODUCING SDN

SDN Origins and Evolution – Introduction – Why SDN? - Centralized and Distributed Control and Data Planes - The Genesis of SDN

# UNIT II

#### SDN ABSTRACTIONS

How SDN Works - The Openflow Protocol - SDN Controllers: Introduction -General Concepts - VMware - Nicira - VMware/Nicira - OpenFlow-Related -Mininet - NOX/POX - Trema - Ryu - Big Switch Networks/Floodlight - Layer 3 Centric - Plexxi - Cisco OnePK

#### UNIT III

#### PROGRAMMING SDN'S

Network Programmability - Network Function Virtualization - NetApp Development, Network Slicing

#### UNIT IV

#### SDN APPLICATIONS AND USE CASES

SDN in the Data Center - SDN in Other Environments - SDN Applications - SDN Use Cases - The Open Network Operating System 3

#### SDN'S FUTURE AND PERSPECTIVES

SDN Open Source - SDN Futures - Final Thoughts and Conclusions

#### **TEXT BOOKS**

[1] Software Defined Networks: A Comprehensive Approach by Paul Goransson and Chuck Black, Morgan Kaufmann Publications, 2014

#### **REFERENCE BOOKS**

 [1] SDN - Software Defined Networks by Thomas D. Nadeau & Ken Gray, O'Reilly, 2013

[2] Software Defined Networking with OpenFlow By SiamakAzodolmolky, Packt

Publishing, 2013

[3] Monsanto, Christopher, et al. "Composing software defined networks." Presented as part of the 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI 13). 2013

|                     |                            | 1908                              | SCS2015C                 |                  |                      |
|---------------------|----------------------------|-----------------------------------|--------------------------|------------------|----------------------|
|                     |                            | <b>OPEN SOURC</b>                 | E PROGRAM                | IMING            |                      |
| Course C            | ategory:                   | Programme<br>Elective             |                          | Credi            | ts: 3                |
| <b>Course</b> T     | ype:                       | Theory                            | Lecture -T               | utorial-Practio  | <b>ee:</b> 3 - 0 - 0 |
| Prerequis           | sites:                     |                                   | Contin                   | uous Evaluatio   | <b>on:</b> 40        |
|                     |                            |                                   | Semester                 | end Evaluatio    | on: 60               |
|                     |                            |                                   |                          | <b>Total Mar</b> | <b>ks:</b> 100       |
| Γ                   |                            |                                   |                          |                  |                      |
| COURS               | E OUTCO                    | MES                               |                          |                  |                      |
| Upon suc            | ccessful cor               | npletion of the co                | ourse, the stude         | ent will be able | 20:                  |
| <b>CO1</b>          | Understar                  | d the fundamenta                  | als of Open sou          | ırce Programmi   | ng.                  |
| CO2                 | Develop c                  | odes in open sou                  | rce web applic           | ations           |                      |
| CO3                 | Understar                  | d the risks assoc                 | iated with the o         | open source cod  | es                   |
| CO4                 | Write sect                 | ure CGI scripts                   |                          |                  |                      |
| Contribu<br>Outcome | ution of Co<br>es (1 – Low | urse Outcomes<br>7, 2 - Medium, 3 | towards achie<br>– High) | vement of Prog   | gram                 |
|                     | PO 1                       | PO 2                              | PO 3                     | PSO 1            | PSO 2                |
| <b>CO1</b>          | 3                          | 2                                 |                          |                  |                      |
| CO2                 |                            | 3                                 | 3                        | 1                |                      |
| CO3                 | 3                          | 2                                 |                          |                  |                      |
| CO4                 | 1                          |                                   | 2                        |                  |                      |

1

# **UNIT I**

**INTRODUCTION:** Introduction to open source programming languages, advantages and drawbacks of open source programming, threats and vulnerabilities in open source languages, Operating System - Ubuntu Linux - Introduction to

2

shell programming.

# UNIT II

**PHP:** PHP Language Basics, Functions - calling a function, variable function, and anonymous function, Strings - cleaning, encoding and escaping, and comparing strings, Arrays – storing data in arrays, extracting multiple values, traversing, and sorting arrays, Objects – creation, introspection, and serialization, Web Techniques – processing forms and maintaining state.

# UNIT III

**WEB DATABASE APPLICATIONS:**Three-tier architecture, Introduction to Object oriented programming with PHP 5, Database basics, MYSQL - querying web databases, writing to web databases, validation with Javascript, Form based authentication, protecting data on the web.

# UNIT IV

**PERL, TCL:** Numbers and Strings, Control Statements, Lists and Arrays, Files, Pattern matching, Hashes, Functions. Introduction to TCL/TK

**SECURITY IN WEB APPLICATIONS:**Recognizing web application security threats, Code Grinder, Building functional and secure web applications, Security problems with Javascript, vulnerable GCI scripts, Code Auditing and Reverse Engineering, types of security used in applications

# TEXT BOOKS

- [1] Kevin Tatroe, Peter MacIntyre, Rasmus Lerdorf, "Programming PHP", O'Reilly Media, 2012.
- [2] Michael Cross, "Developer's Guide to Web Application Security", Syngress Publishers, 2007.
- [3] Hugh E. Williams, David Lane, "Web Database applications with PHP and MYSQL", Second Edition, O'Reilly Media, 2004.

- [1] Tom Christiansen, Brian D Foy, Larry Wall, Jon Orwant, "Programming Perl", Fourth Edition, O'Reilly Media, 2012.
- [2] Mark Lutz, "Programming Python", Fourth Edition, O'Reilly Media, 2010.
- [3] Online Tutorials and Recent IEEE/ACM Journal Papers

|                     |                            | 19CSC                                                                                                                | S2015D                     |                                      |           |  |  |
|---------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------|-----------|--|--|
| Commo               |                            | Dra granne a                                                                                                         | KE ENGIN                   | EERING                               | 2         |  |  |
| Course              | alegory:                   | Floctive                                                                                                             |                            | Creans:                              | 3         |  |  |
| Course T            | vne•                       | Theory                                                                                                               | Lecture -T                 | utorial-Practice.                    | 3 - 0 - 0 |  |  |
| Prerequis           | ites:                      | Object Oriented                                                                                                      | Contin                     | uous Evaluation:                     | 40        |  |  |
| 1 i ei equis        |                            | Programming                                                                                                          | Semester                   | end Evaluation:                      | 60        |  |  |
|                     |                            | rundamental, UML                                                                                                     |                            | <b>Total Marks:</b>                  | 100       |  |  |
| COURSI              | E OUTCO                    | OMES                                                                                                                 |                            |                                      |           |  |  |
| Upon suc            | cessful co                 | mpletion of the cour                                                                                                 | rse, the stude             | ent will be able to:                 |           |  |  |
| C01                 | Apply M<br>Architect       | odern Agile Develop<br>cure Concept of Indu                                                                          | oment and S<br>stry.       | ervice Oriented                      |           |  |  |
| CO2                 | Apply the Approach         | e concept of Functio<br>n for Software Desig                                                                         | nal Oriented               | and Object-Orient                    | ted       |  |  |
| CO3                 | Recogniz<br>quality st     | Recognize how to ensure the quality of software product, different quality standards and software review techniques. |                            |                                      |           |  |  |
| CO4                 | Apply va                   | rious testing techniq                                                                                                | ues and test               | planning.                            |           |  |  |
| CO5                 | Create SI<br>SPMP (S       | RS (Software Requir<br>oftware Project Mar                                                                           | ement Speci<br>agement Pla | ification) document<br>an) document. | t and     |  |  |
| Contribu<br>Outcome | ition of Co<br>es (1 – Lov | ourse Outcomes tow<br>w, 2 - Medium, 3 – ]                                                                           | wards achie<br>High)       | vement of Program                    | m         |  |  |
|                     | PO 1                       | PO 2                                                                                                                 | PO 3                       | PSO 1                                | PSO 2     |  |  |
| CO1                 | 3                          |                                                                                                                      |                            | 3                                    |           |  |  |
| CO2                 | 3                          |                                                                                                                      |                            | 3                                    |           |  |  |
| CO3                 | 3 3                        |                                                                                                                      |                            |                                      |           |  |  |
| CO4                 | 3                          | 3 3                                                                                                                  |                            |                                      |           |  |  |
| CO5                 | 3                          |                                                                                                                      |                            | 3                                    |           |  |  |

# UNIT I

#### Introduction to Software and Software Engineering

The Evolving Role of Software, Software: A Crisis on the Horizon and Software Myths, Software Engineering: A Layered Technology, Software Process Models, The Linear Sequential Model, The Prototyping Model, The RAD Model, Evolutionary Process Models, Agile Process Model, Component-Based Development, Process, Product and Process.

#### Agile Development

Agility and Agile Process model, Extreme Programming, Other process models of Agile Development and Tools.

## Managing Software Project

Software Metrics (Process, Product and Project Metrics), Software Project Estimations, Software Project Planning (MS Project Tool), Project Scheduling & Tracking, Risk Analysis & Management (Risk Identification, Risk Projection, Risk Refinement, Risk Mitigation).

# UNIT II

#### **Requirement Analysis and Specification**

Understanding the Requirement, Requirement Modelling, Requirement Specification (SRS), Requirement Analysis and Requirement Elicitation, Requirement Engineering.

#### Software Design

Design Concepts and Design Principal, Architectural Design, Component Level Design (Function Oriented Design, Object Oriented Design) (MS Visio Tool), User Interface Design, Web Application Design.

# Software Coding & Testing

Coding Standard and coding Guidelines, Code Review, Software Documentation, Testing Strategies, Testing Techniques and Test Case, Test Suites Design, Testing Conventional Applications, Testing Object Oriented Applications, Testing Web and Mobile Applications, Testing Tools (Win runner, Load runner).

#### UNIT III

#### **Quality Assurance and Management**

Quality Concepts and Software Quality Assurance, Software Reviews (Formal Technical Reviews), Software Reliability, The Quality Standards: ISO 9000, CMM, Six Sigma for SE, SQA Plan.

#### Software Maintenance and Configuration Management

Types of Software Maintenance, Re-Engineering, Reverse Engineering, Forward Engineering, The SCM Process, Identification of Objects in the Software Configuration, Version Control and Change Control

#### UNIT IV

#### Software Engineering and Software as a Service

Product Lifetime: Independent Product Vs. Continues, Improvement, Software as a Service, SaaS Architecture.

#### **Advanced Topics in Software Engineering:**

Component-Based Software Engineering, Client/Server Software Engineering, Web Engineering, Reengineering, Computer-Aided Software Engineering, Software Process Improvement, Emerging Trends in software Engineering.

#### **TEXT BOOKS**

- [1] Roger S.Pressman, Software engineering- A practitioner's Approach, McGraw-Hill International Editions
- [2] Ian Sommerville, Software engineering, Pearson education Asia

- [1] Pankaj Jalote, Software Engineering A Precise Approach Wiley
- [2] Software Engineering Fundamentals by Ali Behhforoz & Frederick Hudson OXFORD
- [3] Rajib Mall, Fundamentals of software Engineering, Prentice Hall of India.
- [4] Engineering Software as a Service An Agile Software Approach, Armando Fox and David Patterson
- [5] John M Nicolas, Project Management for Business, Engineering and Technology, Elsevier

#### **E-RESOURCES AND OTHER DIGITAL MATERIAL**

- [1] PROF. RAJIB MALL Dept. of Computer Science and Engineering IIT Kharagpur, Software Engineering https://nptel.ac.in/courses/106/105/106105182/
- [2] PROF. RAJIB MALL PROF. DURGA PRASAD Computer Science and Engineering IIT Kharagpur Software Project Management https://nptel.ac.in/courses/106/105/106105218/
- [3] PROF. MEENAKSHI D'SOUZA Dept. of Computer Science and Engineering IIIT Bangalore, Software Testing,

https://nptel.ac.in/courses/106/101/106101163/

|                                      |                            | <b>19M7</b>                             | TAC2036                 |                    |                      |  |  |
|--------------------------------------|----------------------------|-----------------------------------------|-------------------------|--------------------|----------------------|--|--|
|                                      |                            | <b>TECHNICAL R</b>                      | EPORT WR                | ITING              |                      |  |  |
| Course Category:Audit CourseCredits: |                            |                                         |                         |                    |                      |  |  |
| Course T                             | ype:                       | Theory                                  | Lecture -T              | utorial-Practic    | <b>:e:</b> 2 - 0 - 0 |  |  |
| Prerequis                            | sites:                     | Basic English Language                  | e Contin                | uous Evaluatio     | <b>n:</b> 0          |  |  |
|                                      |                            |                                         | Semester                | r end Evaluatio    | <b>n:</b> 0          |  |  |
|                                      |                            |                                         |                         | <b>Total Marl</b>  | <b>ks:</b> 0         |  |  |
|                                      |                            |                                         |                         |                    |                      |  |  |
| COURSI                               | E OUTCO                    | OMES                                    |                         |                    |                      |  |  |
| Upon suc                             | cessful co                 | mpletion of the cou                     | urse, the stude         | ent will be able t | 0:                   |  |  |
| CO1                                  | Understa                   | nd the significance                     | of Technical            | Report writing.    |                      |  |  |
| CO2                                  | Develop                    | Proficiency in writ                     | ing technical           | reports.           |                      |  |  |
| CO3                                  | Apply the                  | e basic principles to                   | o prepare doc           | umentation usin    | g LATEX.             |  |  |
| CO4                                  | Understa<br>report wr      | nding the need of iting                 | Bibliography            | and references     | s for quality        |  |  |
| Contribu<br>Outcome                  | ition of Co<br>es (1 – Lov | ourse Outcomes to<br>w, 2 - Medium, 3 – | owards achie<br>- High) | vement of Prog     | gram                 |  |  |
|                                      | PO 1                       | PO 2                                    | PO 3                    | PSO 1              | PSO 2                |  |  |
| CO1                                  | 1                          | 2                                       |                         |                    | 1                    |  |  |
| CO2                                  |                            | 3                                       | 1                       | 2                  | 3                    |  |  |
| CO3                                  |                            | 3 1 2                                   |                         |                    |                      |  |  |
| CO4                                  | 1                          | 3                                       |                         |                    | 3                    |  |  |

#### UNIT I

Writing scientific and engineering papers: Title, Abstract, Introduction, Materials And Methods, Result, Discussion, Conclusion, References, Acknowledgements, Appendices, Hedging and Criticizing, Paraphrasing and

#### Plagiarism.

# UNIT II

**Effective use of charts, graphs and tables-**Bar Chart, Line Chart, Pie Chart, Area Chart, Cylindrical Chart, Column Bars, Bubble Chart, Flow Diagram, Screen Capture, Tables

**Writing Technical Reports-**Objectives Of Technical Report, Types Of Reports, Steps In Writing A Technical Report, Guidelines For Writing A Technical Report.

#### UNIT III

**LATEX-** Introduction, Document Structure- Creating a Title, Sections, Labeling, Table of Contents

**Typesetting Text-** Font Effects, Colored Text, Font Sizes, Lists, Comments & Spacing, Special Characters

#### UNIT IV

**Tables, Figures, Equations-** Inserting Equations, Mathematical Symbols, Practical.

**Inserting References-** Introduction, The BibTeX file, Inserting the bibliography, Citing references, Styles, Practical.

# TEXT BOOKS

- [1] Barun K Mitra, Effective Technical Communication-A Guide for Scientists and Engineers,Oxford University Press,2006, ISBN:978019568291.
- [2] LATEX for Beginners, Workbook Edition 5, March 2014 Document Reference: 3722-2014.

- [1] Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books)
- [2] Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press

# **E-RESOURCES AND OTHER DIGITAL MATERIAL**

[1] https://www.futurelearn.com/courses/technical-report-writing-for-engineers

|                   |                            | 19C<br>TER                          | SCS2063<br>M PAPER       |                                 |             |
|-------------------|----------------------------|-------------------------------------|--------------------------|---------------------------------|-------------|
| Course C          | Category:                  | Term Paper                          |                          | Credits                         | : 1         |
| Course <b>T</b>   | ype:                       |                                     | Lecture -7               | <b>Sutorial-Practice</b>        | : 0 - 0 - 2 |
| Prerequi          | sites:                     |                                     | Contin                   | uous Evaluation                 | : 40        |
|                   |                            |                                     | Semeste                  | r end Evaluation<br>Total Marks | : 100       |
| COURS             | E OUTCO                    | MES                                 |                          | ut                              |             |
| Opon su           |                            |                                     | · · · · · · ·            |                                 |             |
| <b>CO1</b>        | Identify a                 | real world proble                   | em in specific           | domain                          |             |
| CO2               | Understan                  | d requirements a                    | nd specificatio          | ons of the problem              | L           |
| CO3               | Explore the                | ne existing techno                  | ologies/ Metho           | dologies                        |             |
| <b>CO4</b>        | Formulate                  | a real world pro                    | blem and deve            | lop its requirement             | nts         |
| CO5               | Express te                 | echnical ideas stra                 | ategies and me           | thodologies in wr               | itten form  |
| <b>CO6</b>        | Prepare an                 | nd conduct oral pr                  | resentations             |                                 |             |
| Contrib<br>Outcom | ution of Co<br>es (1 – Low | urse Outcomes (<br>7, 2 - Medium, 3 | towards achie<br>– High) | evement of Progra               | am          |
|                   | PO 1                       | PO 2                                | PO 3                     | PSO 1                           | PSO 2       |
| <b>CO1</b>        | 2                          |                                     | 2                        | 1                               | 1           |
| CO2               | 2                          |                                     | 2                        | 2                               |             |
| CO3               | 2                          |                                     | 2                        | 2                               |             |
| <b>CO</b> 4       | 2                          |                                     | 2                        | 2                               |             |
| CO5               |                            | 2                                   |                          |                                 | 1           |

| CO6 |     | 2 |  | 1  |
|-----|-----|---|--|----|
|     |     |   |  |    |
|     |     |   |  |    |
|     |     |   |  |    |
|     |     |   |  |    |
|     |     |   |  |    |
|     |     |   |  |    |
|     |     |   |  |    |
|     |     |   |  |    |
|     |     |   |  |    |
|     |     |   |  |    |
|     |     |   |  |    |
|     |     |   |  |    |
|     |     |   |  |    |
|     |     |   |  |    |
|     |     |   |  |    |
| VR  | SEC |   |  | 80 |

| 19CSCS2051 |                                          |                   |                 |                                 |                      |  |  |
|------------|------------------------------------------|-------------------|-----------------|---------------------------------|----------------------|--|--|
| ]          | HIGH PER                                 | FORMANCE (        | COMPUTING       | <b>G LABORATO</b>               | DRY                  |  |  |
| Course Ca  | se Category: Programme Core Credits: 1.5 |                   |                 |                                 |                      |  |  |
| Course Ty  | ype: L                                   | aboratory         | Lecture -T      | 'utorial-Practi                 | <b>ce:</b> 0 - 0 - 3 |  |  |
| Prerequis  | ites: D                                  | ata Structures,   | Contin          | uous Evaluatio                  | on: 40               |  |  |
|            | С                                        | omputer           | Semester        | end Evaluation                  | on: 60               |  |  |
|            | 0                                        | rganization &     |                 | <b>Total Mar</b>                | <b>ks:</b> 100       |  |  |
|            | Architecture                             |                   |                 |                                 |                      |  |  |
|            |                                          |                   |                 |                                 |                      |  |  |
| COURSI     | E OUTCOM                                 | IES               |                 |                                 |                      |  |  |
| Upon suc   | cessful comp                             | oletion of the co | urse, the stude | ent will be able                | to:                  |  |  |
|            | Understand                               | parallel program  | mming platfor   | ms and parallel                 | algorithms           |  |  |
| CO1        | on parallel                              | computer system   | ns.             | -                               | -                    |  |  |
| CO2        | Analyze the                              | working group     | communicatio    | on operations o                 | f MPI.               |  |  |
|            |                                          |                   |                 |                                 |                      |  |  |
|            | Understand                               | the accelerator   | technologies of | of GPGPU's wi                   | th CUDA,             |  |  |
| CO3        | OpenCL.                                  |                   |                 |                                 |                      |  |  |
|            | Implement                                | algorithms for N  | Jotrix Sorting  | and Graphs us                   | ing                  |  |  |
| CO4        | OpenMP P                                 | threads MPI an    | nd CLIDA lang   | , and Oraphs us<br>uage/library | Sing                 |  |  |
|            | Openivir, i                              | uncaus, wii i an  |                 | uage/norary.                    |                      |  |  |
| Contribu   | tion of Cou                              | rse Outcomes t    | owards achie    | vement of Pro                   | gram                 |  |  |
| Outcome    | s (1 – Low,                              | 2 - Medium, 3 -   | – High)         |                                 |                      |  |  |
|            | <b>DO 1</b>                              | BO 2              | <b>DO 2</b>     | DCO 1                           |                      |  |  |
|            | PUT                                      | PO 2              | PO 3            | PSU 1                           | PSU 2                |  |  |
| CO1        |                                          |                   | 3               | 2                               |                      |  |  |
|            |                                          |                   |                 |                                 |                      |  |  |
| CO2        | 1                                        |                   | 3               | 2                               |                      |  |  |
| CO3        | 1                                        |                   | 3               |                                 |                      |  |  |
|            |                                          |                   |                 |                                 |                      |  |  |
| CO4        | 1                                        |                   | 3               | 2                               |                      |  |  |
| CO3<br>CO4 | 1                                        |                   | 3               | 2                               |                      |  |  |

Task 1: Implement Basic of MPI Programs.

- Task 2: Implement a Program for Communication between MPI processes.
- Task 3: Implement advance communication between MPI processes

Task 4: Implement MPI collective operations using 'Synchronization'

Task 5: Implement MPI collective operations using 'Data Movement'

Task 6: Implement MPI collective operations using 'Collective Computation'

Task 7: Write a program for MPI Non-Blocking operation

Task 8: Implement Matrix-Matrix multiplication - Cannon's.

Task9: Implement Sorting using MPI- Shell sort, Quick sort, Bucket.

Task10: Implement Problems using OpenMP.

Task11: Implement Problems using Pthreads.

Task12: Implement Problems using CUDA.

Task13: Implement problems using OpenCL.

# TEXT BOOKS

- [1] AnanthGrama, Anshul Gupta, George Karypis, Vipin Kumar: Introduction to Parallel Computing, Second Edition Pearson Education, 2016.(Chapters:1-10)
- [2] Jason Sanders, Edward Kandrot, CUDA By Example An Introduction to General-Purpose GPU Programming, Addison Wesley, 2011. (Chapters:1-4)
- [3] Benedict R Gaster, Lee Howes, David R KaeliPerhaad Mistry Dana Schaa, *Heterogeneous Computing* with OpenCL McGraw-Hill, Inc. Newyork , 2012(Chapters-2)

#### **REFERENCE BOOKS**

- [1] Michael J. Quinn, Parallel Programming in C with MPI and OpenMP McGraw-Hill International Editions, Computer Science Series, 2004.
- [2]. David B. Kirk, Wen-mei W. Hwu, Programming Massively Parallel Processors – A Hands-on Approach, Third Edition, Morgan Kaufmann, 2016.

# **E-RESOURCES AND OTHER DIGITAL MATERIAL**

[1] nptel.ac.in/courses/106108055/

- [2] http://www.nvidia.com/object/cuda\_home\_new.html
- [3]http://www.icrar.org/research/postgraduuate/igh-performance-computinghonours-course
- [4] http://www.openCL.org

|                      |                            | 19CS                                    | CS2052               |                      |           |  |
|----------------------|----------------------------|-----------------------------------------|----------------------|----------------------|-----------|--|
| Course               | C                          | <b>LOUD COMPUT</b>                      | ING LABO             | RATORY               | 15        |  |
| Course C             | ategory:                   | Programme Core                          | Locturo              | Crealis:             | 1.3       |  |
| Course I<br>Prerequi | ype:<br>sites·             | Laboratory                              | Contir               | utorial-relactice.   | 40        |  |
| 1 I CI CYUI          | 51105.                     |                                         | Semeste              | r end Evaluation.    | 40<br>60  |  |
|                      |                            |                                         | Semeste              | Total Marks:         | 100       |  |
|                      |                            |                                         |                      |                      | ]         |  |
| COURS                | E OUTCO                    | OMES                                    |                      |                      |           |  |
| Upon su              | ccessful co                | mpletion of the cou                     | rse, the stude       | ent will be able to: |           |  |
| <b>CO</b> 1          | Understa<br>architectu     | nd the evolution oure                   | of cloud co          | omputing paradigm    | and its   |  |
| CO2                  | Explain service m          | and characterize d                      | ifferent clou        | ud deployment mo     | odels and |  |
| CO3                  | Identify paradigm          | the various techn                       | ological dr          | ivers of cloud co    | omputing  |  |
| CO4                  | Identify t                 | the security issues in                  | n cloud com          | outing.              |           |  |
| Contrib<br>Outcom    | ution of Co<br>es (1 – Lov | ourse Outcomes to<br>w, 2 - Medium, 3 – | wards achie<br>High) | evement of Program   | m         |  |
|                      | PO 1                       | PO 2                                    | <b>PO 3</b>          | PSO 1                | PSO 2     |  |
| CO1                  |                            |                                         | 2                    |                      |           |  |
| CO2                  |                            |                                         | 2                    | 1                    |           |  |
| CO3                  |                            |                                         | 3                    | 2                    |           |  |
| <b>CO</b> 4          | 1 2                        |                                         |                      |                      |           |  |
|                      |                            |                                         |                      |                      |           |  |

Task 1:Create a cloud based google app engine project and deploy using any cloud based IDEs like codenvy, cloud9 or codeanywhere.

Task 2:Install and configure guest Operating System in another host OS using virtual box to implement para-virtualization.

Task 3:Develop and deploy a Node.js app using IBM BlueMix PAAS services.

Task 4:Create sample battle station Application in <u>salesforce.com</u> developer interface.

Task 5:Simulate the cloud environment of three data centers in different geographical locations and add virtual machines to them along with resources like storage, compute and bandwidth using Cloud Analyst.

Task 6: Create and launch windows server virtual machine using YELLOW CIRCLE cloud platform.

Task7: Create Node.js sample application using redhatopenshift cloud application platform.

Task 8: Create a virtual machine and install guest OS in Amazon AWS cloud platform.

Task 9: Using Cloudsim simulate a datacenter with one host and run one cloudlet on it.

Task 10: Using Cloudsim simulate two datacenters with one host and a network topology each and run two cloudlets on them.

#### TEXT BOOKS

[1] K. Chandrasekaran, Essentials of Cloud Computing, CRC Press, 2015

- [1] Barrie Sosinsky, Cloud Computing Bible, Wiley-India, 2010
- [2] RajkumarBuyya, James Broberg, Andrzej M. Goscinski, Cloud Computing: Principles and Paradigms, Wiley, 2011
- [3] Nikos Antonopoulos, Lee Gillam, Cloud Computing: Principles, Systems and Applications, Springer, 2012

# **SEMESTER III**

|                      | Ic                                   | 19CSC                                   | S3011A               | PVTHON               |       |  |  |  |
|----------------------|--------------------------------------|-----------------------------------------|----------------------|----------------------|-------|--|--|--|
| Course C             | Ourse Category: Programme Credits: 3 |                                         |                      |                      |       |  |  |  |
| Course T             |                                      | Elective                                | Lootuno T            | utarial Drastian     | 0 0 0 |  |  |  |
| Course I<br>Duonoqui | ype:                                 | Dete Structures                         | Lecture - I          | utorial-Practice:    | 0-0-0 |  |  |  |
| Prerequis            | sites:                               | Data Structures,                        | Contin               | uous Evaluation:     | -     |  |  |  |
|                      |                                      | Organization &                          | Semester             | Total Marks          | 100   |  |  |  |
|                      |                                      | A rehitecture                           |                      | Total Marks:         | 100   |  |  |  |
|                      |                                      | AICIIIICCIUIC                           |                      |                      |       |  |  |  |
| COURS                | E OUTCO                              | OMES                                    |                      |                      |       |  |  |  |
| Upon suc             | ccessful co                          | mpletion of the cour                    | rse, the stude       | ent will be able to: |       |  |  |  |
| CO1                  | Understa                             | nd python lexical fe                    | atures and sy        | ntax.                |       |  |  |  |
| CO2                  | Understa                             | nd basic data structu                   | res with pyt         | hon.                 |       |  |  |  |
| CO3                  | Impleme                              | nt Exception Handli                     | ng and files.        |                      |       |  |  |  |
| CO4                  | Create G                             | UI Applications usin                    | ng Python.           |                      |       |  |  |  |
| Contribu<br>Outcome  | ution of Co<br>es (1 – Lov           | ourse Outcomes to<br>w, 2 - Medium, 3 – | wards achie<br>High) | vement of Progra     | ım    |  |  |  |
|                      | PO 1                                 | PO 2                                    | PO 3                 | PSO 1                | PSO 2 |  |  |  |
| CO1                  | 2                                    |                                         |                      |                      |       |  |  |  |
| CO2                  |                                      |                                         |                      | 3                    | 2     |  |  |  |
| CO3                  |                                      |                                         |                      | 3                    | 2     |  |  |  |
| CO4                  |                                      |                                         |                      | 3                    | 2     |  |  |  |

Motivation for Computing | Welcome to Programming.

Variables and Expressions, Design your own calculator | Loops and Conditionals, Hopscotch once again.

Lists, Tuples and Conditionals, Lets go on a trip | Abstraction Everywhere : Apps in your phone.

Counting Candies: Crowd to the rescue | Birthday Paradox : Find your twin.

Google Translate: Speak in any Language | Currency Converter : Count your foreign trip expenses.

Monte Hall: 3 doors and a twist | Sorting : Arrange the books.

Searching: Find in seconds | Substitution Cipher : What's the secret !!

Sentiment Analysis: Analyse your Facebook data | I can read your mind.

Permutations: Jumbled Words | Spot the similarities : Dobble game.

Count the words: Hundreds, Thousands or Millions | Rock, Paper and Scissor : Cheating not allowed !!

Lie detector: No lies, only TRUTH | Calculation of the Area : Don't measure. | Six degrees of separation: Meet your favourites | Image Processing : Fun with images.

Tic tac toe: Let's play | Snakes and Ladders : Down the memory lane | Recursion : Tower of Hanoi | Page Rank : How Google Works !!

#### **TEXT BOOKS**

- [1] Allen B.Downey, "Think Python", 2rd Edition, O'Reilly Publications, 2012
- [2] Python Programming, Michael Dawson, 3rd Edition, Course technology PTR, 2010.

- [1] Michael Dawson "Python Programming for the Absolute Beginner", 3rd Edition, Course technology PTR.
- [2] Taneja Sheetal , Kumar Naveen "Python Programming: A modular approach", Pearson Publications, 2017.

| [3] | Mark Lutz "Learning Python", 5th Edition, O'Reilly Publications, 2013    |
|-----|--------------------------------------------------------------------------|
| E-F | RESOURCES AND OTHER DIGITAL MATERIAL                                     |
| [1] | NOC: The Joy of Computing using Python by Prof. Sudarshan Iyengar, IIT   |
|     | Madras in www.nptel.ac.in                                                |
|     | URL: https://nptel.ac.in/courses/106/106/106106182/#                     |
|     | Accessed on : 22-08-2019                                                 |
| [2] | Programming for Everybody(Python) by Prof. Charles Severance, University |
|     | of Michigan in www.coursera.com                                          |
|     | URL: https://www.coursera.org/course/pythonlearn                         |
|     | Course Schedule (coursera): May 2019                                     |
| [3] | An Introduction to Interactive Programming in Python by Prof. Scott      |
|     | Rixner,Rice University in www.coursera.com                               |
|     | URL: https://www.coursera.org/learn/interactive-python-1                 |
|     | Course Schedule (coursera): Starts May 2nd 2019, 5 weeks                 |

[4] The Python Tutorial available at http://docs.python.org/3.3/tutorial/

|                     |                              | <b>19CS</b>                        | CS3011B                 |                  |                 |  |  |
|---------------------|------------------------------|------------------------------------|-------------------------|------------------|-----------------|--|--|
|                     |                              | <b>USER INTE</b>                   | RFACE DES               | IGN              |                 |  |  |
| Course Ca           | ategory: P                   | rogramme                           |                         | Credi            | its: 3          |  |  |
|                     | E                            | lective                            |                         |                  |                 |  |  |
| Course Ty           | ype: T                       | heory                              | Lecture -1              | utorial-Praction | ce: $0 - 0 - 0$ |  |  |
| Prerequis           | ites:                        |                                    | Contin                  | uous Evaluatio   | <b>on:</b> -    |  |  |
|                     |                              |                                    | Semestel                | r end Evaluatio  | <b>on:</b> 100  |  |  |
|                     |                              |                                    |                         | I otal Mar       | <b>KS:</b> 100  |  |  |
| COURSI              | E OUTCON                     | IES                                |                         |                  |                 |  |  |
| Upon quo            | acceful com                  | lation of the app                  | man the stude           | nt will be able  | ta              |  |  |
| Opon suc            |                              | pletion of the cot                 | urse, the stude         | ent will be able |                 |  |  |
| <b>CO1</b>          | Understan                    | d the key terms                    | s of User int           | erface           |                 |  |  |
| CO2                 | Use appro<br>UI and UX       | priate prototyp<br>K.              | es for preser           | nting informat   | ion using       |  |  |
| CO3                 | Apply des interfaces.        | ign principles f                   | for developi            | ng sophisticate  | ed User         |  |  |
| CO4                 | Identify fa                  | ults and test ca<br>designs.       | ises in the in          | terfaces and s   | uggest          |  |  |
| Contribu<br>Outcome | ition of Cou<br>es (1 – Low, | rse Outcomes te<br>2 - Medium, 3 - | owards achie<br>- High) | vement of Prog   | gram            |  |  |
|                     | <b>PO</b> 1                  | PO 2                               | PO 3                    | PSO 1            | PSO 2           |  |  |
| CO1                 | 1                            |                                    |                         |                  |                 |  |  |
| CO2                 | 2                            | 1                                  |                         | 2                | 2               |  |  |
| CO3                 | 2                            | 2 2 2 2                            |                         |                  |                 |  |  |
| <b>CO</b> 4         |                              | 3                                  |                         | 2                | 2               |  |  |

#### Introduction to User Interface Design

Introduction to UI Design

Brief History of UI Design

UI Design Methodology

User Experience design component in Interface Design

User Research and Design

Prototyping and Design

Evaluating User Interfaces

Human Factor in Interaction Design

Visual Communication design component in Interface Design

Visual Cognition

Contemporary Visual Language in Design

Usage of Typography in User Interface Design

Testing User interfaces

## TEXT BOOKS

[1] Wilbert O Galitz, "The Essential Guide to User Interface Design- An Introduction to GUI Design Principles and Techniques", 3rd Edition, Wiley DreamaTech, 2017.

#### **REFERENCE BOOKS**

- [1] Steven Jacobs, Ben Shneiderman, Catherine Plaisant, Maxine Cohen, "Designing the User Interface: Strategies for Effective Human -Computer Interaction" 6th Edition, Pearson Education Asia, 2017.
- [2] Alan Dix, Janet Fincay, Gre Goryd, Abowd and Russell Bealg, "Human Computer Interaction", 2nd Edition, Pearson Education.
- [3] Scott Mackenzie, "Human-Computer Interaction: An Empirical Research Perspective" 2016, Elsevier Publications.
- [4] Rogers, "Interaction Design: Beyond Human Computer Interaction", Third Edition, Wiley Publications, 2013.

#### **E-RESOURCES AND OTHER DIGITAL MATERIAL**

[1] Dr. Samit Battacharya IIT Guwahati , Department of Computer Science & Engineering, NPTEL Videos, Available:https://nptel.ac.in/courses/106103115/ Last accessed on

[2] Prof. Pradeep Yammiyavar IIT Guwahati , Department of Design, NPTEL Videos

Available:https://nptel.ac.in/courses/106103115/ Last accessed on August 2019.

| 19CSCS3011C<br>DEEP LEARNING                                                                               |                                                               |                     |                         |                               |               |  |  |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------|-------------------------|-------------------------------|---------------|--|--|
| <b>Course Category:</b>                                                                                    |                                                               | rogramme<br>lective |                         | Credits                       |               |  |  |
| <b>Course Type:</b>                                                                                        |                                                               | heory               | Lecture -T              | Lecture -Tutorial-Practice:   |               |  |  |
| Prerequisites:                                                                                             |                                                               | lachine learning    | Contin                  | <b>Continuous Evaluation:</b> |               |  |  |
| •                                                                                                          |                                                               |                     | Semester end Evaluation |                               | <b>n:</b> 100 |  |  |
|                                                                                                            |                                                               |                     | Total Mar               |                               | <b>s:</b> 100 |  |  |
|                                                                                                            |                                                               |                     |                         |                               |               |  |  |
| COURSE OUTCOMES                                                                                            |                                                               |                     |                         |                               |               |  |  |
| Upon successful completion of the course, the student will be able to:                                     |                                                               |                     |                         |                               |               |  |  |
| <b>CO1</b>                                                                                                 | Understand the Linear Classifiers and Optimization Techniques |                     |                         |                               |               |  |  |
| CO2                                                                                                        | Understand various types of Neural networks                   |                     |                         |                               |               |  |  |
| CO3                                                                                                        | Apply Classical Supervised Tasks with Deep Learning           |                     |                         |                               |               |  |  |
| CO4                                                                                                        | Understand LSTM Networks                                      |                     |                         |                               |               |  |  |
| Contribution of Course Outcomes towards achievement of Program<br>Outcomes (1 – Low, 2 - Medium, 3 – High) |                                                               |                     |                         |                               |               |  |  |
|                                                                                                            | PO 1                                                          | PO 2                | PO 3                    | PSO 1                         | PSO 2         |  |  |
| CO1                                                                                                        | 2                                                             |                     | 2                       | 2                             |               |  |  |
| CO2                                                                                                        | 1                                                             |                     | 1                       | 1                             |               |  |  |
| CO3                                                                                                        | 2                                                             |                     | 2                       | 2                             |               |  |  |
| <b>CO4</b>                                                                                                 | 1                                                             |                     | 1                       | 1                             |               |  |  |

Introduction to Deep Learning, Bayesian Learning, Decision Surfaces Linear Classifiers, Linear Machines with Hinge Loss Optimization Techniques, Gradient Descent, Batch Optimization Introduction to Neural Network, Multilayer Perceptron, Back Propagation Learning.

Unsupervised Learning with Deep Network, Autoencoders

Convolutional Neural Network, Building blocks of CNN, Transfer Learning

Revisiting Gradient Descent, Momentum Optimizer, RMSProp, Adam

Effective training in Deep Net- early stopping, Dropout, Batch Normalization, Instance Normalization, Group Normalization

Recent Trends in Deep Learning Architectures, Residual Network, Skip Connection Network Fully Connected CNN etc.

Classical Supervised Tasks with Deep Learning, Image Denoising, Semantic segmentation Object Detection etc.

LSTM Networks

Generative Modeling with DL, Variational Autoencoder, Generative Adversarial Network.

# TEXT BOOKS

- [1] Deep Learning- Ian Goodfelllow, Yoshua Benjio, Aaron Courville, The MIT Press
- [2] Pattern Classification- Richard O. Duda, Peter E. Hart, David G. Stork, John Wiley & Sons Inc.

# **REFERENCE BOOKS**

- [1] Antonio Gulli, Sujit Pal, Deep Learning with Keras, Packt Publishing, 2017
- [2] Tom Hope, Yehezkel S. Resheff, Itay Lieder, Learning Tensor Flow: A Guide to Building Deep Learning Systems, OReilly 2017

#### **E-RESOURCES AND OTHER DIGITAL MATERIAL**

[1] Prof. Prabir Kumar Biswas, IITKGP, https://swayam.gov.in/nd1\_noc19\_cs54/preview, Accessed on 22-08-2019

| 19CSCS3011C                                                                                                |                                                                                        |                     |                                     |                      |           |  |  |  |
|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------|-------------------------------------|----------------------|-----------|--|--|--|
| DATA VISUALISATION                                                                                         |                                                                                        |                     |                                     |                      |           |  |  |  |
| <b>Course Category:</b>                                                                                    |                                                                                        | Programme           | Credits                             |                      | 3         |  |  |  |
|                                                                                                            |                                                                                        | Elective            |                                     |                      |           |  |  |  |
| <b>Course Type:</b>                                                                                        |                                                                                        | Theory              | <b>Lecture - Tutorial-Practice:</b> |                      | 0 - 0 - 0 |  |  |  |
| Prerequisites:                                                                                             |                                                                                        | Computer            | <b>Continuous Evaluation:</b>       |                      | -         |  |  |  |
|                                                                                                            |                                                                                        | Graphics,           | Semester                            | end Evaluation:      | 100       |  |  |  |
|                                                                                                            |                                                                                        | Image Processing    |                                     | Total Marks:         | 100       |  |  |  |
|                                                                                                            |                                                                                        |                     |                                     |                      |           |  |  |  |
| COURSI                                                                                                     | E OUTCO                                                                                | MES                 |                                     |                      |           |  |  |  |
| Upon suc                                                                                                   | cessful con                                                                            | npletion of the cou | rse, the stude                      | ent will be able to: |           |  |  |  |
| <b>CO1</b>                                                                                                 | Understand Visualization stages for different types of data                            |                     |                                     |                      |           |  |  |  |
| CO2                                                                                                        | Apply Visualization algorithms for good visualization                                  |                     |                                     |                      |           |  |  |  |
| CO3                                                                                                        | Analyze various visualization and modelling techniques                                 |                     |                                     |                      |           |  |  |  |
| CO4                                                                                                        | Use Visualization relationships for correlation, distribution and to Identify Outliers |                     |                                     |                      |           |  |  |  |
| Contribution of Course Outcomes towards achievement of Program<br>Outcomes (1 – Low, 2 - Medium, 3 – High) |                                                                                        |                     |                                     |                      |           |  |  |  |
|                                                                                                            | <b>PO</b> 1                                                                            | PO 2                | <b>PO 3</b>                         | PSO 1                | PSO 2     |  |  |  |
| CO1                                                                                                        | 1                                                                                      |                     | 1                                   | 1                    |           |  |  |  |
| CO2                                                                                                        | 2                                                                                      |                     | 2                                   | 2                    |           |  |  |  |
| CO3                                                                                                        | 2                                                                                      |                     | 2                                   | 2                    |           |  |  |  |
| CO4                                                                                                        | 2                                                                                      |                     | 2                                   | 2                    |           |  |  |  |

#### The minimum content to be covered

Foundations for an applied science of data visualization, Gibson's Affordance theory

A Model of Perceptual Processing, Visual working memory, Costs and Benefits of Visualization

Types of Data: entities, relationships, attributes of entities or relationships, data dimensions, types of numbers, uncertainty, and operations considered as data.

The Visualization Pipeline: Conceptual Perspective, Implementation Perspective.

Algorithm Classification, Scalar Visualization: Color Mapping, Designing Effective Color maps, Contouring, Height Plots

Vector Visualization: Vector Glyphs, Vector Color Coding, Displacement Plots, Texture-Based Vector Visualization

Domain- Modeling Techniques: Cutting, Selection, Grid Construction from Scattered Points

Image Visualization: Image Data Representation, Image Processing and Visualization

Information Visualization: What Is Infovis Table Visualization, Visualization of Relations, Multivariate Data Visualization, Text Visualization

Visualizing Proportions: what to look for in proportions, parts of a whole, proportions over a time

visualizing relationships: what relationships to look for, correlation, distribution, comparison

Spotting Differences: comparing across multiple variables, reducing dimensions, searching for outliers

Visualizing spatial relationships: specific locations, regions, over space and time

#### TEXT BOOKS

[1] Colin Ware "Information Visualization Perception for Design", 3 rd edition, Morgan Kaufman 2012.

[2] Alexandru C. Telea, "Data Visualization: Principles and Practice," A. K. Peters Ltd, 2008

[3] Nathan Yau's Visualize This: The FlowingData Guide to Design, Visualization, and Statistics 2011 wiley Publisher

#### **REFERENCE BOOKS**

[1] Nathan Yau, "Data Points: Visualization that means something", Wiley, 2013.

[2] Edward R. Tufte, "The visual display of quantitative information", Second Edition, Graphics Press, 2001. E-resources and other digital material.

#### **E-RESOURCES AND OTHER DIGITAL MATERIAL**

[1] Prof. Han-Wei Shen Introduction to Data Visualization, http://web.cse.ohio-state.edu/~shen.94/5544/

[2]University of Illinois at Urbana-Champaign

https://www.coursera.org/learn/datavisualization

# **SEMESTER – III**

| 19CSCS3061                                                                                                 |                                                                         |       |                      |                                              |                              |  |  |  |
|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------|----------------------|----------------------------------------------|------------------------------|--|--|--|
| Course C                                                                                                   | ategory. Pr                                                             | oject | $\mathbf{A}$ - PARIA | Cred                                         | its. 3                       |  |  |  |
| Course Type:                                                                                               |                                                                         |       | Lecture -T           | utorial-Practi                               | <b>ce:</b> 0 - 0 - 20        |  |  |  |
| Prerequisites:                                                                                             |                                                                         |       | Contin<br>Semester   | uous Evaluati<br>c end Evaluati<br>Total Mar | on: 40<br>on: 100<br>ks: 100 |  |  |  |
| COURS                                                                                                      | E OUTCOM                                                                | ES    |                      |                                              |                              |  |  |  |
| Upon suc                                                                                                   | Upon successful completion of the course, the student will be able to:  |       |                      |                                              |                              |  |  |  |
| <b>CO1</b>                                                                                                 | D1 Identify a real world problem in specific domain and its feasibility |       |                      |                                              |                              |  |  |  |
| CO2                                                                                                        | Explore the existing technologies/ Methodologies                        |       |                      |                                              |                              |  |  |  |
| <b>CO3</b>                                                                                                 | Apply the techniques for data preparation and formulization             |       |                      |                                              |                              |  |  |  |
| <b>CO4</b>                                                                                                 | Design a prototype                                                      |       |                      |                                              |                              |  |  |  |
| CO5                                                                                                        | Prepare the technical Report                                            |       |                      |                                              |                              |  |  |  |
| <b>CO6</b>                                                                                                 | Prepare and conduct oral presentations                                  |       |                      |                                              |                              |  |  |  |
| Contribution of Course Outcomes towards achievement of Program<br>Outcomes (1 – Low, 2 - Medium, 3 – High) |                                                                         |       |                      |                                              |                              |  |  |  |
|                                                                                                            | PO 1                                                                    | PO 2  | <b>PO 3</b>          | PSO 1                                        | PSO 2                        |  |  |  |
| CO1                                                                                                        | 2                                                                       |       | 2                    | 1                                            | 1                            |  |  |  |
| CO2                                                                                                        | 2                                                                       |       | 2                    | 1                                            |                              |  |  |  |
| CO3                                                                                                        | 2                                                                       |       | 2                    | 2                                            |                              |  |  |  |
| CO4                                                                                                        | 2                                                                       |       | 2                    | 2                                            | 1                            |  |  |  |
| CO5                                                                                                        |                                                                         | 2     |                      |                                              | 1                            |  |  |  |

| CO6 | 2    |      | 1 |
|-----|------|------|---|
|     |      |      |   |
|     |      |      |   |
|     |      |      |   |
|     |      |      |   |
|     |      |      |   |
|     |      |      |   |
|     |      |      |   |
|     |      |      |   |
|     |      |      |   |
|     |      |      |   |
|     |      |      |   |
|     |      |      |   |
|     |      |      |   |
|     |      |      |   |
|     |      |      |   |
|     | <br> | <br> |   |
|                      |                                                                                            | 19CS<br>INTE                   | SCS3052<br>CRNSHIP           |                     |           |  |  |
|----------------------|--------------------------------------------------------------------------------------------|--------------------------------|------------------------------|---------------------|-----------|--|--|
| Course Category: Int |                                                                                            | ernship                        |                              | Credits             | 02        |  |  |
| Course Type:         |                                                                                            |                                | Lecture -T                   | utorial-Practice:   | 0 - 0 - 4 |  |  |
| Prerequis            | sites:                                                                                     |                                | <b>Continuous Evaluation</b> |                     | -         |  |  |
|                      |                                                                                            |                                | Semester                     | end Evaluation      | 100       |  |  |
|                      |                                                                                            |                                |                              | <b>Total Marks</b>  | 100       |  |  |
| COURS                | E OUTCOM                                                                                   | ES                             |                              |                     |           |  |  |
| Upon suc             | cessful comp                                                                               | letion of the co               | urse, the stude              | nt will be able to: |           |  |  |
| CO1                  | Understand the practices of the particular company and industry in which they are working  |                                |                              |                     |           |  |  |
| CO2                  | Apply their knowledge and skills acquired in the classroom to a professional context       |                                |                              |                     |           |  |  |
| CO3                  | Identify, write and carry out performance objectives related to their job assignment       |                                |                              |                     |           |  |  |
| CO4                  | Successfully reflect on the quality of the contribution they have made to the organization |                                |                              |                     |           |  |  |
| Contribu<br>Outcome  | ition of Cour<br>es (1 – Low, 2                                                            | se Outcomes t<br>- Medium, 3 - | owards achie<br>– High)      | vement of Progra    | ım        |  |  |
|                      | PO 1                                                                                       | PO 2                           | <b>PO 3</b>                  | PSO 1               | PSO 2     |  |  |
| CO1                  |                                                                                            |                                | 1                            |                     | 3         |  |  |
| CO2                  |                                                                                            |                                | 2                            | 2                   |           |  |  |
| CO3                  |                                                                                            | 3                              |                              |                     |           |  |  |
| CO4                  |                                                                                            |                                | 3                            |                     |           |  |  |

## **SEMESTER – IV**

|                                                                                                            |                                                                                     | 19CS    | SCS4061    |                          |                     |  |  |  |
|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------|------------|--------------------------|---------------------|--|--|--|
| ~ ~                                                                                                        |                                                                                     | PROJEC  | T – PART B | ~                        | 1.6                 |  |  |  |
| <b>Course Category:</b>                                                                                    |                                                                                     | Project |            | Credits                  | : 16                |  |  |  |
| Course Type:                                                                                               |                                                                                     |         | Lecture -7 | <b>Sutorial-Practice</b> | <b>:</b> 0 - 0 - 32 |  |  |  |
| Prerequisites:                                                                                             |                                                                                     |         | Contin     | uous Evaluation          | : 40                |  |  |  |
|                                                                                                            |                                                                                     |         | Semeste    | r end Evaluation         | : 100               |  |  |  |
|                                                                                                            |                                                                                     |         |            | <b>Total Marks</b>       | : 100               |  |  |  |
| COURS                                                                                                      | E OUTCO                                                                             | OMES    |            |                          |                     |  |  |  |
| Upon successful completion of the course, the student will be able to:                                     |                                                                                     |         |            |                          |                     |  |  |  |
| CO1                                                                                                        | Develop and implement proposed methodologies                                        |         |            |                          |                     |  |  |  |
| CO2                                                                                                        | Validate the methodology with the requirements of the problem                       |         |            |                          |                     |  |  |  |
| CO3                                                                                                        | Compare proposed methodology with existing technologies to do performance analysis. |         |            |                          |                     |  |  |  |
| <b>CO4</b>                                                                                                 | Prepare the quality technical Report with professional ethics                       |         |            |                          |                     |  |  |  |
| CO5                                                                                                        | Prepare and conduct oral presentations                                              |         |            |                          |                     |  |  |  |
| Contribution of Course Outcomes towards achievement of Program<br>Outcomes (1 – Low, 2 - Medium, 3 – High) |                                                                                     |         |            |                          |                     |  |  |  |
|                                                                                                            | PO 1                                                                                | PO 2    | PO 3       | PSO 1                    | PSO 2               |  |  |  |
| CO1                                                                                                        | 2                                                                                   |         | 2          | 2                        | 2                   |  |  |  |
| CO2                                                                                                        | 3                                                                                   |         | 3          | 3                        | 1                   |  |  |  |
| CO3                                                                                                        | 3                                                                                   |         | 3          | 3                        |                     |  |  |  |
| CO4                                                                                                        |                                                                                     | 3       |            |                          | 3                   |  |  |  |
| CO5                                                                                                        |                                                                                     | 3       |            |                          |                     |  |  |  |