Master of Technology In Geotechnical Engineering

DEPARTMENT OF CIVIL ENGINEERING

VELAGAPUDI RAMAKRISHNA SIDDHARTHA ENGINEERING COLLEGE

(An Autonomous, ISO 9001:2015 Certified Institution) (Approved by AICTE, Accredited by NAAC with 'A' Grade, Affiliated to JNTUK, Kakinada) (Sponsored by Siddhartha Academy of General & Technical Education) Kanuru, Vijayawada, Andhra Pradesh - 520007, INDIA. www.vrsiddhartha.ac.in

Institute Vision

To nurture excellence in various fields of engineering by imparting timeless core values to the learners and to mould the institution into a centre of academic excellence and advanced research.

Institute Mission

To impart high quality technical education in order to mould the learners into globally competitive technocrats who are professionally deft, intellectually adept and socially responsible. The institution strives to make the learners inculcate and imbibe pragmatic perception and proactive nature so as to enable them to acquire a vision for exploration and an insight for advanced enquiry.

Department Vision

To impart teaching, research and develop consultancy that serves the society and to strive continuously for excellence in education.

Department Mission

To provide quality education for successful career and higher studies in Civil Engineering that emphasizes academic and technical excellence in profession and research, effective communication, team work and leadership to meet the challenges of the society.

Program Outcomes

PO 1: Students will learn soil and rock behavior. Students will be able to perform various laboratory and in-situ tests on soil/rock to find out design parameters

PO 2: Students can design shallow/deep foundations, earth retaining structures, embankment and earth dams, tunnel support systems for given site conditions

PO 3: Students can compute factor of safety to assess the stability of slopes and apply preventive measures for stability

PO 4: Student can develop numerical models to estimate the response of various geotechnical structures under different loadings

PO 5: Graduates can adapt to working as an individual or in a team with a sense of social responsibility, integrity and ethics

DEPARTMENT OF CIVIL ENGINEERING M.TECH IN GEOTECHNICAL ENGINEERING SCHEME OF INSTRUCTION FOR TWO YEAR PG PROGRAMME [M.TECH 19]

SEMESTER I

Contact Hours: 23

I Prog 1. Prog Co Co 3. Prog Co Co 4. Prog	Course Type ogramme Core - I ogramme ore - II ogramme ore - III ogramme core - II	Course Code 19CEGT1001 19CEGT1002 19CEGT1003 19CEGT1014	Title of the Course Advanced Soil Mechanics Advanced Foundation Engineering Geotechnical Earth Quake Engineering	L 3 3 3	T 0 0 0	P 0 0	Credits 3 3 3	CE 40 40	SE 60 60	Total 100 100
1. Prog Co Co 2. Prog Co Co 3. Prog Co Co 4. Prog	ogramme Core - I ogramme ore - II ogramme ore - III ogramme	19CEGT1002 19CEGT1003	Advanced Foundation Engineering Geotechnical Earth Quake	3	0	0	3	40	60	
Co 2. Prog Co Co 3. Prog Co Co 4. Prog	Core - I ogramme ore - II ogramme ore - III ogramme	19CEGT1002 19CEGT1003	Advanced Foundation Engineering Geotechnical Earth Quake	3	0	0	3	40	60	
Co 3. Prog Co Co 4. Prog	ore - II ogramme ore - III ogramme	19CEGT1003	Engineering Geotechnical Earth Quake				_			100
Co 3. Prog Co Co 4. Prog	ore - II ogramme ore - III ogramme		Geotechnical Earth Quake	3	0	0	2	10		
4. Prog	ore - III ogramme		Geotechnical Earth Quake	3	0	0	2	10		
4. Prog	ore - III ogramme	19CEGT1014	~				3	40	60	100
		19CEGT1014								
			 A. Earth and Rock fill dams B. Earth Retaining Structures C. Design of Underground Structures D. Industry Oriented Subject 	3	0	0	3	40	60	100
-	ective - II	19CEGT1015	 A. Ground Improvement Techniques B. Pavement Analysis and Design C. Slope Stability Analysis D. Industry Oriented Course 	3	0	0	3	40	60	100
Lea	andatory earning Course	19MTMC1026	Research Methodology, IPR and patents	2	0	0	0	40	60	100
7. Lab	boratory	19CEGT1051	Experimental	0	0	3	1.5	40	60	100
	- I		Geotechniques Lab							
8. Lab	boratory	19CEGT1052	Computer Applications in	0	0	3	1.5	40	60	100
	- II		Geotechnical Engg. Lab.							
			Total	17	0	6	18			

SEMESTER II

Contact Hours: 25

ĥ	SEMESTER II Contact Hours: 25									
S. No	Course Type	Course Code	Title of the Course	L	Т	Р	Cr edi ts	C E	SE	Total
1.	Programme Core – IV	19CEGT2001	Soil Dynamics and Machine Foundations	3	0	0	3	40	60	100
2.	Programme Core – V	19CEGT2002	Geo-synthetics and Reinforced Soil Structures	3	0	0	3	40	60	100
3.	Programme Core – VI	19CEGT2003	Engineering Rock Mechanics	3	0	0	3	40	60	100
4.	Programme Elective – III	19CEGT2014	 A. Foundations on Expansive Soils B. Sub Surface Investigation and Instrumentation C. Geo-Environmental Engineering D. Industry Oriented Course 	3	0	0	3	40	60	100
5.	Programme Elective – IV	19CEGT2015	 A. Finite Element Methods in Geotechnical Engineering B. Repair and Rehabilitation of Structures C. Construction Management D. Industry Oriented Subject 	3	0	0	3	40	60	100
6.	Audit Course	19MTAC2036	Technical Report Writing	2	0	0	-	0	100	100
7.	Laboratory - I	19CEGT2051	Geosynthetics and Rock Mechanics Lab	0	0	3	1.5	40	60	100
8.	Laboratory - II	19CEGT2052	Field Testing of Soil Lab	0	0	3	1.5	40	60	100
9.	Term Paper	19CEGT2063	Term Paper	0	0	2	1	40	60	100
			Total	17	0	8	19			

L – Lecture, T – Tutorial, P – Practical, C – Credits

*Students to be encouraged to go industrial training for at least six weeks during semester break

#Students should conduct the Literature Survey for the proposed research topic and they need to develop a proto type or simulation based (must be outcome oriented) – the same to be presented in any conference (national or international)

Semester III

S. No

1.

2.

3.

Course

Type

Programme

Elective - V

Project

(Part-A)

Internship

	Contact Hours: 24							
Course Code	Title of the	L	Т	Р	Credi	С	SE	Total
	Course				ts	E		
19CEGT3011	Programme	0	0	0	3	0	100	100

0

20

4

0

0 0

0 0 24

Total

Contact Hourse 94

10

2

15

40

0

60

100

100

100

L – Lecture, T – Tutorial, P – Practical, C – Credits

19CEGT3061

19CEGT3052

*To be continued in the IV Semester

Program Elective V may be completed in semester I or II by satisfying the pre-requisites. # Evaluation done by MOOCs provider will be considered.

Elective - V

Project

(Part-A)

Internship

Semester IV

Contact Hours: 32

S.No	Course	Course Code	Title of	L	Т	Р	Credits	CE	SE	Total
	Туре		the							
			Course							
1.	Project	19CEGT4061	Project	0	0	32	16	40	60	100
	(Part-		(Part-							
	B)		B)							
			Total	0	0	32	16			

L – Lecture, T – Tutorial, P – Practical, C – Credits

Total Credits: 68

Semester	Credits
1	18
2	19
3	15
4	16

19CEGT1001: ADVANCED SOIL MECHANICS

Course Category: Programme core	Credits: 3
Course Type: Theory	Lecture Hours: 3Hrs/week
	Internal Assessment: 40
	External Assessment: 60
	Total: 100

Course Outcome	On successful completion of the course, the student will be able to:								
	CO1: calculate and analyze the stresses on soil and be able to drastress paths								
	CO2: analyze the effect of flow of fluids through soils								
	CO3: evaluate the compressibility of soils								
	CO4: obtain and analyze the shear strength of soils								
Contribution of		PO1	PO2	PO3	PO4	PO5			
CourseOutcomestowardsachievement	CO1	Н							
of Program Outcomes (L - Low, M -	CO2	Н							
Medium, H – High)	CO3	Н							
	CO4	Н							

Course content	Unit - I: Geostatic Stresses & Stress Paths
	Stresses within a soil mass, Concept of stress for a particulate system,
	Effective stress principle, Geostatic stresses, Principal stresses and
	Mohr's circle of stress, Stress paths; At Rest earth pressure, Stress
	paths for different practical situations
	Unit - II: Flow through Soils
	Permeability, seepage, mathematical analysis – Finite difference
	formulae for steady state and transient flows, flow nets – computation
	of seepage – uplift pressure and critical hydraulic gradient
	Unit - III: Consolidation
	One dimensional compression, Oedometer test – coefficient of volume
	change, compression index, swelling or unloading, maximum past
	consolidation stress, Over consolidation ratio, Primary and secondary
	compression, consolidation - One, two and three dimensional
	problems, Consolidation of partially saturated soils, Creep/Secondary
	Compression in soils
	•

	Unit - IV: Stress-Strain-Strength Behavior of Soils Shear strength of soils; Failure criteria, drained and un-drained shear strength of soils. Significance of pore pressure parameters; Determination of shear strength; UU, CU & CD tests; Interpretation of triaxial test results. Behavior of sands; Critical void ratio; dilation in soils; Critical state parameters; Critical state for normally consolidated and over consolidated soil; Significance of Roscoe and Hvorslev state boundary surfaces; Yielding, Bounding Surfaces
TEXT BOOKS	 K.R. Arora, Soil Mechanics and Foundation Engineering; Standard Publishers & Distributors, Naisarak, New Delhi. Mitchell J.K Fundamentals of soil behavior - John Wiley and Sons, Inc., New York. (Third edition) 2005
REFERENCES:	 Das, B. M - Advanced Soil Mechanics, Taylor and Francis. 3rd edition (2008) Atkinson J. H An Introduction to the Mechanics of Soils and Foundation - through critical state soil mechanics, McGraw- Hill Co. (1993)

19CEGT1002: ADVANCED FOUNDATION ENGINEERING

Course Category: Programme core	Credits: 3
Course Type: Theory	Lecture Hours: 3Hrs/week
	Internal Assessment: 40
	External Assessment: 60
	Total: 100

Course Outcome	On successful completion of the course, the student will be able to:								
	CO1: unde	ermination t	tion techniques						
	CO2: design shallow foundation and estimate settlements								
	CO3: design Pile foundation for Vertical, lateral, eccentric and uplift loading.								
	CO4: design and construction of well foundations.								
Contribution of		PO1	PO2	PO3	PO4	PO5			
Course Outcomes towards achievement	CO1	Н							
of Program Outcomes (L - Low, M -	CO2		Η						
Medium, H – High)	CO3		Н						
	CO4		Н						

Course content	Unit – I
	Shallow Foundations: Bearing Capacity:- General Formulae; Effect of Water Table; Footings with Eccentric or Inclined Loads, Footings on Layered Soils, Footings on finite layer with a Rigid Base at Shallow Depth, effect of soil compressibility, Foundations on soils with strength increasing with depth.
	Unit – II Settlement: Components – Immediate, Consolidation & Creep, Stresses and Displacements in Homogeneous, Layered and Anisotropic Soils; Consolidation Settlement; One, Two & Three Dimensional Consolidation; Secondary Compression Settlement; Bearing Pressure using SPT & CPT, Settlement of foundations on Sands-Schmertmann and Burland & Busbridge methods; Structure Tolerance to Settlement and Differential Settlements
	Unit – III
	Pile Foundations: Single Pile: Vertically loaded piles, Static capacity-

	α , β and λ Methods, Dynamic formulae; Wave Equation Analyses; Point Bearing Resistance with SPT and CPT Results; Bearing Resistance of Piles on Rock; Settlement; Pile Load Test; Uplift Resistance; Laterally Loaded Piles -Ultimate Lateral Resistance; Negative Skin Friction; Batter Piles; Under Reamed Piles; Mini and Micro Piles, Buckling of Fully and Partially Embedded Piles; Ultimate Capacity of Pile Groups in Compression, Pullout & Lateral Load; Efficiency; Settlements of Pile Groups;
	Unit – IV Well Foundations Method of construction of piers; Open wells and Pneumatic Caissons; Design of pier foundations and well foundations; Lateral stability of well foundations; R.C.C. designs of wells
TEXT BOOKS	 Das, B. M Principles of Foundation Engineering 5th Edition Nelson Engineering (2004) Bowles, J. E Foundation Analysis & Design 5th Edition McGraw- Hill Companies, Inc. (1996)
REFERENCES:	 Donald P Coduto – Foundation Design Principles and Practices, 2nd edition, Pearson, Indian edition, 2012. Phi Learning (2008) Poulos, H. G. & Davis, E. H Pile Foundation Analysis and Design john wiley & sons inc (1980-08) K.R. Arora, Soil Mechanics and Foundation Engineering; Standard Publishers & Distributors, Naisarak, New Delhi.

19CEGT 1003: GEO TECHNICAL EARTHQUAKE ENGINEERING

Course Category: Programme core	Credits: 3
Course Type: Theory	Lecture Hours: 3Hrs/week
	Internal Assessment: 40
	External Assessment: 60
	Total: 100

Course Outcome	Upon successful completion of the course, the student will be able to:					
	CO1: Understand the process of wave propagation, attenuation and damping					
	CO2: Evaluate seismic response of soil using laboratory tests and model dealing with the cyclic nature of seismicity					
	CO3: Analyze liquefaction susceptibility; liquefaction potential and ground response for the select cases					
	CO4: Analyze Foundation / Slope Stability in Seismic Conditions					
Contribution of		PO1 PO2 PO3 PO4 PO5				
Course Outcomes towards achievement	CO1	H				
of Program Outcomes (L - Low, M -	СО2 Н					
Medium, H – High)	СОЗ Н					
	CO4	Н				

Course content	UNIT I
	INTRODUCTION:
	Introduction, Case studies of past earthquakes.
	WAVE PROLIFERATION:
	Waves in semi-infinite media – one, two and three dimensional wave propagation; Attenuation of stress waves – material and radiation damping; Dispersion, waves in a layered medium.
	UNIT II
	DYNAMIC SOIL PROPERTIES:
	Stress & strain conditions, Mohr circle, concept of stress path; Measurement of seismic response of soil at low and high strains - using laboratory tests; Cyclic triaxial, cyclic direct simple shear, resonant column, shaking table, centrifuge, bender element and using field tests - standard penetration test, cone penetration test, seismic

reflection/refraction tests, SASW/MASW tests, cross bore hole.

EVALUATION

Evaluation of damping and elastic coefficients; Stress-strain behavior of cyclically loaded soils; Effect of strain level on the dynamic soil properties; Equivalent linear, cyclic nonlinear and advanced nonlinear models.

UNIT III

STUDY OF EARTH RESPONSE:

Introduction, one, two and three dimensional analyses; Transfer functions for soil on rigid rock and elastic rock, effect of damping, Introduction to soil-structure interaction.

LIQUEFACTION:

Introduction, pore pressure, liquefaction related phenomena – flow liquefaction and cyclic mobility: Factors affecting liquefaction, liquefaction of cohesionless soils and sensitive clays, liquefaction susceptibility; State Criteria –CVR line, SSL, FLS; Evaluation of liquefaction potential: characterization of earthquake loading using simplified procedure (Seed and Idriss) and ground response analysis. characterization of liquefaction resistance using field and lab tests, cyclic stress ratio, Effects of liquefaction.

UNIT IV

GEOTECHNICAL APPLICATIONS:

Earth Pressure & Retaining Walls: Seismic design of retaining walls. Seismic pressures on Yielding retaining walls: Mononobe Okabe method and Steedman-Zeng method.

Seismic Slope Stability: Types of earthquake induced landslides; Static and seismic slope stability analyses – limit equilibrium, pseudostatic and Newmark Sliding Block analyses. Stress deformation analysis - Makdisi Seed analysis. Stability analysis with dynamic loading, selection of pseudostatic coefficients, factor of safety, yield acceleration, damage potential, displacement analysis, Finite Element analysis of slope stability.

GROUND IMPROVEMENT TECHNIQUES:

Densification, stone columns and compaction piles, grouting and mixing, drainage.

Reinforced earth: application of reinforced earth under static and dynamic loads,

TEXT BOOKS	1. Kramer S.L., "Geotechnical-Earthquake Engineering", Pearson Education – Indian Low Price Edition, Delhi. 2004
	2. Kameshwara Rao, N.S.V, "Dynamic Soil Tests & Applications", Wheeler Publications, New Delhi. 2000.
REFERENCES:	1. Day Robert W., "Geotechnical Earthquake Engineering Handbook", McGraw-Hill, New York.2001
	 Saran S. "Soil Dynamics & Machine Foundation", Galgotia Pub. Pvt. Ltd, New Delhi. 2006

19CEGT1014/A---- EARTH AND ROCK FILL DAMS

Course Category: Programme Elective	Credits: 3
Course Type: Theory	Lecture Hours: 3Hrs/week
	Internal Assessment: 40
	External Assessment: 60
	Total: 100

Course Outcome	On successful completion of the course, the student will be able to:					
	CO1: Outline basic concepts of Dam Construction & Causes of Failure CO2: Understand the equipment and procedures for construction of Earth dams					
	CO3: Understand the material requirements and procedures for construction of Rock fill dams					cedures for
	CO4: Design rock fill dams and also demonstrate an understanding of the damages and failures to Rock fill dams					
Contribution of		PO1 PO2 PO3 PO4 PO5				
Course Outcomes towards achievement	CO1	Н				
of Program Outcomes (L - Low, M -	СО2 Н					
Medium, H – High)	СОЗ Н					
	CO4		Н			

Course content	Unit – I					
	Earth Dams Classification of dams, Selection of Site, Basic design requirements,					
	Factors influencing design, Design of components, Preliminary section					
	Failures and Damages of Earth Dams					
	Nature of failures -piping, settlement cracks, slides, earthquake and					
	miscellaneous damages –case studies					
	Unit – II					
	Construction of Earth Dams Construction equipment, Procedures for pervious, Semi-pervious,					
	Impervious and Rock fill sections, Construction supervision.					
	Unit – III					
	Rock Fill Dams					
	General characteristics, Rock fill materials, Foundation, Construction,					

	Deformations, Types of dams, Requirements of compacted rock fill Unit – IV Design of Rock Fill Dams Design of dam section, concrete face and earth core, Nature of failures and damages, case studies.
TEXT BOOKS	 Sherard, Woodward, Gizienski and Clevenger. Earth and Earth-Rock Dams. John Wiley and Sons. 1963 Bharat Singh and Sharma, H. D. Earth and Rockfill Dams, 1999.
REFERENCES:	 Sowers, G.F., Earth and Rock fill Dam Engineering, Asia Publishing House, 1962. Christian, Earth and Rock fill Dams – Principles of Design and Construction, Kutzner Published.

19CEGT1014/B-- EARTH RETAINING STRUCTURES

Course Category: Programme Elective	Credits: 3
Course Type: Theory	Lecture Hours: 3Hrs/week
	Internal Assessment: 40
	External Assessment: 60
	Total: 100

Course Outcome	CO1: evalu CO2: Desi	uate earth pr gn rigid reta	ion of the cou ressure acting aining walls	on retaining	walls	ble to:
			ons and Mecl lge on distrib			cting on Sheet
Contribution of		PO1	PO2	PO3	PO4	PO5
Course Outcomes towards achievement	CO1	Н				
of Program Outcomes (L – Low, M -	CO2		Н			
Medium, H – High)	CO3	Н				
	CO4	Н				

Course content	Unit – I 1. Earth pressures – Different types and their coefficients- Classical Theories of Earth pressure – Rankine's and Coulomb's Theories for Active and Passive earth pressure- Computation of Lateral Earth Pressure in Homogeneous and Layered soils- Graphical solutions for Coulomb's Theory in active and passive conditions.
	 Unit – II 2. Retaining walls – different types - Type of Failures of Retaining Walls – Design of retaining walls - Stability requirements – Specifications – Drainage behind Retaining walls-Specifications
	 Unit – III 3. Braced cuts – Lateral Pressure in Braced cuts – Design of Various Components of a Braced cut – Stability of Braced cuts – Bottom Heave in cuts.

	 Unit – IV 4. Sheet piles – Type, material, method of construction, distribution of earth pressure and related approximation. Distinction between Sheet Pile and Retaining wall.
TEXT BOOKS	 Soil Mechanics and Foundation Engineering by K.R. Arora; Standard Publishers & Distributors, Naisarak, New Delhi. J. E. Bowles, Foundation analysis and design, Tata McGraw-Hill International Edition, 5th Edn, 1997
REFERENCES:	 Basic and Applied Soil Mechanics by Gopal Ranjan and A.S.R.Rao. published by New Age International Ltd., K. Terzaghi, and R. B. Peck, Soil Mechanics in Engineering Practice, John Wiley & Co., 3rd Edn, 1996

19CEGT1014/C – DESIGN OF UNDER GROUND STRUCTURES

Course Category: Programme Elective	Credits: 3
Course Type: Theory	Lecture Hours: 3Hrs/week
	Internal Assessment: 40
	External Assessment: 60
	Total: 100

Course Outcome	On successful completion of the course, the student will be able to: CO1: Understand the need and types of Underground structures						
	CO2: Design underground structures						
	CO3: design soil nailing system						
	CO4: evaluate pressures on conduits						
Contribution of		PO1	PO2	PO3	PO4	PO5	
CourseOutcomestowardsachievement	CO1	Н					
of Program Outcomes (L - Low, M -	CO2		Н				
Medium, H – High)	CO3		Н				
	CO4	Н					

Course content	Unit – I Introduction: Historical: Natural caves, archeological caves and their construction. Introduction to underground openings: Need for Underground Openings: Congestion driven needs for development of
	infrastructure for transport, water, power supply, vehicle movement in cities, storage of materials. Types: Tunnels, Construction of Erath Tunnels, Conduits, Shafts
	Unit – II Design of underground openings : Design based on empirical methods such as RSR, RMR, Q systems, Stability of excavation face and Tunnel portals.
	Unit – III Soil Nailing: Components of nailing system, Driven and Grouted Nails, Design of nailing system, anchored Spider Netting
	Unit – IV Soil pressures on conduits: Loads on ditch, negative and positive projecting conduits, Bedding conditions for conduits and types of conduits

TEXT BOOKS	 Introduction to Rock Mechanics by Richard E. Goodman, John Wiley & Sons Inc. Underground excavation in rock by Hoek and Brown, E & FN Spon.
REFERENCES:	 Engineering Rock Mechanics: An Introduction to the Principles by J. A. Hudson & J.P. Harrison, Elsevier Science & Technology. Shamsher Prakash, Gopal Ranjan and Swami Saran (1987) "Analysis and Design of Foundations and Retaining Structures", Sarita prakasha

19CEGT1015/A -- GROUND IMPROVEMENT TECHNIQUES

Course Category: Programme Elective	Credits: 3
Course Type: Theory	Lecture Hours: 3Hrs/week
	Internal Assessment: 40
	External Assessment: 60
	Total: 100

Course Outcome	On Successf	ul completion	n of the cours	e, the studer	nt will be abl	e to:	
	CO1: unde	erstand need	for and r	nethods of	ground in	nprovement	
	techniques						
	CO2: suggest suitable ground improvement technique for specific						
	CO3: acquir	CO3: acquire knowledge on different grouting Techniques					
	CO4: select conditions	and implem	ent soil stab	ilization tec	hniques bas	ed on field	
Contribution of		PO1	PO2	PO3	PO4	PO5	
Course Outcomes towards achievement	CO1	Н					
of Program Outcomes (L - Low, M -	CO2	Н					
Medium, H – High)	CO3	Н					
	CO4	М		Н			

Course content	 Unit – I Introduction: Need of Ground Improvement: Different methods of Ground improvement, Mechanical, Hydraulic, Physico-chemical, Electrical, Thermal methods etc. and their applications. General Principal of Compaction: Mechanics and quality control in field
	Unit – II Ground Improvement in Granular Soil: In place densification by (i) Vibroflotation (ii) Compaction pile (iii) Vibro Compaction Piles (iv) Dynamic Compaction (v) Blasting Ground Improvement in fine-grained Soil: Sand drains; Stone columns; Surcharge loading
	Unit – III Ground Improvement by Grouting: Grouting in soil, types of grout, desirable characteristics, grouting pressure, grouting methods.

	Unit – IV Soil Stabilization: Lime stabilization-Base exchange mechanism, Pozzolanic reaction, lime-soil interaction, lime columns. Cement stabilization: Mechanism, amount, age and curing. Fly-ash - Lime Stabilization, Soil Bitumen Stabilization
TEXT BOOKS	 P. Purushothama Raj, Ground Improvement Techniques, Tata McGrawHill, New Delhi, 1995. Hausmann, M.R., Engineering Principles of Ground Modification, McGraw-Hill International Editions, 1990
REFERENCES:	 1.B.C.Chattopadhyay and J.Maity, Ground Control and Improvement Techniques, PEEDOT, Howrah, 2011. 2. R. M. Korner, Design with Geosynthetics, Prentice Hall, New Jersy, 3rd Edn. 2002 3. J. Han, Principles and Practice of Ground Improvement, John Wiley & Sons, 2015

19CEGT1015/B: PAVEMENT ANALYSIS AND DESIGN

Course Category: Programme Elective	Credits: 3
Course Type: Theory	Lecture Hours: 3Hrs/week
	Internal Assessment: 40
	External Assessment: 60
	Total: 100

Course Outcome	On Succe	ssful complet	tion of the co	urse, the stud	lent will be a	ible to:	
	CO1: understand the basic components of different types of pavements						
	CO2: ana	lyze and desi	gn of flexible	e pavements			
	CO3: eva	luate the stre	sses induced	in rigid pave	ments		
	CO4: ana	lyze and desi	gn of rigid pa	avements			
Contribution of		PO1	PO2	PO3	PO4	PO5	
Course Outcomes towards achievement	CO1	Н					
of Program Outcomes (L – Low, M –	CO2	Μ	Н				
Medium, H – High)	CO3	Н					
	CO4	М	Н				

Course content	Unit – I
	Introduction:
	Types of pavement structures, Components of road pavement - subgrade,
	Sub base, Base course and wearing course, functions of pavement
	components, Comparison of flexible and rigid pavements, design factors
	to design a pavement.
	Unit – II
	Flexible pavement design methods for highways and airports:
	Empirical, semi-empirical and theoretical approaches – CBR method
	(including determination of CBR), flexible pavement design as per
	IRC:37-2012, design of rural roads as per IRC SP 20-2002. Burmister
	method for airport runway.
	Unit – III
	Stresses in Rigid pavement:
	Types of stresses and causes; calculation of stresses in rigid pavement due
	to the influence of traffic and temperature; critical combination of
	stresses.
	Construction of rigid pavement : types of rigid pavement, construction

	of rigid pavement, types of joints and arrangement of joints. Unit – IV Rigid pavement design for highways and airport: IRC method of rigid pavement design (IRC 58-2011). Design of joints, reinforcements, tie bars, and dowel bars. Design of airport runway pavement using LCN method and PCA method.				
TEXT BOOKS	 1.Pavement Analysis and Design, Yang H Huang, 2nd Edition, Pearson Education, 2003 2. Sk Khanna, CEG Justo & A Veraragavan – Highway Engineering, Nem Chand & Sons. 2017 3. Sk Khanna, MG Aurora, SS Jain- Airport Planning and Design Nem Chand (1999) 				
REFERENCES:	 1.MORT&H- Specifications for Roads and Bridges, 5th Revision, 2013. 2. IRC:37-2012-GUIDELINES FOR THE DESIGN OF FLEXIBLE PAVEMENTS (should be allowed for external exam) 3.IRC SP 20-2002-Rural Roads Manual (should be allowed for external exam) 4. IRC 58-2011-Plain Jointed Rigid Pavements Design Highways (should be allowed for external exam) 				

19CEGT1015/C ---- STABILITY ANALYSIS OF SLOPES

Course Category: Programme Elective	Credits: 3
Course Type: Theory	Lecture Hours: 3Hrs/week
	Internal Assessment: 40
	External Assessment: 60
	Total: 100

Course Outcome	On Successful completion of the course, the student will be able to: CO1: Understand the types and causes of slope failures					
				s using variou		
	CO3: Analyse the stability of earth dams under seepage					
	CO4: Understand the strengthening measures to be undertaken for stability					
Contribution of		PO1	PO2	PO3	PO4	PO5
Course Outcomes towards achievement	CO1	Н				
of Program Outcomes (L – Low, M –	CO2	M		Н		
Medium, H – High)	CO3	M		Н		
	CO4	М		Н		

Course content	Unit – I Slopes: Types and causes of slope failures, mechanics of slope failure, failure modes.
	Unit – II Stability analysis: infinite and finite slopes with or without water pressures; concept of factor of safety, pore pressure coefficients, Mass analysis, Wedge methods, friction circle method ; Method of slices, Bishop's method, Janbu's method, Morgenstern and Price, Spencer's method
	Unit – III Stability analysis in the presence of seepage: two dimensional flow – Laplace equation and it's solution, graphical method, determination of phreatic line, flow nets in homogeneous and zoned earth dams under steady seepage and draw-down conditions, seepage control in earth dams, influence of seepage on slope stability stability analysis of dam body during steady seepage

	Unit – IV Strengthening measures: stabilization of slopes by drainage methods, surface and subsurface drainage, use of synthetic filters, retaining walls, stabilization and strengthening of slopes, shotcreting, rock bolting and rock anchoring, instrumentation and monitoring of slopes, slope movements, warning devices, maintenance of slopes				
TEXT BOOKS	 Chowdhary R and Chowdhary , "Geotechnical Slope Analysis", CRC Press. Duncan M. and Wright, S.G., Soil Strength and Slope stability, John Wiley, 2005. 				
REFERENCES:	 Das, B. M - Advanced Soil Mechanics, Taylor and Francis. 3rd edition (2008) Harr M.E., "Ground Water and Seepage", McGraw Hill. 1962. C. Venkata Ramaiah, "Geotechnical Engoineerig", New Age International Publishjers, New Delhi. 				

19CEGT1051 - Experimental Geotechniques Lab

Course Category: Programme Core	Credits: 1.5
Course Type: Practical	Lecture – Tutoroial - Practical: 0-0-3
	Internal Assessment: 40
	External Assessment: 60
	Total: 100

Course Outcome				se, the studer	t will be ab	le to:		
	CO1: Determine index properties of soils CO2: Determine Engineering properties of soil							
			· 1 1 ·	C '1				
	CO3: Evan	ate Compres	sive benavio	or of soils				
	CO4: Evalu	ate Strength	behavior of	soils				
Contribution of		PO1	PO2	PO3	PO4	PO5		
CourseOutcomestowardsachievement	CO1	H				Н		
of Program Outcomes (L - Low, M -	CO2	Н				Н		
Medium, H – High)	CO3	Н				Н		
	CO4	Н				Н		
Course content		ermination of			1	5' <u>6</u> 1		
		stant Head a		ility of Co Headl	arse and	Fine Soils		
	3. Dete		Compaction	n Characteris	tics of Soils	s [Standard		
	4. Dete	 4. Determination of Unconfined Compressive Strength of Soils [UCS] 5. Determination of Shear Strength Parameters of Soils using Direct Shear Apparatus 						
		ermination of al Apparatus	f Shear Stre	ngth Paramet	ters of Soils	s using Tri		
			California E	Bearing Ratio	of Soils			
	8. Con	solidation Te	st					

19GT1052 – COMPUTER APPLICATION IN GEOTECHNICAL ENGINEERING

Course Category: Programme Core	Credits: 1.5
Course Type: Practical	Lecture – Tutoroial - Practical: 0-0-3
	Internal Assessment: 40
	External Assessment: 60
	Total: 100

Course Outcome	On successfu	ul completior	n of the course	e, the studer	t will be abl	e to:
	CO1: obtain net and safe bearing capacities of shallow foundations					
	CO2: analyz	ze the data fro	om Triaxial te	est		
	CO3: analyze the data from one dimensional consolidation					
	CO4: analyze the data of different structures by FDM & FEM					
Contribution of		PO1	PO2	PO3	PO4	PO5
Course Outcomes towards achievement	CO1	Н				Н
of Program Outcomes (L – Low, M –	CO2		Н			
Medium, H – High)	CO3	Н				Н
	CO4	Н			Н	Н

Course content	1. Ultimate, Net and Safe Bearing Capacity Using Terzaghi and IS Code
	Methods.
	2. Net Settlement Pressure
	3. Hyperbolic Curve Fitting of Tri-axial Compression Data
	4. Beam on Elastic Foundation by FDM
	5. FDM Solution for Raft Foundation
	6. Axial Loaded Piles by Direct FEM
	7. Laterally Loaded Piles by FDM & FEM
	8. Stability Analysis by Bishop theory
	9. Stability Analysis by Method of Slices.

19CEGT2001 – SOIL DYNAMICS & MACHINE FOUNDATIONS

Course Category: Programme Core	Credits: 3
Course Type: Theory	Lecture Hours: 3Hrs/week
	Internal Assessment: 40
	External Assessment: 60
	Total: 100

Course Outcome	CO1: demor CO2: Unde soils under c	nstrate knowl rstand Dynar cyclic loading	1	and Forced poerties and S	vibrations Stress-strain	behavior of	
	CO4: Design of Machine Foundations						
Contribution of		PO1	PO2	PO3	PO4	PO5	
CourseOutcomestowardsachievement							
of Program Outcomes (L - Low, M -	CO2	Н					
Medium, H – High)	CO3	Н					
	CO4	М	Н				

Course content	Unit – I						
	Fundamentals of Vibration: Definitions, Simple harmonic motion, Response of SDOF systems of Free and Forced vibrations with and without viscous damping, Frequency dependent excitation, Systems under						
	transient loads, Rayleigh's method of fundamental frequency.						
	Logarithmic decrement, Determination of viscous damping,						
	Transmissibility, Systems with Two and Multiple degrees of freedom,						
	Vibration measuring instruments						
	Unit – II						
	Wave Propagation and Dynamic Soil Properties: Propagation of seismic waves in soil deposits - Attenuation of stress waves, Stress-strain behaviour of cyclically loaded soils, Strength of cyclically loaded soils,						
	Dynamic soil properties - Laboratory and field testing techniques, Elastic						
	constants of soils, Correlations for shear modulus and damping ratio in						
	sand, gravels, clays and lightly cemented sand. Liquefaction of soils: An						
	introduction and evaluation using simple methods.						
	Unit – III						

	Vibration Analysis: Types, General Requirements, Permissible amplitu Allowable soil pressure, Modes of vibration of a rigid foundation blo Methods of analysis, Lumped Mass models, elastic half space meth- elasto-dynamics, effect of footing shape on vibratory response, dynar response of embedded block foundation, Vibration isolation.						
	Unit – IV Design of Machine Foundations: Analysis and design of block foundations for reciprocating engines, Dynamic analysis and design procedure for a hammer foundation, IS code of practice design procedure for foundations of reciprocating and impact type machines. Vibration isolation and absorption techniques. Machine Foundations on Piles: Introduction, Analysis of piles under vertical vibrations, Analysis of piles under translation and rocking, Analysis of piles under torsion, Design procedure for a pile supported machine foundation						
TEXT BOOKS	1. Swami Saran - Soil Dynamics and Machine Foundation, Galgotia Publications Pvt. Ltd. (2010)						
	2. Prakash, S Soil Dynamics, McGraw Hill Book Company (1981)						
REFERENCES:	1. I.Chowdhary and S P Dasgupta - Dynamics of Structures and Foundation, 2009.						
	2. Arya, S. D, O'Neil, M. and Pincus, G Design of Structures and Foundations for Vibrating Machines, Gulf Publishing Co., 1979.						
	3. Prakash, S. and Puri, V. K Foundation for Machines: Analysis and Design, John Wiley & Sons, 1998.						
	4. Kameswara Rao, N. S. V Vibration Analysis and Foundation Dynamics, Wheeler Publication Ltd., 1998.						

19CEGT2002 -- GEOSYNTHETICS AND REINFORCED SOIL STRUCTURES

Course Category: Programme Core	Credits: 3
Course Type: Theory	Lecture Hours: 3Hrs/week
	Internal Assessment: 40
	External Assessment: 60
	Total: 100

Course Outcome	On successful completion of the course, the student will be able to:							
	CO1: assess the properties and Testing Methods of Geosynthetics							
	CO2: understand functions and applications of Geosynthetics							
	CO3: Design and Construction of Reinforced Earth Walls							
	CO4: Des	sign of Reinf	orced Earth S	lopes and Fo	oundations			
Contribution of		PO1	PO2	PO3	PO4	PO5		
Course Outcomes towards achievement	CO1	Н						
of Program Outcomes (L – Low, M -	CO2	Н						
Medium, H – High)	CO3	М	Н					
	CO4	M	Н					

Course content	Unit – I
	Introduction to Geosynthetics-Types of geosynthetics and their applications
	Manufacture of geosynthetics-Strength of reinforced soils
	Unit – II
	Testing of Geosynthetics-Properties of Geosynthetics-Functions of Geosynthetics-Applications of Geosynthetics
	Unit – III
	Different Types of Soil Retaining Structures-Construction Aspects of Geosynthetic Reinforced Soil Retaining Walls-Design Codes for Reinforced Soil Retaining Walls - External Stability Analysis of Reinforced Soil Retaining Walls-Seismic Loads and Internal Stability Analysis of Reinforced Soil Walls- Testing Requirements for Reinforced Soil Retaining Walls-Design of Reinforced Soil Retaining Walls – simple geometry-Design of reinforced soil retaining walls – sloped backfill soil
	Design of reinforced soil retaining walls supporting a bridge abutment- Design of Gabions

	Unit – IV Stability analysis of soil slopes – infinite and finite slopes-Stability analysis of reinforced soil slopes resting on soft foundation soils-Stability analysis of reinforced soil slopes resting on strong foundation soil- Stability analysis of reinforced soil slopes – bilinear wedge analysis- Design of Embankments supported on Load Transfer Platforms- Reinforced soil for supporting shallow foundations-Natural geosynthetics and their applications-Geosynthetics for construction of municipal and hazardous waste landfills
TEXT BOOKS	 "Designing with Geosynthetics" by Robert M. Koerner, Prantice Hall, Eaglewood cliffs, NJ 07632. "Fundamentals of Geosynthetics Engineering" by Sanjay Kumar Shukla, Jian-Hua Yin, Taylor & Francis, Milton Park, Abingdon, UK. "Reinforced Soil and Its Engineering Applications" by Swami Saran, I.K. International Pvt Ltd, New Delhi.
REFERENCES:	 1. "Engineering with Geosynthetics", by G. Venkatappa Rao and GVS Suryanarayana Raju – Tata McGraw Hill Publishing Company Limited – New Delhi. 2. "Construction and Geotechnical Engineering using Synthetic Fabries" by Robert M. Koerner and Joseph P. Welsh. John Willey and Sons, New York.

19CEGT2003: ENGINEERING ROCK MECHANICS

Course Category: Programme Core	Credits: 3
Course Type: Theory	Lecture Hours: 3Hrs/week
	Internal Assessment: 40
	External Assessment: 60
	Total: 100

Course Outcome			of the course				
	CO1: understand application of rock mass classification systems						
	CO2: demo engineering		field and	laboratory	testing of	rocks for	
	CO3: understand the failure criteria of rocks under various stress fields						
	CO4: understand various slope stability methods and estimate the bearing capacity and foundation on rocks						
Contribution of		PO1	PO2	PO3	PO4	PO5	
Course Outcomes towards achievement							
of Program Outcomes (L – Low, M –							
Medium, H – High)	CO3	Н					
	CO4	Н					

Course content	Unit – I				
	Introduction to rock mechanics- Objectives of rock mechanics, Fields				
	of application of rock mechanics, Practical problems in rock mechanics				
	Classification of Rocks: Geological Classification – formation of				
	igneous, sedimentary and metamorphic rocks- Textural and structural				
	classification,				
	Rock mass classifications- Rock Quality Designation (RQD), Rock				
	Structure Rating (RSR), Rock Mass Rating (RMR), Norwegian				
	Geotechnical Classification (Q-system)				
	Unit – II				
	Introduction- Physico – mechanical properties of rocks				
	Laboratory tests -Compressive strength, Tensile strength, Direct shear				
	test, Triaxial shear test, Slake durability test, Schmidt rebound hardness				
	test				
	Field tests- In situ direct shear test - In situ tests for deformability -				
	Plate load test- Uniaxial jacking test- Pressure meter tests				
	In situ stress and their determination- Hydraulic fracturing- Flat jack				
	test Stress-relief technique				

	Geophysical investigations - Electric resistivity method- Seismic refraction method -Cross hole test							
	Unit – III Failure criteria for rock and rock masses- Mohr-Coulomb Yield Criterion, Drucker-Prager Criterion, Hoek-Brown Criterion, Tensile Yield Criterion. Strength and deformability of jointed rock mass- Fracture strength of jointed rock mass. Shear strength of Rock joints, Deformability of Rock joints, Concept of joint compliance							
	 Unit – IV Stability of rock slopes- Modes of failure, Plane failure, Wedge failure, Circular failure, Toppling failure. Foundation on rocks- Estimation of bearing capacity, Stress distribution in rocks, Settlement in rocks, Pile foundation in rocks. Methods to improve rock mass responses-Grouting in Rocks, Rock bolting, Rock Anchors. 							
TEXT BOOKS	1. Goodman – Introduction to Rock mechanics, Willey International (1980).							
	2. Ramamurthy, T Engineering in Rocks for slopes, foundations and tunnels, Prenice Hall of India.(2007)							
	3. Rock mechanics in engineering practice: Stag and Zienkiewiz, John wiley & sons							
REFERENCES:	1. Jaeger, J. C. and Cook, N. G. W. – Fundamentals of Rock Mechanics, Chapman and Hall, London.(1979)							
	2. Hoek, E. and Brown, E. T Underground Excavation in Rock, Institution of Mining and Metallurgy, 1982.							
	3. Brady, B. H. G. and Brown, E. T Rock Mechanics for Underground Mining, Chapman & Hall, 1993.							
	4. Rock mechanics for engineers: Varma, B.P, Khanna Publishers							

19CEGT 2014/A: FOUNDATIONS ON EXPANSIVE SOILS

Course Category: Programme Elective	Credits: 3
Course Type: Theory	Lecture Hours: 3Hrs/week
	Internal Assessment: 40
	External Assessment: 60
	Total: 100

Course Outcome	On successful completion of the course, the student will be able to:							
	CO1: identify expansive soils in-situ							
	CO2: understand clay mineralogy							
	CO3: demo soils	nstrate const	ruction techn	iques for fo	undations in	Expansive		
	CO4: suggest suitable ground improvement techniques for expansive soils							
Contribution of		PO1	PO2	PO3	PO4	PO5		
Course Outcomes towards achievement	CO1 H							
of Program Outcomes (L - Low, M -	CO2	Н						
Medium, H – High)	CO3	Н		M				
	CO4	Н		М				

Course content	Unit – I			
	Introduction and Identification			
	Expansive Soils of India, related civil engineering problems, formation of expansive soils in field, identification of expansive soil in laboratory by X-ray diffraction method and differential thermal analysis			
	Unit – II Physical and Chemical Properties, Soil structure and clay mineralogy of expansive soil, atomic bond and molecular bonds, honey comb structure, base exchanges capacity, clay water relation, electrolysis processes			
	Unit – III Foundation on Black Cotton Soil, Foundations on swelling soils, swelling potential and mechanism of volume change, chemical composition of black cotton soil, construction techniques in black cotton soil, modern method of construction in under reamed piles.			
	Unit – IV			

	Ground improvement techniques for expansive soils – Stone Columns, Surcharge loading, drains, thermal and electrical methods
TEXT BOOKS	1.Foundations on Expansive Soils – F. H. Chen (Elsevier, Newyork, 1988)
	2.B.C.Chattopadhyay and J.Maity, Ground Control and Improvement
	Techniques, PEEDOT, Howrah, 2011.
REFERENCES:	1.Basic and applied Soil Mechanics (Revised Edition) – Gopal Rajan and
	Rao A.S.R. (New Age, New Delhi.1998)
	2.Foundation Engineering (2 nd Edition) – Peck,R.B., Hanson (W.E. and
	Thornburn. W.H. Johan Wiley, New York, 1976)
	3.Soil Engineering in Theory and Practice (Vol. – II) – Alam Singh (Asia
	Publishing House, New Delhi, 1981)

19CEGT2014/B ---- Sub Surface Investigation and Instrumentation

Course Category: Programme Elective	Credits: 3
Course Type: Theory	Lecture Hours: 3Hrs/week
	Internal Assessment: 40
	External Assessment: 60
	Total: 100

Course Outcome	On successf	ul completio	n of the cours	se, the studer	t will be abl	e to:
		gnize vario	us methods	of boring a	nd machine	ry used for
	boring					
	CO2: Desi techniques	gn, plan a	nd execute	various fiel	d tests an	d sampling
	CO3: Interpret data from field tests such as SPT, CPT, DCPT etc.,					
	CO4: Deve	lop instrume	ntation schem	e for monito	ring of critic	cal sites
Contribution of		PO1	PO2	PO3	PO4	PO5
Course Outcomes towards achievement	CO1	H				
of Program Outcomes (L - Low, M -	CO2	H				
Medium, H – High)	CO3	H				
	CO4	Н				

Course content	Unit – I Soil Exploration: Methods of Boring, Augering and Drilling. Machinery used for drilling, types of augers and their usage for various projects.
	Unit – II Soil Sampling and Borehole logging: Sampling methods, types of samples, storage of samples and their transport. Sample preparation, sample sizes, types of sampler specifications for testing. Logging of Boreholes, logging methods, Ground water observations, Water table fluctuations and effects, Preparation of soil profiles, Calculations
	Unit – III Field testing of soils: Methods and specifications, Visual identification tests, Vane shear test, Penetration tests, Analysis of test results. Preparation of site-investigation reports.
	Unit – IV Field Instrumentation: Rollers, Pressure meters, Piezometer, Pressure cells, Sensors, Inclinometers, Strain gauges etc.,

TEXT BOOKS	 1.K.R. Arora, Soil Mechanics and Foundation Engineering; Standard Publishers & Distributors, Naisarak, New Delhi. 2.Lambe and Whitman: Soil mechanics. John Wiley and Sons. New York. (1969)
REFERENCES:	 1.Clayton et al., Matthews and Simons: Site Investigation, Blackwell Science, (2005) 2.Bowles, B: Engineering Properties of Soil and Their Measurements, McGraw-Hill Companies, (1992)

19CEGT2014/C ---- GEOENVIRONMENTAL ENGINEERING

Course Category: Programme Elective	Credits: 3
Course Type: Theory	Lecture Hours: 3Hrs/week
	Internal Assessment: 40
	External Assessment: 60
	Total: 100

Course Outcome	On successful completion of the course, the student will be able to:					
	CO1: Recognize various sources of subsurface contamination and waste management strategies					
	CO2: Dis	tinguish vari	ous contamina	ant transport i	nechanisms	s in soils
	CO3: Des	ign suitable	waste containi	ment facilitie	s	
	CO4: D contamina		minated site	es and Ex	ecute rem	ediation for
Contribution of		PO1	PO2	PO3	PO4	PO5
CourseOutcomestowardsachievement	CO1	Μ				L
of Program Outcomes (L – Low, M –	CO2	Μ				L
Medium, H – High)	CO3		Н			
	GQ4					
	CO4	Μ				Н
Course content	Unit – I					
			Geoenviron		0 0	Scope of of subsurface
						oncerns with
	waste, Waste management strategies Unit – II Soil-Contaminant interaction: Clay mineralogy; identification of clay minerals by X-ray diffraction method; Soil-water-contaminant interactions and its implications, Transport process, Mass-transfer process, Factors effecting retention and transport of contaminants, Modeling					
	Unit – III					
	Waste Containment System: Concept and Principles of waste					
	containment, Landfills, Types of landfills, Requirement of bar materials, Liners for landfills, Landfill Covers, Generation and Contro					
	· · · · · · · · · · · · · · · · · · ·	and Gas from				

	Unit – IV Contaminated Site Remediation: Need for contaminated site characterization, Characterization methods, Objectives of site remediation, various active and passive methods, remediation NAPL sites, Emerging Remediation Technologies
TEXT BOOKS	 Sharma, H.D., and Reddy, K.R., Geoenvironmental Engineering, John Wiley & Sons, Inc. 2004. Gulhati, S.K. and Datta M., Geotechnical Engineering, McGraw Hill, 2005.
REFERENCES:	 Rowe, R. K Geotechnical & Geoenvironmental Engineering Handbook, Kluwer Academic, 2001. Daniel, D.E., Geotechnical practice for waste disposal, Chapman and Hall, 1993.

19CEGT 2015 / A ---- FINITE ELEMENT METHODS IN GEOTECHNICAL ENGINEERING

Course Category: Programme Elective	Credits: 3
Course Type: Theory	Lecture Hours: 3Hrs/week
	Internal Assessment: 40
	External Assessment: 60
	Total: 100
	l otal:

Course Outcome	On success	ful complet	ion of the cou	urse, the stud	ent will be a	ble to:
	general an		nsition from	1		t analysis in g aspects to
	CO2: Gain experience of finite element analysis applied to classical geotechnical problems (e.g. settlement, seepage, consolidation, slope stability)					
	CO3: Understand the finite element techniques for seepage analysis and joint rock masses					
			ment technic shallow foun		n and Analy	rsis of bearing
Contribution of		PO1	PO2	PO3	PO4	PO5
Course Outcomes towards achievement	CO1				Н	
of Program Outcomes (L – Low, M -	СО2 Н					
Medium, H – High)	CO3				Н	
					Н	

Course content	 Unit – I Concepts of FEM, Steps involved in Finite Element Analysis Procedure, Merits and Demerits. Principles of Elasticity: Stress equations, Strain- Displacement relationships in matrix form, Plane stress, Plane strain and axi-symmetric bodies of revolution with axi-symmetric loading. Element Properties: Concept of an element, various element shapes, Displacement models, Generalized coordinates, Shape functions, Convergent and Compatibility requirements, Geometric invariance, Natural coordinate system - area and volume coordinates Generation of Element Stiffness and Nodal Load Matrices, Isoparametric Formulation: Concept, Different isoparametric elements for 2D analysis, formulation of 4-noded and 8-noded isoparametric quadrilateral elements, Lagrangian

	Unit – II Discretization of a structure, numbering systems, Aspect ratio its effects, Assemblage, Direct Stiffness method Strain laws: Introduction, Bilinear elastic model, K-G model, hyperbolic model, comparison of models and critical state model (geometric model, hardening law, yield function, flow rule, stress- strain invariant relation, stress-strain component relation, parametric values) with numerical examples
	Unit – III Geotechnical Applications Sequential construction, Excavations and embankments, Bearing capacity and Settlement analysis
	Unit – IV Geotechnical Applications: Seepage analysis: Finite element discretization of seepage equation, computation of velocities and flows, treatment of free surface boundary, Analysis of jointed rock mass: Characters and discontinuity of rock, model behavior of jointed rocks, plane strain analysis
TEXT BOOKS	1. Introduction to the Finite Element Method (1972), Desai, C. S. and J. Abel. Van Nostrand Reinhold Company
	 Finite element analysis in geotechnical engineering Vol 1&2, (1999) M Potts & L Zdravkovic, Thomas Telford publishing, London
	3. Finite element analysis in geotechnical engineering, D J Naylor & Pande (2012)
REFERENCES:	1 Introduction to the Finite Element Method (1993) J. N. Reddy - McGr Hill Publishers,
	2. Finite element analysis - Theory and programming (1994) Kris Murthy, C. STata McGrawHill,
	3. Finite element Methods (1971) Zienkiewicz, O. C, McGraw-Publishers,

19CEGT 2015 / B ---- REPAIR AND REHABILITATION OF STRUCTURES

Course Category: Programme Elective	Credits: 3
Course Type: Theory	Lecture Hours: 3Hrs/week
	Internal Assessment: 40
	External Assessment: 60
	Total: 100

Course Outcome	On successful completion of the course, the student will be able to:					
	CO1: understand design and construction errors					
	CO2: unders	stand Special	concretes and	d mortar, co	ncrete chem	icals etc
	CO3: understand Maintenance, repair and rehabilitation					
	CO4: understand Various Techniques of repair					
Contribution of		PO1	PO2	PO3	PO4	PO5
Course Outcomes towards achievement	CO1					L
of Program Outcomes (L - Low, M -	CO2 L					
Medium, H – High)	CO3					L
	CO4					L

Course content	Unit – I				
	Damage of Structures				
	Quality assurance for concrete construction as built concrete properti strength, permeability, thermal properties and cracking, Effects due climate, temperature, chemicals, wear and erosion, Design at construction errors, corrosion mechanism, Effects of cover thickness at cracking, methods of corrosion protection, corrosion inhibitors, corrosion resistant steels, coatings, cathodic protection				
	Unit – II Damage Assessment and Maintenance Strategies Assessment procedure for evaluating a damaged structure causes of deterioration - testing techniques. Definitions : Maintenance, repair and rehabilitation, Facets of Maintenance importance of Maintenance Preventive measures on various aspects Inspection,				
	Unit – III				
	Materials for repair:				
	Special concretes and mortar, concrete chemicals, special elements for				

	accelerated strength gain, Expansive cement, polymer concrete, sulphur infiltrated concrete, ferro cement, Fibre reinforced concrete. Rust eliminators and polymers coating for Rebars, foamed concrete
	Unit – IV Techniques for repair Mortar and dry pack, vacuum concrete, Gunite and Shotcrete Epoxy injection, Mortar repair for cracks. Repairs to overcome low member strength, Deflection. Chemical disruption, weathering wear, fire, leakage, marine exposure.
TEXT BOOKS	 Denison Campbell, Allen and Harold Roper, "Concrete Structures", Materials, Maintenance and Repair, Longman Scientific and Technical UK, 1991. 2.R.T.Allen and S.C.Edwards, "Repair of Concrete Structures", Blakie and Sons, UK, 1987
REFERENCES:	 Peter H Emmons, Concrete Repair and Maintenance Illustrated, R.S Means Company, Inc. Rafat Siddique, Special Structural Concretes, Galgotia Publications, 2000 C.P.W.D Handbook for Repair and Rehabilitation

19CEGT 2015/C CONSTRUCTION MANAGEMENT

Course Category: Programme Elective	Credits: 3
Course Type: Theory	Lecture Hours: 3Hrs/week
	Internal Assessment: 40
	External Assessment: 60
	Total: 100

Course Outcome	On successful completion of the course, the student will be able to: CO1 Understand various construction works and equipments CO2 Attain knowledge on risk management and on appropriate safety measures CO3 Understands concepts of quality, value engineering and human factors in construction CO4 Attain knowledge on role of Information technology relating to the civil engineering.					
Contribution of		DO1	DO1	PO3		DO5
Contribution of Course Outcomes towards achievement	CO1	PO1	PO2	105	PO4	PO5 L
of Program Outcomes (L - Low, M -	CO2					L
Medium, H – High)	CO3					L
	CO4					L
Course content	Unit – IIntroductionClassification of construction works; Various stages in the construction of a project.Construction equipmentIntroduction; Classification of construction equipment; Earthmoving equipment; Hauling equipment; Hoisting equipment; Conveying equipment; Aggregate and concrete production equipment; Pile driving equipment; Tunneling and drilling equipment; Pumping and dewatering equipment.Management of Construction Introduction; Management requirement; Need for mechanization; Financial aspects of construction plants and equipment; Factors affecting selection of construction equipment; Planning of construction equipment; Factors affecting the cost of owning and operating construction equipment; Planning of infrastructure for mechanization; Role of operations research; Equipment management.					

	Unit – II				
	Risk Management				
	Certainty, risk and uncertainty, risk management, identification and nature of construction risks, types of risks, minimizing risks and mitigating losses. Construction Safety Management Prevention of fires at construction sites, Fault Tree Analysis.				
	Unit – III Quality control in construction Importance of quality; Elements of quality- quality characteristics, design quality, quality of conformance; Organization for quality control;				
	Quality assurance techniques-Inspection, Testing, Sampling; Documentation; Quality control circles.				
	Human Factors in Construction Qualities of efficient construction managers; Personality; Ethics and integrity; Personal drive; Multi-disciplinary capability; Human relations Value Engineering				
	Definition of value engineering; Value engineering job plan; Life cycle costing; Value engineering Applications				
	Unit – IV Management Information Systems Introduction; Definition of organization; Definition of management; Definition of management information system; Computer as information system; Use of computer in construction industry; Requirements of management information system; A data base approach; Salient features of some software packages used in construction industry. Information Technology in Construction Industry Introduction; Information flow and communication; Knowledge data base; Learning organization attributes; Use of information technology in construction industry; Role of artificial intelligence and expert systems.				
TEXT BOOKS	1. Construction Engineering and Management by S.Seetharaman, Umesh Publications, 2014.				
REFERENCES:	1. Construction planning, Equipment and methods by R.L.Peurifoy, C.J.Schexnayder and Aviad Shaptra, McGraw-Hill, 2005.				
	2. Construction management by D.W.Halpin, Publisher : Wiley, 2005.				
	3. Project management in construction by S.M.Levy, McGraw-Hill Professional, 2006.				

19GT2051 – GEOSYNTHETICS AND ROCK MECHANICS- LAB

Course Category: Programme Core	Credits: 1.5
Course Type: Practical	Lecture Hours: 3Hrs/week
	Internal Assessment: 40
	External Assessment: 60
	Total: 100

Course Outcome	On successfu	On successful completion of the course, the student will be able to:				e to:	
	CO1: Prepa properties of		sample for	different T	ests and fin	d different	
	CO2: Prepare the Geosynthetics for different Tests						
	CO3: Able to determine the physical, mechanical and hydraulic properties of Geosynthetics						
Contribution of		PO1 PO2 PO3 PO4 PO5					
Course Outcomes towards achievement	CO1	Н				Н	
of Program Outcomes (L - Low, M -	CO2 H H						
Medium, H – High)	CO3	Н				Н	

Course content	1. Preparation of Rock Specimen (Drilling, Cutting, Polishing)
	2. Unconfined Compression Test
	3. Point Load Test
	4. Brazilian Test
	5. Slake Durability Test
	6. Mass per unit area and Thickness of Geosynthetic
	7. Compressibility of Geosynthetics and Tensile strength of
	Geosynthetics from CBR Test
	8. Dynamic Puncture Strength Test and Interface Shear Behavior of
	Soils with Geosynthetics
	9. Apparent Opening Size, Percent Open Area, In-Plane and Cross-
	Plane Permeability
	10. Gradient Ratio of Geotextiles

19CEGT 2052 – FIELD TESTING OF SOIL LAB

Course Category: Programme Core	Credits: 1.5
Course Type: Practical	Lecture Hours: 3Hrs/week
	Internal Assessment: 40
	External Assessment: 60
	Total: 100

Course Outcome	On Successful completion of the course, the student will be able to:						
	CO1: analyze the data from Augur boring						
	CO2: analyze the data from Plate load test						
	CO3: analyze the data from static and dynamic cone penetration tests						
	CO4: analyze the data from sub soil investigation tests						
Contribution of		PO1	PO2	PO3	PO4	PO5	
Course Outcomes towards achievement of Program Outcomes (L – Low, M – Medium, H – High)	CO1	Н				Н	
	CO2	Н				Н	
	CO3	Н				Н	
	CO4	Н				Н	

Course content	1.	Determination of field density of soil	
	2.	Field Investigation by Auger Boring	
	3.	Bored Pile installation in field	
	4.	Plate load test	
	5.	SPT test	
	6.	Static Cone Penetration test	
	7.	Dynamic cone Penetration test	
	8.	Electrical Resistivity Test	
	9.	Test for Cation Exchange Capacity	
	10.	Preparation of Soil test Repots	