Siddhartha Engineering College: Vijayawada-7

Electronics and Communications Engineering(ECE)

Scheme of Instruction and Examination-VR14

S.No	Sub. Code	Subject Title	L	Т	P	С	CE	SE	То
1	14MA1101	Linear Algebra and Dif-	4	1		4	30	70	100
		ferential Equations							
2	14PH1102	Engineering Physics	3	1		3	30	70	100
3	14CS1103	Introduction to Comput-	2			2	30	70	100
		ing							
4	14HS1104	Technical English and	2		2	2	30	70	100
		Communication Skills							
5	14EE1105	Basics of Electrical Engi-	2			2	30	70	100
		neering							
6	14ME1106	Basics of Mechanical En-	2			2	30	70	100
		gineering							
7	14PH1151	Engineering Physics Lab	2		6	5	30	70	100
8	14CS1152	Basic Computing Lab			3	2	30	70	100
9	14ME1153	Engineering Graphics			3	2	30	70	100
			17	2	14	24	270	630	900

Semester I

Semester II

S.No	Sub. Code	Subject Title	L	Т	P	С	CE	SE	То
1	14MA1201	Calculus	4	1		4	30	70	100
2	14CH1202	Engineering Chemistry	3	1		3	30	70	100
3	14CS1203	Programming in C	3	1		3	30	70	100
4	14CE1204	Basics of Civil Engineer-	2			2	30	70	100
		ing							
5	14HS1205	Professional Ethics	2			2	30	70	100
6	14EC1206	Basics of Electronics En-	2			2	30	70	100
		gineering							
7	14ME1207	Mechanics for Engineers	4	1		4	30	70	100
8	14CH1251	Engineering Chemistry			3	2	30	70	100
		Lab							
9	14CS1252	C Programming Lab			3	2	30	70	100
10	14ME1253	Workshop Practice			3	2	30	70	100
		·	20	4	9	26	300	700	1000

L-Lecture, T-Tutorial, P-Practical, C-Credits, CE-Continuous Evaluation, SE-Semester-end Evaluation, To-Total Marks

Velagapudi Ramakrishna Siddhartha Engineering Colleg

Siddhartha Engineering College: Vijayawada-7

Electronics and Communications Engineering(ECE)

Scheme of Instruction and Examination-VR14

Semester III

S.No	Sub. Code	Subject Title	L	Т	Р	С	CE	SE	То
1	14MA1301	Complex Analysis and	4	1		4	30	70	100
		Numerical Methods							
2	14EC3302	Electronic Devices	4			4	30	70	100
3	14EC3303	Network Theory	3	1		3	30	70	100
4	14EC3304	Digital Circuits and Sys-	4			4	30	70	100
		tems							
5	14EC3305	Signals and Systems	3	1		3	30	70	100
6	14EC3306	Electrical Technology	2			2	30	70	100
7	14EC3351	Electronic Devices and			3	2	30	70	100
		Digital Circuits Lab							
8	14EC3352	Electrical Technology Lab			3	2	30	70	100
9	14HS1353	Communication Skills				2	30	70	100
		Lab							
			20	3	6	26	270	630	900

				1					
		Digital Circuits Lab							
8	14EC3352	Electrical Technology Lab			3	2	30	70	100
9	14HS1353	Communication Skills				2	30	70	100
		Lab							
		•	20	3	6	26	270	630	900
		Semester I	V						
S.No	Sub. Code	Subject Title	L	Т	Р	С	CE	SE	То
1	14EC3401	Probability Theory and	4	1		4	30	70	100
		Random Processes							
2	14EC3402	Electronic Circuits	4			4	30	70	100
3	14EC3403	Electromagnetic Field	4	1		4	30	70	100
		Theory							
4	14HS1404	Environmental Studies	3			3	30	70	100
5	14EC3405	Computer Architecture and	3			3	30	70	100
		Organization							

L-Lecture, T-Tutorial, P-Practical, C-Credits, CE-Continuous Evaluation, SE-Semester-end Evaluation, To-Total Marks

Analog Communications

Analog Communications

Electronic Circuits Lab

Lab

14EC3406

14EC3451

14EC3452

Siddhartha Engineering College: Vijayawada-7

Electronics and Communications Engineering(ECE) Scheme of Instruction and Examination-VR14

		Semester	¥						
S.No	Sub. Code	Subject Title	L	Т	Р	С	CE	SE	То
1	14EC3501	Linear Control Systems	4			4	30	70	100
2	14EC3502	Pulse and Switching Cir-	3	1		3	30	70	100
		cuits							
3	14EC3503	Microprocessors and Mi-	3	1		3	30	70	100
		crocontrollers							
4	14EC3504	Digital Communications	3	1		3	30	70	100
5	14EC2505	Institutional Elective	4			4	30	70	100
6	14EC5506	Independent Learn-				2	30	70	100
		ing(MOOCS)							
7	14EC3507	Transmission lines and	3	1		3	30	70	100
		Wave guides							
8	14EC3551	Pulse and Switching Cir-			3	2	30	70	100
		cuits Lab							
9	14EC3552	Digital Communications			3	2	30	70	100
		Lab							
			20	4	6	26	270	630	900

0			x 7
Sei	mes	ter	v

	Schester vi								
S.No	Sub. Code	Subject Title	L	Т	Р	С	CE	SE	То
1	14EC3601	Linear Integrated Circuits	4			4	30	70	100
		and Applications							
2	14EC3602	Computer Networks	3			3	30	70	100
3	14EC3603	Antennas and Wave Propa-	3			3	30	70	100
		gation							
4	14EC3604	VLSI Design	4			4	30	70	100
5	14EC3605	Digital Signal Processing	3			3	30	70	100
6	14EC3651	Linear Integrated Circuits			3	2	30	70	100
		and Applications Lab							
7	14EC3652	VLSI Design Lab			3	2	30	70	100
8	14EC5653	Term Paper		1		2	30	70	100
	-		17	1	6	23	240	560	800

L-Lecture, T-Tutorial, P-Practical, C-Credits, CE-Continuous Evaluation, SE-Semester-end Evaluation, To-Total Marks

Semester VI

Siddhartha Engineering College: Vijayawada-7

Electronics and Communications Engineering(ECE) Scheme of Instruction and Examination-VR14

S.No	Sub. Code	Subject Title	L	Т	Р	С	CE	SE	То
1	14EC3701	Electronic Measure-	3			3	30	70	100
		ments and Instrumenta-							
		tion							
2	14EC3702	Cellular and Mobile	3			3	30	70	100
		Communications							
3	14EC3703	DSP Processors and Ar-	4			4	30	70	100
		chitectures							
4	14HS1704	Engineering Economics	3			3	30	70	100
		and Finance							
5	14EC4705	Program Elective I	4			3	30	70	100
6	14EC4706	Program Elective II	4			3	30	70	100
7	14EC3751	DSP Lab			3	2	30	70	100
8	14EC3752	Microprocessors and			3	2	30	70	100
		Microcontrollers Lab							
9	14EC6753 \	Internship							
	14EC6754	Industry Offered Course			2	2	-	100	100
10	14EC5755	Mini Project		1		2	30	70	100
			21	1	8	27	270	730	1000

Semester VII

Program Elective-I

14EC4705/1: Optical Communication

14EC4705/2: Satellite Communication

14EC4705/3: Digital Television

14EC4705/4: Adhoc Networks

14EC4706/5: Embedded Systems using RTOS

Program Elective-II

14EC4706/1: Speech Processing

14EC4706/2: Image Processing

14EC4706/3: Biomedical Signal Processing

14EC4706/4: Open

Siddhartha Engineering College: Vijayawada-7

Electronics and Communications Engineering(ECE) Scheme of Instruction and Examination-VR14

Semester vin									
S.No	Sub. Code	Subject Title	L	Т	Р	С	CE	SE	То
1	14EC3801	Microwave Engineering	4			4	30	70	100
2	14EC4802	Program Elective III	4			3	30	70	100
3	14EC4803	Program Elective IV	4			3	30	70	100
4	14EC3851	Microwave Engineering			3	2	30	70	100
		Lab							
5	14EC5852	Major Project		6	6	10	30	70	100
	•		12	6	9	22	150	350	500

Semester VIII

L-Lecture, T-Tutorial, P-Practical, C-Credits, CE-Continuous Evaluation, SE-Semester-end Evaluation, To-Total Marks

Program Elective-III

14EC4802/1: Semiconductor Device Modeling

14EC4802/2: Low power VLSI

14EC4802/3: Analog and Digital IC Design

14EC4802/4: Embedded Systems using Embedded Linux

Program Elective-IV

14EC4803/1: RADAR and Navigational Aids

14EC4803/2: Advanced wireless Communications

14EC4803/3: EMI & EMC

14EC4803/4: Industry Need Based

14MA1101: LINEAR ALGEBRA AND DIFFERENTIAL EQUATIONS

Course Category:	Institutional Core	Credits:	4
Course Type:	Theory	Lecture - Tutorial -Practice:	4 -1-0
Prerequisites:	Fundamentals of	Continuous Evaluation:	30
-	Matrices, Integration,	Semester end Evaluation:	70
	Differentiation.	Total Marks:	100

Course	Upon	succes	sful co	ompl	etion o	of the	cours	e, the	e stuc	lent v	will b	e able	to:
outcomes	CO1	Unde able	erstand to redu	l the	conce quadr	ept of atic f	eiger form to	valu o can	ues a onica	nd ei al for	igen v m.	vectors	s and
	CO2	Able appro	to sol	ve th met	e linea hods.	ar dif	ferenti	ial eq	uatio	ons b	y usir	ıg	
	CO3	Able Diffe	Able to form Partial Differential equations and solve Partial Differential equations.										
	CO4	Unde apply Trans	Understand the concepts of Laplace Transforms and able to apply to solve Differential Equations, Integral Equations by Transform method.										
Contribution of Course		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	PO j	PO k	PO 1
Outcomes towards	CO1	Н	L			Н						L	
achievement of Program	CO2	Н	М			Н						L	
Outcomes (L – Low,	CO3	Н	М			Н						L	
M - Medium, H – High)	CO4	Н	Н			Н						L	
Course	UNIT	I:											
Content	Linear Algebra: Rank of a Matrix, Elementary transformations, Inverse of a matrix (Gauss Jordan Method) Consistency of Linear System of Equations, Linear Transformations, Vectors, Eigen Values, Properties of Eigen Values, Cayley– Hamilton Theorem (Without Proof),Reduction to Diagonal Form, Reduction of quadratic form to canonical form Nature of a Quadratic Form Complex Matrices												
	UNIT	II:											
	Differ Equati	<mark>ential</mark> on, S	Equa olution	tion n of	s of F a D	F irst Differe	Orde ential	r: Fo Equ	rmat ation	ion (, Li	of a 1 near	Differe Equat	ential tions,

	Bernoulli's Equation, Exact Differential Equations, Equations Reducible to Exact Equations, Orthogonal Trajectories, Newton's Law of Cooling, Rate of Decay of Radio-Active Materials.							
	Linear Differential Equations of Higher Order: Definitions, Operator D, Rules for Finding the Complimentary Function, Inverse Operator, Rules for finding Particular Integral, Working Procedure to Solve the Equation.							
	UNIT III:							
	Linear Dependence of Solutions, Method of Variation of Parameters, Equations reducible to Linear Equations With Constant Coefficients: Cauchy's Homogeneous Linear Equation, Legendre's Linear equation, Simultaneous linear differential equations with constant coefficients.							
	Partial Differentiation : Total Derivative, Change of Variables, Jacobians.							
	Partial Differential Equations : Introduction, Formation of Partial Differential Equations, Solutions of a Partial Differential Equations, Equations Solvable by Direct Integration, Linear Equations of First Order.							
	UNIT – IV							
	Laplace Transforms: Introduction, Definition, Conditions for Existence, Transforms of Elementary Functions, Properties of Laplace Transforms, Transforms of Periodic Functions, Transforms of Derivatives, Transforms of Integrals, Multiplication by t ⁿ , Division by 't', Evaluation of Integrals by Laplace Transforms, Inverse Transforms, Method of Partial Fractions, Other Methods of Finding Inverse, Convolution Theorem, Application to Differential Equations, Unit Step and Unit Impulse Functions.							
Text books	Text Book:							
and Reference	1. B.S.Grewal, "Higher Engineering Mathematics", Khanna Publishers: 42 nd Edition 2012							
books	Reference Books:							
	 Kreyszig, "Advanced Engineering Mathematics", 8th Edition, John Wiley & Sons. Peter V.O.Neil, "Advanced Engineering Mathematics", 							
	 Thomson, Canada. 3. R.K.Jain and S.R.K.Iyengar, "Advanced Engineering Mathematics", 3rd Edition, Narosa Publishers. 							
	4. N.P.Bali, Manish Goyal, "A Text Book of Engineering							

	Mathematics", Laxmi Publications (P) Limited. 5. B.V.Ramana, "A text book of mathematics", Tata MC Graw Hill.
E-resources and other digital material	 mathworld.wolfram.com http://www.nptel.iitm.ac.in

14PH1102: ENGINEERING PHYSICS

Course Category:	Programme Core	Credits:	3
Course Type:	Theory	- Lecture - Tutorial Practice:	3 - 1 - 0
Prerequisites:		Continuous Evaluation: Semester end Evaluation: Total Marks:	30 70 100

Course outcomes	Upor to:	Upon successful completion of the course, the student will be able to:											
	CO1	Uno meo	Understand the differences between classical and quantum mechanics and learn about statistical mechanics										
	CO2	Una & d	Understand various properties and applications of magnetic & dielectric materials and the theory of super conductivity										
	CO3	Ana vari	alyse ious t	and ypes o	unde of lase	erstand ers & (d ser optica	nicon 1 fibe	ducto rs.	r te	chno	ology	and
	CO4	Uno nan	Understand the fabrication of nanomaterials, carbon nanotubes and their applications in various fields										
Contribution of Course Outcomes towards		PO a	PO t	PO c	PO d	PO e	POf	PO g	PO h	PO	POj	PO k	POl
	CO1	Н	М					М				L	L
of Program Outcomes	CO2	Н	М	L	М							М	Н
(L – Low, M – Medium, H –	CO3	Н		М	М							М	Н
High)	CO4	Н	М	L			L					М	Η
Course	UNI	T - I											
Content	Qua	ntum	n Me	chani	cs: D	Dual r	nature	of l	ight,	Mat	ter v	vaves	and
	Debi	oglie	e's hy	/-poth	esis,	G.P.T	homs	son e	xperir	nent	, He	isenbe	erg's
	unce	rtaint	y pr	rincipl	e an	d its	app	licatio	ons (Non	exi	stence	e of
	elect	ron i	n nuo	cleus,	Finit	e wid	th of	spect	tral li	nes),	Cla	ssical	and
	quan	tum	aspec	ets of	parti	cle, (One d	imen	sional	tim	e in	depen	dent
	Schr	oding	ger's	wave	e equ	ation	, phy	vsical	sign	ifica	ince	of v	vave

function, Particle in a box (One dimension).

Statistical Mechanics: Phase space, Differences between Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac statistics (qualitative), Fermi-Dirac probability function, Fermi energy level.

UNIT - II

Magnetic properties: Magnetic permeability, Magnetization, Origin of magnetic moment, Classification of magnetic materials dia, para, ferro magnetic materials, Hysteresis curve.

definitions: **Dielectric properties:** Fundamental Dielectric constant, Electric polarization, Polarizability, Polarization vector, Electric displacement, Electric susceptibility, Types of Electronic, Polarization: Ionic, Orientation, Space charge polarization, Internal fields in solids (Lorentz method), Clausius-Mossotti equations, Frequency dependence of polarization, Ferroelectrics and their applications.

Superconductivity: Introduction, Critical parameters, Flux quantization, Meissner effect, Types of Superconductors, BCS theory, Cooper pairs, London's equation-penetration depth, high temperature super conductors, Applications of superconductors.

UNIT - III

Semiconductor Physics: Classification of materials based on energy diagram, Fermi level in Intrinsic and extrinsic semiconductors ,Carrier drift and Carrier diffusion, Generation and recombination process (qualitative), Hall Effect.

Lasers: Spontaneous emission, Stimulated emission, Population inversion, Solid state (Ruby) laser, Gas (He-Ne) laser, Semiconductor (Ga-As) laser, Applications of lasers.

Fiber optics: Propagation of light through optical fiber, Types of optical fibers, Numerical aperture, Fiber optics in communication and its advantages.

	UNIT - IV
	Nanotechnology: Basic concepts of Nanotechnology, Nano scale,
	Introduction to nano materials, Surface to volume ratio, General
	properties of Nano materials, Fabrication of nano materials: Plasma
	Arcing, Sol-gel, Chemical vapour deposition, Characterization of
	nano materials: AFM, SEM, TEM, STM, MRFM, Carbon nano
	tubes: SWNT, MWNT, Formation of carbon nano tubes: Arc
	discharge, Laser ablation, Properties of carbon nano tubes,
	Applications of CNT's & Nanotechnology.
Text books	Text Book:
and	1. M.N. Avadhanulu & P.G. Kshirsagar, "A text of Engineering
books	Physics", S. Chand publications.
	2. P.K. Palanisamy, "Applied Physics", Scitech Publishers.
	Reference Books:
	1. R.K.Gaur and S.L.Gupta, "Engineering Physics", Dhanpatrai
	publishers.
	2. S.O. Pillai, "Solid State Physics", New age international
	publishers.
	3. M.R. Srinivasan, "Engineering Physics", New age
	international publishers.
	4. M.Armugam, "Engineering Physics", Anuradha publishers.
E-resources	1. http://www.light and matter.com/bk4.pdf
and other	2. http://www.ifw-
material	resden.de/institutes/itf/members/helmut/sc1.pdf
	3. http://www.microscopy.ethz.ch/history.htm
	4. http://nptel.ac.in/courses.php?disciplineId=115
	5. http://aph.huji.ac.il/courses/2008 9/83887/index.html
	6. http://freevideolectures.com/Course/3048/Physics-of-
	Materials/36

14CS1103: INTRODUCTION TO COMPUTING

Course Category:	Institutional Core	Credits:	2
Course Type:	Theory	Lecture - Tutorial -Practice:	2 - 0 - 0
Prerequisites:		Continuous Evaluation: Semester end Evaluation: Total Marks:	30 70 100

Course	Upon successful completion of the course, the student will be able to:												
outcomes	CO1	Unde	rstand	d the c	change	es in l	nardwa	are and	l softw	are co	mpone	ents.	
	CO2	Unde	Understand the concept of operating system and its functionalities.										
	CO3	Unde trans	Understand types of networks and most common ways of transmitting data via networks and internet.										
	CO4	Ident by us	Identify the ways in which a program can work towards a solution by using some processes and tools.										
	CO5	Deve and le	lop a ogica	lgoritl l prob	hms a lems	nd pr	epare	flow c	charts 1	to simj	ple ma	athem	atics
Contribution of Course		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	PO j	PO k	PO 1
Outcomes towards	CO1	L	М										
achievement of Program	CO2	М											
Outcomes	CO3	М	L	L		M							
(L – Low, M - Medium, H – High)	CO4		L			L							
	CO5	М	М	L		L							
Course	UNIT	- I						1			-		
Content	Explo	ring C	omp	uters	and t	heir u	ises: (Overvi	ew: Co	ompute	ers in	our w	orld,
	The c	comput	er de	fined	, Con	npute	rs for	indiv	ridual	users,	Com	puters	for
	organi	izations	s, Co	mput	ers in	soci	ety, V	Why a	re cor	nputer	s so	impor	tant.
	Looki	ing ins	ide t	he co	mput	ter sy	stem	Overv	view: I	Detecti	ng th	e ulti	mate
	ma-ch	ine, T	he pa	arts o	faco	ompu	ter sy	stem,	The in	nforma	tion 1	proces	ssing
	cycle,	Essen	tial co	ompu	ter ha	rdwai	e: pro	ocessir	ng devi	ices, n	nemor	y dev	ices,
	Storag	ge devi	ces,	Syste	m sof	tware	, App	olicatio	on soft	ware,	Comp	outer	data,

Computer users.

Input and Output devices: Overview: Input devices and output devices, various types of input/output devices.

UNIT - II

Transforming data into information: Overview: The difference between data and information, How computers represent data, How computers process data, Machine cycles, Memory, Factors effecting processing speed, The computer's internal clock, The Bus, Cache memory.

Types of storage devices: Overview: An ever-growing need, Categorizing storage devices, Magnetic storage devices-How data is stored on a disk, How data is organized on a magnetic disk, How the operating system finds data on a disk, Diskettes, hard disks, Removable high-capacity magnetic disks, Tape drives, Optical storage devices, Solid-state storage devices, Smart cards, Solid-state disks.

Operating systems basics: Overview, The purpose of operating systems, Types of operating systems, Providing a user interface.

Networking Basics: Overview, Sharing data anywhere, anytime, The uses of a network, Common types of networks, Hybrid networks, How networks are structured, Network topologies and protocols, Network media, Network hardware.

UNIT - III

Data Communications: Overview, The local and global reach of networks, Data communications with standard telephone lines and modems, Modems, uses for a modem, Using digital data connections, Broad band connections, Wireless net-works.

Productivity Software: Overview: Software to accomplish the work of life, Acquiring software, Commercial software, Freeware and public domain software, Open-source software, Word processing programs, Spreadsheet programs, Presentation programs, Presenting information managers.

	Database management Systems: Overview, The mother of all computer
	applications, Databases and Database Management Systems, Flat-File and
	Relational Database Structure, DBMS, Working with a database.
	UNIT – IV
	Programming languages and the programming process: Overview, The
	keys to successful programming, The evolution of programming languages,
	World wide web development languages, The Systems development life
	cycle for programming.
	Creating Computer programs: Overview: What is a computer program,
	Hard-ware/Software interaction, Code, machine code, programming
	languages, Compilers and interpreters, planning a computer program, How
	programs solve problems, Purpose of flowcharts and algorithms, flow chart
	symbols, drawing flow charts, developing algorithms.
Text books	Textbooks
and Reference	1. Peter Norton, "Introduction to Computers", 6 th Edition, Tata McGraw Hill.
DUUKS	2. Reema Thareja, "Computer Fundamentals and C Programming".
E-resources and other digital	1. Lecture Series on Computer Organization by Prof. S. Raman, Department of ComputerScienceandEngineering,IITMadras https://www.youtube.com/watch?v=leWKvuZVUE8
material	 Lecture Series on Data Communication by Prof.A. Pal, Department of ComputerScienceEngineering,IITKharagpur. https://www.youtube.com/watch?v=sG6WGvzmVaw

14HS1104: TECHNICAL ENGLISH AND COMMUNICATION SKILLS

Course Category:	Programme Core	Credits:	2
Course Type:	Theory	Lecture - Tutorial -	2 - 0 - 2
		Practice:	
Prerequisites:	Basic understanding of the	Continuous Evaluation:	30
	language skills ,viz	Semester end Evaluation:	70
	Listening, Speaking, Reading	Total Marks:	100
	and Writing, including		
	Sentence construction		
	abilities		

Course outcomes	Upon	Upon successful completion of the course, the student will be able to:											
	CO1	Be p skill	Be proficient in administrative and professional compilation skills including web related communication										
	CO2	Atta to st	Attain practice in Interpersonal Communication, in addition to standard patterns of Pronunciation										
	CO3	Be auth prof	Be aware of the elements of Functional English for authentic use of language in any given academic and/or professional environment										
	CO4	Enh	Enhance Reading skills, along with a wide range of Vocabulary										
	CO5	Acquire competence in Technical communication skills											
Contribution of Course		POa	POb	POc	POd	POe	POf	POg	POh	PO i	POj	POk	PO 1
Outcomes towards	CO1						Н	М	Н	М	Н	М	М
achievement of	CO2						Н	Н	Н	M	Н	М	М
Program Outcomes (L – Low, M – Medium, H – High)	CO3	М				L	Н	М	Н	М	Н	Н	М
	CO4				М	L	Н	Η	Н	М	Н	М	М
	CO5	L	L	L	L	L	Н	Η	Н	М	Н	Н	M

Course Content	UNIT - I: Professional Writing Skills								
	1. Professional Letters-Business, Complaint, Explanation and Transmittal								
	2. Essay Writing-Descriptive, Reflective and Analytical								
	3. Administrative drafting and correspondence - Memos, Minutes and Web notes								
	UNIT - II: Interpersonal Communication Skills								
	<u>Communicative Facet</u> - Speech acts- Extending Invitation, Reciprocation, Acceptance, Concurrence and Disagreeing without being disagreeable								
	<u>Articulation-oriented Facet</u> - Phonetic Transcription using IPA symbols with Vowel and Consonant charts - Word Stress.								
	UNIT - III: Vocabulary and Functional English								
	1. A basic List of 500 words - Overview								
	2. Verbal Analogies, Confusables, Idiomatic expressions and Phrasal Collocations.								
	 Exposure through Reading Comprehension- Skimming, Scanning, Understanding the textual patterns for tackling different kinds of questions and Taming Regression. 								
	4. Functional Grammar with special reference to Concord, Prepositions and Pronoun - referent analysis.								
	 UNIT - IV: Technical Communication Skills 1. Technical Proposal Writing 2. Technical Vocabulary- a representative collection will be handled 								
	3. Developing Abstract								
	4. Introduction to Executive summary								
	5. Technical Report writing(Informational Reports and Feasibility Reports)								
Text books and	Textbooks								
Reference books	1. TM Farhathullah, "Communication Skills for Technical Students",								
	I Edition Orient Longman, 2002.								
	 Krishna, "English Language Communication Skills", I Edition Duvvuri Publications, 2008 								

	 B.S. Sarma, "Structural Patterns & Usage in English" Poosha Series, 4th edition, 2008.
	4. Eclectic Learning materials offered by the Department
	Reference Books
	1. Randolph Quirk, "Use of English", Longman, I Edition(1968) Reprinted.
	 Thomson A.J & A.V.Martinet ,"Practical English Grammar", III Edition Oxford University Press, 2001.
	 Thomas Eliot Berry, "The most common Mistakes in English", TMH, First Paperback 1971(Reprint) 2010.
	4. John Langan, "College Writing Skills", McGraw Hill,9 th 2004.
	5. Selinkar, Larry et al., "English for Academic and Technical Purposes", I Edition Newbury House Publishers, 1981.
	 Martin Cutts, "Oxford guide to Plain English" 7th Impression Oxford University Press, 2011.
	7. J.Sethi and P.V. Dhamija, "A course in Phonetics and spoken English", II Edition PHI, 2006.
E-resources and other digital	1. www.britishcouncil.org/learning-english-gateway.htm up dated 2014
material	 pdfstuff.blogspot.com/2013//the-oxford-guide-to-english-usage- pdf.ht.
	3. www.cambridgeapps.org/ up dated 2014

14EE1105: BASICS OF ELECTRICAL ENGINEERING

Course Category:	Institutional Core	Credits:	2
Course Type:	Theory	Lecture - Tutorial -Practice:	2-0-0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon successful completion of the course, the student will be able to:												
	CO1	Ana	lyze D	D.C ci	rcuit i	n stea	dy sta	te.					
	CO2	Und	erstan	d the	basic	conce	pts of	Elect	romag	gnetis	m.		
	CO3	Analyze 1-ph a .c. circuits in steady state.											
	CO4	Und	Understand measuring instruments & domestic wiring.										
Contribution of Course		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	PO j	PO k	PO 1
Outcomes towards	CO1	М			М			a					
achievement of Program Outcomes (L – Low, M - Medium.	CO2	М			М			М					
	CO3	L						М					
H – High)	CO4	L						М					
Course Content	UNIT D.C. Ohm's divisio laws a resisti voltag UNIT Electr Magno densit AC ex Circui	 UNIT - I D.C. Circuits: Definitions:- charge, current, voltage power, energy;. Ohm's law and its limitation; Resistances in series, parallel, current division in parallel and voltage division in series circuits; Kirchhoff's laws and its applications; Analysis of series, parallel and series-parallel resistive, inductive and capacitive circuits excited by independent voltage sources; Power and Energy in such circuits. UNIT - II Electromagnetism: Concept of magnetic circuits, Reluctance, Magnetic field due to steady electric current, Magnetic flux, Flux density and magnetic field intensity, Interaction of currents and fields, AC excitation of magnetic circuit, B-H curve, Calculation of Magnetic 							gy;. rent off's allel dent nce, Flux elds, netic law,				
	Flemin of self	ng's ru , mutu	ules; S ual inc	Statica luctan	ally and and a construction of the second se	ld Dyi d coef	namic ficier	ally in t of c	nduce ouplir	d E.M ng; Co	I.F.'s	; Con d circ	cept uits;

	Energy stored in magnetic field.						
	UNIT - III Single Phase A.C Circuits: Generation of sinusoidal AC voltage; Definition of average value, R.M.S value, form factor, peak factor; Concept of Phase and phase difference of sinusoidal varying voltage and current; Phasor representation of alternating quantities; Definition of real power, reactive power, apparent power and power factor.						
	UNIT - IV Measuring Instruments and Domestic Wiring: Classification of instruments; Principal of operation; Operating torques in indicating instruments; Classification of meters; Errors in meters; Power rating for appliances; Two-way position control of a lamp. Elementary discussion on fuses; Necessity and types of earthing; Electric shock and precautions against it.						
Text books	Textbooks						
and Reference books	1. I.J.Nagrath and Kothari, "Theory and Problems of Basic Electrical Engi-neering", Prentice-Hall of India Pvt. Ltd.						
	2. Dr. K. Uma Rao, Dr. A. Jayalakshmi, "Basic Electric Engineering", Pearson Publications.						
	3. T.K. Nagasarkar and M.S. Sukhja, "Basic Electric Engineering", Oxford University press.						
	Reference Books						
	1. U.A.Bakshi, V.U.Bakshi, "Basic Electrical Engineering", Technical Publications.						
E-resources	1. http://www.textbooksonline.tn.nic.in/books/11/stdxi-voc-ema-em-						
digital material	1.pdf 2. http://nptel.ac.in/courses/108108076/						

14ME1106: BASICS OF MECHANICAL ENGINEERING

Course Category:	Institutional Core	Credits:	2
Course Type:	Theory	Lecture - Tutorial -Practice:	2 - 0 - 0
Prerequisites:	Knowledge of	Continuous Evaluation:	30
	Mathematics,	Semester end Evaluation:	70
	Physics, Chemistry	Total Marks:	100
	at Intermediate		
	Level		

Course	Upon successful completion of the course, the student will be able to:													
outcomes	CO1	Unde transi	erstanc missic	the n in r	bas necha	ic m nical o	anufa engino	cturin eering	g me	ethods	s and	d po	wer	
	CO2	Attain basic knowledge of simple stress and strains.												
	CO3	Reali energ	ze the y.	e impo	ortanc	e of e	nergy	and	identi	fy var	tious :	source	es of	
	CO4	4 Understand the principle of operation of different IC engines and their applications.												
	CO5	Desc: syste	Describe the performance of different types of refrigeration ystems											
Contribution		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	PO j	PO k	PO 1	
of Course Outcomes	CO1	Н			М			М						
towards	CO2	Н			Μ	Н								
of Program	CO3	Н			Н									
Outcomes	CO4	Н			Н			Н						
M - Medium, H – High)	CO5	Н			М			М						
Course Content	UNIT Manu	- I Ifactu	ring N	/letho	ds:			1	1	1	1		1	
	CAST castin	FING: g, gre	- Prin en sar	ciples d mor	s of a uld.	casting	g, A	dvant	ages	and a	applic	ations	s of	
	LAT on a I	HE: D Lathe (1	LATHE: Description, Main components, Basic operations performed on a Lathe (turning, thread cutting, taper turning, drilling)								ons p	erforr	ned	

	WELDING: Types, Equipments, Principles of Gas welding and Arc Welding, Applications, Advantages & disadvantages of welding, Brazing and soldering.
	UNIT - II
	Simple STRESS and STRAIN: Stress and Strain Elasticity and Hook's Law-Relations between elastic constants.
	POWER TRANSMISSION: Belt Drives :- Introduction, Types, Length of open belt drive and cross belt drive, velocity ratio and difference between Open belt drive and cross belt drive, power transmitted by belt.
	UNIT - III
	ENERGY RESOURCES:
	Conventional Energy Resources:- Energy scenario ,types of sources , working principle of steam power plant , nuclear power plant.
	Non-Conventional Energy Resources: Working principle of solar power plant, wind power plant, Geo-thermal and OTEC power plant.
	UNIT - IV
	INTERNAL COMBUSTION ENGINES: Classification, Main components of I.C. Engine, Working principle of Two stroke and four stroke petrol, engine and diesel engine.
	REFRIGERATION: Types of refrigeration, Unit of refrigeration, COP, Working of vapour compression Refrigeration system, applications.
Text books	Textbooks
and Reference books	 T S Rajan, "Basic Mechanical engineering", 3rd Edition, New Age International Ltd., First Reprint 1999.
	 R.S Khurmi , J.K . Gupta , "Machine Design", Eurasia publications House, 2005.
	3. T.J.Prabhu, V.Jaiganesh, S.Jebaroj, "Basic Mechanical Engineering", SCI Tech Publications (India) Pvt. Ltd.

	Reference Books:
	 R Rudramoorthy, "Thermal Engineering", 4th Reprint, 2006 ,Tata McGraw-Hill publishing Company Ltd., New Delhi.
	2. R.K . Rajput, "Manufacturing process", FireWall media, 2007.
	3. P.K.Nag, "Power Plant Engineering", Tata McGraw-Hill Publishing company Ltd., New Delhi, 2011.
E-resources and other digital	 www.engliblogger.com/mechanical/mechan www.indiastudychannel.com/resources www.result.khatana.net/2010/07/ge2152
material	4. www.scribd.com/doc/15653381/basic-mech

14PH1151: ENGINEERING PHYSICS LAB

Course Category:	Institutional Core	Credits:	2
Course Type:	Practical	Lecture - Tutorial -Practice:	0 - 0 - 3
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon successful completion of the course, the student will be able to:										:0:		
	CO1 Elucidate the concepts of physics through involvement in experiment by applying theoretical knowledge								in the				
	CO2 Illustrate the basics of electro magnetism, optics, mechanics, and semi-conductors & quantum theory							s, and					
	CO3	Dev expe	evelop an ability to apply the knowledge of physics operiments in the later studies									hysics	
Contribution of Course Outcomes		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	PO j	PO k	PO 1
towards achievement	CO1			Н	Н								М
of Program Outcomes	CO2		М			M							
M - Medium, H – High)	CO3			Н									М
Course	LIST	OF E	XPE	RIMI	ENTS								
Content	1. <i>I</i>	AC So	nome	eter -V	/erific	ation	of vil	orating	g laws	5.			
	2. N	Measu	reme	nt of t	hickn	ess of	a foi	lusing	g wed	ge me	ethod.		
	3. I	 Photo tube-Study of V-I Characteristics, determination of work func-tion. 											
	4. 1	Forsio	nal Pe	endul	um-Ri	igidity	y mod	ulus c	alcul	ation.			
	5. Variation of magnetic field along the axis of a current carrying circular coil.								rrying				
	6. (Comp	ound	pendu	ılum-N	Measu	ireme	nt of ³	ġ.				
	7. I	LCR c	ircuit	-Reso	nance								
	8. 5	Solar o	cell -I	Detern	ninatio	on of	Fill F	actor.					
	9. I	Hall et	ffect -	Study	of B	& I V	/ariati	on.					

	10. Fibre Optics-Numerical aperture calculation.
	11. Newton's Rings-Radius of curvature of plano convex lens.
	12. Diffraction grating-Measurement of wavelength.
	13. Lissajous figures- calibration of an audio oscillator.
	14. B-H curves- determination of hysteresis loss.
	15. Figure of merit of a galvanometer.
Text books	Text Book:
and Reference books	 Indu Prakash & Rama Krishna, "A text book of practical physics", Vol 1,Kitab Mahal Publishers, Allahabad, 25th edition, 2003.
	 J.C.Mohanty & D.K.Mishra ,Kalyani, "University Practical Physics by Publishers", Delhi , First Edition, 1990.
	3. D.P.Khandelwal, "A laboratory manual of Physics", Vani educational books, Delhi First Edition, 1991
	 Dr.Y.Aparna & Dr.K.Venkateswara Rao, "Laboratory manual of engineering physics, VGS Publications, Vijayawada, First Edition 2010.
E-resources	1. http://plato.stanford.edu/entries/physics-experiment/
and other	2. http://www.physicsclassroom.com/The-Laboratory
material	3. http://facstaff.cbu.edu/~jvarrian/physlabs.html

14CS1152: BASIC COMPUTING LAB

Course Category:	Institutional Core	Credits:	2
Course Type:	Practical	Lecture - Tutorial -Practice:	0 - 0 - 3
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon successful completion of the course, the student will be able to:												
outcomes	CO1	Unc con	lersta npone	nd t ents.	he o	chang	es in	n ha	ardwa	re a	nd s	softwa	are
	CO2	Und fun	Inderstand the concept of operating system and its functionalities.										
	CO3	Un trar	Understand types of networks and most common ways of transmitting data via networks and internet.										
	CO4 Identify the ways in which a program can work towards a solution by using some processes and tools.								s a				
	CO5	Dev mat	Develop algorithms and prepare flow charts to simple nathematics and logical problems										
Contributio		PO	PO	PO	PO	РО	PO	PO	PO	РО	PO	PO	PO
n of Course		a	b	c	d	e	f	g	h	i	j	k	1
Outcomes towards	CO1	L	М										
achievement	CO2	M											
of Program	CO3	М	L	L		М							
Outcomes (L – Low,	CO4		L			L							
M-Medium, H – High)	CO5	М	М	L		L							

Course Content	CYCLE - I : Word Processing, Presentations and Spread Sheets										
Content	1. Word Processing:										
	(a) Create personal letter using MS Word.(b) Create a resume using MS Word.										
	2. Spread Sheets:										
	(a) Create a worksheet containing pay details of the employees.(b) Create a worksheet which contains student results.										
	(c) Create a worksheet importing data from database and calculate sum of all the columns.										
	3. Presentations:										
	i. Create a presentation using themes.ii. Save, edit, print and import images/videos to a presentation.iii. Adding animation to a presentation.										
	 4. MS Access: i. Create simple table in MS Access for results processing. ii. Create a query table for the results processing table. iii. Create a form to update/modify the results processing table. 										
	iv. Create a report to print the result sheet and marks card for the result.										
	CYCLE - II: Hardware Experiments										
	1. Identification of System Layout: Front panel indicators & switches and Front side & rear side connectors. Familiarize the computer system Layout: Marking positions of SMPS, Motherboard, FDD, HDD, CD, DVD and add on cards. Install Hard Disk. Configure CMOS-Setup. Partition and Format Hard Disk.										
	2. Install and Configure a DVD Writer or a Blu-ray Disc writer.										
	3. Install windows operating system and check if all the device (graph-ics, sound, network etc.) drivers are installed.										
	4. Install Linux operating system and check the working of all devices (graphics, sound, network etc.) in the computer.										
	5. Assemble a Pentium IV or Pentium Dual Core Pentium Core2 Duo system with necessary peripherals and check the working condition of the PC.										
	6. PC system layout: Draw a Computer system layout and Mark the po-sitions of SMPS, Mother Board, FDD, HDD, and CD-										

	Drive/DVD-Drive add on cards in table top / tower model systems.
	7. Mother Board Layout: Draw the layout of Pentium IV or Pentium Dual core or Pentium Core2 DUO mother board and mark Processor, Chip set ICs. RAM, Cache, cooling fan, I/O slots and I/O ports and various jumper settings.
	8. Configure BIOS setup program to change standard and advanced settings to troubleshoot typical problems.
	9. Install and configure Printer/Scanner/Web cam/Cell phone/bio-metric device with system. Troubleshoot the problems
	CYCLE - III
	 Prepare an Ethernet/UTP cable to connect a computer to network switch. Crimp the 4 pair cable with RJ45 connector and with appro-priate color code. Manually configure TCP/IP parameters (Host IP, Subnet Mask and Default Gateway) for a computer and verify them using IPCONFIG command. Test connectivity to a server system using PING com-mand.
	 Creating a shared folder in the computer and connecting to that folder using Universal Naming Convention (UNC) format. (Ex: computername sharename)
	4. Configure a computer to connect to internet (using college internet settings) and troubleshoot the problems using PING, TRACERT and NETSTAT commands.
	 Using scan disk, disk cleanup, disk Defragmenter, Virus Detection and Rectifying Software to troubleshoot typical computer problems.
	6. Configure DNS to establish interconnection between systems and describe how a name is mapped to IP Address.
E-resources and other digital material	1. Prof.P.B.Sunil Kumar, "Numerical Methods and Programing", Department of Physics, IIT Madras https://www.youtube.com/watch?v=zjyR9eN1D4&list=PLC5DC6 AD60D798FB7
	2. Introduction to Coding Concepts, Instructor: Mitchell Peabody. View the complete course: http://ocw.mit.edu/6-00SCS11

14ME1153: ENGINEERING GRAPHICS

Course Category:	Institutional Core	Credits:	5
Course Type:	Theory & Practical	Lecture - Tutorial -Practice:	2-0-6
Prerequisites:	-	Continuous Evaluation:	30 70
		Total Marks:	100

Course	Upon successful completion of the course, the student will be able to:													
outcomes	CO1	Rej	presei	nt vari	ious C	Conics	and (Curve	s.					
	CO2	Co	nstruc	et Plai	n and	Diag	onal S	scales	•					
	CO3	Dra	Draw Orthographic projections of Lines, Planes, and Solids.											
	CO4	Cor	Construct Isometric Scale, Isometric Projections and Views and also convert Pictorial views to Orthographic Projections.											
	CO5	Dra	Draw Sectional views of the Solids.											
	CO6	Un	Jnderstand Development of surfaces and their representation.											
Contributio		PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	
n of Course		a	b	c	d	e	f	g	h	i	j	k	1	
Outcomes towards achievement	CO1	Н		Н				Н						
	CO2	Н		Н				Н						
of Program Outcomes	CO3	H		Н				Н						
(L – Low,	CO4	Н		Н				H						
H – High)	CO5	M		M				M						
	CO6	M		M				M						
Course Content	UNIT Gene letters Geom Scale Section parab Curv circle	$\Gamma - I$ ral: s, D netric s: C ons: ola a es: C	Use Dimensi cal Co onstru conic nd hy Curves	of D sionin nstruc action secti perbo s usec	rawin lg, R ctions and ons - la. Sp l in E	g ins epres use o gene becial angine	trume entation of plateral commethor methor ering	ents, l on o iin an onstru ods fo pract	Letter f van d dia action r coni ice -	ing - rious gonal meth c sect Cyclo	Sing type scale od fo ions. iid, In	le str line es. Co r ellij voluto	roke s - onic pse, e of	

-

UNIT - I	Ι
----------	---

	 Method of Projections: Principles of projection - First angle projection and third angle projection of points and straight lines. Projection of Planes: Projections of planes of regular geometrical lamina. * Introduction to Auto CAD * Introduction to Auto CAD software, drawing different two dimensional and three dimensional views. * 2 D Objects: Triangles, Square, Rectangle, Pentagon, Hexagon, Circle and Ellipse.
	UNIT - III
	Projections of Solids: Projections of simple solids such as Cubes, Prisms, Pyramids, Cylinders and Cones - axis inclined to one of the reference plane. Sections of Solids: Sections of solids such as Cubes, Prisms, Pyramids, Cylinders and Cones. True shapes of sections. (Limited to the Section Planes perpendicular to one of the Principal Plane).
	 * 3 D Objects: Prisms, Pyramids, Cylinder and a Cone. * Sectional view of a Prism, Pyramid, Cylinder and a Cone in simple positions
	UNIT - IV
	Development of Surfaces: Lateral development of cut sections of Cubes, Prisms, Pyramids, Cylinders and Cones.
	Isometric Projections: Isometric Projection and conversion of Orthographic Projections into isometric views. (Treatment is limited to simple objects only). Introduction to Isometric Projections to Orthographic Projections.
	 * Isometric View of Prism, Pyramid, Cylinder and a Cone and also simple 3 Dimensional Objects. * These topics are only for internal assessment.
Text books and Reference	Textbooks 1. N.D. Bhatt & V.M. Panchal, "Elementary Engineering Drawing" Charotar Publishing House, Anand, 49 th Edition, 2006.

books	 DM Kulkarni, AP Rastogi, AK Sarkar, "Engineering Graphics with Auto CAD", PHI Learning Private Limited, Delhi. Edition, 2013.
	 Reference Books 1. Prof. K. L. Narayana & Prof. P. Kannaiah, "Text Book on Engineering Drawing", Scitech publications (India) Pvt. Ltd., Chennai 2nd Edition, fifth reprint, 2006. 2. K. Venugopal, "Engineering Drawing and Graphics + Auto CAD", New Age International, New Delhi.
E-resources and other digital material	 http://www.youtube.com/watch?v=XCWJ_XrkWco <u>http://www.me.umn.edu/courses/me2011/handouts/drawing</u> /<u>blanco</u> tutorial.html# isodrawing http://www.slideshare.net http://edpstuff.blogspot.in

14MA1201: CALCULUS

Course Category:	Institutional Core	Credits:	4
Course Type:	Theory	Lecture - Tutorial -Practice:	4 -1-0
Prerequisites:	Fundamentals of calculus,	Continuous Evaluation:	30
	vectors and geometry.	Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upor	Upon successful completion of the course, the student will be able to:												
	CO1	Un to	derst expar	and t id fu	he conctio	oncep ns as	t of n Taylo	nean y ors sei	value ries ai	theore	ems and ermine	d apply curvat	them ures.	
	CO2	Ab cui	Able to test the convergence of infinite series, tracing of the curves											
	CO3	Un eva	Understand the concept of multiple integrals and apply them to evaluate areas and volumes.											
	CO4	Ap est int	ply t ablish egrals	he co 1 the 3.	once e rel	pts of ation	f calc betw	ulus t reen	to sca the li	lar an ne, su	d vecto Irface	or field and v	ds and olume	
Contributio		PO	РО	PO	PO	РО	РО	РО	PO	РО	РО	РО	РО	
n of Course		a	b	c	d	e	f	g	h	i	j	k	1	
Outcomes	CO1	H			М	М						L		
towards					М	N						т		
achievement	CO2	Н			IVI	IVI								
of Program	CO3	Н			М	М						L		

Outcomes (L – Low, M -Medium, H – High)	CO4	Η			Μ	М						L		
Course	UNIT - I													
Content	Differential Calculus: Rolle's Theorem, Lagrange's Mean Va													
	Theo	Theo-rem, Cauchy's Mean Value Theorem, Taylors Theorem,												
	Macl	Maclaurins Se-ries, Taylor's Theorem for Function of Two												
	Varia	Variables, Curvature, Radius of Curvature.												
	UNI	UNIT - II												
	Asyn	Asymptotes, Curve Tracing, Maxima and Minima of Functions of Two												
	Varia	bles	, Lag	range	e's N	/letho	d of u	ndete	rmine	ed Mul	tipliers	5.		
	Sequ	ence	e and	Ser	ies:	Conv	ergen	ce of	serie	es - Co	omparis	son tes	t - D'	
	Alem	bert	's Ra	tio te	est - (Caucł	ny's R	loot T	est -	Alterna	ating se	eries		
	Abso	olute	conv	erge	nce ·	- Leib	onitz's	Rule						
	 UNIT - III Integral Calculus: Double Integrals, Change of Order of Integration, Double Integrals in Polar Coordinates, Area Enclosed by Plane Curves, Triple Integrals, Volumes of Solids, Change of Variables. Special Functions: Beta Function, Gamma Function, Relation between Beta and Gamma Functions, Error Function or Probability Integral. UNIT - IV Vector Calculus: Scalar and Vector Point Functions, Del Applied to Scalar point Functions, Gradient, Del Applied to Vector point Functions, Phys-ical Interpretation of Divergence, Del Applied Twice to Point Functions, Del Applied to Products of Point Functions, Integration of Vectors, Line Integral, Surface Integrals, Green's Theorem in The Plane (without Proof), Stokes's Theorem (without proof), Volume Integral, Gauss Divergence Theorem (without proof), Irrotational Fields. 											ration, Curves, elation ability		
												ied to point Twice tions, reen's ithout roof),		
Text books	Text	booł	KS											
and Reference books	1.	B. Ec	S.Gre dition	ewal, , Kha	anna	Higho Publ	er E ishers	Engine ; 2012	eering 2.	g Ma	themat	tics",	42 th	
	Ketei	renc	е во(JKS										

	 Krezig, "Advanced Engineering Mathematics" 8th Edition, John Wiley & Sons.
	2. Peter V.O.Neil, "Advanced Engineering Mathematics", Thomson, Canada.
	3. R.K.Jain and S.R.K.Iyengar, "Advanced Engineering Mathematics", 3 rd Edition, Narosa Publishers.
	 N.P.Bali, Manish Goyal, "A Text Book of Engineering Mathematics", Laxmi Publications(P) Limited.
	5. B.V.Ramana, "A text book of mathematics", Tata MC Graw Hill.
E-resources	1. mathworld.wolfram.com
and other digital material	2. http://www.nptel.iitm.ac.in

14CH1202: ENGINEERING CHEMISTRY

Course Category:	Institutional Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3 - 1 - 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	Upon successful completion of the course, the student will be able to:											
	CO1	An	alyze	varic	ous wa	ater tro	eatme	nt me	thods	and b	oiler	troub	les.
	CO2	Ap prin che	ply the nciple mical	e kno of e and	owled electro other	ge of odes a engin	differ and b eering	ent pl atterie g area	hases es anc s.	in ma 1 thei	terials r app	s, woi licatio	rking on in
	CO3	Eva and che	valuate corrosion processes as well as protection methods and apply the principles of UV-visible spectroscopy in memical analysis.										
	CO4	Ap app con	ply the lications plic	e kno on in tion	owled n tec	ge of hnolo	naturo gical	e of po field	olyme s and	eric m l of	ateria fuels	ls for for	their their
Contribution		PO	PO b	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
of Course		a		c	d	e	f	g	h	i	j	k	1
Outcomes towards achievement of Program	CO1		Н										
	CO2	M											

Outcomes (L – Low, M -Medium,	CO3			Н				
H – High)	CO4		Μ					

Course Content

Water technology-I: Sources and impurities of water, WHO standards - Water treatment for drinking purpose - sedimentation, coagulation, filtration, various methods of disinfection and concept of break-point chlorination - Desalination of brakish water - principle and process of electrodialysis and reverse osmosis. **Water technology-II:** Boiler troubles - scales, sludges, caustic embrittlement and boiler corrosion - causes, disadvantages and prevention, Internal condition-ing methods - phosphate, calgon and sodium aluminate - External treatment methods - zeolite and ion-exchange methods.

UNIT - II

UNIT - I

Phase rule: Concept of phase, component, degree of freedom, Gibb's phase rule definition - phase equilibrium of one component - water system - phase equilibrium of two - component system - sodium chloride-water system and silver-lead system - advantages, limitations and application of phase rule. **Electrochemistry:** Calomel electrode, silver-silver chloride electrode and glass electrode, determination of pH using glass electrode - Electrochemical energy systems - Zinc-air battery, Lead-acid battery, Ni-Cd battery, Li_xC/LiCoO₂ battery Advantages of lithium batteries.

UNIT - III

Corrosion science: Introduction - chemical and electrochemical corrosion - electrochemical theory of corrosion - corrosion due to dissimilar metals, galvanic series - differential aeration corrosion - cathodic protection, anodic protection, corrosion inhibitors - types and mechanism of inhibition - principle and process of electroplating and

	electroless plating.	
	Instrumental techniques of analysis: Introduction of spectroscopy - interaction of electromagnetic radiation with matter - UV-visible spectroscopy: Frank-Condon principle - types of electronic transitions. Lambert-Beer's law, numericals (simple substitution) - Instrumentation - single beam UV-visible spectrophotometer - applications-qualitative analysis, quantitative analysis, detection of impurities and determination of molecular weight. UNIT - IV	
	Polymer technology: Polymerization - Addition and condensation, thermo-plastics and thermo settings - conducting polymers - examples, classification-intrinsically conducting polymers and extrinsically conducting polymers- mechanism of conduction of undoped, p-doped and n-doped polyacetylenes- applications of conducting polymers, Fibre reinforced plastics (FRP) - composition and applications.	
	Fuel technology: Fuels - classification, calorific value, coal - proximate analysis and ultimate analysis, Petroleum - refining, concept of knocking, octane number and cetane number, flue gas analysis by Orsat's apparatus and numericals based on combustion.	
Text books and Reference books	 Textbooks 1. P.C. Jain, "Engineering Chemistry", 15th edition, Dhanpat Rai Publishing Company (P) Limited, New Delhi. Reference Books: 	
	 S.S. Dara, "A text book of Engineering Chemistry", 10th edition, S. Chand & Company Limited, New Delhi. Shashi Chawla, "A text book of Engineering Chemistry", Dhanpat Rai & Company Pvt. Ltd., New Delhi. Sunita Rattan, "A Textbook of Engineering Chemistry", First edition 2012, S.K. Kataria & Sons, New Delhi. 	
	4. B.S. Bahl, G. D. Tuli and Arun Bahl, "Essentials of Physical Chemistry", S. Chand and Company Limited, New Delhi.	14 CS
---	---	-----------------------------------
	5. Y.Anjaneyulu, K. Chandrasekhar and Valli Manickam, "Text book of Analytical Chemistry", Pharma Book Syndicate, Hyderabad.	12 03: PR
	6. O. G. Palanna, "Engineering Chemistry", Tata McGraw Hill Education Pvt. Ltd., New Delhi.	O G
E-resources and other digital material	 http://www.cip.ukcentre.com/steam.htm http://corrosion-doctors.org/Modi;es/mod-basics.htm http://chemwiki.ucdavis.edu/Analytical Chemistry.htm http://teaching.shu.ac.uk/hwb/chemistry/tutorials/molspec/uvvis abl.htm http://www.prenhall.com/settle/chapters/ch15.pdf 	R A M MI N G IN

С

Course Category:	Institutional Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3-1-0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succe	ssful	comp	letion	ofth	e cou	rse, th	e stu	dent v	vill be	e able	to:
	CO1	Und vari prot	lerstai ous c olems	nd th -tokei	ne pro	ogran d inp	nming ut-out	tern put s	ninolo tatem	ogy a ents t	and i to sol	mplei ve sii	ment mple
	CO2	Con appl	npare y the	vario best l	ous lo oopin	oopin 1g stru	g and	d bra for a	nchin given	g con prob	nstruc lem.	ts an	d
	CO3	Imp hom	lemer logen	nt a eous a	rrays and he	an eterog	d st eneou	tructu 1s gro	res/ur ups of	nions f data	for	sto	oring
	CO4	Imp loca	lemer tions	nt pro and fi	grams le ope	s usin eration	g poi 1s.	nters	to dir	ectly	acces	s mer	nory
	CO5	Ider vari	ntify tl ous fu	he neo inctio	cessity n type	y of m es.	odula	arity in	n prog	gramn	ning a	ind de	esign
Contribution		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	PO j	РО	PO 1
of Course												k	
Outcomes	CO1	M											

towards achievement of Program Outcomes CO2 M														
achievement CO3 M Image: CO3 M Image: CO3 M Image: CO3 M Image: CO3 Ima	towards	CO2		M			М							
Outcomes (L – Low, M - Medium, H – High) CO3 L M M M Course Content UNIT - I Structure of a C Program: Expressions, Precedence and Associatively, Evaluating Expressions, Type Conversion, Statements, Sample Programs. Selection: Logical Data and Operators, Two -Way Selection, Multiway Selection, More Standard Functions. UNIT - II Repetition: Concept of a Loop, Loops In C, Loop Examples, Recursion, The Calculator Program. Arrays: Concepts, Using Array in C, Inter-Function Communication, Array Applications, Two Dimensional Arrays, Multidimensional Arrays. Functions: Functions in C, User Defined Functions, Inter Function Communication, Standard Functions, Scope. Strings: String Concepts, C Strings, String Input/Output Functions, Arrays of Strings, String Manipulation Functions, String- Data Conversion. UNIT - III Pointers: Introduction, Pointers For Inter Function Communications, Arrays of Strings, String Manipulation Functions, String- Data Conversion. UNIT - III Pointers: Introduction, Pointers For Inter Function Communications, Pointers to Pointers, Compatibility, L value and R value. Pointers: Introduction, Pointers, Pointer Arithmetic and Arrays, Passing an Array to a Function, Memory Allocations Functions, Array Of Pointers. Text Input/Output: Files, Streams, Standard Library Input/Output Functions, Formatting Input/Output Functions and Character Input/Output Functions. UNIT - IV Enumeration: Type Operations on Enumerated Types; Declaring an Enumerated Type, Operations on Enumerated Types; Enumeration Type Conversion, Initializing Enumerated Constants, Anon	achievement of Program	CO3		M										
(L - Low, M - Medium, H - High) CO5 L M M M Course Content UNIT - I Structure of a C Program: Expressions, Precedence and Associatively, Evaluating Expressions, Type Conversion, Statements, Sample Programs. Selection: Logical Data and Operators, Two -Way Selection, Multiway Selection, More Standard Functions. UNIT - II Repetition: Concept of a Loop, Loops In C, Loop Examples, Recursion, The Calculator Program. Arrays: Concepts, Using Array in C, Inter-Function Communication, Array Applications, Two Dimensional Arrays, Multidimensional Arrays. Functions: Functions in C, User Defined Functions, Inter Function Communication, Standard Functions, Scope. Strings: String Concepts, C Strings, String Input/Output Functions, Arrays of Strings, String Manipulation Functions, String- Data Conversion. UNIT - III Pointers: Introduction, Pointers For Inter Function Communications, Pointers to Pointers, Compatibility, L value and R value. Pointer Applications: Arrays and Pointers, Pointer Arithmetic and Arrays, Passing an Array to a Function, Memory Allocations Functions, Formatting Input/Output Functions and Character Input/Output Files, Streams, Standard Library Input/Output Functions, Formatting Input/Output Functions and Character Input/Output Functions. UNIT - IV Enumeration: The Type Definition (Typedef), Enumerated Types; Declaring an Enumerated Type, Operations on Enumerated Types; Enumeration: Type Conversion, Initializing Enumerated Constants, Anonymous Enumeration: Constants, Input/Output Operators. Structures: Operations, Sending the Whole Structure, Passing Structures	Outcomes	CO4	L											
Course ContentUNIT - IStructure of a C Program: Expressions, Precedence and Associatively, Evaluating Expressions, Type Conversion, Statements, Sample Programs. Selection: Logical Data and Operators, Two -Way Selection, Multiway Selection, More Standard Functions.UNIT - IIRepetition: Concept of a Loop, Loops In C, Loop Examples, Recursion, The Calculator Program. Arrays: Concepts, Using Array in C, Inter-Function Communication, Arrays. Functions: Functions in C, User Defined Functions, Inter Function Communication, Standard Functions, Scope. Strings: String Concepts, C Strings, String Input/Output Functions, Arrays of Strings, String Manipulation Functions, String- Data Conversion.UNIT - IIIPointers: Introduction, Pointers For Inter Function Communications, Pointers to Pointers, Compatibility, L value and R value. Pointers to Pointers, Compatibility, L value and R value.Pointers, Passing an Array to a Function, Memory Allocations Functions, Formatting Input/Output Functions and Character Input/Output Functions.UNIT - IV Enumerations: The Type Definition (Typedef), Enumerated Types: Declaring an Enumerated Type, Operations on Enumerated Types; Enumeration Type Conversion, Initializing Enumerated Constants, Anonymous Enumeration: Constants, Input/Output Operators.	(L – Low, M - Medium, H – High)	CO5	L	M			М							
ContentStructure of a C Program: Expressions, Precedence and Associatively, Evaluating Expressions, Type Conversion, Statements, Sample Programs. Selection: Logical Data and Operators, Two -Way Selection, Multiway Selection, More Standard Functions.UNIT - IIRepetition: Concept of a Loop, Loops In C, Loop Examples, Recursion, The Calculator Program. Arrays: Concepts, Using Array in C, Inter-Function Communication, Arrays: Functions, Two Dimensional Arrays, Multidimensional Arrays: Functions: Functions in C, User Defined Functions, Inter Function Communication, Standard Functions, Scope. Strings: String Concepts, C Strings, String Input/Output Functions, Arrays of Strings, String Manipulation Functions, String- Data Conversion.UNIT - IIIPointers: Introduction, Pointers For Inter Function Communications, Pointers to Pointers, Compatibility, L value and R value. Pointers to Pointers. Text Input/Output: Files, Streams, Standard Library Input/Output Functions, Formatting Input/Output Functions. UNIT - IV Enumerations: The Type Definition (Typedef), Enumerated Types; Declaring an Enumerated Type, Operations on Enumerated Types; Structures, Operations on Structures, Complex Structures, Structures and Functions, Sending the Whole Structure, Passing Structures	Course	UNIT	- I				,,		1			-		,
 UNIT - III Pointers: Introduction, Pointers For Inter Function Communications, Pointers to Pointers, Compatibility, L value and R value. Pointer Applications: Arrays and Pointers, Pointer Arithmetic and Arrays, Passing an Array to a Function, Memory Allocations Functions, Array Of Pointers. Text Input/Output: Files, Streams, Standard Library Input/Output Functions, Formatting Input/Output Functions and Character Input/Output Functions. UNIT - IV Enumerations: The Type Definition (Typedef), Enumerated Types: Declaring an Enumerated Type, Operations on Enumerated Types, Enumeration Type Conversion, Initializing Enumerated Constants, Anonymous Enumeration: Constants, Input/Output Operators. Structures: Structure Type Declaration, Initialization, Accessing Structures, Operations on Structures, Complex Structures, Structures and Functions, Sending the Whole Structure, Passing Structures 	Content	Struc Assoc Staten Select Multiv UNIT Repe Recur Array Array Functi String Array Conve	ture iative nents, ion: way S - II tition sion, vs: Co App s. Fu ion Co gs: St s of ersion	of ely, Sam Log Select The C Dicat Concepolicat omm tring String	a C Eva ple F ical ion, 1 once Calcu ots, U ions, Unica Cono ngs,	C Pro Iluating Program Data More S Ilator F Ising A Two Function, S cepts, S String	gram: g Ex ns. and C tandar da Loo Program tray in Dime ons in tandar C Stri Man	Express Coperated Function op, 1 n. n C, ension C, red Function ngs, hipula	kpres sions ators, inctic Loop Inter mal User inctic Strir ation	sions, s, T Two ons. s In -Func Array Defi ons, So ng Inp Funo	Pre ype C, L tion C rs, M ned I cope. out/Ou ctions	ceden Con ay So oop Comm fultidi Functi itput	ce a versio electio Exam nunica mens ons, Funct ing-	nd on, on, ples, ttion, ional Inter ions, Data
Through Pointers		Pointe Pointe Pointe Array: Functi Text Functi Input/ UNIT Enum Declai Enum Anony Struct and F	ers: I ers to er Aj s, Pa ions, Inputions, Outputions, Outputions, erations ring a eration ymoutions tures ures, Function	ntrod Point pplica ssing Array t/Out For ut Fur on E on Ty s Enu : Str Oper ions,	The number of the total the the the the the the the the the the	on, Poin Compa S: Arr Array Pointer Files, ing In ns. Type erated Conver ation: C re Typ ns on S ding t	nters F tibility ays an y to s. Strea nput/O Defini Type, rsion, Consta be De Structu he W	For Ir 7, L v ad Pc a Fu ms, outpu ition Ope Initia nts, I eclara ires, hole	nter I value ointer uncti- Stand t F (Typeratio alizir input ation, Com	Function and R rs, Porton, N dard I unction bedef) ns on og En /Output Inition plex Sucture	on Co valu inter Aemo Librar ns a , Enu umer ut Op alizat Struct , Pas	ommu e. Arithi ry A y Inp and merat ated erator ion, ures, sing	nicati netic llocat ut/Ou Chara ed Ty const s. Acces Struc Struc	ons, and ions atput acter ypes: ypes, cants, ssing tures tures

	Internet Address, Programming Applications.
Text books and Reference books	 Textbooks 1. Behrouz A. Forouzan & Richard F. Gilberg, "Computer Science A Structured Programming Approach using C", Third Edition, CENGAGE Learning.
	 Reference Book Balagurusamy, "Programming in ANSI" C4ed.: TMH, 2009 B. Gottfried, "Programming with C" (Schaum's Outlines) Tata Mcgraw-Hill. Kernighan and Ritchie, "The C programming language", Prentice Hall. Venugopal, et al., "Programming with C", TMH. A.S.Tanenbaum, Y. Langsam, and M.J. Augenstein, "Data Structures Using C", PHI/Pearson education.
E-resources and other digital material	

14CE1204: BASICS OF CIVIL ENGINEERING

Course Category:	Institutional Core	Credits:	2
Course Type:	Theory	Lecture - Tutorial -Practice:	2 - 0 - 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succe	ssful o	comp	letion	of th	e cou	rse, tł	ne stu	dent v	will b	e able	e to:
	CO1	Attai civil	n bas engin	sic kr eering	nowle g stru	dge cture	on ci s.	vil ei	ngine	ering	mate	erials	and
	CO2	Attai a bui	n basi Iding.	ic kno	owled	ge on	sub-	struct	ure ar	nd suj	per st	ructu	re of
	CO3	Attai surve	n bas eying	sic kr and v	nowle ariou	dge (s type	on pr es of t	incip] ransp	les of ortati	f va on sy	rious stems	type s.	s of
	CO4	Attai	n basi	ic kno	owled	ge on	wate	r supj	ply, se	ewage	e.		
Contribution of Course		PO	PO h	PO	PO d	PO	PO f	PO o	PO h	PO i	PO i	PO k	PO 1
UI COUISC		a	U		u		1	B	11	1	J	ĸ	1

Outcomes	CO1	Н											
achievement of Program	CO2	Н											
Outcomes	CO3	Н											
(L – Low, M -Medium, H – High)	CO4	Н											
Course	UNIT	' - I	1		,	1			,			,	
Content	Build Bricks classif Timbe proper proper	ing M s - co fication er - j rties -u rties -u rties us	ateri mpos n of prope uses. S uses ses.	als: 1 ition rocks rties Steel - - m	Introc - cla s - q -uses - type arket	luctio assific uarry s -pl s - m form	n - (cation ing - ywoc ild ste is. Co	Civil is - p dres od. C ceel - n oncret	Engir proper ssing Cemen nediu te - §	neerin ties - pro t gra m ste grade	ng - 1 -uses. operti ades el - ha desig	Mater Stories -u -type ard st gnatic	ials: ne - ises. es - eel - on –
	UNIT	- II											
	Build compo capac marbl	ing Co onents ity. Flo e - terr	ompo Foi ooring azzo	nents undat g - rec floori	s: Bui ions juiren ings. l	ilding -func nents Roof	; - sel ctions - sele - type	lection - c ection es and	n of s classif - type requi	ite - icatic es - co ireme	classi ons - ement nts.	ficati bea t cond	on - tring crete
	UNIT	- III											
	Surve classif cross Railw functi compo	eying fication sectio ay - ons.	And n - pr n an cross Water . Brid	Tr incip d cor sect way ge - c	ansp les of mpon tion y - compo	ortat surv ents and dock	ion: rey. T of ro comp s an s of b	Surv Fransp Dad - Donent d ha ridge.	veying ortati class cs of rbor	g - on - sifica pern - cla	obje classi tion naner assifie	ective ficati of ro nt wa catior	s - on - oads. ay - as -
	UNIT	- IV											
	Wate site - object distrib tank -	r Supp types ive - c oution compo	oly A -gra juanti system	nd Se avity ty of m. Se s and	ewage dam water wage funct	e Disj (cro - sou - cla ions.	oosal ss se urces ssific	: Dam ection - star ation	ns - pr only ndards - tecl	urpos y). W s of di nnical	e - se Vater rinkir l term	lectio supp ng wa ns - se	n of ly - ter - eptic
Text books	Textb	ooks											
and Reference	1. Ra	ju .K.V yappa	V.B, I Publ	Ravic icatio	handr ns, Cl	an .P	.T, "E 11, 201	Basics	of Ci	ivil E	ngine	ering	",

books	2. Rangwala .S.C," Engineering Materials", Charotar Publishing House, Anand, 2012.
	3. M.S.Palanichamy, "Basic Civil Engineering, Tata McGraw- Hill Publishing Company limited.
	Reference Books
	 Dr. K.N. Duggal, "Elements of Environmental Engineering", S. Chand and company LTD. Ram Nagar, New Delhi.
	2. R.Srinivaas, Chartor Publishing House, Arand, 2012
E-resources and other digital material	 ncees.org/exmas/fe-exma/ www.aboutcivil.com/

14HS1205: PROFESSIONAL ETHICS

Course	Institutional Core	Credits:	2
Category:			
Course Type:	Theory	Lecture - Tutorial -Practice:	2-0-0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon to:	succ	essfu	l con	nplet	ion o	f the	cours	se, th	e stuc	lent w	vill be	able
	CO1	Kn	ow th	e mo	ral a	uton	omy	and u	ses o	f ethic	cal the	eories	
	CO2	Un	dersta	ind m	noral	s, Ho	nest	y & c	harac	eter.			
	CO3	Un	dersta	and a	bout	safet	y, ris	sk and	l prot	fessio	nal rig	ghts.	
	CO4	Kno Env	ow vironr	the nent,	Eth Con	nics npute	reg ers &	arding weap	g (pon's	ilobal deve	Iss lopme	sues ent.	like
Contribution		PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
of Course		a	b	c	d	e	f	g	h	1	J	k	
towards	CO1	M											
achievement	CO2							M					
Of Program Outcomes	CO3												M
(L – Low, M -Medium, H – High)	CO4	М											
Course Content	UNIT Engin moral auton contro action theori UNIT Huma Ethic Livin Valui	F - I neeri issue owers overs n - S es . r - II an V - Se g Pe ng T	ng En les - - Koł y - M Self-in Zalues ervice acefu Time	thics typ ilberg lodel nteres s: M Lea lly - Co	: Ser es c g's th s of st - orals rning car -ope	nses of in neory Profe cust s, Va g - C ing ration	of 'E quiry - Gi essio oms llues Llues Livic - Sh n - (Engine 7 - r illigan nal R and and Virtu aring Comn	eering noral n's th oles relig Ethio 1e - 1 - H nitme	g Ethi dile eory - thec ion- cs - l Respe lonest ent -E	ics' - mmas - cons ories a uses Integr ect for cy - (Empati	varie s - n sensus ibout of et ity- V r Oth Coura hy -	ty of noral and right hical Work ers - ige - Self-

	Confidence - Character - Spirituality .
	UNIT - III
	 Engineering as Social Experimentation: Engineering as experimentation - engineers as responsible experimenters - codes of ethics - a balanced outlook on law - the challenger case study, Safety, Responsibilities and Rights: Safety and risk - assessment of safety and risk - risk benefit analysis and reducing risk - the three mile island and chernobyl case studies. Collegiality and loyalty - respect for authority - collective bargaining - confidentiality - conflicts of interest - oc- cupational crime - professional rights - employee rights - Intellectual Property Rights (IPR) - discrimination. UNIT - IV Global Issues: Multinational corporations- Environmental ethics-computer ethics - weapons development - engineers as managers-consulting engineers-engineers as expert witnesses and advisors - moral leadership-sample code of Ethics (Specific to a particular Engineering Discipline).
Text books	Textbooks
and Reference	1. Mike Martin and Roland Schinzinger, "Ethics in engineering", McGraw Hill, New York, 1996.
books	 Govindarajan M, Natarajan S, Senthil Kumar V. S., "Engineering Ethics", Prentice Hall of India, New Delhi, 2004.
	Reference Books:
	 Baum, R.J. and Flores, A., eds., "Ethical Problems in Engineer-ing, Center for the studyof the Human Dimensions ofScience and Tech-nology", Rensellae Polytechnic Institute, Troy, New York, 335 pp, 1978.
	 Beabout, G.R., Wennemann, D.J., "Applied Professional Ethics: A Developmental Approach for Use with Case Studies", University Press of America Lanham, MD, 175 pp, 1994.
E-resources and other digital material	

Course Category:	Institutional Core	Credits:	2
Course Type:	Theory	Lecture - Tutorial -Practice:	2 - 0 - 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	Upon successful completion of the course, the student will be able to:												
outcomes	CO1	Gain comp	kno onen	owled ts, dev	ge a vices, 1	bout transd	the ucers	func	lamen	itals	of	electr	onic	
	CO2	Und	Understand and apply principles of digital electronics											
	CO3	O3 Get familiarity about basic communication systems												
Contributio n of Course		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	PO j	PO k	PO 1	
Outcomes towards	CO1	L												
achievement of Program Outcomes (L – Low, M -Medium, H – High)	CO2	М												
	CO3	L												
Course Content	UNIT ELEC capac uses). SEM of Sen diode photo UNIT TRA classi transc and ac	 UNIT - I ELECTRONIC COMPONENTS: Passive components - resistors capacitors & inductors (properties, common types, I-V relationship an uses). SEMICONDUCTOR DEVICES: Semiconductor Devices - Overview of Semiconductors - basic principle, operation and characteristics of Ph diode, zener diode, BJT, JFET, optoelectronic devices (LDR photodiode, photo-transistor, solar cell, photocouplers). UNIT - II TRANSDUCERS: Transducers - Instrumentation - general aspects, classification of transducers, basic requirements of transducers, passive transducers - strain gauge, thermistor, Hall-Effect transducer, LVDT, and active transducers - piezoelectric and thermocouple. 										ors, and iew PN DR, cts, ive DT,		
	DIGI	TAL	ELEC	CTRO	NICS	5: Nui	nber	syster	ns - b	inary	code	s - lo	gic	

	gates - Boolean algebra, laws & theorems - simplification of Boolean expression - implementation of Boolean expressions using logic gates - standard forms of Boolean expression.										
	UNIT - IV										
	COMMUNICATION SYSTEMS: Block diagram of a basic communication system - frequency spectrum - need for modulation - methods of modulation - principles of AM, FM, pulse analog and pulse digital modulation - AM / FM transmitters & receivers (block diagram description only).										
Text books	Textbooks										
and Reference books	1. Thyagarajan. T, Sendur Chelvi. K. P, Rangaswamy. T. R, "Engineering Basics: Electrical, Electronics and Computer Engineering", New Age International, Third Edition, 2007.										
	2. Thomas L. Floyd, "Digital Fundamentals", 10 th Edition, Pearson Education, 2013.										
	3. G.K.Mithal, "Radio Engineering", 20 th Edition, Khanna Publishers, , 2011.										
	REFERENCES:										
	1. Somanathan Nair. B, Deepa. S. R, "Basic Electronics", I.K. International Pvt. Ltd., 2009.										
	 S. Salivahanan, N.Suresh Kumar & A. Vallavaraj, "Electronic Devices & Circuits", 2nd Edition, Tata Mc Graw Hill, 2008. 										
E-resources	1. http://www.nptel.ac.in/courses/Webcourse-contents/IIT-										
digital material	 http://nptel.ac.in/video.php?subjectId=117102059 										

14ME1207: MECHANICS FOR ENGINEERS

Course Category:	Institutional Core	Credits:	4
Course Type:	Theory	Lecture - Tutorial -Practice:	4 -1- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon to:	Upon successful completion of the course, the student will be able to:											
	CO1	Con equi	Construct free body diagrams and develop appropriate equilibrium equations.										
	CO2	Loc mor	Locate centroids and simplify the system of forces and moments to equivalent systems. Analyze systems with friction. Determine the kinematic relations of particles.									and	
	CO3	Ana											
	CO4	Dete											
	CO5	App	oly ec	quatio	ons o	of mo	tions	to par	ticle 1	notio	n.		
	CO6	Ana and	nalyze motion of particles using the principle of energy nd momentum methods.										
Contribution		PO	PO	PO	PO	PO	РО	РО	РО	PO	PO	РО	PO
of Course		a	b	c	d	e	f	g	h	i	j	k	1
Outcomes towards	CO1	Н				M							
achievement	CO2	Н											
of Program Outcomes	CO3					Н							
(L – Low,	CO4	Н											
M -Medium,	CO5	M				Н							
11 – 111gil)	CO6					Н							
Course	UNIT] - I	1	1	1	1		1		1			
Content	CON	CUR	REN	TF	ORC	CES	IN A	PLA	NE :]	Princi	ples	of sta	tics,
	Force	, Add	lition	of t	wo 1	orce	s: Par	allelo	gram	Law	- Co	mpos T	111011
	and re	esolut	.ion (01 10	rces	- 00	istrai	nt, Ac		ina K	eacti	on. 1	ypes
	ot sup	oports	and	supp	oort 1	eacti	ons, i	tree b	ody d	iagrai	m, Ec	juilibi	rium
	of co	ncurre	ent fo	orces	in a	plar	ne - N	1ethoo	d of F	rojec	tions	-Moi	nent

of a force, Theorem of Varignon, Method of moments.

PARALLEL FORCES IN A PLANE: Introduction, Types of parallel forces, Resultant, Couple, Resolution of Force into force and a couple, General case of parallel forces in a plane.

CENTROIDS: Determination of centroids by integration method, Centroids of composite plane figures.

UNIT - II

GENERAL CASE OF FORCES IN A PLANE: Composition of forces in a plane - Equilibrium of forces in a plane.

FRICTION: Introduction, Classification of friction, Laws of dry friction, Co-efficient of friction, Angle of friction, Angle of repose, Cone of friction, Wedge friction. **KINEMATICS OF RECTILINEAR TRANSLATION:** Introduction, displacement, velocity and acceleration, Motion with Uniform acceleration.

UNIT - III

KINETICS OF RECTILINEAR TRANSLATION: Equations of rectilinear motion, Dynamic Equilibrium: D'Alembert's Principle. Work and Energy Principle, Conservation of energy principle, Impulse and Momentum principle, Impact-Direct central Impact.

UNIT - IV

and

KINEMATICS OF CURVILINEAR MOTION: Introduction,
rectangular Components of velocity & acceleration, Normal and
Tangential acceleration, Motion of projectiles KINETICS OF
CURVILINEAR TRANSLATION: D'Alembert's Principle in
curvilinear motion: Rectangular components, Normal & tangential
components, Work & Energy Principle.Text booksTextbooks

1. S.Timoshenko, D.H.Young, J.V.Rao & Suku-mar Pati,

Reference	"Engineering Mechanics", Fifth Edition, Mc Graw Hill									
books	Education (India) Pvt Ltd., 2013. (For Concepts and symbolic									
	Problems using S.I.System of Units).									
	2. A.K.Tayal, "Engineering Mechanics Statics and dynamics", 13 th									
	Edition, Umesh Publication, Delhi, 2006. (For numerical									
	Problems using S.I.System of Units).									
	Reference Books:									
	1. Beer and John-ston, "Vector Mechanics for Engineers Statics									
	and Dynamics" 3 rd SI Metric Edition, Reprint 2010, Tata									
	McGraw Hill Publishing Company, New Delhi.									
	2. SS Bhavikatti and KG Rajasekharappa , "Engineering									
	Mechanics", 4 th Edition, 2012, New Age International Private									
	Limited.									
	3. K.Vijaya Kumar Reddy and J Suresh Kumar, "Singer's									
	Engineering Mechanics Statics and Dynamics", 3rd Edition									
	2010, SI Units-BS Publications.									
E-resources	1. http://openlibrary.org/books/OL22136590M/Basic_engineeri									
and other	ng_mechanics									
digital	2. http://en.wikibooks.org/wiki/Engineering_Mechanics									
material	3. http://nptel.iitm.ac.in/video.php?courseID=1048									
	4. http://imechanica.org/node/1551									
	5. http://emweb.unl.edu/									

14CH1251: ENGINEERING CHEMISTRY LAB

Course Category:	Institutional Core	Credits:	2
Course Type:	Practical	Lecture - Tutorial -Practice:	0 - 0 - 3
Prerequisites:	Knowledge of Chemistry	Continuous Evaluation:	30
	Practicals at Intermediate	Semester end Evaluation:	70
	level	Total Marks:	100

Course outcomes	Upon	Upon successful completion of the course, the student will be able to:											
	CO1	Analyze quality parameters of water samples from different sources.											
	CO2	Perform quantitative analysis using instrumental methods.											
	CO3	Apply the knowledge of mechanism of corrosion inhibiti metallic coatings and photochemical reactions										oition,	
Contribution of Course		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	PO j	PO k	PO 1
Outcomes towards	CO1				Н								
achievement of Program Outcomes (L – Low, M - Medium, H – High)	CO2					М							
	CO3		M										
Course Content	List o 1.] 2.] 3.] 4.]	 List of Experiments 1. Determination of total alkalinity of water sample (a) Standardization of HCl solution (b) Determination of total alkalinity. 2. Determination of chlorides in water sample (a) Standardization of AgNO₃ solution (b) Determination of chlorides in the water sample 3. Determination of hardness of water sample (a) Standardization of EDTA solution. (b) Determination of total hardness of water sample 											

	(a) Standardization of sodium thiosulphate(b) Determination of available chlorine
	 5. Determination of copper in a given sample (a) Standardization of EDTA solution (b) Determination of copper
	 6. Determination of Mohr's salt - Dichrometry (a) Standardization of K₂Cr₂O₇ solution (b) Estimation of Mohr's salt
	 7. Determination of Mohr's salt - Permanganometry (a) Standardization of KMnO₄ solution (b) Estimation of Mohr's salt
	8. Determination of zinc in a given sample(a) Standardization of potassium ferrocyanide solution(b) Determination of zinc
	9. Conductometric determination of a strong base using a strong acid
	10. pH metric titration of a strong acid vs. a strong base
	11. Determination of corrosion rate of mild steel in the absence and presence of an inhibitor
	12. Chemistry of Blue Printing
	13. Colorimetric determination of potassium permanganate
	14. Preparation of Phenol-Formaldehyde resin
	15. Spectrophotometry
Text books and	Reference Books:
Reference	1. S.K. Bhasin and Sudha Rani, "Laboratory Manual on Engineering
DUOKS	Chemistry", 2 nd edition, Dhanpat Rai Publishing Company, New
	Delhi.
	2. Sunita Rattan, "Experiments in Applied Chemistry", 2 nd edition, S.
	K. Kataria & Sons, Delhi.
	3. V. Alexeyev, "Quantitative Analysis", MIR Publishers, Moscow.

14CS1252: C PROGRAMMING LAB

Course Category:	Institutional Core	Credits:	2
Course Type:	Practical	Lecture - Tutorial -Practice:	0 - 0 -
			3
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon successful completion of the course, the student will be ableCO1Understand the programming terminology and implement c-tokens and input-output statements to solve simple proble									able t	0:		
outcomes										ent various oblems.			
	CO2	Com best	Compare various looping and branching constructs and apply the best looping structure for a given problem.										
	CO3	³ Implement arrays and structures/unions for storin homogeneous and heterogeneous groups of data.										oring	
	CO4	Imple locat	mplement programs using pointers to directly access memory ocations and file operations.									mory	
	CO5	Ident vario	entify the necessity of modularity in programming and design rious function types.										
Contribution		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	PO j	PO k	PO 1
of Course	CO1	М											
towards	CO2		М			М							
achievement	CO3		М										
of Program		L											
Outcomes (I Low													
(L – Low, M -Medium.	CO4												
H- High)													
	CO5	L	М			М							
Course	CYC	LE - I	: Prog	gramı	ming	const	ructs	and o	contro	ol stru	uctur	es	
Content		Introdu	uction	to C	progr	ammi	ng :						
		(a) Us	e of T	urbo	C IDF	Ę							
		(h) Th	e Stru	cture	ofa	\sim Proc	mam						
		$(c) W_{i}$	riting	C Pro	oram	2 1 108							
		$(\mathbf{a}) \mathbf{D}^{-1}$:1.1:m -		grann	5 	Ionaia	n cf -	C D-		_		
		(d) Building an Executable Version of a C Program											

	2. Data Types and Variables:
	(a) Data Types
	(b) Operands, Operators
	(c) Arithmetic Expressions
	3. Branching and Selection:
	(a) Simple-if
	(b) Nested-if
	4. Control statements:
	(a) Break
	(b) Continue
	(c) Go to
	5. Looping constructs-I
	(a) While
	(b) Do-while
	(c) Case control structure: Switch
	6. Looping constructs-II
	(a) Simple for
	(b) Nested for
	7. Arrays
	(a) Single dimensional arrays
	(b) Multi dimensional arrays
	8. Strings
	(a) Declaration and initialization of string variables
	(b) Reading & Writing strings
	(c) String handling functions
	(d) Operations performed on strings without using string handling functions
СУ	CLE - II: Advanced programming constructs
1	. Concept of user defined functions
	(a) With arguments and no return value
	(b) Without arguments and no return value
	(c) Without arguments and return value
	(d) With arguments and return value

	2. File handling operations
	(a) FILE structure
	(b) Opening and closing a file, file open modes
	(c) Reading and writing operations performed on a file
	(d) File Pointers: stdin, stdout and stderr
	(e) FILE handling functions: fgetc(), fputc(), fgets() and fputs() functions
	3. Pointers
	(a) Uses of Pointers
	(b) Passing Arrays and Pointers as a function arguments
	(c) Pointers to Character Strings
	4. User defined data types
	(a) Type-def
	(b) Enumeration
	5. Structures
	(a) Declaring and accessing structure members
	(b) Passing of structure as a function argument
	6. Unions
	(a) Referencing Unions
	(b) Difference between structure and union
E-resources and other digital material	1. Numerical Methods and Programming by Prof. P.B.Sunil Kumar, De-partment of Physics, IIT Madras https://www.youtube.com/watch?v=zjyR9e-N1D4& list=PLC5DC6AD60D798FB7
	2. Introduction to Coding Concepts Instructor: Mitchell Peabody View the complete course: http://ocw.mit.edu/6-00SCS11

14ME1253: WORKSHOP PRACTICE

Course	Institutional Core	Credits:	2
Category:			
Course Type:	Practical	Lecture - Tutorial -Practice:	0 - 0 - 3
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon successful completion of the course, the student will be able to:												
outcomes	CO1	Mod trade and	el an e such Tenor	d dev as La a Joint	velop ap Joi t, and	variou nt, La Cross	is bas p Tee Lap J	sic pro Joint oint. (ototyp , Dov (a, b, l	es in ve Tai x).	the (l Join	Carpe t, Mo	ntry rtise
	CO2	Deve Lap (a, b	Develop various basic prototypes in the trade of Welding such as Lap Joint, Lap Tee Joint, Edge Joint, Butt Joint and Corner Joint (a, b, k).										
	CO3	Deve as Sa Prep	evelop various basic prototypes in the trade of Tin Smithy such s Saw Edge, Wired Edge, Lap Seam, Grooved Seam and Funnel reparations (a, b, k).										
	CO4	Und Com with Wiri	Understand various basic House Wiring techniques such as Connecting One lamp with one switch, Connecting two lamps with one switch, Connecting a Fluorescent tube, Staircase Wiring, Godown Wiring (a, b, k).							1 as mps case			
Contribution		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	POj	PO k	PO 1
of Course Outcomes	CO1	Η	Η									L	
towards	CO2	М	Η									L	
of Program	CO3	М	Η									L	
Outcomes		L	Η									L	
(L – Low, M -Medium, H – High)	CO4												
Course	List of	Expe	erime	nts				*	-	•			
Content	1. C	arpen A. Laj 3. Laj	try: T o Join o Tee	o mak t Joint	the the	follow	ving jo	bs wi	th har	nd too	ls		

	C. Dove Tail Joint
	D. Mortise & Tenon Joint
	E. Cross-Lap Joint
	2. Welding using Electric Arc Welding process / Gas Welding:
	A. Fillet joint
	B. Tee joint
	C. Edge joint
	D. Butt joint
	E. Corner joint
	3. Sheet metal operations with hand tools:
	i. One side inclined cylindrical pipe
	ii. Hexagonal pipe inclined one side
	iii. Square Box without lid
	iv. Taper Tray
	v. Funnel
	4. House wiring:
	i. To connect one lamp with one switch.
	ii. To connect two lamps with one switch.
	iii. To connect a fluorescent tube.
	iv. Stair case wiring.
	v. Go down wiring.
Text books	Reference Books:
and	1 Kannaiah P & Narayana K C "Manual on Work Shon Practice"
Reference	Scitech Publications Chennai
books	Serven i deneutons, enemiai.

14MA1301: COMPLEX ANALYSIS & NUMERICAL METHODS

Course Category:	Institutional Core	Credits:	4
Course Type:	Theory	Lecture - Tutorial -Practice:	4 -1- 0
Prerequisites:	Algebra of Complex	Continuous Evaluation:	30
	numbers, convergence	Semester end Evaluation:	70
	of infinite series, theory	Total Marks:	100
	of equations		

Course	Upon successful completion of the course, the student will be able to:												
outcomes	CO1	Determine analytic and non analytic functions and understand the concept of complex integration.											
CO2 Analyze Taylor and Laurent series a integrals using residue theorem an transformations.								es and and u	evalu unders	ation stand	of reather of the c	al def oncep	inite ot of
	CO3	Solv unde	ve Alg erstand	gebrai d the c	c and	trans	scende	ental, mial i	syster nterpo	m of plation	equa 1.	tions	and
	CO4	Understand the concept of Numerical differentiation and integration. Solve initial and boundary value problems numerically.											
Contribution		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	PO j	PO k	PO 1
of Course Outcomes	CO1	Н				M		M					
towards achievement	CO2	Н				М		М					
of Program	CO3	Н	М			Н						М	
(L – Low, M - Medium, H – High)	CO4	н	M			н						М	
Course	UNIT	I:											1
Content	Complex Analysis: Introduction, continuity, Cauchy-Riemann equations. Analytic functions, Harmonic functions, Orthogonal systems, Complex integration, Cauchy's integral theorem, Cauchy's integral formula												
	UNIT	II:											
	Taylor theore applyi	's se m, cal ng the	ries, lculati e resid	Laure on of ue the	ent's residu orem)	series, ues, ev).	, Zer valuat	os ar ion of	nd sin Freal o	ngular defini	rities. te inte	Res egrals	idue (by

	Standard transformations: Translation - Magnification and Rotation – Invertion and reflection - Bilinear transformation.
	UNIT III:
	Numerical Methods : Solution of Algebraic and Transcendental Equations : Introduction, Newton - Raphson method, Solution of simultaneous linear equations – Gauss Elimination Method - Gauss - Seidel iterative method.
	Interpolation: Introduction, Finite Differences – Forward, Backward, Central Differences, Symbolic Relations, Differences of a polynomial, Newton's formulae for interpolation, Central difference interpolation formulae –Gauss's, Sterling's, Bessel's formulae Interpolation with unequal intervals – Lagrange's and Newton's Interpolation formulae.
	UNIT – IV
	Numerical Differentiation And Integration : Finding first and second order differentials using Newton's formulae. Trapezoidal rule and Simpsons 1/3 Rule.
	Numerical Solutions of Differential Equations : Taylor's series method Picard's method. Euler's method, Runge - Kutta method of 4th order, Boundary value problems, Solution of Laplace's and Poisson's equations by iteration.
Text books and Reference	 Text Books: 1. B.S.Grewal, "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, 2012.
books	 Reference Books: Krezig, "Advanced Engineering Mathematics", 8th Edition, John Wiley & Sons.2007, R.K.Jain and S.R.K.Iyengar, "Advanced Engineering Mathematics", 3rd Edition, Narosa Publishers. N.P.Bali, Manish Goyal, "A Text book of Engineering Mathematics", 1st Edition, Lakshmi Publications (P) Limited, 2011 H.K.Das, Er. RajnishVerma, "Higher Engineering Mathematics", 1st Edition, S.Chand & Co., 2011. S. S. Sastry, "Introductory Methods of Numerical Analysis", PHI, 2005.
E-resources and other digital material	 faculty.gvsu.edu/fishbacp/complex/complex.html nptelvideolectures/iitm.ac.in

14EC3302: ELECTRONIC DEVICES

Course Category:	Programme Core	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	4 - 0- 0
Prerequisites:	14PH1102: Engineering	Continuous Evaluation:	30
	Physics, 14EC1206:Basics	Semester end Evaluation:	70
	of Electronics Engineering	Total Marks:	100

Course outcomes	Upon	succe	ssful c	ompl	etion of	of the	course	e, the	studen	t will	be al	ole to	:
outcomes	CO1	Interpret the characteristics of PN diode and its applications.											
	CO2	Bias	s the transistor in various configurations										
	CO3	Unde	erstand the principle of FETs and its characteristics.										
Contribution		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	PO j	PO k	PO 1
of Course outcomes	CO1	М	М										
towards	CO2	М	М										
achievement of Program Outcomes (L – Low, M - Medium, H – High)	CO3	М	М										
Course Content	UNIT Cond Carrie Accep a Se Conti Semie juncti p-n J Ampe Chara Capad	TI: uction er Cor- otor Im- micon- nuity e condu- on, p-1- unctio ere Co- icteristic citance	n in S ncentr puriti ductor equation ctor I n Junc n, Qu haract ics, c, Diffi	Semic ations es, Cl hav on. Diode etion a antita teristi Diode usion	conducts in harge of ing I e Cha as a D ative of cs, T e Rea capac	ctors: an In densit impuri inde, theory The sistance	Con- atrinsic ies in ities, ristics Band of I tempe ce, S s.	ductiv c Ser a sem Diffu s : Q Struce P-N d crature Space	ity of nicondu sion, ualitat ture of liode e dep Char	a Soluctor actor, Carri ive th f an C currer bender rge c	emico , Do Ferm er li neory pen p nts, T nce or T (18H	onduc onor ii leve ife ti Circu Che V of Transi Irs)	etor, and el in me, P-N ited Volt P-N tion

	UNIT II:
	Transistor Characteristics: The Junction Transistor, Transistor Current Components, the Transistor as an Amplifier, The Common Base Configuration, The Common Emitter Configuration, The Common Collector Configuration.
	Transistor Biasing & Thermal Stabilization: The Operating Point, Bias Stability, Collector to Base Bias, Self Bias, Stabilization against variations in V_{BE} and β for the Self Bias Circuit, Bias Compensation, Thermistor & Sensistor Compensation, Thermal Runaway and Thermal Stability.
	UNIT III:
	Filed Effect Transistors:
	Construction and Characteristics of JFETs, Transfer Characteristics, Specification Sheets (JFETs), Depletion-type MOSFET and Enhancement-type MOSFET, VMOS, CMOS, MESFETs.
	FET Biasing: Introduction, Fixed Bias Configuration, Self BiasConfiguration, Voltage Divider Biasing.(12Hrs)
	UNIT – IV
	Applications of Diodes:
	Rectifiers: Half Wave Rectifier, Ripple Factor, Full Wave Rectifier, Bridge Rectifier, Harmonic Components in rectifier circuits, Inductor filters, capacitor filters, Approximate analysis of Capacitor filters, L- section filter, Multiple L section filter, π -section filter, Voltage Regulation using Zener Diode.
	PNPN Devices: Silicon Controlled Rectifier, Basic Silicon ControlledRectifier Operation, SCR Characteristics & Ratings, Silicon ControlledSwitch, Light Activated Silicon Controlled Rectifier, Shockley Diode,DIAC, TRIAC and Uni-Junction Transistor(12Hrs)
Text books	Text Books:
and Reference	1. Jacob Millman, Christos C Halkias & Satyabrata JIT, "Millman's
books	Electronic Devices and Circuits", 4" Edition, TMH, 2015. (Unit I, II. IV-for Applications of Diodes)
	 Robert L Boylested and Louis Nashelsky, "Electronic Devices and

IV- for PNPN Devices). Reference Books: 1 David A Bell "Electronic Devices and Circuits" 5 th Edition		Circuit Theory", 10 th Edition, Pearson India, 2009. (UNIT III &
Reference Books: 1 David A Bell "Electronic Devices and Circuits" 5 th Edition		IV- for PNPN Devices).
1 David A Bell "Electronic Devices and Circuits" 5 th Edition		Reference Books:
		1. David A Bell., "Electronic Devices and Circuits", 5 th Edition,
Oxford University Press, 2008.		Oxford University Press, 2008.
2. Ben G. Streetman and Sanjay Kumar Banerjee, "Solid State		2. Ben G. Streetman and Sanjay Kumar Banerjee, "Solid State
Electronic Devices" 6 th Edition, PHI.		Electronic Devices" 6 th Edition, PHI.
3. Nandita Das Gupta and Amitava Das Gupta, "Semiconductor		3. Nandita Das Gupta and Amitava Das Gupta, "Semiconductor
Devices Modelling and Technology", PHI Learning Pvt. Ltd., 2013.		Devices Modelling and Technology", PHI Learning Pvt. Ltd., 2013.
E-resources 1. <u>http://www.deas.harvard.edu/courses/es154/</u>	E-resources	1. http://www.deas.harvard.edu/courses/es154/
and other 2. http://nptel.ac.in/courses/117103063/	and other	2. http://nptel.ac.in/courses/117103063/
digital material 3. <u>http://nptel.ac.in/courses/117106033/</u>	digital material	3. http://nptel.ac.in/courses/117106033/
4. <u>http://nptel.ac.in/courses/117102061/</u>		4. <u>http://nptel.ac.in/courses/117102061/</u>

14EC3303: NETWORK THEORY

Course Category:	Programme Core	Credits:	3
Course Type:	Theory	Lecture-Tutorial-Practice:	3 -1-0
Prerequisites:	14EE1105: Basics of	Continuous Evaluation:	30
_	Electrical Engineering	Semester end Evaluation:	70
		Total Marks:	100

Course	Upon successful completion of the course, the student will be able to:												
outcomes	CO1	Anal	yze t	he cir	cuits	by ap	oplyin	g appi	opria	te theo	orems		
	CO2	Get	ntroc	luced	to G	raph 1	theory	and t	wo-po	ort net	works	5	
	CO3	Design different resonant circuits for the given specification.											
	CO4	Analyze the transient response of RL, RC and RLC circuits											
Contribution of Course		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	PO j	PO k	PO 1
Outcomes towards	CO1	Н											
achievement	CO2	Н		L									
of Program Outcomes (L – Low, M - Medium, H – High)	CO3	Н											
	CO4	Н		М									
Course	UNIT I:												
Content	D.C CIRCUITS & Network Theorems:												
	Noda Recip Telles Trans	Nodal and Loop methods of analysis. Super position theorem, Reciprocity theorem, Thevenin's theorem, Norton's theorem, Tellegen's theorem, Millman's theorem and Maximum Power Transform Theorem.											
	A.C C	CIRC	UITS	5 & N	etwo	rk T	heore	ms					
	Noda Theve Theor	l and enin's rem.	Loc theor	op m rem, 1	ethod Norto	ls of on's t	anal <u>y</u>	ysis, n, Ma	Super ximu	r posi m Pov	tion ver T (15H	theor ransf rs)	rem, ìorm
	UNIT	II:											
	Grap	h the	ory a	nd T	wo P	ort N	etwor	· k :					
	Conce and lo	Concept of Tree, Branch, Tree link, Incidence matrix, Tie-set matrix and loop currents, Cut set matrix and node pair potentials, Duality.											

	Relationship of two port variables, Short circuit admittance parameters, Open circuit impedance parameters, Transmission parameters, Hybrid parameters, Relation between parameter sets, Parallel connection of two port networks. (15Hrs) UNIT III:								
	Resonance and Passive Filters:								
	Series resonance, Parallel resonance, concept of band width and Q factor Constant-K filters- low pass, high pass, band pass and band elimination filter design, m derived filters, Composite filters. (15Hrs)								
	Transient Analysis ·								
	Basics - Source free Response of RL, RC and RLC Series Circuits – Forced Response of RL, RC & RLC Series circuits with Sinusoidal Excitation - Time Constant & Natural frequency of Oscillation. (15Hrs)								
Text books	Text Books:								
and Reference	1. M. E.Van Valkenburg "Network Analysis" 3rd edition, PHI, 2009. (Units - I & II)								
DUOKS	2. Jr William H Hayt & Jack Kemmerly "Engineering Circuit Analysis", 6 th edition, McGraw-Hill, 2000. (Units - III & IV)								
	Reference Books:								
	1. Ravish R. Singh, "Network Analysis and Synthesis", 1 st edition, McGraw-Hill.								
	2. Mahmood Nahvi and Joseph Edminister., "Electric Circuits", 5 th edition, Schaum's Outline series, TMH, 2004.								
	3. A Sudhakar and SP Shyam Mohan, "Circuits and Networks: Analysis and Synthesis", 4 th edition, TMH, 2002.								
	4. John D Ryder. "Networks, Lines and Fields", 2 nd edition, PHI, 2003.								
E-resources and other	1. <u>http://nptel.iitm.ac.in/courses/webcoursecontents/IIT%20kharagp</u> <u>ur/basic%20electrical%</u>								
digital	2. 20technology/new_index1.html								
material	3. <u>http://nptel.iitm.ac.in/video.php?subjectId=108102042</u>								
	4. <u>http://www.ee.washington.edu/faculty/soma/fipse/faculty_guide.</u> <u>pdf</u>								
	5. <u>http://www.ece.umd.edu/class/enee204/LectureNotes/LectureM</u> <u>ain.htm</u>								

14EC3304: DIGITAL CIRCUITS AND SYSTEMS

Course Category:	Programme Core	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	4 - 0- 0
Prerequisites:	14EC1206: Basics of	Continuous Evaluation:	30
	Electronics Engineering	Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upo	Upon successful completion of the course, the student will be able to:											
outcomes	CO1	Anal	yze an	d synt	hesize	comb	inatio	onal a	nd se	quent	tial cir	cuits	
	CO2	Design logic circuits using classical methods and use hardware description language for designing logic circuits.											
	CO3	Unde circu	Understand the architecture of FPGAs for developing digital circuits.										
Contribution		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	PO j	PO k	PO 1
of Course Outcomes	CO1	Н		Н									
towards achievement	CO2	Н		Н									
of Program Outcomes		L											
(L – Low, M - Medium, H – High)	CO3												
Course Content	UNI Con Ana Desi Karr Har Veri Syst Logi (Pro Desi	T I: hbinat lysis, gns, C haugh dware log H em, N ical C cedura gn, S	ional Comb Circuit Maps, e Desc ardwa ets Va Operato al Cod ynthes	Logi inatior Mani Minir riptio re Des riables ors ar e), Sir is.	c De nal-Cir pulation nizing n Lan scription s and of the Ex nulation	sign cuit S ons, C Sums guage on La Consta pression, Ve	Prin yntho ombi of Pr es: H ngua unts, ons, erilog	ciples esis:- ination coduct DL-B ge:- I Vecto Beha Featu	: Co Circu nal-C rs. ased Progra rs and viora ures f	ombin nit D ircuit Digit am S d Op l De for Se	nation escrip Mini al De tructu erators sign equent	al-Cin tions mizat sign, re, La s, Arr Elem tial La	The ogic ays, ents ogic Hrs)

	UNIT II:									
	Combinational Logic Design Practices: Decoders, Enoders, Three- State Devices, Multiplexers, Comparators, Adders and Subtractors - Half Adders and Full Adders, Ripple Adders, Subtractors, Carry-Look ahead Adders, MSI Adders.									
	Combinational LogicDesignUsingVerilog:Multiplexer's,Comparator and Adders.(15Hrs)									
	UNIT III:									
	Sequential Logic Design Principles: Latches and Flip-Flops, Clocked Synchronous State-Machine Analysis, Clocked Synchronous State- Machine Design, Designing State Machines Using State Diagrams, State-Machine Synthesis Using Transition Lists (15Hrs)									
	UNIT – IV									
	Sequential Logic Design Practices: Latches and Flip-Flops, Counters, Shift Registers. Sequential Logic Design Using Verilog: Registers and Latches, counters and Shift registers.									
	Field-Programmable Gate Arrays:Xilinx XC4000 FPGA Family,Configurable Logic Block, Input/Output Block, ProgrammableInterconnect.(15Hrs)									
Text books	Text Books:									
and Reference books	 John F Wakerly, "Digital Design Principles and Practices ", 4th edition, Pearson, 2013. (Unit – I to IV). 									
	Reference Books:									
	 M.Morris Mano, Michael D. Ciletti, "Digital Logic Design", 5th edition, Prentice Hall, 2013 (Refer for Memory and Programmable Logic)Zvi Kohavi, "Switching and Finite Automata Theory", 2nd Edition, McGraw-Hill, 2004. (Refer for Minimization of Switching Functions)Thomas L. Floyd "Digital Fundamentals", 11th Edition, Pearson Education India, 2015. (Refer for Latches, Flip-Flops, and Timers) 									
E-resources and other digital material	 http://www.ece.ubc.ca/~saifz/eece256.html <u>http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-</u> %20Guwahati/digital_circuit/frame/index.html 									

14EC3305: SIGNALS & SYSTEMS

Course Category:	Programme Core	Credits:	3
Course Type:	Theory	Lecture-Tutorial - Practice:	3-1-0
Prerequisites:	14MA1101:Linear Algebra	Continuous Evaluation:	30
	And Differential Equations,	Semester end Evaluation:	70
	14MA1201:Calculus,	Total Marks:	100
	14MA1301: Complex		
	Analysis & Numerical		
	Methods		

Course	Upon successful completion of the course, the student will be able to:											0:	
outcomes	CO1	Class time	Classify the signals and systems as continuous time and discrete time based on their properties.										
	CO2	Anal serie	yze tl s and]	ne spe Fourie	ectral r trans	charao forms	cterist	ics o	f sigr	nals 1	using	Fou	rier
	CO3	Anal conce signa	analyze the frequency response of linear systems and apply the oncepts of convolution and correlation operations on different ignals.										
	CO4	Appl signa	techn	iques	to ar	nalyze	the	discı	rete t	ime			
Contribution		РО	РО	РО	РО	РО	РО	РО	РО	РО	PO	РО	РО
of Course		а	b	c	d	e	f	g	h	i	j	k	1
Outcomes towards achievement of Program Outcomes	CO1	Н											
	CO2	Η											
	CO3	Н	L										
(L – Low, M - Medium, H – High)	CO4	Η											

Course	UNIT I:
Content	Introduction to Signals
	Continuous-Time and Discrete-Time signals, Transformation of the Independent variable, Exponential and Sinusoidal signals, unit Impulse and Unit Step functions.
	Introduction to Systems
	Continuous-time and Discrete-time systems, Basic system properties. Discrete time LTI Systems: The Convolution sum, Continuous Time LTI Systems: Convolution integral, Properties of Linear Time Invariant systems. (15Hrs)
	UNIT II:
	Fourier series:
	Fourier series representation of Continuous-time periodic signals, Convergence of the Fourier Series, Properties of Continuous time Fourier Series. Fourier series representation of Discrete-time periodic signals, Properties of discrete time Fourier Series.
	Fourier transform:
	Representation of periodic signals: The Continuous-time Fourier transform, The Fourier transform for periodic signals, Properties of the continuous time Fourier transform.
	Representation of Aperiodic signals: The Discrete-time Fourier transform, The Fourier transform for periodic signals, Properties of the Discrete time Fourier transform. (15Hrs)
	UNIT III:
	Frequency Analysis of Linear Systems: Distortion less Transmission, Ideal filters, Causality and Physical reliability, Paley-Wiener criterion, Relation between Bandwidth and Rise time.
	Correlation: Convolution and Correlation, Properties of Correlation functions, Correlation functions for Non-finite Energy Signals, Properties of Energy and Power spectral density spectrums.
	(12Hrs)

	UNIT – IV							
	 Z-Transforms: Introduction, Z-transform, region of convergence for the Z-transform, Inverse Z-transform: Properties of Z-transform, Analysis and characterization of LTI systems using Z-transforms Sampling Theorem: Introduction, The sampling theorem, Reconstruction of a signal from its samples using Interpolation, The effect of Under sampling: Aliasing. (12Hrs) 							
Text books	Tex Book:							
and Reference books	 Alan V.Oppenheim, Alan S. Willisky, "Signals & Systems", 2nd edition, Prentice-Hall of India Private Limited, 1996. (Units: I, II &IV). B P Lathi, "Signals and systems and communications", BS Publications, 2001. (Units: III) 							
	Reference Books:							
	 Simon Haykin and Barry Van Veen , "Signals and Systems", 2nd edition John Wiley,1999. M.J.Roberts., "Signals and Systems Analysis using Transform method and MATLAB", 2nd revised edition, TMH, 2003 Moman H Hays, "Digital Signal Processing Schaum's Outlines", 2nd revised edition, Tata Mc Graw Hill Co Ltd, 2004. 							
E-resources and other digital	 nptel.iitm.ac.in/courses.php?branch=Ece www.cdeep.iitb.ac.in www.dspguide.com/ch5/1.htm 							
material	 4. www.stanford.edu/~boyd.ee102 5. www.ece.gatech.edu/users/bonnie/book 6. <u>http://asyali.org/Matlab.asp</u> 							

14EC3306: ELECTRICAL TECHNOLOGY

Course	Programme Core	Credits:	2
Category:			
Course Type:	Theory	Lecture-Tutorial-Practice:	2 -0- 0
Prerequisites:	14EE1105: Basics	Continuous Evaluation:	30
	of Electrical	Semester end Evaluation:	70
	Engineering,	Total Marks:	100

Course outcomes	Upon to:	Upon successful completion of the course, the student will be able to:											
	CO1	Und	erstar	d the	worki	ing an	d perf	forma	nce o	f DC	C Ma	chine	s.
	CO2 Understand the working and performance of Transformer.											of	1 - Φ
	 CO3 Understand the principle of 3- Φ Induction motors. CO4 Understand the principle and regulation conception Synchronous Generator. 												
											epts	of	
Contribution of Course		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	PO j	PO k	PO 1
Outcomes towards achievement of Program	CO1	Н	M					M					
	CO2	Н	М					М					
Outcomes	CO3	Н						М					
(L – Low, M - Medium, H -High)	CO4	Н	М					М					
Course Content	UNIT DC M DC	UNIT I: DC Machines: DC Generators: Introduction. Principle of operation of DC											
	genera genera genera	generator, Construction of DC Machines, EMF equation, types of generators, magnetization and load characteristics of DC shunt generator, losses and efficiency of DC generator.											s of iunt
	DC M Torque contro	Motor ie equal of I	rs: Pr uation DC me	incipl , type otor- f	e of es of flux a	opera DC nd arr	tion motor nature	of D(rs, Sv contr	C mo vinbu rol m	otor, rne's etho	Bac s tes ds, N	k El t, sp leces	MF, eed sity

	of DC motor starter, Three point starter.	(8 Hrs)							
	UNIT II:								
	Transformers: Principle of operation of single phase emf equation of transformer, phasor diagram on no l equivalent circuit, losses and efficiency of transform of transformer, OC and SC tests.	e transformer, oad and load, her, regulation (8 Hrs)							
	UNIT III:								
	Three phase Induction Motors: Production of rotation field, Principle of operation of induction motors, slip rotor emf and current, torque equation, simple problem	ting magnetic , frequency of ns.							
		(8 Hrs)							
	UNIT – IV								
	Three Phase Alternator: Principle of Operation of Distribution Factor, Coil Span Factor, Emf Equation, Alternator by Synchronous Impedance Method.	of Alternator, Regulation of (8 Hrs)							
Text books	Text Book:								
and Reference books	1. V.K.Mehta and Rohit Mehta, "Principles machines", 2 nd Edition, S. Chand Publications, 20	of electrical 002.							
DUUKS	 J.B.Guptha, "A Course in Electrical Technology S. K. Kataria & Sons, 2009. 	" Volume-II,							
	Reference Books:								
	 Nagsarkar, Sukhija, "Basic Electrical Engineering Oxford Publications. 	", 2 nd edition,							
	2. BL Theraja, "A text book of Electrical Tech revised edition, S Chand & Co., 2005.	nology", 24 th							
E-resources and other digital material	 <u>www.iiitm.ac.in</u> <u>www.nptel.com</u> MIT video lessons 								

14EC3351 ELECTRONIC DEVICES & DIGITAL ELECTRONICS LAB

Course Category:	Programme Core	Credits:	2
Course Type:	Practical	Lecture-Tutorial-Practice:	0-0-3
Prerequisites:	14EE1105: Basics of	Continuous Evaluation:	30
	Electrical Engineering,	Semester end Evaluation:	70
	14EC3304: Digital	Total Marks:	100
	Circuits and Systems		

Course	Upon successful completion of the course, the student will be able to:												
outcomes	CO1	Design rectifier circuits for given specifications											
	CO2	Design an amplifier using various biasing circuits											
	CO3	Desi blocl	Design combinational logic circuits using gates, basic building blocks and HDL										
	CO4	Designand I	Design sequential circuits using flip flops, registers, counter ICs and HDL										
Contribution		PO a	PO b	PO c	PO d	PO e	PO f	PO g	POh	PO i	PO j	POk	PO 1
of Course Outcomes	CO1				L					М			
towards achievement of Program Outcomes (L – Low, M -Medium, H – High)	CO2				L					M			
	CO3				L					М			
	CO4				L					М			
Course	List of Lab Exercises:												
Content	Experiments Based on Electronic Devices												
	1. Characteristics of PN junction diode and Zener diode												
	2	 Analysis of Bridge rectifier with and without L, C filters. Characteristics of Transistor in Common Base and Common Emitter Configuration. Self-Bias circuit for transistor. 											
	2												
	2												
	4	5. Characteristics of Junction Field Effect Transistor											
	6	6. Cha	aracter	istics o	of Uni	Juncti	on Tra	nsistor					
	7. Characteristics of SCR.												

Experiments Based on Digital Electronics
1. Realization of Logic Gates using discrete components and ICs.
 Design of combinational logic circuits (Half Adder, Full Adder, Half Subtractor, Full Subtractor) using fundamental and Universal Logic gates
 Design of Multiplexer, Demultiplexer, Encoder and Decoder circuits
4. Design of Shift Registers, Ring counter and Johnson counter
5. Design of Synchronous and Asynchronous counters.
6. Simulate Combinational Logic Design Using Verilog HDL- Multiplexer's.
7. Simulate Sequential Logic Design Using Verilog HDL -counters.

NB: A minimum of 10(Ten) experiments (5 from each section) have to be performed and recorded by the candidate to attain eligibility for External Practical Examination

14EC3352: ELECTRICAL TECHNOLOGY LAB

Course Category:	Programme Core	Credits:	2
Course Type:	Practical	Lecture-Tutorial-Practice:	0-0-3
Prerequisites:	14EE1105: Basics of	Continuous Evaluation:	30
	Electrical	Semester end Evaluation:	70
	Engineering,	Total Marks:	100

Course	Upon successful completion of the course, the student will be able to:												
outcomes	CO1	Val	Validate AC and DC theorems										
	CO2	Perform and examine various tests on machines											
Contributio		РО	PO PO										
n of Course		а	b	c	d	e	f	g	h	i	j	k	1
Outcomes													
towards	CO1	М	Η					М					
achievement													
of Program													
Outcomes													
(L – Low,	CO2	Μ	Η					М					
M -Medium,													
H – High)													
Course	List	of E	xper	ime	nts:								
Content	1. V	/erifi	catio	n of	KVL	and K	CL						
	2. V	/erifi	catio	n of	Super	positi	on Th	neorer	n				
	3. Verification of Reciprocity and Maximum Power Transfer Theorem												
	4. Verification of The venin's Theorem												
	5. Parameters of Choke Coil												
	6. Resonance of RLC Series and Parallel Circuits												
	7. OCC of DC Shunt Generator												
	8. Load Test on DC Shunt Generator												
	9. I	Load	Test	on D	C Co	mpou	nd Ge	enerat	or				
10. Speed Control of DC Shunt Motor													
---	----------	-------											
11. Swinburne's Test on DC Shunt Machine	NB:	А											
12 a. OC and SC Test on Single Phase Transformer	mi	nimu											
b. Direct Load Test on Single Phase Transformer	m	of											
13. Regulation of Three Phase Alternator by Synchronous Impedan	ce N 100	(Ten)											
14. Direct Load Test on Three Phase Induction Motor	expe	erime											

nts (5(five) from Circuits and 5(five) from Machines) have to be performed and recorded by the candidate to attain eligibility for External Practical Examination.

14HS 1353: COMMUNICATION SKILLS LAB

Course	Programme Core	Credits:	2

Category:			
Course Type:	Lab	Lecture-Tutorial-Practice:	0-0-2
Prerequisites:	14HS1104:Technical English	Continuous Evaluation:	30
	&Communication skills -		
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	Upon successful completion of the course, the student will be able to:											
Outcomes	CO1	Be j acce	profic ntuat	cient	in pı	onur	nciatio	on o	f spe	ech s	ounds	incl	uding
	CO2	Enha com	Enhance the awareness of the elements of listening comprehension.										
	CO3	Deve publ	bevelop the abilities of rational argumentation and skills of ublic speaking.										
	CO4	Be a	e aware of the elements of professional communication										l
	CO5	Be e	xpose	ed to	the ite	ems o	of vari	ious	comp	etitive	e exan	1S.	
Contribution		PO	РО	PO	PO	PO	РО	PO	PO	PO	PO	РО	PO
of Course		а	b	c	d	e	f	g	h	i	j	k	1
Outcomes	CO1									М	Н	М	L
towards													
achievement	CO2						Н	Μ	М	Н	Н	Μ	М
of Program	CO3	М	Н	М	L	L	Н	Н	Н	Н	Н	М	Н
outcomes													
(H- Highly Manned	CO4	М	Μ	М	М	Н	Н	Η	Н	Н	Н	Н	Η
Mapped, M-Moderately	CO5		L		L	L	Н	Н	Н	М	Н	Н	L
Manned													
I Low													
Course	UNIT	.I .FI	omon	ts of	Snak	on F	vnroe	ssion	and	nraga	6606.0	flig	toning
Content		.I .ET rohon	cinci sion:	115 01	Show	CH E	Apres	551011	anu	proce	55C5 (1 119	tennig
Content	comp	c.	siuii.	Maa	honia								
		<u>ا</u> د ۸	rtioul	ation	of vo	iii wole	and	onac	nonto				
		Pa	attern	s of A	Accen	tuati	on on	Jonse	mants				
		T	vnes	and n	roces	ses o	f Liste	ening	2 com	prehe	nsion		
	UNIT	II: P	olem	ics ar	nd Pu	blic	Sneal	king:		P			
	>	G	roup	Disci	ussion		~p•m						
	\succ	P	vrami	d Dis	scussi	on							
	\triangleright	PI	NI										
	\triangleright	Se	emina	ar Tal	k and	Pow	ver Po	int P	resent	tation			
	TINIT	111. 1)f					4:0					
	UNII	III: I	roie	ssion	ai C0	mm	unica	uon:					
		Se		TITT	ation	• , •		1.	0.00			1	•1
	\succ	A	dvan	ced C	ompo	ositio	n incl	udin	g Offi	Icial le	etters	and e	-mail

	Résumé Preparation									
	 Elements of Non-Verbal Communication 									
	UNIT IV:									
	Life Skills and Vocabulary for Competitive Examinations:									
	Select Life Skills(50)									
	Select Logies, Isms, Phobias and Manias (25 each)									
	Sentence Completion(50 items)									
	Fundamentals of Syllogisms									
Text books	Text Books:									
and Reference books	 Martin Cutts, Oxford Guide to Plain English, 7th Impression, OUP, 2011 Exercises in Spoken English, Prepared by Department of Phonetics and Spoken English, CIEFL, OUP, 21st Impression, 2003 									
	Reference Books:									
	Reference Books:									
	 Reference Books: Stephen R Covey, The 7 Habits of Highly Effective people, II edition, (Pocket Books) Simon & Schuster UK Ltd, 2004 Martin Cutts, Oxford Guide to Plain English, 7th Impression, OUP, 2011 Deborah. J. Bennett, Logic made easy: How to know when Language Deceives you, I edition(Reprint), 2005 Eclectic Learning Materials offered by the Department 									
E-resources	 Reference Books: Stephen R Covey, The 7 Habits of Highly Effective people, II edition, (Pocket Books) Simon & Schuster UK Ltd, 2004 Martin Cutts, Oxford Guide to Plain English, 7th Impression, OUP, 2011 Deborah. J. Bennett, Logic made easy: How to know when Language Deceives you, I edition(Reprint), 2005 Eclectic Learning Materials offered by the Department ODll Language Learner's Software, 27-6-2012 Orell Techno 									
E-resources and other	 Reference Books: Stephen R Covey, The 7 Habits of Highly Effective people, II edition, (Pocket Books) Simon & Schuster UK Ltd, 2004 Martin Cutts, Oxford Guide to Plain English, 7th Impression, OUP, 2011 Deborah. J. Bennett, Logic made easy: How to know when Language Deceives you, I edition(Reprint), 2005 Eclectic Learning Materials offered by the Department ODII Language Learner's Software, 27-6-2012 Orell Techno Systems 									
E-resources and other digital	 Reference Books: Stephen R Covey, The 7 Habits of Highly Effective people, II edition, (Pocket Books) Simon & Schuster UK Ltd, 2004 Martin Cutts, Oxford Guide to Plain English, 7th Impression, OUP, 2011 Deborah. J. Bennett, Logic made easy: How to know when Language Deceives you, I edition(Reprint), 2005 Eclectic Learning Materials offered by the Department ODII Language Learner's Software, 27-6-2012 Orell Techno Systems Visionet Spears Digital Language Lab software Advance Pro. 									
E-resources and other digital material	 Reference Books: Stephen R Covey, The 7 Habits of Highly Effective people, II edition, (Pocket Books) Simon & Schuster UK Ltd, 2004 Martin Cutts, Oxford Guide to Plain English, 7th Impression, OUP, 2011 Deborah. J. Bennett, Logic made easy: How to know when Language Deceives you, I edition(Reprint), 2005 Eclectic Learning Materials offered by the Department ODII Language Learner's Software, 27-6-2012 Orell Techno Systems Visionet Spears Digital Language Lab software Advance Pro, 28-01-2015 									

14EC3401: PROBABILITY THEORY AND RANDOM PROCESSES

Course Category:	Programme Core	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	4 -1-0
Prerequisites:	14MA1201:Calculus, 14MA1101:Linear Algebra and Differential Equations, 14MA1301:Complex Analysis ad Numerical Methods, 14EC3305:Signals and systems	Continuous Evaluation: Semester end Evaluation: Total Marks:	30 70 100

Course	Upon	Upon successful completion of the course, the student will be able to:											
outcomes	CO1	Dev ranc	elop t lom va	he pro triable	babilits and c	ty dist compu	tribut ite the	ion a e stati	nd de istical	ensity parar	func neter	tions s.	of
	CO2	Cha proc func	Characterize LTI systems driven by a stationary random process using autocorrelation and power spectral density functions.										
	CO3	Ana com	Analyze and compute the noise performance of communication system										
Contribution		PO	РО	РО	РО	РО	PO	PO	PO	РО	PO	PO	PO
of Course		a	b	c	d	e	f	g	h	i	j	k	1
Outcomes towards	CO1	Н											
of Program	CO2	Н	L										
Outcomes (L – Low, M -Medium, H – High)	CO3	H	L										
Course Content	UNIT Proba Frequ Indep	abilit ency, ender	y: Pro Joi nt Even	obabil nt P nts, Cc	ity in robabi ombine	troduc lity ed Exp	ced t and berime	hrou Co ents,	gh S onditic Bernc	ets a onal oulli tr	nd Prol rials.	Relat	ive ity,
											(6	oHou	irs)

Random Variables: The Random Variable Concept, Distribution Function and Density function, Q Function, Error Function, The Gaussian Random Variable, Other Distribution and Density Examples. Conditional Distribution and Density Functions.

(6Hours)

Operations on One Random Variable: Expectation, Moments, Functions that give Moments, Transformations of a Random Variable. (5Hours)

UNIT-II

Multiple Random Variables : Vector Random Variables, JointDistribution and its Properties,Joint Density and its Properties,Conditional Distribution and Density,Statistical Independence,Distribution and Density of Sum of Random Variables,Central LimitTheorem, (Proof not expected)(7Hours)

Operations on Multiple Random Variables: Expected Value of a Function of Random Variables, Joint Characteristic Functions, Jointly Gaussian Random Variables, Transformations of Multiple Random Variables, Linear Transformations of Gaussian Random Variables.

(7Hours)

UNIT-III

Random Process: Random Process Concept, Stationary and Independence, Correlation Functions, Measurement of Correlation Functions, Gaussian Random Process, Poisson Random Process.

(6Hours)

Random Process Spectral Characteristics: Linear system with random inputs, Power Density Spectrum and its properties, Relationship between Power Spectrum and Auto Correlation Function, Cross Power Density Spectrum and its properties, Relationship between Cross-Power Spectrum and Cross-Correlation Function. Random signal response of linear systems, SpectralCharacteristicsofSystemResponse. (7Hours)

UNIT – IV

Noise: Shot Noise, Thermal Noise, Noise Calculations: Single Noise Source, Multiple Sources: Superposition of Power Spectra, Noise Calculations in Passive Circuits, Equivalent. Noise Bandwidth, Noise Figure of an Amplifier, Power Density and Available Power Density, Effective Noise Temperature, Noise Figure in Terms of Available

	Gain, Cascaded Stages. (12Hours)
Text books and Reference books	 Text Book: Peyton Z. Peebles, "Probability, Random Variables & Random Signal Principles", 4th Edition, TMH, 2002. (Units - I, II, III) B.P. Lathi, "Signals, Systems & Communications", B.S. Publications, 4th Edition, 2009. (Unit - IV). Reference Books:
	 Athanasios Papoulis,S.Unnikrishna Pillai, "Probability, Random Variables and Stochastic Processes", 4rd Edition, TMHI, 2002. (UNITS –I,II,III)
	 R.P. Singh and S.D. Sapre, "Communication Systems: Analog & Digital", 3rd Edition, TMH, 2012. (Units –I,II,IV)
	3. Mallikarjuna Reddy.Y, "Probability Theory and Stochastic Processes", 4 th Edition, University Press, 2013. (UNITS I, II, III, IV).
E-resources and other digital material	 http://nptel.iitm.ac.in/video.php?subjectId=117105085 http://walrandpc.eecs.berkeley.edu/126notes.pdf http://statweb.stanford.edu/~adembo/stat-310a/lnotes.pdf

14EC3402: ELECTRONIC CIRCUITS

Course Category:	Programme Core	Credits:	4
Course Type:	Theory	Lecture-Tutorial-Practice:	4-0-0
Prerequisites:	14EC3302:Electronic	Continuous Evaluation:	30
	Devices	Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upor to:	a successful completion of the course, the student will be able
	CO1	Design and analyze single stage amplifiers using BJT and FET at Low and High Frequencies.
	CO2	Design and analyze multistage amplifiers using BJT.
	CO3	Design and analyze Feedback amplifiers and Oscillators using BJT.

Contributio		PO	PO	PO	РО	PO	PO	РО	PO	PO	PO	PO	РО
n of Course		a	b	c	d	e	f	g	h	i	j	k	1
Outcomes towards	CO1	L	Н										
achievemen t of	CO2	L	Н										
Program Outcomes		L	Н										
(L – Low, M-Medium, H-High)	CO3												
Course	UNI	ГΙ											
Content	Trans Mode Trans Simp for Amp Trans FET Conf Conf confi UNI	 Transistor at Low Frequencies: Two Port Devices and Hybrid Model, Transistor Hybrid Model, The h Parameters, Analysis of Transistor Amplifier Circuit Using h Parameters, Emitter Follower, Millers Theorem and its Dual, Cascading Transistor Amplifiers. Simplified Common Emitter Hybrid Model, Simplified Calculations for the Common Collector Configuration, Common Emitter Amplifier With an Emitter Resistance and High Input Resistance Transistor Circuits. FET Amplifiers: JFET Small Signal Model, Fixed Bias Configuration, Self Bias Configuration, Voltage Divider Configuration, Common Gate Configuration, Common Drain configurations. (12 Hrs) 									vbrid is of wer, fiers. tions nitter ance Bias vider Drain		
	Tran Emite Capa Parar Resis The Frequ	Transistor at High Frequencies: The Hybrid pi (π) Common Emitter Transistor Model, Hybrid II Conductances, The Hybrid II Capacitances, Validity of Hybrid π Model, Variation of Hybrid π Parameters. The CE Short-Circuits Current Gain, Current Gain with Resistive Load, Single Stage CE Transistor Amplifier Response, The Gain-Bandwidth Product, Emitter Follower at High Frequencies.									mon id Π id π with onse, High		
	FET High Frequ	at Hi Frequencie	i gh F i uencie s.	r equ es an	encies d the	s: The Com	e Cor imon	nmon Drai	Sou n FE	rce F T An	ET An nplific (12 I	mplifi er at l Hrs)	er at High
	UNI	ΓIII											
	Mult Amp	istage lifiers	e Am , Frec	plifie Juenc	e rs: C y Res	Classif Spons	fication e of a	on of an An	Amj nplifi	plifier ier, St	rs, Dis tep Re	stortic espons	on in se of

	an Amplifier, Band Pass of Cascaded Stages, The RC Coupled Amplifier, Effect of Emitter Bypass Capacitor on Low Frequency Response, High Frequency Response of Two Cascaded CE Transistor Stages, Multistage CE Amplifier Cascade at High Frequencies, Cascode Amplifier. (12 Hrs)
	UNIT IV
	Feedback Amplifiers: Classification of Amplifiers, The Feedback Concept, The Transfer Gain with Feedback, General Characteristics of Negative Feedback Amplifiers, Input Resistance Output Resistance, Method of Analysis of a Feedback Amplifier, Voltage Series Feedback, Current Series Feedback, Current Shunt Feedback, Voltage Shunt Feedback.
	Oscillators: Sinusoidal Oscillators, The Phase Shift Oscillator Using BJT, A General Form of Oscillator Circuit, The Wein Bridge Oscillator, Crystal Oscillators, Frequency Stability, Hartley & Colpitt's Oscillators Using BJT. (14 Hrs)
Text books	Text Books:
and Reference books	 Jacob Millman, Christos C. Halkias and Chetan D Parekh, "Integrated Electronics", 2nd Edition, Tata McGraw Hill Publication, 2012. (Units I,II,III & IV). Robert L Boylested and Louis Nashelsky, "Electronic Devices and Circuit Theory", 10th Edition, Pearson India, 2009. (UNIT IV).
	 Reference Books: 1. Donald L. Schilling and Charles Belove, "Electronic Circuits - Discrete and Integrated", 3rd Edition, TMH, 2002. 2. Donald A Neamen, "Electronic Circuits: Analysis And Design", 3rd Edition, TMH, 2008.
E-resources and other digital material	1. http://nptel.ac.in/courses/117107095/ 2. <u>http://ocw.metu.edu.tr/course/view.php?id=105</u>

14EC3403: ELECTROMAGNETIC FIELD THEORY

Course Category:	Programme Core	Credits:	4
Course Type:	Theory	Lecture -Tutorial - Practice:	4 -1- 0
Prerequisites:	14MA1201:Calculus,	Continuous Evaluation:	30
	14MA1301: Complex	Semester end Evaluation:	70
	Analysis and	Total Marks:	100
	Numerical Methods		

Course	Upon	Upon successful completion of the course, the student will be able to:								
outcomes	CO1	Apply appropriate physical law of electrostatics depending on the type of charge distribution to solve the engineering problems involving static electric fields.								
	CO2	Apply appropriate physical law of magneto statics depending on the type of current distribution to solve the engineering problems involving static magnetic fields.								

	CO3 Analyze the time varying electromagnetic fields by applyin appropriate Maxwell's equation and boundary conditions.												
	CO4 Analyze time harmonic electromagnetic field problem applying appropriate boundary conditions at an interfa different types of media for plane waves incident with different with different waves incident waves incident with different waves incident with different waves incident with different waves incident waves inci												s by e of erent
Contribution		PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO 1
of Course Outcomes towards	CO1	a H	U	C	a	e	1	g		1	J	K	1
achievement of Program	CO2	Н											
Outcomes	CO3	М		L									
(L – Low, M - Medium, H – High)	CO4	М		L									
Content	UNIT Elect Elect Dens Relat Poter Field Diele Lapla Diele UNIT Magu law, - equat due 1 Boun UNIT Maxy Equa Ampo Surfa Free- plane UNIT	$\Gamma - I$ ric Fi ity, G ionsh ntial a s, C etrics etrics etrics fetrics fetrics for a hetost dary of $\Gamma - II$ well's tion of ere's ce, TI Space wave $\Gamma - IV$	tics: elds of auss'; ip Be nd Fi- onvec, Di Equat Cond tatics: cation for sta ignetic condit I Equ of Co Law, he Wa con	Introd lue to s Law tween eld of ction ielectrin tions, uctor s of L tic fiel tions. ation ontinu Max ave Endition	ductio Con (, App E and E Elec and ty Ec Capa -Diele ductic Ampe elds, N d, Ma s: Ma ity for xwell quations, U	n, (tinuou olicati d V, tric D Consta quatio citance cita citance cita citance cita citance ci citance citance citance citance citance citanc	Coulor is Cha ons o Maxv ipole, duction ant, n, Ro- cond iot - aw, M- ctic Vo- cond cond iot - aw, M- ctic Vo- cond cond cond cond cond cond cond cond	mb's arge I f Gau vell's , Ener on C Isotro elaxat bunda luctor Savar fagne ector a le, M uctior arying ns, C onduc ne-W	Law Distribution Equations La Equations La Equations La Current optic ion T ry con- ry con- tic flua and So- tic flua and So- fiel conditi- cting La conditi- cting La conditi- cting La conditi- cting La conditi- cting La conditi- cting La conditi- cting La conditi- cting La conditi- cting La conditi- cting La conditi- cting La conditi- cting La conditi- cting La conditi- cting La conditi- cting La conditi- cting La conditi- conditi- conditi- conditi- conditi- conditi- conditi- conditi- conditi- conditi- conditi- cond	and oution w, El tions ensity its, 1 and Time, nditio space aw, A x den calar p ic En Farac dds, In ions Mediu Propag	Field s, Ele ectric for sta in El Polari Hon Pois ns - 1 e. (amper sity, 1 botent ergy, (10 day's ncons at a um, So gation (15	Inter ectric Poter atic fi ectros zation nogen son's Dielec 25 H n e's ci Maxw ials, F Mag Hrs) Law, istenc Boun olutio , Uni Hrs)	nsity, Flux ntial, elds, static and ectric- rs) rcuit vell's Force netic The y of idary n for form

	EM Waves: Sinusoidal Time Variations, Conductors and Dielectrics, Polarization, Reflection by a Perfect Conductor-Normal Incidence, Reflection by a Perfect Conductor-Oblique Incidence, Reflection by a Perfect Dielectric -Normal Incidence, Reflection by a Perfect Insulator - Oblique Incidence, Brewster angle, Total internal reflection, Surface impedance, Skin depth, Poynting's Theorem. (15 Hrs)											
Text books	Text Books:											
and	1. Mathew N O Sadiku, "Principles of Electromagnetics", 4 th edition,											
Reference	Oxford External Press, 2003. (Units - I, II)											
books	2. E C Jordan and K G Balmain, "Electromagnetic Waves and Radiating Systems", PHI, 2003. (Units - III, IV)											
	Reference books:											
	1. Joseph A Edminister, "Theory and Problems of Electromagnetics",											
	2 nd edition, Schaum's Outline Series, McGraw Hill, 1993											
	2. W H Hayt, "Engineering Electromagnetics", TMH, 1997											
	3. J. D. Kraus, "Electromagnetics", 5 th edition, McGraw Hill I, 1999.											
	4. Nathan Ida, "Engineering Electromagnetics", 2 nd edition Springer											
	(India) Pvt. Ltd., New Delhi, 2005.											
E-resources	1. <u>http://nptel.iitm.ac.in/video.php?subjectId=10810607</u>											
and other	2. <u>http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-</u>											
digital	%20Guwahati/em/index.htm											
material	3. http://www.mike-willis.com/Tutorial/PF2.htm											

14HS1404: ENVIRONMENTAL STUDIES

Course Category:	Programme Core	Credits:	3
Course Type:	Theory	Lecture-Tutorial-Practice:	3-0-0
Prerequisites:	-	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon successful completion of the course, the student will be able to:												
outcomes	CO1	Und degr	erstar adatio	nd the	e vari nager	ious n nent	atural	l reso	urces,	analy	yze ar	nd exp	olore
	CO2	Und	erstar	nd the	Ecos	ystem	s and	need	of Bio	odiver	sity		
	CO3	Exp man	Explore the Problems related to Environmental pollution and management										
	CO4	App issue	ly the es, Ac	e Role ts ass	e of I ociate	nform d wit	ation h Env	Tech ironn	nolog nent.	y and	l anal	yze s	ocial
Contributio n of Course		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	PO j	PO k	PO 1
Outcomes towards	CO1	L											L
achievement of Program Outcomes (L – Low,	CO2						Н		Н				
	CO3					L	Н		Н				
H – High)	CO4								Н	Н			L
Course	UNIT -I												
Content	The	Multi	discip	olinar	y Nat	ture o	f Env	rironr	nenta	l Stuc	lies		
	Def	initio	n, scoj	pe and	l impo	ortanc	e						
	Nee	d for	public	e awai	reness								
	Natu	ral R	esour	ces									
	Rene	wabl	e and	Non-	renev	vable	Reso	urces	:				
	Natu	ral res	ource	s and	assoc	iated	probl	ems.					
	(a)	For Tir and	rest r nber l triba	esouro extrac l peop	ces: ction, ple.	Use a minir	and o ng, da	over-e ims a	exploi nd th	tation eir ef	, def fects	oresta on fo	tion. rests
	(b)	Wa wa	ter re ter, fl	source oods,	es: Us droug	e and ght, co	over- onflict	utiliza ts ove	ation er wat	of sur er, da	face a ms-be	nd gro nefits	ound and

problems.

- (c) Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources.
- (d) Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity.
- (e) Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources.
- (f) Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification.

Role of an individual in conservation of natural resources.

Equitable use of resources for sustainable lifestyles.

UNIT II

Ecosystems

Concept of an ecosystem.

Structure and function of an ecosystem.

Producers, consumers and decomposers.

Energy flow in the ecosystem.

Ecological succession.

Food chains, food webs and ecological pyramids.

Introduction, types, characteristic features, structure and function of the following ecosystem:

- (a) Forest ecosystem
- (b) Grassland ecosystem
- (c) Desert ecosystem
- (d) Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

Biodiversity and Its Conservation

Introduction, definition: genetic, species and ecosystem diversity.

Biogeographically classification of India.

Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values.

Biodiversity at global, National and local levels.

India as a mega-diversity nation.

Hot-spots of biodiversity.

Threats to biodiversity: habitat loss, poaching of wildlife, manwildlife conflicts.

Endangered and endemic species of India.

Conservation of biodiversity: in-situ and ex-situ conservation of biodiversity.

UNIT III

Environmental Pollution

Definition

Causes, effects and control measures of

- (a) Air pollution
- (b) Water pollution
- (c) Soil pollution
- (d) Marine pollution(f) Thermal pollution
- (e) Noise pollution(g) Nuclear hazards

Solid waste management: Causes, effects and control measures of urban and industrial wastes.

Role of an individual in prevention of pollution.

Diaster management: Floods, earthquake, cyclone and landslides.

UNIT IV

Social Issues and the Environment

From unsustainable to sustainable development.

Urban problems related to energy.

Water conservation, rain water harvesting, watershed management.

Resettlement and rehabilitation of people; its problems and concerns.

Environmental ethics: Issues and possible solutions.

Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust.

Wasteland reclamation.

Consumerism and waste products.

Environment Protection Act.

Air (Prevention and Control of Pollution) Act.

Water (Prevention and Control of Pollution) Act.

Wildlife Protection Act.

Forest Conservation Act.

Issues involved in enforcement of environmental legislation.

Public awareness.

	Human Population and the Environment
	Population growth, variation among nations.
	Population explosion—Family Welfare Programme.
	Environment and human health.
	Human rights.
	Value education.
	HIV/AIDS.
	Women and Child Welfare.
	Role of Information Technology in environment and human health.
	Field Work/ Case Studies <u>{NOT TO BE INCLUDED IN SEMESTER</u> <u>END EXAMS</u> }
	Visit to a local area to document environmental assets-river/forest /grassland/ hill/ mountain.
	Visit to a local polluted site—Urban/Rural/Industrial/Agricultural.
	Study of common plants, insects, birds.
	Study of simple ecosystems—pond, river, hill slopes, etc.
Text books	Text Book:
and Reference books	 "ENVIRONMENTAL STUDIES" for under graduate courses of all branches of higher education – Erach Bharucha For University Grants Commission.
	Reference Book:
	 AnjaneyuluY, "Introduction to Environmental sciences", B S Publications PVT Ltd, Hyderabad.
E-resources	1. collegesat.du.ac.in/UG/Envinromental%20Studies_ebook.pdf
and other	
digital	
material	

14EC3405: COMPUTER ARCHITECTURE AND ORGANIZATION

Course Category:	Programme Core	Credits:	3
Course Type:	Theory	Lecture-Tutorial-Practice:	3-0-0
Prerequisites:	14CS1103:Introduction to	Continuous Evaluation:	30
	Computing, 14EC3304:	Semester end Evaluation:	70
	Digital Circuits and	Total Marks:	100
	Systems		

Course	Upon successful completion of the course, the student will be able to:												
outcomes	CO1	Dem inter	onstra pret m	te cor achin	npute e codi	r func ng of	tional function	units, i onal u	its ope nits.	eratior	n and	also	
	CO2	Eval	Evaluate the performance of CPU, Memory and I/O operations.										
	CO3	O3 Appreciate the pipelined architecture of processors.											
Contribution of Course Outcomes towards achievement of Program Outcomes (L – Low,		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	PO j	PO k	PO 1
	CO1	Н											
	CO2	L											
H – High)	CO3	M											
Course Content	gh) CO3 M Image: CO3 Image: CO3										unctio formations beration Assem Que Design -Oper	onal nce, and ons, ibly ues, n of and oint	

	Numbers and Operations.
	BASIC PROCESSING UNIT Fundamental concepts, Execution of a complete instruction, Multiple-Bus organization, Hardwired Control, Micro programmed control(10Hrs)
	UNIT-III
	MEMORY SYSTEM Basic concepts, Semiconductor RAM, ROM, Speed Size and cost, Cache memories, Performance considerations, Virtual Memories, Memory Management requirements, Secondary storage. (8Hrs)
	UNIT-IV
	I/O ORGANIZATION Accessing Input/ Output devices, Interrupts, Direct memory access, Buses, Interface Circuits
	PIPELINING Basic concepts, Data hazards, Instruction hazards,Influence on instruction sets, Data path and control considerations,Superscalar Operations, Performance considerations.(12Hrs)
Text books	Text Books:
and Reference books	 Carl Hamacher, Zvonko Vranesic and Safwat Zaky, "Computer Organization", 5th Edition, Tata McGraw Hill, 2002. (Unit – I to IV).
	References:
	 William Stallings, "Computer Organization and Architecture Designing for Performance", 9th Edition, Pearson Education, 2013.(Refer for Internal Memory Technology)
	 Patterson, D. A., and Hennessy, J.L., "Computer Organization and Design: The Hardware/Software Interface", 4rd Edition, Morgan Kaufmann, 2009. (Refer for Interfacing I/O Devices to the Processor, Memory and Operating Systems)
	 Hayes, J.P., "Computer Architecture and Organization", 3rd Edition, Tata McGraw Hill, 1998.(Refer for Design of Arithmetic Logic for Computers)
E-resources	E Resources:
and other digital	1. http://nptel.iitk.ac.in/courses/Webcourse-contents/IIT- KANPUR/CompArchitecture/page2.htm
material	 http://nptel.ac.in/courses/Webcourse-contents/IIT- %20Guwahati/comp_org_arc/web/
	3. http://williamstallings.com/ComputerOrganization/styled-7/

14EC3406: ANALOG COMMUNICATIONS

Course Category:	Programme Core	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	4-0-0
Prerequisites:	14EC3305:Signals	Continuous Evaluation:	30
	and Systems	Semester end Evaluation:	70
		Total Marks:	100

Course	Upon successful completion of the course, the student will be able to:												
outcomes	CO1	Und usin	lerstar g diff	nd the erent	e gene modu	ratior lation	n and techn	detec iques	tion c	of cor	ntinuo	us sig	gnals
	CO2	Con rece	Comprehend the working principles of radio transmitters and ecceivers										
	CO3	Ana	Analyze the noise performance of AM & FM receivers										
Contribution of Course		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	PO j	PO k	PO 1
Outcomes towards	CO1	Н											
achievement of Program Outcomes (L – Low, M -Medium, H – High)	CO2	Н	L										
	CO3	L											
Course	UNIT-I												
Content	Ampl Descr Side Descr DSBS	itude iption Band- iption C Mc	Mod , Gen Singl , Gen odulat	ulatio eratio e Car neratio ed Wa	on: Ti n of A rier N on of aves, (me do AM w Modul f DSI Costas	omain aves, lation: BSC s Loop	descr Detec Tim wave p.	ription tion c e and s, Cc	n, Free of AM Free oherer	quenc wave quency nt det	y Don es. Do y Don ection	nain ouble nain 1 of
	SSB &VSB Modulations: Single Side Band Modulation: Frequency Domain Description, Generation of SSB-SC Wave, Frequency-Discrimination Method, Phase Discrimination method, Demodulation of SSB-SC Waves, Vestigial Side-Band Modulation, Frequency Domain Description, Generation of VSB Modulated Wave, Envelope Detection of VSB Wave Plus Carrier. (15Hrs)										ency ncy- ation ency lope		
	UNIT	-II											
	Angle	e Mo	dulati	ion: 1	Freque	ency	Modu	lation	n: Sin	gle T	one l	Freque	ency

	Modulation, Spectrum Analysis, Narrow Band FM, Wideband FM, Transmission Bandwidth of FM, Generation of FM Waves, Demodulation of FM Waves, Phase Locked Loop (PLL) Limiting IF FM Waves, Applications of FM Waves.
	Pulse Modulation: Basic principles of PAM, PWM, PPM-Generation and Detection techniques.(12 Hrs)
	UNIT-III
	Radio Transmitters: Classification of Radio Transmitters, AM Radio Transmitters, Carrier frequency requirements of Radio Transmitter, Master Oscillator, Methods of frequency modulation, Armstrong FM Transmitter.
	Radio Receivers: Receiver Types, AM Receivers, FM Receivers- Comparison with AM Receivers, Amplitude limiting, Basic FM demodulators, Radio detector(15 Hrs)
	UNIT-IV
	Noise in Analog Modulation:AM Receiver model, Signal to NoiseRatios for Coherent Reception.Noise in AM receivers using EnvelopeDetection.FM receiver model, Noise in FM reception, ThresholdEffect, Pre-emphasis and De-emphasis in FM.(12 Hrs)
Text books	Text Books:
and Reference books	 Simon Haykin. "Introduction to Analog and Digital Communication Systems", 2nd edition, John Wiley and Sons, 2009. (Units - I, II &III) George Kennedy & Bernard Davis, "Electronic Communication systems", 4th edition, TMH India, 2009.
	References:
	 G. K. Mithal, "Radio Engineering", 20th edition, Khanna Publishers, 2011. (Unit - IV) Taub and Schilling, "Principles of Communication Systems", 2nd edition, TMH, 2004. A Bruce Carlson, PB Crilly, JC Rutledge, "Communication Systems", 4th Edition, McGraw Hill, New York, 2002.
E-resources and other digital material	 E Resources: 1. http://nptel.iitm.ac.in/viedo.php?subjectId=117102059 2. http://web.engr.oregonstate.edu/~magana/ECE461- 561/index.htm

14EC3451: ELECTRONIC CIRCUITS LAB

Course Category:	Programme Core	Credits:	2
Course Type:	Practical	Lecture-Tutorial-Practice:	0-0-3
Prerequisites:	14EC3402:	Continuous Evaluation:	30
	Electronic Circuits	Semester end Evaluation:	70
		Total Marks:	100

Course	Upon successful completion of the course, the student will be able to:													
outcomes	CO1 Design a BJT amplifier at low frequencies for g specifications.												given	
	CO2	Des	Design and analyze a multistage amplifier.											
	CO3	Des	Design and analyze feedback amplifiers and oscillators.											
Contribution		PO	O PO											
of Course		a	b	c	d	e	f	g	h	i	j	k	1	
Outcomes	CO1				M	M				M				
towards														
achievement	CO2				M	M				M				
of Program					M	M				M				
Outcomes														
(L – Low,	CO3													
M -Medium,														
H – High)														
Course	List	of La	b Exe	ercise	s:									
Content	Expe	rimen	ıts ba	sed o	n Sim	ulatio	on:							
	1.	Des	ign of	f Vol	tage S	hunt	Feedb	ack A	mplif	fier				
	2.	Free	juenc	v Re	spons	e of	CE	E Am	plifie	r wit	h an	d wi	thout	
		Fee	dback		1				1					
	3.	Des	ign of	f Curr	ent Sł	unt F	eedba	ick Ai	mplifi	er				
	4	Des	ign of	f RC F	Phase	Shift	and V	Wein	bridge	e Osci	llator			
	5	Des	ion o	f Rad	lio Fr			scillo	tors (Hartle		1 Col	nitt's	
	J.	Des	igii 0		no fi	cquel	icy U	scilla	1015 (114111	y and	1 001	più s	

	Oscillators)
6.	Frequency Response of Two Stage RC – Coupled Amplifier
Expe	riments based on Electronic circuits
7.	Design of Voltage Series Feedback Amplifier
8.	Design of Current Series Feedback Amplifier
9.	Frequency Response of CE Amplifier with and without
	Feedback
10.	Design of Darlington emitter follower circuit
11.	Design of RC Phase shift and Wein Bridge Oscillator
12.	Design of Hartley and Colpitt's Oscillator

NB: A minimum of 10(Ten) experiments (5 from each section) have to be performed and recorded by the candidate to attain eligibility for External Practical Examination

14EC 3452: ANALOG COMMUNICATIONS LAB

Course Category:	Programme Core	Credits:	2
Course Type:	Practical	Lecture - Tutorial - Practice:	0-0-3
Prerequisites:	14EC3406: Analog	Continuous Evaluation:	30
	Communications	Semester end Evaluation:	70
		Total Marks:	100

Course	Upon successful completion of the course, the student will be able to:												
outcomes	CO1	Expe the v	erimer various	ntally 1 5 parar	he wo neters	orking invol	of A ved i	.M, FN n it.	M and	PM	techr	niques	and
	CO2	2 Experimentally the working of PAM, PWM and PPM techniques and the various parameters involved in it.											
	CO3	Expe	erimer	ntally t	he wo	rking	of M	ixer, S	Squelc	ch & 4	AGC	Circu	its.
Contribution of		PO a	PO b	PO c	PO d	PO e	PO f	f PO g	PO h	PO i	PO j	PO k	PO 1
towards	CO1				Н	М				М			
Program Outcomes	CO2				Н					М			
(L – Low, M - Medium, H – High)	CO3				М					М			
		List of Lab Exercises:											
Course Content	List o	f Lab	Exer	<u>cises:</u>	I	<u> </u>	,				I		•
Course Content	<u>List o</u> Expe	<u>f Lab</u> rimen	Exer ts usi	<u>cises:</u> ng Ha	rdwai	re (usi	ing D	Discret	te Con	npon	ents)) <u>:</u>	6
Course Content	<u>List o</u> <u>Expe</u> 1.	i <mark>f Lab</mark> rimen Amj	Exer ts usin	<mark>cises:</mark> ng Ha e Mod	rdwaı ulatior	re (usi	ing D Demo	Discret	t <mark>e Cor</mark> ion	npon	ents)) <u>:</u>	8
Course Content	List o Exper 1. 2.	<mark>f Lab</mark> rimen Amj Frec	Exer ts usin plitude juency	<u>cises:</u> ng Ha e Mod ^y Mod	rdwa1 ulatior ulatior	re (usi n and l n and l	ing D Demo	Discret odulat	ion	npon	ents)) <u>:</u>	
Course Content	List o Exper 1. 2. 3.	<mark>f Lab</mark> rimen Amı Frec DSE	Exer ts usin plitude puency 3 SC N	cises: ng Ha e Mod 7 Modu //odula	rdwal ulatior ulatior ation a	re (usi n and l n and l nd De	ing D Demo Demo emod	Discret odulat odulat ulation	ion ion	<u>mpon</u>	ents)	:: ::	
Course Content	List o Exper 1. 2. 3. 4.	f Lab rimen Amj Frec DSE SSB	Exer ts usin plitude juency 3 SC M 5 SC M	cises: ng Ha Mod Modula Iodula	rdwar ulatior ulation a tion a	re (usi n and l n and l nd De nd De	ing D Demo Demo emod modu	Discret odulat odulati ulation ulation	ion ion n	<u>mpon</u>	ents)	<u>:</u>	
Course Content	List o Exper 1. 2. 3. 4. 5.	f Lab rimen Amp Frec DSE SSB Pre	Exer ts usin plitude puency 3 SC M 5 SC M Empha	cises: ng Ha Mod Modula Modula Aodula asis - l	rdwar ulatior ulation a tion a De Em	re (usi n and l n and l nd De nd De uphasi	ing D Demo Demo emod modu s Ciro	Discret odulat odulat ulation ulation cuits	ion ion ion	npon	ents)	<u>:</u>	
Course Content	List o Exper 1. 2. 3. 4. 5. 6.	f Lab rimen Amp Frec DSE SSB Pre PAN PW	Exer ts usin plitude puency S SC N S SC N Empha A and M Ger	cises: ng Ha Mod Modula Modula Aodula asis - I Recor	rdwal ulatior ulation a ation a tion a De Em astruct	re (usi n and l n and l nd De nd De nd De nd De nd De nd De nd De	ing D Demo Demo emod modu s Ciro	Discret odulat odulation ulation ulation cuits	ion ion n	npon	(ents)	<u>:</u>	
Course Content	List o Exper 1. 2. 3. 4. 5. 6. 7. 8.	f Lab rimen Amj Frec DSE SSB Pre PAN PWI Dest	Exer ts usin plitude puency S SC M S SC M Empha A and M Ger ign of	cises: ng Ha Modula Modula Aodula asis - l Recor neratio Mixer	rdwar ulatior ulation a tion a De Em ostruct n and	re (usi n and l n and l nd De nd De nphasi ion Recor	ing D Demo Demo emod modu s Ciro	Discret odulat odulati ulation ulation cuits	te Con ion ion n	npon	ents)	<u>:</u>	

	Experiments using Software(using Lab VIEW):
	10. Amplitude Modulation and Demodulation
	11. Frequency Modulation and Demodulation
	12. DSB SC Modulation and Demodulation
	Experiments using Specialized Equipment (using Spectrum
	<u>Analyzer):</u>
	13. Amplitude Modulation and Demodulation
	14. Frequency Modulation and Demodulation
	Extra Experiments(Special Circuits):
	15. Squelch Circuit
	16. Frequency Synthesizer
E-resources and	1. http://iitg.vlab.co.in/?sub=59&brch=163
other digital	2. <u>http://www.scribd.com/doc/27104963/ANLOG-</u>
material	COMMUNICATION Lecture-06

<u>Note:</u> A minimum of 10(Ten) experiments have to be performed and recorded by the candidate to attain eligibility for External Practical Examination.

14EC3501: LINEAR CONTROL SYSTEMS

Course Category:	Institutional Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3-1-0
Prerequisites:	14ME1207:Mechanics	Continuous Evaluation:	30
	for Engineers	Semester end Evaluation:	70
	14EC3305:	Total Marks:	100
	Signals &Systems		

Course outcomes	Upon successful completion of the course, the student will be able to												0:	
	CO1	Understand the concepts of feedback control systems and model the physical systems												
	CO2 Determine and analyze the linear systems using time doma analysis.												1	
	CO3	¹³ Determine and analyze the linear systems using frequencies response plots.												
	CO4	Design the d state	Design and evaluate the compensators for linear systems to meet the desired specifications using bode-plots and understands the state space approaches.											
Contribution		POa	POb	POc	POd	POe	POf	POg	POh	POi	POj	POk	PO 1	
of Course Outcomes	CO1													
towards	001	M												
achievement of Program	CO2	Н												
Outcomes	CO3	Н												
(L – Low, M -Medium, H – High)	CO4	М												
Course	UNIT	I:												
Content	UNIT I: Introduction: Basic Components of a Control System, Examples of Control System Applications, Open Loop Control Systems, Closed Loop Control Systems, Effect of Feedback on Overall Gain, Effect of Feedback on Stability, Effect of Feedback on Sensitivity, Effect of Feedback on External Disturbance or Noise, Types of Feedback Control													

Systems - Linear Versus Nonlinear Control Systems, Time Invariant Versus Time Varying Systems.

Mathematical Modeling of Physical Systems: Introduction, Equations of Electric Networks, Modeling of Mechanical System Elements, Impulse Response and Transfer Functions of Linear Systems, Block Diagrams, Signal Flow Graphs, Summary of the Basic Properties of SFG, Definition of SFG Terms, SFG Algebra, Gain Formula for SFG, Application of the Gain Formula to Block Diagrams.

UNIT II:

Time Domain Analysis of Control Systems: Time Response of Continuous Data Systems, Typical Test Signals for the Time Response of Control Systems, Steady State Error, Unit Step Response and Time Domain Specifications, Transient Response of Prototype Second Order System, Effect of Adding Poles and Zeros to Transfer Functions, Dominant Poles of Transfer Function.

Stability of Linear Control Systems: Introduction, Bounded Input – Bounded Output Stability, Zero Input and Asymptotic Stability of Continuous Data Systems, Methods of Determining Stability Routh-Hurwitz Criterion.

UNIT III:

Root-Locus Technique: Introduction, Basic properties of the Root Loci, Properties and Construction of the Root Loci, Root Contours, Some important aspects of the construction of the Root Loci.

Frequency-Domain Analysis: Introduction, M_r , W_r , Bandwidth of the Prototype Second-Order System, Effect of adding Poles and Zeros to the Forward-Path Transfer Function, Nyquist Stability Criterion, Nyquist Criterion for Systems with Minimum-Phase Transfer Functions, Relative Stability, Stability Analysis with the Bode Plot, Stability Analysis with the Magnitude-Phase Plot, Constant - M Loci in the G(jw) - Plane, Constant-Phase Loci in the G(jw)-Plane, Nichols Chart.

UNIT – IV:

Design of Control Systems: Introduction, Design with the Phase-Lead Controller, Design with the Phase-Lag Controller, Design with the Lead-Lag Controller.

State Variable Analysis: Introduction, State Transition Matrix, State

	Transition Equation, Relation Between State Equations and Transfer Functions, Characteristic Equation, Eigen Values and Eigen Vectors, Controllability of Linear Systems, Observabiliy of Linear Systems, Relationship among Controllability, Observabiliy and Transfer Functions.
Text books and Reference books	 Text Books: 1. Benjamin C. Kuo, "Automatic Control Systems", 7th edition, PHI, 2013. Reference Books: 1. J Nagrath & M Gopal, "Control Systems Engineering", 3rd edition, New Age International, 2003. 2. K Ogata, Modern Control Engineering, 4th edition, Pearson Education, 2003.
E-resources and other digital material	 http://nptel.iitm.ac.in/video.php?subjectId=108101037 <u>http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT</u> Delhi/Control%20system%20design%20n%20principles/index.htm http://en.wikibooks.org/wiki/Control_Systems http://www.ebookpdf.net/linear-control-systems-ppt_ebook

14EC3502: PULSE AND SWITCHING CIRCUITS

Course Category:	Core	Credits:	4
Course Type:	Theory	Lecture - Tutorial -Practice:	4-0-0
Prerequisites:	14EC3302: Electronic	Continuous Evaluation:	30
	Devices, 14EC3402:	Semester end Evaluation:	70
	Electronic circuits.	Total Marks:	100

Course outcomes	Upon	Upon successful completion of the course, the student will be able to:											
	CO1	Anal Amp	yze, d lifiers	esign and fr	and vo	erify 1 lcy res	the cosponsi	onver se of [sion e Funed	fficie ampl	ncy c lifiers	of Po s.	wer
	CO2	Anal Linea	Analyze, design and verify the response of Linear & Non-Linear Wave shaping circuits to different inputs.Analyze, design and verify the states of Multivibrator Circuits.										
	CO3	Ana											
	CO4	Anal and b	yze, d olockii	esign a ng osc	and ve illator	erify ti s.	he ou	itputs	of tin	ne bas	ed ge	enera	tors
Contribution		POa	POb	POc	POd	POe	POf	POg	POh	POi	POj	POk	PO 1
of Course Outcomes towards	CO1		M	М									
achievement of Program	CO2		M	М									
Outcomes	CO3		М	М									
(L – Low, M-Medium, H – High)	CO4		M	М									
Course Content	UNIT Power Harmo Transf Ampli Tuneo Circui	T: r Am ponic former ifiers, (d Am] t and	plifier	rs: C ortion, bled A B Amp rs: Bat	lass Hig udio plifier nd pa Vari	A La gher Powe s, Cla ss Ai ations	arge Ord r An ss Al mplif	Sign ler nplifie B Ope iers, Frequ	al A Harm er, Eff eratior The I gencie	mplif onic ficien 1, Paralles pea	iers, Ge cy, P el Re r Re	Sec nerat Push-1 esona	ond ion, Pull ince

Transformation from the Series Resistance Form, Single Tuned Amplifier, Inductively Coupled Circuits, Tuned Primary Amplifier, Tuned Secondary FET Amplifier, Double Tuned Transformer Coupled Amplifier, Stagger Tuned Amplifier.

UNIT II:

Linear Wave Shaping: The High pass RC Circuit, The High pass RC Circuit: Exponential &

Ramp Inputs, The High pass RC Circuit as a Differentiator, Low pass RC Circuit, The Low pass RC Circuit (Exponential & Ramp Inputs), the Low Pass RC Circuit as a Integrator, Attenuators

Non-Linear Wave Shaping: Clipping Circuits, Diode Clippers, Clipping at Two Independent Levels, The Clamping Operation, Clamping Circuits Taking Source and Diode Resistances into Account, A Clamping Circuit Theorem and Practical Clamping Circuits.

UNIT III:

Multivibrators:

Bistable Multivibrator: The Stable States of a Bistable Multivibrator, A Fixed Bias Transistor Bistable Multivibrator, Self Bias Transistor Bistable Multivibrator, Commutating Capacitors, Methods of Improving Resolution, Unsymmetrical Triggering of the Bistable Multivibrator. Triggering Unsymmetrically through a Unilateral Device, Symmetrical Triggering, and Schmitt Trigger.

Monostable and Astable Multivibrators: The Monostable Multivibrators, Gate Width of a Collector Coupled Monostable Multivibrator, Waveforms of The Collector Coupled Monostable Multivibrators, The Astable Collector Coupled Multivibrator.

UNIT – IV

Time Base Generators:

Voltage Time Base Generators: General Features of a Time Base Signal, Methods of Generating a Time Base Waveform, Exponential Sweep Circuit, A Transistor Constant Current Sweep, Miller and Boot Strap Time Base Generators-General Considerations, The Transistor Miller Time Base Generator, The Transistor Boot Strap Time Base Generator.

	 Current Time Base Generators: A Simple Current Sweep, Linearity Correction through Adjustment of Driving Waveform, A Transistor Current Time Base Generator. Blocking Oscillators: A Triggered Transistor Blocking Oscillator (Base Timing), A Triggered Transistor Blocking Oscillator (Emitter Timing).
Text books	Text Books:
and Reference books	 John D Ryder, "Electronic Fundamentals and Applications: Integrated and Discrete Systems" 5th Edition, PHI, 2003.
	 Jacob Millman and Herbert Taub, "Pulse, Digital and Switching Waveforms, 3rd Edition, TMH, 2003. (UNIT II, III & IV).
	Reference Books:
	 Jacob Millman and Christos C Halkias, "Integrated Electronics: Analog and Digital Circuits and Systems", TMH, 2003. (UNIT-I for Power amplifiers)
	 Robert L Boylested and Louis Nashelsky, "Electronic Devices and Circuit Theory", 8th Edition, 2002, PHI.
	3. Deshpande, "Electronic Devices and Circuits", Tata McGraw-Hill.
	4. A. Anand Kumar, "Pulse and Digital Circuits", 2 nd Edition, PHI, 2008.
E-resources	1. http://nptel.iitm.ac.in/courses.php?branch=Ece.
and other digital	2. <u>http://web.cecs.pdx.edu/~ecc2xx/ECE221/Lectures/</u> .
material	3. http://newton.ex.ac.uk/teaching/CDHW/Electronics2/ElectronicsRe sources.html.

14EC3503: MICROPROCESSOR AND MICROCONTROLLER

Course Category:	Programme Core	Credits:	4
Course Type:	Theory	Lecture-Tutorial-Practice:	4-1-0
Prerequisites:	14EC3304:Digital	Continuous Evaluation:	30
	circuits and systems,	Semester end Evaluation:	70
	14EC3405:Computer	Total Marks:	100
	architecture and		
	organization.		

Course	Upon successful completion of the course, the student will be able to:												
outcomes	CO1	App	rehen	d the i	nterna	al arch	nitect	ure of	8086	mierc	proc	essor	•
	CO2	Develop assembly language program for small applications using 8086.											
	CO3	Apprehend the internal architecture of 8051microcontroller.											
	CO4	Dev usin	elop g 805	assem 1.	bly la	angua	ge p	rogran	n for	sma	ll ap	plica	tions
Contributio		PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	РО
n of Course		a	b	c	d	e	f	g	h	i	j	k	1
Outcomes towards	CO1	Н											
achievement	CO2		M	Μ									
of Program Outcomes	CO3	Н											
(L – Low, M -Medium, H – High)	CO4		M	М									
Course	UNIT	I:											
Content	The diagra descri operat timing 8086 instruct assem	proce am: ption, I gs, ma instru- ction : bler d	essors Regis of /O ad ximun uction forma	: 808 ster o 8086, dressin m mod n set a ts, add ves an	36 ar organis ohysic ng cap le 808 and a lressir d oper	chited sation al m babilit 6 syst ssem ng mo rators.	of nemotivy, mit tem a bler odes c	, pin 803 ry org inimur nd tim direct of 8080	dia 86, a ganisa n mo iings. tives: 6, ins	gram archit ation, de 80 Mac tructio	a an ecctur gei 086 sy chine on se	d tin re, s neral ysten lang t of {	ming ignal bus 1 and guage 8086,

	UNIT II:
	Interrupts and interrupt service routines: interrupt cycle of 8086, non- maskable interrupt, maskable interrupt, interrupt programming.
	Basic peripherals and their interfacing with 8086: interfacing I/O ports, PIO 8255, modes of operation of 8255, interfacing analog to digital data converters, interfacing digital to analog converters, stepper motor interfacing.
	UNIT III:
	8051 Microcontroller: Introduction to Microcontroller and Embedded Processor; Overview on 8051 Family; Architecture and Memory Organization, Assembly Language Programming, Arithmetic and Logic Instructions, JUMP, LOOP and CALL Instructions, Addressing Modes.
	UNIT – IV:
	Programs on Arithmetic and Logic Instructions, Programming in C, I/O Port Programming. Timers Programming in Assembly and C, Serial Port Programming in Assembly and C, Interrupts programming.
Text books	Text Books:
Text books and Reference books	 Text Books: A K Ray, K M Bhurchandi, "Advanced Microprocessors and Peripherals: Architecture, Programming and Interfacing", 2nd Edition, 2004, TMH. (Units-I & II). Mohammed Ali Mazidi and Janice Gillispie Mazidi, "The 8051 Microcontroller and Embedded Systems", 2nd Edition, Pearson Education Asia New Delhi 2008 (Unit-III & IV)
Text books and Reference books	 Text Books: A K Ray, K M Bhurchandi, "Advanced Microprocessors and Peripherals: Architecture, Programming and Interfacing", 2nd Edition, 2004, TMH. (Units-I & II). Mohammed Ali Mazidi and Janice Gillispie Mazidi, "The 8051 Microcontroller and Embedded Systems", 2nd Edition, Pearson Education Asia, New Delhi, 2008. (Unit-III &IV). Reference Books:
Text books and Reference books	 Text Books: 1. A K Ray, K M Bhurchandi, "Advanced Microprocessors and Peripherals: Architecture, Programming and Interfacing", 2nd Edition, 2004, TMH. (Units-I & II). 2. Mohammed Ali Mazidi and Janice Gillispie Mazidi, "The 8051 Microcontroller and Embedded Systems", 2nd Edition, Pearson Education Asia, New Delhi, 2008. (Unit-III &IV). Reference Books: 1. Douglas V Hall, "Microprocessors and Interfacing: Programming and Hardware", 2nd edition, TMH, 2003. (For 8086 practical system examples) 2. Kenneth J Ayala, "The 8051 Microcontroller", 3rd edition, 2004, Cengage Learning. (For examples of 8051 assembly code)
Text books and Reference books E-resources and other digital material	 Text Books: 1. A K Ray, K M Bhurchandi, "Advanced Microprocessors and Peripherals: Architecture, Programming and Interfacing", 2nd Edition, 2004, TMH. (Units-I & II). 2. Mohammed Ali Mazidi and Janice Gillispie Mazidi, "The 8051 Microcontroller and Embedded Systems", 2nd Edition, Pearson Education Asia, New Delhi, 2008. (Unit-III &IV). Reference Books: 1. Douglas V Hall, "Microprocessors and Interfacing: Programming and Hardware", 2nd edition, TMH, 2003. (For 8086 practical system examples) 2. Kenneth J Ayala, "The 8051 Microcontroller", 3rd edition, 2004, Cengage Learning. (For examples of 8051 assembly code) 1. <u>http://nptel.iitm.ac.in/courses/Webcourse-contents/IISc- BANG/Microprocessors%20and%20Microcontrollers/New_index1. html - (For 8085 & advanced microprocessors)</u> 2. <u>http://www.datasheetarchive.com/intel%208086%20microprocessor</u> <u>-datasheet.html</u> - (8086 datasheet) 3. <u>http://www.datasheetarchive.com/8051-datasheet.html</u> - (8051

Course Category:	Programme Core	Credits:	4
Course Type:	Theory	Lecture-Tutorial-Practice:	4-0-0
Prerequisites:	14EC3401:Probability Theory And Random Processes 14EC3406:Analog Communications	Continuous Evaluation: Semester end Evaluation: Total Marks:	30 70 100

14EC3504: DIGITAL COMMUNICATIONS

Course outcomes	Upon to:	Upon successful completion of the course, the student will be able to:														
	CO1	Identify the constituents of a digital communications system										n				
	CO2 Analyze & demonstrate various methods of baseb band pass digital transmission and Detection methods										aseb 10ds.	band and				
	CO3	Unde the ir	erstand	the ba e of cl	asics nanne	of in: l.	forma	ation	theor	y and	l cha	racte	terize			
	CO4	Desc contr infor	Describe and determine the performance of different error control coding schemes for the reliable transmission of digital information over the channel.									rror gital				
Contribution of Course		POa	PO b	POc	POd	POe	POf	POg	POh	POi	PO j	POk	PO 1			
Outcomes towards	CO1	Н														
achievement of Program	CO2	Н														
Outcomes	CO3	Н														
(L – Low, M - Medium, H – High)	CO4	Н														
Course Content	UNIT Pulse Code Modu Basel Rate	Γ I: Mod Mod ulation band Due to	ulation lulatior , Adap Pulse) Noise	n: San n, De tive D Tran s e, Inter	npling lta N iffere smiss rsymł	g Pro /Iodu ntial ion : pol In	cess, lation Pulse Matc terfer	Quar , Di Code hed t	ntizati fferer e Moc filter, Nyq	on P ntial lulati Prop uist's	roces Puls on. perties	ss, Pu le C es, E erion	ulse ode rror for			

	Distortion less Baseband Binary Transmission, Correlative Level Coding. UNIT II:
	Passband Digital Transmission : Introduction, Passband Transmission Model, Geometric Interpretation of Signals, Coherent Detection of Signals in Noise, Probability of Error, Correlation Receiver, Detection of Signals with Unknown Phase: Coherent Phase Shift Keying, Coherent Frequency Shift Keying, Non Coherent Binary Frequency Shift Keying, Differential Phase Shift Keying.
	UNIT III:
	Information Theory: Introduction, Uncertainty, Information and Entropy, Source Coding Theorem, Data Compaction, Discrete Memory Less Channels, Mutual Information, Channel Capacity, Channel Coding Theorem, Differential Entropy and Mutual Information for Continuous Ensembles, Information Capacity Theorem.
	UNIT – IV:
	Error Control Coding: Linear Block Codes, Cyclic Codes, Convolution Codes, Maximum Likelihood Decoding of Convolution Codes.
Text books	Text Books:
and Reference books	 Simon Haykin, "Communication Systems", John Wiley & Sons, 4th edition, 2007.(Units - I, II, III & IV)
	Reference Books:
	 Bernard Sklar, "Digital Communication", 2nd edition, Pearson Education, 2013. Taub and Schilling, "Principles of Communication Systems", 2nd edition, TMH, 1986
E-resources and other digital material	 <u>http://nptel.iitm.ac.in/video.php?subjectId=117101051</u> http://nptel.iitm.ac.in/courses/Webcoursecontents/IIT%20Khragp ur/Digi%20Comm/ New_index1.html <u>http://nptel.iitm.ac.in/courses/117108044/</u> <u>http://www.ece.utah.edu/~npatwari/ece5520/lectureAll.pdf</u>

14EC3507: TRANSMISSION LINES AND WAVEGUIDES

Course	Core	Credits:	3
Category:			
Course Type:	Theory	Lecture-Tutorial-Practice:	3+1
Prerequisites:	14EC3403:	Continuous Evaluation:	30
	Electromagnetic	Semester end Evaluation:	70
	Field Theory	Total Marks:	100

Course outcomes	Upon successful completion of the course, the student will be able to:												
	CO1 Demonstrate and compute various parameters for loade transmission lines using either a Smith chart or classica theory.										ded.		
	CO2	Des	Design matching networks for loaded transmission lines										
	CO3	Gair	1 knov	wledg	e abo	ut pro	pagati	on of	wave	es in g	guide	ed wa	ives
	CO4	Ana wav	Analyze the characteristics of rectangular and circular waveguides										
Contribution of Course		POa	POb	POc	POd	POe	POf	POg	POh	POi	PO j	POk	PO 1
Outcomes towards	CO1	М											
achievement of Program	CO2	М		L									
Outcomes (L – Low,	CO3	M		L									
M - Medium, H – High)	CO4	М		L									
Course Content	UNIT Trans	' I smissi	on Li	ines:	A Lin	e of C	Cascac	led T	-Secti	ons,	Tran	smis	sion
	Line - General Solution, Physical Significance of the Equations; Infinite Line, Wavelength, Velocity of Propagation, Waveform Distortion, The Distortion Less Line, Telephone Cable, Inductance Loading of Telephone Cables, Reflection on a Line not Terminated in Z _o , Reflection Coefficient, Input and Transfer Impedance, Open and Short Circuited Lines, Reflection Factor and Reflection Loss,							ons; orm ance					
								ated pen oss,					

	Insertion Loss, T and II Section equivalents to Lines.
	Transmission Line at Radio Frequencies: Parameters of Open Wire Line at High Frequencies, Parameters of Coaxial Lines at High Frequencies, Constants for the Line of Zero Dissipation, Voltages and Current on Dissipation Line, Standing Waves, Standing Wave Ratio, Input Impedance of the Dissipation Less Line, Input and Output Impedance of Open and Short Circuited Lines, Power and Impedance Measurement on Lines, Reflection Losses on the Unmatched Line, Single Stub Matching on a Line, Double Stub Impedance Matching , Smith Charts. UNIT III Guided Waves : Waves between Parallel Planes, Transverse Electric Waves, Transverse Magnetic Waves, Characteristics of TE and TM Waves, Transverse Electromagnetic Waves, Velocities of Propagation, Attenuation in Parallel Plane Guides. UNIT-IV
	Rectangular Waveguides: Transverse Magnetic Waves, Transverse Electric Waves, Impossibility of TEM Waves in Hollow Waveguides, Wave Impedance and Characteristic Impedance, Attenuation Factor and Q - Factor of Wave Guide. Circular Waveguides: TE and TM Waves in Circular Waveguides, Wave Impedance and Characteristic Impedance, Dielectric slab waveguides
Text books	Text books
and Reference books	 John D Ryder, "Networks Lines and Fields", 1995, PHI. (Units - I & II) E C Jordan and K G Balmain, "Electromagnetic Waves and Radiating Systems", 2nd edition, 2003, PHI. (Units - III & IV)
	Reference Books:
	 M N O Sadiku, "Elements of Electromagnetic", 3rd edition, 2003, Oxford University Press. T Anil Kumar, "Networks and Transmission Lines" 2004, Pearson Education.
E-resources and other digital material	 <u>http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-%20Guwahati/em/index.htm</u> <u>http://nptel.iitm.ac.in/video.php?subjectId=117101056</u> <u>http://www.cdeep.iitb.ac.in/nptel/Electrical%20&%20Comm%20</u> Engg/Transmission%20Lines%20and%20EM%20WaveTOC.ht <u>http://www.mike-willis.com/Tutorial/PF2.htm</u> <u>http://www.learn-about-electronics.com/waveguide-transmission.html</u>
14EC3551: PULSE & SWITCHING CIRCUITS LAB

Course Category:	Programme Core	Credits:	2
Course Type:	Practical	Lecture-Tutorial-Practice:	0-0-3
Prerequisites:	14EC3302:	Continuous Evaluation:	30
	Electronic Devices,	Semester end Evaluation:	70
	14EC3402:	Total Marks:	100
	Electronic circuits		

Course Outcomes	Upon to:	Upon successful completion of the course, the student will be able to:											
	CO1	CO1 Hands on experience on various digital modulation techniques											
	CO2	O2 Hands on experience on various coding techniques											
Contribution		POa	POb	POc	POd	POe	POf	POg	POh	POi	POj	POk	PO 1
of Course Outcomes	CO1	M	Н									М	
towards achievement of Program Outcomes (L – Low, M-Medium, H – High)	CO2	М	Н									М	
Course	List	of Ex	perir	nents	5								
Content	1.] 2	Desig Low J Desig	n and pass d	d veri & Hig 1 veri	ificati sh pas ficati	on of	f Lin vith d	ear W iffere	Vave ent tin	Shap ne co Vave	ing c nstan Shan	ircuits ts	(RC
		Clip	pers &	k Cla	mper	s)	1101		ai v	vave	Shap		luits
	3.]	Desig	n of l	Mono	stabl	e Mu	ltivib	rator					
	4.]	Desig	n of A	Astab	le Mı	ultivil	orato	r					
	5.]	Desig	n of S	Schm	itt Tr	igger	Circu	uit					
	6.]	Desig	n of U	UJT I	Relax	ation	Osci	llator					
	7.]	Desig	n of l	Boot	Strap	Volta	age S	weep	Circ	uit			
	8.]	Desig	n of	l'rans	istor	Mille	r Swe	eep C	ircuit				
	9.]	Desig	n of '	Frans	istor	Class	-A Po	ower	Amp	lıfier			

	10. Design of Class-B Complimentary Symmetry Push-Pull Power Amplifier
	11. Design of Single Tuned Amplifier
	12. Design of Current Sweep Circuit
	NB: A minimum of 10(Ten) experiments, have to be performed and recorded by the candidate to attain eligibility for Practical Examination.
E-resources and other digital material	1. shaikanwar.weebly.com/uploads/3/9/2/2/3922423/pdc lab manual. pdf

14EC3552: DIGITAL COMMUNICATION LAB

Course Category:	Programme Core	Credits:	2
Course Type:	Practical	Lecture -Tutorial-Practice:	0-0-3
Prerequisites:	14EC3504: Digital	Continuous Evaluation:	30
	Communication	Semester end Evaluation:	70
	14EC3406: Analog	Total Marks:	100
	Communication		

Course	Upon successful completion of the course, the student will be able to:												
Outcomes													
	CO1	Han	lands on experience on various digital modulation techniques										
	CO2	Han	ands on experience on various coding techniques										
Contribution of Course Outcomes		POa	POb	POc	POd	POe	POf	POg	POh	POi	РОј	POk	POl
towards achievement	CO1	M	Н									M	
of Program Outcomes (L – Low, M -Medium, H – High)	CO2	М	Н									М	
Course Content	Lis Exp	t of L erime	ab Ez nts u	xercis sing H	es: Iardv	vare:							
	1. 2. 3. 4. 5. 6. 7. 8. 9.	Gene Gene Gene Gene Gene Gene Comj Sourc	ratior ratior ratior ratior ratior ratior ratior pandi ce End	n and 1 n and 1	Detec Detec Detec Detec Detec Detec Detec and I	tion o tion o tion o tion o tion o tion o Decode	f ASH f PCN f TDN f DM f QPS f DPC f ADI	K, FSI M. M SK CM M	K and	I PSK	2.		

	 Design and verification of Linear Block Code-Encoder and Decoder
	11. Design and verification of Cyclic Code - Encoder and Decoder
	12. Design and verification of Convolution Code - Encoder and Decoder
	<u>Experiments using Specialized Equipment (using Spectrum</u> <u>Analyzer):</u>
	13. Analysis of FDM
	14. Eye –diagram analysis
	NB: A minimum of 10(Ten) experiments (5 from each section) have to be performed and recorded by the candidate to attain eligibility for External Practical Examination
E-resources	1. http://vlab.co.in/ba_labs_all.php?id=1
and other digital	2. web.stanford.edu/class/ee104/lecture24.ps
material	3. ocw.mit.edu/courses/electrical/6communication/lecture_2. pdf

14EC3601: LINEAR INTEGRATED CIRCUITS AND APPLICATIONS

Course Category:	Programme Core	Credits:	4
Course Type:	Theory	Lecture-Tutorial-Practice:	4-0-4
Prerequisites:	14EC3303:Network	Continuous Evaluation:	30
	Theory	Semester end Evaluation:	70
	14EC3302: Electronic	Total Marks:	100
	Devices And Circuits		

Course outcomes	Upon to:	Upon successful completion of the course, the student will be able to:											
	CO1	CO1 Understand the basic concepts of Differential Amplifier circuits											
	CO2	Able to design filter circuits for specific applications.											
	CO3	Understand the basics of analog to digital converters (ADC), and digital to analog converters (DAC) and Gain knowledge in designing a stable voltage regulators											
	CO4	Unders	nderstand the applications of PLL and special ICs.										
Contribution of Course		POa	POb	POc	POd	POe	POf	POg	PO h	POi	PO j	POk	POl
Outcomes towards achievement of Program	CO1	L	M										
	CO2	L	Н	М									
Outcomes	CO3	L	H	M									
(L – Low, M -Medium, H – High)	CO4	L	М										
Course Content	UNIT Oper amp, Intern Oper chara Oper Instru and	F - I rational The i nal Circu rational cteristic rational umentati Hold C	Amp deal uit, FE amp s. amp on A Circuit	olifier Oper ET Op Diffier lifier mplif	r: Intration beration char App ier, C og a	troduc al A onal A racte licati Dp-am nd A	etion, mpli: Ampl eristic ons: np Ci Antilo	Bas fier, ifier. cs: D Basic rcuits g ar	ic In Oper DC cl c Op- c usin nplifi	formation harac amp g Di er, I	ation al A terist Appl odes, Differ	of mpli ics, icatio San rentia	Op- fier AC ons, ple tor,

	Integrator.
	UNIT – II Comparators and Waveform Generators: Introduction, Comparator, Regenerative Comparator (Schmitt Trigger), Square Wave Generator (Astable Multivibrator), Monostable Multivibrator, Triangular Wave Generator, Basic Principles of Sine Wave Oscillators. Active Filters: Introduction, RC active filters, Transformations, State Variable Filter
	UNIT – III D-A and A-D Converters: Introduction, Basic DAC Techniques A- D Converters, DAC/ADC specifications Voltage Regulators: Introduction, Series Op-amp Regulator, Design and Analysis of Series and Shunt Regulators using Discrete Components, Protection Techniques, IC Voltage Regulators, 723 General Purpose Regulators
	 UNIT – IV Applications of Special ICs: 555 Timer: Introduction, Description of Functional Diagram, Monostable operation, Astable Operation, Schmitt Trigger. Phase Locked Loops: Introduction, Basic Principles, Phase Detector/Comparator, Voltage Controlled Oscillator (566), Low Pass Filter, Monolithic PLL (565), PLL Applications.
Text Books and References Books	 Text Books: 1. D. Roy Choudhary, Shail Jain, "Linear Integrated Circuits", 4th edition, New Age International Pvt. Ltd., 2010.
	Reference Books
	 Ramakant A. Gayakwad, "OP-AMPs and Linear Integrated Circuits", 4th edition, Prentice Hall, 2000.
	2. Sergio Franco, "Design with operational amplifiers and analog integrated circuits", 3 rd edition. McGraw-Hill, 2002.
E-resources and other digital material	 Freevideolectures.com > Electrical Engineering > UC Berkeley nptel.ac.in/courses/122104013/main1.html

14EC3602: COMPUTER NETWORKS

Course	Core	Credits:	3
Category:			
Course Type:	Theory	Lecture - Tutorial -Practice:	3-0-0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon successful completion of the course, the student will be able to:									l be			
	CO1	Unc inte	lersta rconn	nd th ectio	e serv n (OS	vices SI) mo	and i odel.	nterfa	aces o	of the	e Ope	en sys	stem
	CO2 Implement error detection and correction by using a redundancy check code for any frame to be transmitted											ng cy itted.	yclic
CO3 Write different Routing algorithms useful for N layer.										Netv	vork		
	CO4 Understand the basics of Domain name system, Elec mail & World wide web.										Electr	onic	
Contribution of Course		POa	POb	POc	POd	POe	POf	POg	POh	POi	PO j	POk	POl
Outcomes towards achievement of Program	CO1	М	L										
	CO2	M		L									
Outcomes	CO3	М	L										
(L – Low, M - Medium, H – High)	CO4	М											
Course Content	UNI	T – I											
	Intro	oduct	tion:	Uses	of C	ompu	ter N	fetwo	rks, 1	Vetwo	ork H	Iardw	vare,
	The	OSI	Ref	erenc	e M	odel,	The	TCI	P/IP	Refe	rence	e Mo	odel,
	Exar	nple l	Netwo	orks.		C: 1	. 1 т.			. M.	. 1: -	W 7:	.1
	Tran	rny: smiss	sical	Laye	er : (Guide	a 11	ansm	IISS101	n Me	eala,	wire	eless
	ITan	511150											
	UNI	T – I	I										
	The Dete	Data ction	Lin and	k La Cor	yer : rectio	Data on, E	Linl	k Lay ntary	ver D Dat	esign a Li	i Issu nk H	ies, E Proto	Error cols,

	Sliding Window Protocols, Example Data Link Protocols. Medium Access Control Sub Layer : The Channel Allocation Problem, Multiple Access Protocols, Ethernet, Wireless LANS, Data Link Layer Switching.
	UNIT – III The Network Layer: Network Layer Design Issues, Routing Algorithms, Congestion Control Algorithms, Internet working, The Network Layer in the Internet.
	 UNIT – IV The Transport Layer: The Transport Service, Elements of Transport Protocols, The Internet Transport Protocols: UDP, The Internet Transport Protocols: TCP. Application Layer: Domain Name System, Electronic Mail, The World WEB
Text books and Reference books	 Text books 1. Andrew S Tanenbaum, "Computer Networks", 4th edition, Pearson Education.
	Reference Books:
	Networking". 4 th edition, TMH.
	 Networks", 2nd edition, Pearson Education. W. A.Shay "Understanding Communications and Networks", 3rd edition, Thomson.
E-resources and other digital	 http://home.iitk.ac.in/~navi/sidbinetworkcourse/lecture1.ppt http://nptel.iitm.ac.in/courses/IITMADRAS/Computer_Networ
material	ks/index.phphttp://www.ebookpdf.net/computer-networks-lecture-notes tanenbaum_ebookhtml

14EC3603: ANTENNAS AND WAVE PROPAGATION

Course Category:	Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	3
Prerequisites:	14EC3403: EMF Theory,	Continuous Evaluation:	30
	14EC3507: Transmission	Semester end Evaluation:	70
	Lines and Waveguides	Total Marks:	100

Course outcomes	Upo to:	Upon successful completion of the course, the student will be abl to:									able		
	CO1 Analyze the Current distributions & power radiation different radiating elements										diatio	n of	
	CO2	Unc patt	Understand the antenna fundamentals and obtain radiation pattern of various types of antenna arrays										
	CO3	Desi ante	Design resonant, non resonant, Micro strip, VHF,HF,UHF antennas										
	CO4	O4 Understand the characteristics of different wave p mechanisms						ave p	propagation				
Contribution of		POa	POb	POc	POd	POe	POf	POg	POh	POi	POj	POk	PO 1
Course	COL	н		м									
Outcomes		11		111									
towards	CO2	M											
achievement of Program Outcomes (L – Low, M - Medium, H – High)	CO3	М	М										
	CO4	М											

Course Content U

UNIT I

Radiation And Antenna Fundamentals: Introduction, Basic Antenna parameters, Radiation patterns, Beam Area, Radiation Intensity, Beam Efficiency, Directivity and Gain, Antenna apertures, Effective Height and Area, Radio communication link, Fields form oscillating dipole, Antenna Fields zones, polarization, Retarded Potentials, Fields due to alternating current element, Power radiated by current element, Far and near field due to sinusoidal current distribution

UNIT II

Wire Antennas And Antenna Arrays: Fields of a short dipole, Radiation resistance of short electric dipole, Thin linear antenna, Radiation resistance of $\lambda/2$ antenna, Fields of thin linear antenna with uniform travelling wave, Loop antenna general case, Radiation resistance of loop antenna.

Antenna Arrays: Array of two isotropic point sources, non isotropic point sources and principle of multiplication of patterns, Linear array of n point sources (Broad side array, End-fire array), Linear array with non-uniform amplitude distribution, array of two driven $\lambda/2$ elements broad side case, array of two driven $\lambda/2$ elements end fire case. Horizontal and vertical antennas above a plane ground. Binomial Array

UNIT III

VHF and UHF Antennas: V and Rhombic Antennas, Folded Dipole, Dipole array with parasitic elements, Yagi Uda array, Horn antennas ,Helical antenna, Practical design considerations, Principle of operation, Reflector antennas, parabolic reflector, corner reflector, Feed methods for parabolic reflectors, Microstrip Antenna: Advantages ,limitations and feed methods of rectangular microstrip antenna.

UNIT – IV

Radio Wave Propagation: Ground Wave Propagation, Space-Wave Propagation: Field Strength Relation, Effect of Earth, Super Refraction, Tropospheric Propagation. Sky Wave Propagation: Structural details of the Ionosphere, Wave propagation Mechanism, Refraction and Reflection of Sky waves by Ionosphere, Ray Path, Critical frequency, MUF,LUF,OF, virtual Height and Skip distance, Relation between MUF and the Skip Distance, Multi-Hop propagation.

Text books and	Text books:
Reference books	 Edward C Jordan and Keith G Balmin. "Electromagnetic Waves and Radiating Systems", 2nd edition, 2003, PHI,.(Units - I & IV)
	2. Constantine A Balanis, "Antenna Theory: Analysis and Design", Harper and Row Publishers, 2002. (Units - II, III)

	Reference Books:
	1. J. D. Kraus and Ronald J Marhefka Ahmad S khan "Antennas and Wave Propagation", Tata McGraw Hill, 4 th edition, 2010.
E-resources and other digital material	1. http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT- %20Guwahati/em/index.htm
	2. http://www.cdeep.iitb.ac.in/nptel/Electrical%20&%20Comm% 20Engg/Transmission%20Lines%20and%20EM%20Waves/TO C.htm
	3. http://courses.cit.cornell.edu/ece303/Lectures/Lectures.htm
	4. http://www.ccs.neu.edu/home/rraj/Courses/G250/F07/Notes/An tennas.pdf

14EC3604: VLSI DESIGN

Course	Core	Credits:	4
Category:			
Course Type:	Theory	Lecture - Tutorial -Practice:	4-0-0
Prerequisites:	14EC3302:Electronic	Continuous Evaluation:	30
	Devices,	Semester end Evaluation:	70
	14EC3402: Electronic	Total Marks:	100
	Circuits		

Course outcomes	Upor able	Upon successful completion of the course, the student will be able to:								be			
	CO1	CO1 Analyze VLSI fabrication processes and CMOS Logic Design.											
	CO2	CO2 Identify the physical circuit parameters and analyze the effects of parasitic on overall performance of the circuit.									the		
	CO3	CO3 Design the different memory modules at transistor level given specifications							for				
Contribution of		POa	PO b	POc	POd	POe	POf	POg	POh	POi	POj	POk	POl
Course Outcomes	CO1	М		М									
towards	CO2					М							
achievement of Program Outcomes (L – Low, M - Medium, H – High)	CO3	M		М									
	CO4		М	М	М	М		М				М	
Course Content	UNI	T – I											
	Intro MOS mod fabri	Introduction to MOS Technology : The Integrated circuit era, MOS VLSI technology, Basic MOS transistors, Enhancement mode transistor action, Depletion mode transistor action, NMOS fabrication, CMOS fabrication, BICMOS technology											
	Basi Drai Aspe Tran MOS inver	Basic Electrical Properties Of MOS and BICMOS Circuits : Drain-to-Source Current I_{ds} versus Voltage V_{ds} relationships, Aspects of MOS Transistor Threshold voltage V_t , MOS Transistor Trans conductance gm and Output Conductance g_{ds} , MOS Transistor Figure of Merit, Pass Transistor, NMOS inverter, Pull-Up to Pull- Down Ratio for and NMOS Inverter											

	driven by another NMOS Inverter, Pull-up to pull- down ratio for and NMOS Inverter Driven by one or more Pass Transistors, Alternative forms of Pull-up, CMOS Inverter, Latch-up in CMOS Circuits.
	UNIT – II
	MOS Circuit Design Processes: MOS Layers, Stick Diagrams, Design Rules and Layout Basic Circuit Concepts: Sheet Resistance Rs, Standard Unit of Capacitance, The Delay Unit, Inverter Delays, Driving Large Capacitive Loads, Propagation Delays, Wiring Capacitances, Choice of Layers
	UNIT – III
	Scaling of MOS Circuits : Scaling Models and Scaling Factors, Scaling Factors for Device Parameters. Subsystem Design and Layout: Architectural Issues, Switch Logic, Gate Logic, Examples of Structured Design (Combinational Logic)
	UNIT – IV
	Sub System Design Processes : An Illustration of Design Process, Design of an ALU Subsystem, A Further Consideration of Adders, Multipliers
	Memory, Registers and Aspects of System Timing: System Timing Considerations, Commonly Used Storage/ Memory Elements.
	Test and Testability: Testing Combinational and Sequential Logic
Text books and Reference books	 Text books: 1. Douglas A. Pucknell and Kamran Eshranghian, "Basic VLSI Design", 3rd edition, 2005, PHI
	 Reference Books: 1. Wayne Wolf, "Modern VLSI Design: System-on-Chip Design", 3rd edition, 2004, Prentice Hall. 2. Neil H E Weste and Kamran Eshranghian., "Principles of CMOS VLSI Design - A system perspective", 2nd edition, 2002, Pearson Education.
E-resources and other digital material	 http://www.cdeep.iitb.ac.in/nptel/Electrical%20&%20Com m%20Engg/VLSI%20Design/Course %20Objective.htm http://www.cdeep.iitb.ac.in/nptel/Electrical%20&%20Com m%20Engg/VLSI%20Design/TOC.ht m http://nptel.iitm.ac.in/video.php?subjectId=117106092

14EC3605: DIGITAL SIGNAL PROCESSING

Course Category:	Core	Credits:	4
Course Type:	Theory	Lecture - Tutorial -Practice:	4-1-0
Prerequisites:	14MA1101:Linear	Continuous Evaluation:	30
	Algebra & Differential	Semester end Evaluation:	70
	Equations	Total Marks:	100
	14EC3305:Signals &		
	Systems		

Course outcomes	Upor able	Upon successful completion of the course, the student wire able to:									t will	l be	
	CO1	CO1 Apply DIT and DIF FFT algorithms for efficient computation of the DFT											
	CO2	Des Filt	Design and verify the frequency response of Digital IIR Filters. Design and verify the frequency response of Digital FIR filters										
	CO3	Des filte										R	
	CO4	Des cau dig	Describe the effects of finite word length registers and cause of limit cycles in the implementation of IIR and FIR digital filters.										
Contribution of		POa	POb	POc	POd	POe	POf	POg	POh	POi	POj	POk	POl
Course	CO1	Н											
Outcomes	CO^{2}	п				п							
achievement of		11				11							
Program	CO3	Н				Н							
Outcomes (L – Low, M - Medium, H – High)	CO4	М											
Course Content	UNI	T I:											
	The appl Four Prop DFT	The Discrete Fourier Transform - Its Properties and applications: Frequency Domain Sampling : The Discrete Fourier Transform – The Discrete Fourier Transform (DFT), Properties of the DFT, Linear Filtering methods based on the DFT.							and rete FT), the				

	Efficient Computation of the DFT- Fast Fourier Transform Algorithms: Efficient Computation of the DFT: FFT Algorithms - Direct Computation of the DFT, Divide-and-Conquer approach to Computation of the FFT, Radix-2 FFT Algorithms. Applications of FFT Algorithms – Use of the FFT Algorithm in Linear Filtering and Correlation.
	Design of IIR Filters from analog Filters: IIR filter Design by Approximation of Derivatives, IIR Filter Design by Impulse Invariance, IIR filter Design by the Bilinear Transformation, Characteristics of commonly used Analog Filters. Frequency Transformations - Frequency Transformations in the Analog Domain, Structures for IIR Systems: Direct-Form Structures Cascade-
	Form Structures, Parallel-Form Structures.
	 Design of FIR Filters: General Conditions, Design of FIR Filters - Symmetric & Anti-symmetric FIR filters, Design of Linear-phase FIR filters using Windows, Design of Linear Phase FIR filters by the Frequency-Sampling Method, Comparison of Design methods for Linear-Phase FIR filters. Structures for FIR Systems: Direct Form Structures, Cascade Form Structures.
	UNIT – IV
	Finite Word Length Effects in Digital Filters: Representation of Numbers, Quantization of Filter Coefficients, Round-Off effects in Digital Filters.
	Introduction to Multirate Digital signal Processing: Introduction, Decimation by a Factor D , Interpolation by a Factor I , Sampling rate conversion by a Rational Factor I/D .
Text books and Reference books	 Text Books: 1. John G. Proakis, & Dimitris G. Manolakis, "Digital Signal Processing : Principles, Algorithms and Applications", 4th Edition, 2007, Prentice-Hall of India Private Limited, (Units - I, II, III & IV)

	Reference Books:								
	 Ifeacher E.C. & Jervis B.W, "Digital Signal Processing, A Practical Approach", 3rd edition, 2003, Addison Wesley. Lonnie C Ludeman, "Fundamentals of Digital Signal Processing", John Wiley & Sons, 2003. S K Mitra, "Digital Signal Processing: A Computer Based Approach", 2nd edition, 2003, TMH. 								
E-resources and	1. <u>http://nptel.iitm.ac.in/video.php?subjectId=108105055</u>								
other digital	2. http://nptel.iitm.ac.in/video.php?subjectId=117102060								
material	3. http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-								
	KANPUR/Digi_Sign_Pro/ui/TOC.htm								
	4. http://ocw.mit.edu/resources/res-6-008-digital-signal-								
	processing-spring-2011/study-materials/								
	5. <u>http://www.ece.cmu.edu/~ee791/</u>								
	6. http://cobweb.ecn.purdue.edu/~ipollak/ee438/FALL04/n								
	otes/notes.html								

14EC3651: LINEAR INTEGRATED CIRCUITS & APPLICATIONS LAB

Course	Program Core	Credits:	2
Category:			
Course Type:	Practical	Lecture-Tutorial-Practice:	0-0-3
Prerequisites:	14EC3304: Digital	Continuous Evaluation:	30
	Circuits & Systems	Semester end Evaluation:	70
	14EC3604: VLSI Design	Total Marks:	100

Course outcomes	Upon successful completion of the course, the student will be able to:												
outcomes	CO1 Understand the concepts of linear integrated circuits and specific IC's (IC 565, IC 566) and use them for different application										oecial		
	CO2	CO2Design oscillators, waveform generators and filter circuits using IC741CO3Use the concepts of A/D , D/A converters and design voltag regulators									using		
	CO3										oltage		
	CO4	Des	ign th	ne cir	cuits 1	using	555 ti	mers	for pa	rticu	lar apj	olicati	on
Contribution		POa	POb	POc	PO d	POe	POf	POg	POh	POi	PO j	PO k	PO 1
of Course Outcomes	CO1			Η	Н								
towards	CO2			Н	Н								
of Program	CO3												
Outcomes (L – Low, M - Medium, H – High)	CO4												
Course	List	of Ex	perin	nent	5								
Content	 Content Measurement of Op-Amp Parameters Design of a differential amplifier Design and Verification of Applications of Op-amp (Add Subtractor, Integrator, Differentiator) Design of Full wave rectifier using 741 IC Design of Instrumentation Amplifier using Op-Amp Design of Triangular waveform generators using 741 IC Design of Monostable and Schmitt Trigger circuit using 741 IC 							dder, IC PF &					

	HPF circuits)
	9. Design of Voltage Regulator using IC 723
	10. Design of 4-bit R – 2R Ladder D-A Converter
	11. Verification of Applications of IC 555 Timer (PPM, PWM and FSK)
	12. Design a PLL using 556
	NB: A minimum of 10(Ten) experiments have to be performed
	and recorded by the candidate to attain eligibility for External Practical Examination
Text books	1. D.Roy Choudhary, Shail Jain, "Linear Integrated Circuits", 4 th
and	edition, New Age International Pvt. Ltd., 2010.
Reference	2. Ramakant A.Gayakwad, 'OP-AMP and Linear IC's', Prentice Hall /
books	Pearson Education, 1994.
	3. Sergio Franco, 'Design with operational amplifiers and analog
	integrated circuits', McGraw-Hill, 1997.
E-resources and other digital material	1. http://www2.mvcc.edu/~jfiore/et262.html

14EC3652: VLSI DESIGN LAB

Course Category:	Program Core	Credits:	2
Course Type:	Practical	Lecture - Tutorial -Practice:	0-0-3
Prerequisites:	14EC3304 Digital	Continuous Evaluation:	30
	Circuits & Systems	Semester end Evaluation:	70
	14EC3604 VLSI	Total Marks:	100
	Design		

Course outcomes	Upor to:	on successful completion of the course, the student will be able											
	CO1	Mod and i	Model a digital system using Hardware Description Language and implement using FPGA and CPLD devices.										
	CO2	Char trans	characterize CMOS digital circuits and verify DC and ransient analysis										
Contribution		POa	POb	POc	POd	POe	POf	POg	POh	POi	POj	PO k	PO 1
of Course Outcomes	CO1			Н	Н								
achievement of Program Outcomes (L – Low, M - Medium, H – High)	CO2			М	M								
Course Content	Simu HDI Basid 1 2 3 3 Basid 5 6 7	ulate and <u>c Com</u> . 8 to . 8 to . 8 to . 8 to . 9 to . 10 . 10 . 10 . 10 . 01 . 01	and verif binat 0 3 Pr D to it Ma aentia flip-f odulo- gital (iversa	Synt y the tional fiority 7 Seg gnitu dl Cire flop v -N Uj Clock al Shi	thesis desig <u>Circu</u> y Enco gment ide Co cuits vith a p Dov	the gn on uits oder Disp ompar test b vn Co	follo FPG lay rator	wing A/C	g mo PLD	dules	s usir	ng Ve	rilog

Design of Sub Systems
 8. 16-Bit ALU with 8 Arithmetic Operations, 4 Logic Operations and 2 Shift Operations 9. FIFO – First In First Out 10. Sequence Detector using FSM Verify the characteristics of the following digital CMOS circuits by performing DC and Transient Analysis
 11. Inverter. 12. NAND. NB: A minimum of 10(Ten) experiments have to be performed and recorded by the candidate to attain eligibility for External Practical Examination.

14EC3701:Electronic Measurements and Instrumentation

Course	Core	Credits:	3
Category:			
Course Type:	Theory	Lecture - Tutorial -Practice:	3
Prerequisites:	Circuit theory	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	successful completion of the course, the student will be able to:
outcomes	CO1	Emphasize the basic electronic measurement concept and measure the voltage, current and power using different.

	CO2	Mea	Measurement of different bridges.														
	CO3	Sele meas	ct an surem	d use ients a	e diff and an	ferent alyze	analy meas	yzers urem	and ents	oscilla	ators	to r	nake				
	CO4	Ana	Analyze the basic concepts of Data Acquisition and										l conversion.				
Contribution		РО	PO	РО	PO	РО	PO	РО	PO	PO	PO	PO	PO				
of Course Outcomes		a	b	c	d	e	t	g	h	1	J	ĸ					
towards	CO1	L		L													
achievement of Program	CO2	M		L													
Outcomes	CO3	М		L													
(L – Low, M - Medium, H – High)	CO4	L		L													
Course	UNI	ГI: E	Basic	Elect	ronic	Meas	urem	ent C	Concep	ots:							
	Introd Meas Amm Voltr Instru Recti respo UNIT Introd Whea Conn Ramp Resol	 Introduction Performance characteristics-Static & Dynamic Measurement, Error Analysis, Statistical Analysis, Limiting error, DC Ammeter, Multi-range Ammeter, Aryton shunt, Basic meter as a DC-Voltmeter, DC Voltmeter, Multi-range voltmeter, Extending voltmeter, Instruments for Measuring Basic Parameters- AC Voltmeters Using Rectifiers, Multi-range AC voltmeters, True RMS voltmeter, Peak responding voltmeters, Average responding voltmeters. UNIT II: Bridges and DVM Measurements: Introduction to Bridge Measurements – Wheatstone, Kelvin, Guarded Wheatstone, Maxwell, Hay, Schering, Wien Bridge, Wager Ground Connection, Resonance bridge, Digital Voltmeter - Ramp, Stair Case Ramp, Integrating, Continuous Balance, Successive Approximation Resolution and Sensitivity of Digital Meters. 									amic , DC DC- leter, Jsing Peak rded ound Case ation						
	UNI	Г III:	Osci	llosco	opes a	nd Si	gnal (Gene	rators	:							
	Introd Oscil and gener Disto	oduction, Basic principle Block diagram of CRO, Applications of cilloscopes, Digital storage oscilloscope. Signal generator -Fixed variable, AF-Oscillator, Function Generator, Square and pulse lerator, Sweep generator, Beat frequency oscillator, Harmonic tortion Analyzers, Spectrum Analyzer.							ns of Fixed Dulse Ionic								
		ΓΙ	: Data	a Acq	uisiti	on an	d Co	nvers	ion:								
	Introduction, Objectives of Data Acquisition system, Sign conditioning of the inputs, signal channel data acquisition system								ignal stem,								

	Multi channel DAS, Computer based DAS, Digital to Analog and Analog to Digital converters, Electro Mechanical A/D Converters.
Text books	Text Book:
and Reference books	 H S Kalsi, "Electronics Instrumentation, TMH, 1995.(Units I,II,III,IV) Reference Books:
	1. Albert D. Helfrick and William D .Cooper "Modern Electronic Instrumentation and Measurement Techniques", Prentice Hall of India, 2003.
	2. A K Sawahney, "Electrical And Electronics Measurement and Instrumentation", Dhanpat Rai,2000.
	3. Ernest O. Doebelin, "Measurement Systems- Application and Design" Tata McGrawHill-2004.

14EC3702: CELLULAR AND MOBILE COMMUNICATIONS

Course	Program core	Credits:	3C
Category:			
Course Type:	Theory	Lecture - Tutorial -Practice:	3-0-0
Prerequisites:		Continuous Evaluation:	30M
		Semester end Evaluation:	70M
		Total Marks:	100M

Course outcomes	Upo able	Upon successful completion of the course, the student will be able to:											
	CO1	Des	Design a cellular system using frequency reuse concept. Understand basic propagation mechanisms.										
	CO2	Unc											
	CO3	Unc	lersta	nd th	e GSI	M arc	chitec	ture v	with c	liffer	ent cl	nanne	els
	CO4	Be a	aware	ofne	ext ge	enerat	ion c	ellula	r tech	nolo	gies		
Contribution of Course		PO a	PO b	PO c	POd	PO e	PO f	PO g	PO h	PO i	PO j	POk	PO 1
Outcomes towards	CO1	М											
achievement of Program	CO2	М											
Outcomes	CO3	М											
Medium, H – High)	CO4	M											
Course Content	UNI Evol Wire Wire Cell Assi Syst Cove	 UNIT I: Introduction to Wireless Communication Systems: Evolution of Mobile Radio Communications, Examples of Wireless Communication Systems, Comparison of Common Wireless Communication Systems. Cellular Concept: Introduction, Frequency Reuse, Channel Assignment Strategies, Handoff Strategies, Interference and System Capacity, Trunking and Grade of Service, Improving Coverage & Capacity in Cellular Systems. 											

	UNIT II: Mobile Radio Propagation: Large Scale Path Loss: Introduction to Radio Wave Propagation, Free Space Propagation Model, Relating Power to Electric Field, The Three Basic Propagation Mechanisms, Reflection, Ground Reflection (Two-Ray) Model, Diffraction, Scattering, Practical Link-Budget Design Using Path Loss Models. Small-Scale Fading and Multipath: Small-Scale Multipath Propagation, Types of Small-Scale Fading, Statistical Models for Multipath Fading Channels. Fundamentals of Equalization, Linear Equalizers, Nonlinear Equalization, Diversity Techniques, RAKE Receiver.
	UNIT III: Wireless Networking: Common Channel Signaling : Signaling System No.7, Signalling traffic in SS7, SS7 services, performance of SS7, Example of SS7-Global cellular network inter operatability.
	Global System For Mobile (GSM): GSM Services and Features, GSM System Architecture, GSM Radio Subsystem, GSM Channel Types, GSM Traffic Channels, GSM Control Channels, Examples of GSM Call, Frame Structure for GSM, Signal Processing in GSM.
	UNIT IV: Next Generation Cellular Technology 4G Introduction, 4G evolution, Advantages of 4G over 3G, Applications of 4G, Limitations of 4G, New Technologies in Cellular Data Networks
Text books and Reference books	 Text Books: Theodore Rappaport, "Wireless Communications – Principles and Practices", 2nd edition, 2008, Prentice Hall of India, New Delhi. (Units - I, II & III) G Sasibhusan Rao, "Mobile Cellular Communications, Pearson Publications, 2013 (Unit – IV) Reference books: W. C. Y. Lee, "Mobile Cellular Communications", 2nd edition, 1995, McGraw Hill. Kamilo Feher, "Wireless Digital Communications", 2003, PHI.
E-resources and other digital material	 http://nptel.iitm.ac.in/syllabus/117103016/ http://nptel.iitm.ac.in/video.php?courseId=1036 http://rechargesvec.blogspot.in/2011/09/cellular-and-mobile-communications-cmc.html

14EC3703: DSP PROCESSORS AND ARCHITECTURES

Course			Credits:	4
Category:				
Course Type:			Lecture - Tutorial -Practice:	4-1-0
Prerequisites:	Signals and	systems,	Continuous Evaluation:	30
	Digital	Signal	Semester end Evaluation:	70
	Processing		Total Marks:	100

Course outcomes	Upo able	n suc to:	cessf	ùl co	mplet	tion o	of the	e cou	rse, t	he st	uden	t will	l be
	CO1	Unc	lersta	nd ar	chitec	ture	of DS	P Pro	ocesso	or- Tl	MS32	20C5	X
	CO2	Imp	leme	nt bas	sic DS	SP alg	gorith	ms us	sing I	OSP F	Proce	ssors	
	CO3	Dev Proe	Develop high performance Advanced Digital Signal Processors.										
	CO4	Design high-end application processors.											
Contribution of		POa	POb	POc	POd	POe	POf	POg	POh	POi	PO j	POk	POl
Course Outcomes towards	CO1	Н	Μ										
achievement of	CO2		Μ	M									
Program Outcomes	CO3		M	M									
(L – Low, M - Medium,	CO4		М	М									
H – High)													
Course Content	UNI Num Dyn Impl Erro Arcl Arch Bus Add Exec UNI Loop and Effe Prog	T I: hber I amic lemen rs, D/ hitect hitect Arch ress cution T II ping, Perf cts, In gram	Com Forma Ran Itation (A Co ures Intern Gena , Spe : Ex Intern orma nterru mabl	putat ats fo ge a ns, A onvers for Featu are a eratio ed Iss kecut cupts, nce, pt Ef e Dig	tional r Sign /D C sion E res, 1 nd M on U sues, 1 ion 0 Stacl Pipe fects, gital S	Acc nals a precis onver crors ogran DSP emor nit, Featu Cont cs, Re line Pipel Signa	uracy and C ion, rsion mmal Com y, D Prog res fo rol A elativ Dept line P l Pro	y in D Coeffi Sourd Erro ble putat ata A ramn or Ext And e Bra h, In rogra cesso	DSP cients ces of rs, D DSP ional Addre nabili ternal Pipe nterlo ummin ors: C	Impl s in I of E SP C De Buil ssing ty a Inter linin Suppo- cking ng Ma	emer DSP rror Comp vices ding Cap nd facir g: I port, P g, B odels nercia	ntation System in I butation : B Bloo babilit Prog bag. Hardwi ipelin tranch s. al Dig	ons: ems, DSP onal asic cks, ties, ram vare ning ning gital

	Signal-Processing Devices, Data Addressing Modes of TMS320C54XX DSPs, Data Addressing Modes of TMS320C54XX Processors, Memory Space of TMS320C54XX Processors, Program Control, TMS320C54XX Instructions and Programming, On-Chip Peripherals, Interrupts of TMS320C54XX Processors, Pipeline Operation of TMS320C54XX Processors.
	Q-notation, FIR Filters, IIR Filters, Interpolation Filters, Decimation Filters, PID Controller, Adaptive Filters, 2-D Signal Processing. Implementation Of FFT Algorithms: An FFT Algorithm for
	DFT Computation, A Butterfly Computation, Overflow and Scaling, Bit-Reversed Index Generation, An 8-Point FFT Implementation on the TMS320C54XX, Computation of the Signal Spectrum.
	UNIT – IV: Interfacing Memory and I/O Peripherals g.ho Programmable DSP Devices: Memory Space Organization, External Bus Interfacing Signals, Memory Interface, Parallel I/O Interface, Programmed I/O, Interrupts And I/O, Direct Memory Access (DMA).
	A Multichannel Buffered Serial Port (MCBSP), MCBSP Programming, A CODEC Interface Circuit, CODEC Programming, A CODEC-DSP Interface Example.
Text books and Reference books	 Text Books: 1. Avatar Singh and S.Srinivasan, "DSP Processors and Architectures", 2004, Thomson Publications. (Units-I,III & IV) 2. Lapsley et al, "DSP Processor Fundamentals, Architectures & Features" 2000, S. Chand & Co (Unit-II)
	Reference Books:
	 B. Venkataramani and M. Bhaskar, "Digital Signal Processors, Architecture, Programming and Applications", 2002, TMH. Jonatham Stein, "Digital Signal Processing", 2005, John Wiley.
E-resources and other digital material	 www.ti.com/lit/ug/spru131g/spru131g.pdf http://en.wikipedia.org/wiki/Digital_signal_processor http://www.scribd.com/doc/8968585/Architecture-of-DSP- Processors

14HS1604 ENGINEERING ECONOMICS AND FINANCE

Lectures: 3 Periods / Week Continuous Evaluation: 30

Semester end Exam: 3 hrs Semester end Evaluation: 70

Credits: 3

Course Outcomes:

- CO1: Understand various forms of organisations and principles of management.(a,l)
- CO2: Understand the various aspects of business economics.(a,e,l)
- CO3: Acquire knowledge on Human resources and Marketing functions.(a,l)
- **CO4:** understand best alternatives for various investment decisions and different depreciation methods .(a,e,l)

Contribution of Course Outcomes towards achievement of Program Outcomes

СО		Programme Outcomes												
	a	b	c	d	e	f	g	h	i	j	k	1		
CO 1	Μ											Μ		
CO 2	M				Н							Μ		
CO 3	Μ											Μ		
CO 4	М				Η							Μ		

(L-Low, M-Medium, H-High)

UNIT I

Forms of Business Organization: Salient Features of Sole Proprietorship, Partnership, Joint Stock Company: Private Limited and Public Limited Companies, Co-operative Society and Public Sector.

Management: Introduction to Management, Management an Art or Science, Functions of Management, Principles of Scientific Management, Henri Fayol's Principles of Management.

UNIT II

Introduction to Economics: Introduction to Basic Economic Concepts, Utility Analysis: Marginal Utility and Total Utility, Law of Diminishing Marginal Utility, Law of Equi Marginal Utility, Demand Analysis: Theory of Demand: Demand Function, Factors Influencing Demand, Demand Schedule and Demand Curve, Shift in Demand, Elasticity of Demand: Elastic and Inelastic Demand, Types of Elasticity, Factors of Production, Production Function, Production with one variable input, Isoquants, Returns to Scale, Cost Function: Cost - Output Relationship in short run and long run, Relationship between AC and MC. Supply Analysis: Supply Schedule and Supply Curve, Factors Influencing Supply, Supply Function, Theory of firm: Price determination under equilibrium of firm, Perfect competition.

UNIT III

Human Resource Management: Meaning and difference between Personnel Management and Human Resource Management, Functions of Human Resource Management, Recruitment and Selection Process.

Marketing Management: Concept of Selling And Marketing – Differences, Functions of Marketing, Product Life Cycle, Concept of Advertising, Sales Promotion, Types of Distribution Channels, Marketing Research, Break-Even Analysis - Problems.

UNIT IV

Financial Management: Functions of Financial Management, Time value of money with cash flow diagrams, Calculation of Simple and Compound Interest -Present worth, Future worth, Annual Equivalent, Methods of Evaluating Alternatives under Present worth method, Future worth method, Annual Equivalent method for choice of decision making among alternative projects.

Production Management: An Overview and significance of Production Management, Objectives, Scope of production management, Production cycle. Depreciation, Causes of depreciation, Factors influencing depreciation, common methods of Depreciation: Straight Line Method, Declining Balance Method, Sum of Year's Digits Method –Problems

Learning Resources:

Text Books:

- 1. P.Premchand Babu and M.Madan Mohan *Managerial Economics and Financial Analysis* Himalaya publishing house 2011 edition
- 2. M. Mahajan *Industrial Engineering and Production Management* 2nd Edition Dhanpat Rai Publications.

Reference Books:

- 1. Theusen & Theusen, "Engineering economy".
- 2. Philip Kotler & Gary Armstrong "*Principles of Marketing*", pearson prentice Hall, New Delhi, 2012 Edition.
- 3. B.B Mahapatro, "Human Resource Management"., New Age International ,2011
- 4. IM Pandey, "Financial Management" Vikas Publications 11th Edition
- 5. R.Panneer selvam, "*Production and operations management*", PHI Learning pvt Ltd, New Delhi, 2012

Web Resources:

www.tectime.com www.exinfm.com www.slideshare.net www.economywatch.com

14EC4705/1: OPTICAL COMMUNICATION

Course Category:	Program Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial-Practice:	4-0-0
Prerequisites:	14EC3507	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon to:	Upon successful completion of the course, the student will be able to:												
	CO1	CO1 Acquainted with optical fiber waveguide transmission through SM & MM fibers												
	CO2	Ability to analyze characteristics of optical fiber & to comprehend various fiber optic components.												
	CO3	3 Familiar with basics of LEDs, LASER Diodes&Optical Detectors and study their characteristics.												
	CO4	Evaluate and design analog and digital optical fiber communication system & be aware of various optical fiber measurements.Empathize with various optical fiber networks.												
Contribution		PO	PO	PO	PO	РО	PO	РО	PO	PO	PO	PO	PO	
of Course Outcomes towards		a	b	c	d	e	t	g	h	1	J	k	I	
	CO1	M												
achievement	CO2	Μ												
of Program Outcomes	CO3	М												
(L – Low, M - Medium, H – High)	CO4			М										
Course	UNI	Г - І												
Content	Intro of Op	ducti	on : H fibers	listori , Adv	cal De antage	evelop es of c	oment optica	, Gen l fiber	eral S Com	ystem munio	n, Ad ^a cation	vanta 1	iges	
	Option Elect Fiber	cal romag s, Sin	Fiber gnetic gle m	r W Mod ode F	V aveg e The ibers	uides ory f	: R or Op	ay tical	Theor Propa	ry] gatior	Гrans n, Cy	missi lindr	ion, ical	

UNIT - II

Transmission Characteristics of Optical Fibers: Introduction, Attenuation, Material Absorption Losses in Silicon Glass Fibers, Linear Scattering Losses, Non Linear Scattering Losses Fiber Bend Loss, Dispersion intramodal Dispersion, Intermodal Dispersion, Overall Fiber Dispersion. Dispersion in Single Mode Fibers

Polarization.

Fiber Optic Components: Fiber Alignment & Joint Loss, Fiber Splices, Fiber Connectors, Expanded beam connectors

UNIT - III

Optical Sources – LED: Introduction, LED Power& Efficiency, LED Structures

LED Characteristics.

Optical Sources – LASER: Basic Concepts, Optical Emission from semiconductors, Semiconductor Injection Laser, Laser Structures, Single Frequency Injection Lasers

Detectors: Introduction, Optical Detection Principles, Absorption, Quantum's Efficiency, Responsivity, Semiconductor Photo Diode with internal gain,

Semiconductor Photo Diode without internal gain

UNIT - IV

Optical Fiber System: Optical Transmitter Circuits, Optical Receiver Circuits Digital Systems, Digital System Planning Considerations, Analog Systems

Advanced multiplexing Strategies

Optical Fiber Measurements: Introduction, Attenuation Measurement, Dispersion Measurement, Refractive Index, Optical Time Domain Reflectometry

Optical Networks: Optical network concepts, Optical network transmission modes, layers & protocols, Wave length routing networks, Optical switching networks, Repeaters

Text books	Text Books:
and	1. John M Senior, "Optical Fiber Communications: Principles
Reference	and Practice", 3rd edition, 2002, PHI, (Units - I, II, III & IV)
books	Reference Books:
	1. Gerd Keiser, "Optical Fiber Communication", 3rdedition,
	<u>2003, Mc Graw Hill.</u>
	2. Kolimbiris, "Fiber Optics Communication", 1 st edition,
	2003, McGraw Hill, Prentice Hall.
	3. Djafar K Mynbaev and Lowell L. Scheiner, "Fiber Optic
	Communication Technology", 2006, Pearson Education.
E-resources	1. http://nptel.iitm.ac.in/courses/117101002/
and other	2. http://www.photonics.cusat.edu/links_optical_communications.ht
digital	ml
material	<i>3.</i> http://www.cdeep.iitb.ac.in/nptel/Electrical &CommEngg
	/Optical Communication
	4. http://groups.csail.mit.edu/Miller.On-Chip-Optical-
	Communications.ppt

14EC4705/2: SATELLITE COMMUNICATION

Course	Program Elective	Credits:	3
Category:			
Course Type:	Theory	Lecture - Tutorial -Practice:	4-0-0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upor	succe	essful co	omplet	tion of	the c	course	e, the	stude	ent wi	ll be	able	to:
outcomes	CO1	To introduce the fundamental concepts and Orbital aspects involved in the field of satellite communications.										ects	
	CO2	To tr	To train the students about the earth and space subsystems.										
	CO3	To ii servi	To introduce Power budget calculation Satellite system and services provided										
	CO4												
Contributio		РО	PO b	РО	PO	РО	PO	PO	PO	PO	PO	PO	PO
n of Course Outcomes		a		c	d	e	f	g	h	1	J	k	1
towards achievement	CO1	M											
	CO2	M											
OI Program Outcomes	CO3	M											
(L – Low, M -Medium, H – High)	CO4	М											
Course Content	UNI comr Satel Orbi deter effec UNI (AOC Powe Equij Satel temp	Γ I: nunica lite Co tal Ma minati ts in co Γ II: S CS), Ta er Sys poment lite L erature	Introd tions, ommuni echanic on, Or ommun Satellit elemetr stems, reliabil ink D e and	uction Satelli cation s and bital icatior e Subs y, Tra Comn ity anc esign: G/T r	: Bac te Co s Laun pertur n system system cking, nunica d Spac Basi atio,	ckgro ommu batio ms p ns: A Com tion c tra Desig	ound, inicat s: Or ns, C erfor attituc subs alifica insmi gn of	Brie ion i bital I Drbit mance le and system ition. ssion i dow	f Hi in 20 Mech deter e. d Orb Mon ns, S theo vnlink	story 000, anics rmina bit Co itorin Satelli ory, s cs, uj	of Over , Loc ttion, ontrol g (T ite a system plink	Satel view Ork Ar Ork Sys TC& inteni m no des	llite of ngle oital tem M), nas, oise ign,

	Design of satellite links for specified C/N.
	 UNIT III: Multiple Access: Frequency division multiple access (FDMA), Time division Multiple Access (TDMA), Code Division Multiple access (CDMA) VSAT Systems: Introduction, Overview of VSAT Systems, Network Architectures, Access control protocols, Basic Techniques, VSAT Earth Station Engineering, Calculation of Link Margins for a VSAT Star network, System Design Procedure UNIT – IV: Direct Broadcast Satellite Television and Radio: Digital DBS TV, DBS TV System Design, DBS TV Link Budget Error Control in Digital DBS T, Master Control Station and Uplink, Installation of DBS TV Antennas
Text books and Reference books	Text Books: 1. Timothy Pratt, Charles Bastian and Jeremy Allnutt, "Satellite Communications", WSE, Wiley Publications, 2nd Edition, (Unit I, II, III & IV) Reference Books: 1. Dannia Baddy, (1006), "Satellite Communications", MaCray, Uill
	 Dennis Roddy. (1996), "Satellite Communications", McGraw Hill, 2nd Edition. D.C Agarwal, "Satellite Communication", 3rd Edition, Khanna Publications.
E-resources and other digital material	1.http://nptel.ac.in/courses/117105131/

14EC4705/3: DIGITAL TELEVISION

Course	Program Elective	Credits:	3
Category:			
Course Type:	Theory	Lecture - Tutorial -Practice:	4-0-0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upor able	n suc to:	cessf	ùl co	mple	tion	of the	e cou	rse, t	he st	uden	t will	l be
	CO1	Unc	lersta	nd th	e fun	dame	ntals	of Te	levisi	on Ei	ngine	ering	5
	CO2	2. Understand the principles of Digital TV formats											
	CO3	3 Understand HDTV standards and systems											
	CO4 Analyze the various consumer applications												
Contribution of		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	PO j	POk	PO 1
Course Outcomes towards	CO1	М											
achievement of	CO2	М											
Outcomes	CO3	M											
(L – Low, M - Medium, H – High)	CO4	М											
Course Content	UNI INT struc Resc signa Colo perco UNI Digi MAC recei	 UNIT 1 INTRODUCTION: Raster images – Quantization – Image structure – Brightness and contrast – Raster scanning – Resolution – Introduction to luma and chroma. Composite video signal, and channel bandwidth Color TV systems, colour fundamentals, mixing of colors, color perception UNIT 2 Digital TV : Introduction to Digital TV, Principle of Digital TV, Digital TV signals and parameters, Digital TV Transmitters, MAC signals, advanced MAC signal transmission. Digital TV 											

	techniques, MPEG1, MPEG2, MPEG4.
	UNIT 3
	HDTV : HDTV standards and systems, HDTV transmitter and receiver/encoder, Digital TV satellite Systems, CCTV, CATV - Digital CATV networks and link with DBS satcom, DTH TV, set top box with recording facility
	UNIT 4
	Consumer Applications Colour TV Digital cameras, Display devices: OLED – Working , LCD – Working , Types, Touch screen technology - Woking principle, Blue Ray DVD Player,3D TV systems – Plasma, LCD
Text books and Reference books	Text Books
	 Philip J. Cianci, "HDTV and the Transition to Digital Broadcasting: Understanding New Television Technologies", Focal Press, 2007.
	 Iain E. G. Richardson, "H.264 and MPEG-4 and Video compression video coding for Next-generation Multimedia", John Wiley & Sons Ltd., 2003
	3. Television and video Engineering, A. M. Dhake, Tata McGraw Hill Publication.
	4. Video Demisified, Kelth jack, Penram International Publication.
	Reference Books
	1. S. P. Bali, "Color TV Theory and Practice", McGraw Hill Publications.
	 Bernard Grob, Charles E, "Basic TV and Video Systems" McGraw Hill Publications.
	 Gulathi, "Monochrome & Color TV", New Age International Publications.
E-resources and	1. http://www.nptelvideos.com/video.php?id=571
other digital material	2. http://nptel.ac.in/courses/117104020/Lecture/Lec4.pdf
14EC4705/4 AD HOC NETWORKS

Course Category:	Program Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial -Practice:	4-0-0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon successful completion of the course, the student will be										l be			
	able	to:												
	CO1	Exe	Exemplify the unique issues in ad-hoc wireless networks											
	CO2	Fam and	Familiar current technology trends for the implementation and deployment of wireless adhoc networks Confer the challenges in designing MAC, routing and ransport protocols for wireless adhoc networks											
	CO3	Con tran												
	CO4													
Contribution of		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	PO j	POk	PO 1	
Course Outcomes	CO1	M												
towards								1						
achievement of	CO2	M												
Program	CO3	M												
Outcomes														
(L – Low,														
M - Medium,	CO4	M												
H – High)														

Course Content	UNIT 1
	INTRODUCTION TO ADHOC NETWORKS: Origin of Ad hoc Packet Radio Networks – Technical Challenges – Architecture of PRNETs – Components of Packet Radios, Ad hoc Wireless Networks – What is an Ad Hoc Network? Heterogeneity in Mobile Devices – Wireless Sensor Networks – Traffic Profiles – Types of Ad hoc Mobile Communications – Types of Mobile Host Movements – Challenges Facing Ad hoc Mobile Networks – Ad hoc wireless Internet.
	UNIT 2
	MAC PROTOCOLS FOR AD HOC NETWORKS: Issues in Designing a MAC Protocol for Ad Hoc Wireless Networks – Classifications of MAC Protocols-MACA,MACAW– Power aware routing protocols
	UNIT 3
	Routing Protocols For Ad Hoc Networks : Issues in Designing a Routing Protocol for Ad Hoc Wireless Networks – Classifications of Routing Protocols -Table-driven protocols – DSDV – CGSR – On-Demand protocols – DSR – AODV.
	Multicast Routing : Introduction – Issues in Designing a Multicast Routing Protocol – Operation of Multicast Routing Protocols – An Architecture Reference Model for Multicast Routing Protocols.
	UNIT 4
	TCP over Ad Hoc: TCP protocol overview, TCP and MANETs, and Solutions for TCP over Ad hoc.
	Security: Security in ad hoc networks, Key management, Secure routing, Cooperation in MANETs.
<u> </u>	1

Text books and	Text Books:
Reference books	 C. Siva Ram Murthy and B. S. Manoj, —Ad Hoc Wireless Networks Architectures and Protocols, Pearson, 2015.
	Reference Books:
	 Charles E. Perkins, Ad hoc Networking, Addison – Wesley, 2000
	 C.K.Toh, "Ad Hoc Mobile Wireless Networks", Pearson Education, 2002
	3. Mohammad Ilyas, The handbook of adhoc wireless networks, CRC press, 2002
E-resources and other digital material	www.it. iit b.ac.in/~sri/ talks /manet.ppt

14EC4705/5: EMBEDDED SYSTEMS using RTOS

Course	PROGRAM-	Credits:	4
Category:	ELECTIVE		
Course Type:	THEORY	Lecture - Tutorial -Practice:	4-0-0
Prerequisites:	CO, MP&MC	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upor able	Upon successful completion of the course, the student will be able to:											be	
	CO1	Get desi tech	Get insight of design metrics of Embedded systems to design real time applications to match recent trends in technology.											
	CO2	Und	Understand Real time systems concepts.											
	CO3	O3 Understand Linux operating system and device drivers.												
	CO4	Get testi	Get to know the hardware – software co design issues and testing methodology for Embedded system.											
Contribution of		РО	РО	PO	PO	РО	РО	РО	РО	РО	РО	РО	РО	
Course Outcomes		a	b	c	d	e	f	g	h	i	j	k	1	
towards achievement of Program	CO1		М	M										
	CO2		М	Μ										
Outcomes (L – Low,	CO3		М	М										
M - Medium, H – High)	CO4		М	M										
Course Content	Unit	I:												
	Intro	oduct	tion t	o Em	bedd	ed Sy	stem	IS						
	Intro syste embe proce syste syste	Introduction to Embedded Systems Introduction to Embedded Systems, processor embedded into a system, embedded hardware units and devices in a system, embedded software in a system, complex systems design and processors, design process in embedded system, formalization of system design, design process, classification of embedded systems										o a em, and n of ded		

	Unit II:											
	Devices and communication buses for device network											
	IO types, serial communication devices, parallel device pots, sophisticated interfacing features in device ports, wireless devices, timers and counting devices, watchdog timers, real time clock, networked embedded sytems, serial bus communication protocols, parallel bus device protocols.											
	J NIT III											
	Real Time Operating Systems											
	Tasks, Task states, concept of semaphores, shared data, interprocess communication, singal function, semaphore functions, message queue functions, mailbox functions, pipe functions socket functions.											
	OS services, process management, timer functions event functions, memory management, real time operating system, Basic design using an RTOS, OS security issues.											
	Unit IV											
	μCOS II											
	Features of μ COS II. Kernel structure. μ COS II RTOS services: Task management, Time management, Event control blocks, semaphore management, mutual exclusion semaphores, event flag management, message mailbox management											
Text books and	Text Books:											
Reference books	 Frank Vahid and Tony Givargis, "Embedded System Design – A Unified hardware/Software introduction " 3rd edition, Wiley Jean J.Labrosse, "MicroC OS II, The Real-Time Kernel", 2nd edition, CMP Books. Reference Books Raj Kamal, "Embedded Systems – Architecture, 											
	 David E Simon" <u>An Embedded Software Primer</u>" pearson, 2004 											
E-resources and other digital material	 http://nptel.ac.in/courses/Webcourse- contents/IIT%20Kharagpur /Embedded%20systems/New_index1.html http://onlinevideolecture.com/?course_id=519 http://www.nptelvideos.in/2012/11/real-time- systems.html www.cse.iitd.ernet.in/~suban/csl373/rtos.ppt 											

14EC4706/1 :SPEECH PROCESSING

Course Category:	Program Ele	ective	Credits:	3
Course Type:	Theory		Lecture - Tutorial -Practice:	4-0-0
Prerequisites:	Digital	Signal	Continuous Evaluation:	30
	Processing		Semester end Evaluation:	70
			Total Marks:	100

Course outcomes	Upor able	Upon successful completion of the course, the student will be able to:											
	CO1	Des the	cribe princi	the oples	chara of hu	cteris man s	tics o speecl	f spe h pro	ech s ductio	ignal on	s and	1 exp	lain
	CO2	CO2 Analyze the time domain and frequency domain representation of speech signal											
	CO3	CO3 Apply Linear Predictive Coding (LPC) to speech synthesis system											
	CO4	Build a complete speech recognition system using state of the art tools											
Contribution of		PO a	PO b	PO c	PO c	lPO e	PO f	PO g	PO h	PO i	PO j	POk	PO 1
Course Outcomes towards	CO1	М											
achievement of Program Outcomes	CO2	М											
	CO3	М											
(L – Low, M - Medium, H – High)	CO4	М											
Course Content	UNI	T I:											
	Digi Prod Tube Tim Depe Mag Time Spee	 UNIT I: Digital Models For The Speech Signal: The Process of Speech Production – Acoustic Theory of Speech Production – Lossless Tube Digital Models For Speech Signals Time Domain Models For Speech Processing : Time Dependent Processing of Speech-Short Time Energy & Average Magnitude, Zero Crossing Rate, Pitch Period Estimation Short Time Auto Correlation Function , Median Smoothing and Speech Processing. 											eech less ime rage hort and

	UNIT II:							
	Short Time Fourier Analysis Basic Model Short Time Analysis and Synthesis of Speech , Implementation of Filter Bank Summation Methods Using FFT , Pitch Detection , Analysis – By-Synthesis, Analysis-Synthesis Systems.							
	UNIT III:							
	Homomorphic Speech Processing: Complex Cepstrum Approach, Pitch Detection Formant Detection, Homomorphic Vocoder.							
	Linear Predictive Coding Of Speech: Principles of Linear Predictive Analysis, Solution of LPC Equation ; Prediction Error Signal, Frequency Domain Representation of LPC Analysis Relation Between the Various Speech Parameter Synthesis of Speech from LP Parameters and Applications.							
	UNIT – IV							
	Man-Machine Communication: Speaker Recognition System- Speaker Verification Systems, Speaker Identification Systems, Speech Recognition System-Isolated Digit Recognition System- Continuous Digit Recognition System-LPC Distance Measures- Large Vocabulary Word Recognition System.							
Text books and	Text Books:							
Reference books	 L.R. Rabiner and R.E Schafer, "Digital Processing of Speech Signals", Pearson Education, 2008, (Unit I, II, III & IV) Reference Books: 							
	 Thomas Quatieri, "Discrete – Time Speech Signal Processing", 2001, Prentice Hall. Lawrence Rabiner, Biing – Hwang Juang, B Yegnanarayana, "Fundamentals of Speech Recognition", 2009, Pearson Education 							
E-resources and other digital material	 http://www.ee.imperial.ac.uk/hp/staff/dmb/courses/speec h/speech.htm http://www.ee.ic.ac.uk/hp/staff/dmb/courses/speech/speec h.htm 							

14EC4706/2: DIGITAL IMAGE PROCESSING

Course	Institutional core	Credits:	4
Category:			
Course Type:	Theory	Lecture - Tutorial-Practice:	4-0-0
Prerequisites:	Signals and systems	Continuous Evaluation:	30M
	Linear algebra	Semester end Evaluation:	70M
		Total Marks:	100M

Course outcomes	Upon to:	Upon successful completion of the course, the student will be able to:												
	CO1	Und and	erstar relatio	nd the	e fun twee	dame n pix	entals els.	s of i	mage	, vari	ous	opera	tions	
	CO2	Impr dom resto	Improve the quality of images using spatial and frequency domain filtering techniques of image enhancement and restoration. Design the various techniques used for image compression and segmentation with their applications. Understand the fundamentals of Morphological andcolor image processing with color models.											
	CO3	Desi and												
	CO4	Und imag												
Contribution		PO a	PO bl	PO c	PO d	PO e	PO f	PO g	gPO h	POi	PO j	POk	PO 1	
of Course Outcomes	CO1	Н				L						L		
towards	CO2	Н				Н						M		
achievement of Program	CO3	M				Н						М		
Outcomes (L – Low, M - Medium, H – High)	CO4	Н				L						М		
Course	UNI	Г I:		•				·	,		•			
Content	Digit Comp visua relatio Imago UNIT	 UNIT I: Digital Image Fundamentals: Fundamental Steps and Components of Image Processing, Applications, Elements of visual perception, Image sampling and quantization, basic relationships between pixels, Arithmetic & Logical operations on Images. UNIT II: 												

	 Processing, Spatial Filters. Image Enhancement in Frequency Domain Filters Smoothing Frequency Domain Filters, Sharpening Frequency Domain Filters, Homomorphic Filtering. Image Restoration: A Model of the Image Degradation/ Restoration Process, Linear Position-Invariant Degradations, Inverse filtering, Minimum Mean Square Error (Wiener) Filter, Constrained Least squares filtering. 								
	UNIT III:								
	 Image Compression: Fundamentals, Image Compression Models, Elements of Information Theory, Error Free Compression, Lossy Compression. Compression using DCT. Image segmentation: Detection of Discontinuities, Edge Linking and Boundary Description, Thresholding, Region Based Segmentation. K-means clustering, Watershed segmentation algorithm, Segmentation using NDVI, Principle Component Analysis methods. 								
	UNIT – IV:								
	Morphological Image Processing: Preliminaries, Erosion and Dilation, Opening and Closing, Hit-orMiss Transform, Some Basic Morphological Algorithms								
	Colour Image Processing: Color Fundamentals,Colour models- RGB, CMY & CMYK, HSI, YIQ, Color Conversions Pseudo color Image Processing, Full Color Image Processing.								
Text books and Reference books	Text Book: Gonzalez and Wood, "Digital Image Processing", 3rd Edition, Pearson Education.(Units- I,II,III & IV)								
	 Reference Books: 1. Jayaraman S , <u>Veerakumar T</u> , <u>Esakkirajan S</u>"Digital Image Processing", 2009, McGraw Hill Education. 2. Anil K. Jain, "Fundamentals of Digital Image Processing", 2003, Pearson Education. 								
E-resources and other digital material	 http://nptel.ac.in/courses/117105079/ http://nptel.ac.in/courses/106105032/ http://nptel.ac.in/courses/117104069/ 								

14EC4706/3: BIOMEDICAL INSTRUMENTATION

Course	Program Elective	Credits:	4
Category:			
Course Type:	Theory	Lecture - Tutorial -Practice:	4-0-0
Prerequisites:		Continuous Evaluation:	30M
		Semester end Evaluation:	70M
		Total Marks:	100M

Course outcomes	ImageUpon successful completion of the course, the student wable to:CO1Ability to apply the knowledge of biomedical scient medical instrumentation by identifying electrophysiology of heart brain, nerves, & muscles.CO2Ability to identify the transducers electrodes and rec used for different bio potentials like ECG, EEG, EOG, ERG, EGG and also different blood flow techn											t will	l be
												ience g s.	s in the
												recorders G, EMG, chniques.	
	CO3	Abi gas mec	lity ana licine	to uno lyzers e.	dersta 5, x-1	nd th rays,	ne bas ct-sc	sic ci ans,	rcuit ultra	invo sou	lved nds	in bl used	ood in
	CO4	Abl imp defi diat	Able to differentiate between external pacemakers and mplantable pacemakers and will get familiarity with lefibrillators, artificial kidney dialyzes and different liatherapy techniques.										
Contribution of		PO a	PO ł	oPO c	PO d	PO e	PO f	PO g	PO h	PO i	PO j	POk	PO 1
Course Outcomes towards	CO1	М											
achievement of	CO2	M											
Program Outcomes	CO3	М											
(L – Low, M - Medium, H – High)	CO4	М											
Course Content	UN	- TIV	I		,		,	,	1	,			
	Bie Bie act ele Pie pH	Bioelectric Potentials, Electrodes and Transducers: Sources Bioelectric potentials - Resting and action potential - Propagation action potential Electrode theory- Equivalent circuit- Types electrodes. Physiological Transducers: Inductive, Capacit Piezoelectric Transducers and Thermistors. Biochemical Transduc pH, pCo2 and pO2 electrodes.											

	UNIT – II
	Electrophysiological Measurements: Electrophysiology of He Nervous system and Muscle activity. Bio-signals: ECG - E. Evoked potential - EMG- ERG- Electrodes and lead system, typ waveforms and signal characteristics. Signal Conditioning Circu Design of low noise medical amplifier, Isolation amplifier, Protec circuits and Electrical safety. Non-Electrical Parame Measurements: Measurement of blood pressure, Blood fl Plethysmography, Cardiac Output, Heart Sounds - Lung volumes their measurements - Auto analyzer - Blood cell counters, Oxy saturation of Blood.
	UNIT – III
	Medical Imaging Techniques: X-ray machine - Compu Tomography - Angiography - Ultrasonography - Magnetic Resonar Imaging System - Nuclear imaging techniques - Thermography Lasers in Medicine - Endoscopy.
	UNIT – IV
	Telemetry, Assist and Therapeutic Devices: Bio telemetry Elements and Design of Bio telemetry system. Assist and Therapeu devices: Cardiac pacemakers - Defibrillators - Artificial heart valve Artificial Heart Lung machine - Artificial Kidney - Nerve and Mus Stimulators - Respiratory therapy equipment - Patient Monitori System
Text books and Reference books	 Text books: 1. Leslie Cromwell, Fred J. Weibell and Erich A. Pfeifer. (2006), "Biomedical Instrumentation and Measurement", 2nd edition, Pearson Education.(Units - I, II, III) 2. M. Arumugam. (1997), "Biomedical Instrumentation", 2nd edition, Anuradha Agencies Publications.(Unit - IV) Reference books: 1. R. S. Khandpur. (2006), "Handbook of Biomedical Instrumentation", 2nd edition, Tata McGraw Hill. 2. John G. Webster, (2007), "Medical Instrumentation Application and Design", 3rd edition, Wiley India
E-resources and other digital material	 http://en.wikipedia.org/wiki/Biomedical_engineering http://www.bmesi.org.in/

14EC3751: DIGITAL SIGNAL PROCESSING LAB

Course Category:	Programme core	Credits:	2
Course Type:	Practical Lab	Lecture - Tutorial -Practice:	0-0-3
Prerequisites:	Signal And Systems &	Continuous Evaluation:	30M
	Digital Signal Processing	Semester end Evaluation:	70M
		Total Marks:	100M

Course outcomes	Upon	Upon successful completion of the course, the student will be able to:													
CO1 To Analyze and Observe Magn (Frequency response Characterist types like IIR-Butterworth, O invariant, FIR window-design									gnitude and phase characteristics (stics) of Analog and digital filter Chebyshev, Bilinear, Impulse						
	CO2 To develop DSP algorithms like convolution, correlation, DFT, DIT FFT, DIF FFT in software using a computer language such as C with TMS320C6713 floating point Processor														
Contribution of		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	POj	POk	PO 1		
Course Outcomes towards achievement of Program Outcomes	CO1	Н	L									Н			
(L – Low, M - Medium, H – High)	CO2	Н	Н									Н			
Course Content	1. a b c a 2. E 7 3. E v 4. I	a.Samj D.Dete PSD Dete period Butter Transf Butter Variand Desigr	pling t rmina of Per dic sig dic sig worth ormat worth ce Me n of FI	heore tion c riodic tion o gnal. and ion and thod. R filte	m veri of Fc signa f Four Chel Cheby ers usi	ificatio ourier l. rier tra oyshev yshev ng wi	on. transf ansfor v IIR IIR ndowi	form, m, Au filter filter	Auto itocori er des design chniqu	relatic sign n usir ue	on, an using ng In	ation, d PSI Bil	and D of inear e In-		

	a.rectangular window
	b.hanning window
	c.hamming window
	5. Design of FIR filters using windowing Technique
	A.barttlet window
	B.blackmann window
	C.kaiser window
	6. DIT FFT Algorithm.
	7. DIF FFT Algorithm
	8. Decimation and Interpolation
	9. Implementation of FIR filter on continuous incoming data using overlap add and overlap save method
	Code Composer Studio
	10. ASK, FSK, PSK waveform generation
	11. Linear and Circular convolution.
	12. Correlation
	13. DFT & IDFT.
	14. Design of FIR filters using windowing Technique
Text books and Reference books	1. Alan Oppenheim, Discrete time signal processing, Prentice Hall, 2009, 1120pp.
	2. Proakis and Manolakis, Digital signal processing, 4 th edition,
	Prentice Hall, 2006. 1004pp.
E-resources and	1.http://vlab.co.in/ba_labs_all.php?id=1
other digital material	2.http://web.stanford.edu/class/ee264/
	3.http://dsp.rice.edu/software

14EC3752: MICROPROCESSORS AND MICROCONTROLLERS LAB

Course Category:	Programme core		Credits:	2
Course Type:	Practical		Lecture - Tutorial -Practice:	0-0-3
Prerequisites:	14EC3503		Continuous Evaluation:	30
	Microprocessors	and	Semester end Evaluation:	70
	Microcontrollers		Total Marks:	100

Course	Upor	Jpon successful completion of the course, the student will be able to:											
outcomes	CO1	Deve	Develop assembly language programs on 8086 and 8051.										
	CO2	Inter	erface the peripherals to 8086 and 8051.										
Contribution		PO a	PO b PO c PO d PO e PO f PO g PO h PO i PO j POk PO l										PO 1
of Course	COL												
Outcomes	COI			н	н								
towards													
achievement													
of Program													
Outcomes	CO2			Н	Н								
(L – Low,													
M -Medium,													
H – High)													
Course	List	of lab .	Exerci	ses:									
Content	Expe	erimen	ts Bas	ed on	8086:	т.	1.	, , .		2000	-		
	I. Pro	ograms	s on Ar	1 thmet	ic and	Logic	al ins	truction	ons of	8086).		
	2. Pro	ograms	s on Su	brouti	nes or	8086.	1 1 1	. 1	`				
	3. Pro	ograms	s on In	terrupt	s.(Son	ware a	and H	ardwa	ire).				
	$\begin{array}{c} 4. \text{ Pr} \\ 5 \text{ Dr} \end{array}$	ograms	$s \text{ on } \mathbf{D}$	AC III	eriace	wavel	iorm g 1	genera	uion.				
	J. FIC	ograms	$\sin \Delta \mathbf{I}$	opper i C Int	notor (2011110	1.						
	0. FI	ograms	S OII AI	Л III	errace.								
	Expe	erimen	ts Bas	ed on	8051:								
	1. Ba	sic pro	grams	on Mi	crocor	trolle	rs.						
	2. Pro	ograms	s on Se	erial C	ommu	nicatio	ons.						
	3. Pro	ograms	s on Int	terrupt	Mecha	anism							
	4. Pro	ograms	s on Ti	mer/Co	ounter	conce	pts.						
	5. Pro	ograms	s on LC	CD Dis	play ir	nterfac	eing.						
	6. Pro	ograms	s on Tr	affic L	ight C	ontrol	•						
	7. Pro	ograms	s on Ke	eyboar	d inter	face.							

NB: A minimum of 10(Ten) experiments (5 from each section) have to be performed and recorded by the candidate to attain eligibility for External Practical Examination

14EC3801: MICROWAVE ENGINEERING

Course	Core	Credits:	4
Category:			
Course Type:	Theory	Lecture - Tutorial -Practice:	4
Prerequisites:	Electromagnetic Field	Continuous Evaluation:	30
	Theory& Transmission	Semester end Evaluation:	70
	lines and Waveguides	Total Marks:	100

Course outcomes	Upor able	Upon successful completion of the course, the student will be able to:													
	 CO1 Understand the generation & amplification microwave signals and Setup microwave bench at X obtain the characteristics of Reflex Klystron CO2 Design and develop the passive component microwave systems, obtain the characteristics of components. 										of X-ba	the ind,			
											omponents for eristics of these				
	CO3	Ana mic	ılyze rowa	the ve fre	recip quen	orocal cies.	l and	d no	nrecij	oroca	l de	vices	vices at		
	CO4	Ana VSV	ılyze WR, I	the Unkn	trans own i	missi mpec	on li lance	ine p &Ga	oroble ain of	ems a Can ai	and ntenn	Meas a	ure		
Contribution of		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	PO j	POk	PO 1		
Course Outcomes	CO1	М													
towards			T	T											
Program	CO2	M	L	L											
Outcomes	CO3			L	L										
(L – Low, M -															
Medium, H – High)	CO4				M										
Course Content	UNI	T I:	MIC	ROV	VAV]	E LII	NEA	R BE	CAM	TUB	ES (O-ty	pe):		
	Limi	tatio	ns of	Con	ventio	onal	Fubes	s at N	Aicro	wave	Free	juenc	ies,		
	Klystron: Velocity Modulation Process. Bunching Process,														
	Modulation, Power Output and Efficiency, Electronic Admittance.														
	Heliz Wav only	Helix Traveling Wave Tube Amplifiers, Amplification Process, Wave Modes and Gain Considerations (Qualitative analysis only). Microwave Crossed Field Tubes (M Type): Cylindrical													

Magnetron, Forward Wave Crossed Field Amplifier, Backward Wave Oscillator

UNIT II: MICKOWAVE PASSIVE COMPONENTS:
Waveguide Adapters, Matched Termination, Rectangular to
Circular Waveguide Transitions, Waveguide Corners, Bends and
Twists, Attenuators and Phase Shifters: waveguide attenuators,
wave guide phase shifters, Waveguide Tees - E-plane Tee, H-
plane Tee, Magic Tee and their applications, Tee Junction
Parameters, Theorems on Tee Junctions, Introduction to S
parameters ,Properties of S parameters, S matrix of
representation of multi port network, S Matrix derivation for all
components, Propagation in ferrites, Ferrite Devices, Faraday
Rotation Isolator, Gyrator, Circulator, Directional Couplers,
Coupler Parameters, Applications of Directional Couplers.
Microwave Resonators: waveguide Cavity Resonators, Cavity
Excitation and Tuning.
UNIT III: SOLID STATE DEVICES: Gunn-Effect Diodes -
GaAs Diode, Gunn Effect, Ridely-Watkins-Hilsun (RWH)
Theory Differential Negative Resistance Two-Valley Model

GaAs Diode, Gunn Effect, Ridely-Watkins-Hilsun (RWH) Theory, Differential Negative Resistance, Two-Valley Model Theory, High-Field Domain, Modes of Operation, Avalanche Transit-Time Devices: Read Diode, Physical Description, Avalanche Multiplication, Carrier Current Io(t) and External Current Ie(t), Output Power and Quality Factor, IMPATT Diodes, Physical Structures, Negative Resistance, Power Output and Efficiency, TRAPATT Diodes, Physical Structures, Principles of Operation, Power Output and Efficiency, BARITT Diodes, Physical Description, Principles of Operation, Parametric Devices, Parametric Amplifiers, Applications.

	UNIT – IV MICROWAVE MEASUREMENTS: Power								
	Measurement, Insertion Loss and Attenuation Measurement,								
	Impedance Measurement, Slotted line VSWR measurement,								
	VSWR through return loss measurements, Frequenc								
	Measurement, Measurements of Q of Cavity, Measurement of								
	Scattering Parameters. Antenna Measurements: Gain and								
	Directivity measurement, Impedance measurement, Radiation								
	Pattern measurement.								
Text books and Reference books	1. Samuel Y.LIAO : Microwave Devices and Circuits - Prentice Hall of India - 3rd Edition (2003) (Units -I&III)								
	2. Annapurna Das and Sisir K.Das: Microwave Engineering - Tata McGraw-Hill (2000) (Units -II&IV)								

	Reference Books:								
	1. E. Collin : Foundations for Microwave Engg IEEE Press Second Edition (2002)								
	 David M. POZAR : Microwave Engg John Wiley & Sons - 2nd Edition (2003) 								
E-resources and other digital material	1. http://technology.niagarac.on.ca/courses/elnc1730/microsoli d.ppt								
	2. http://www.intechopen.com//passive_microwave_componen ts_ana_antenna								
	3. http://home.sandiego.edu/~ekim/e194rfs01/								
	4. http://www.slideshare.net/sarahkrystelle/lecture-notes								

14EC4802/1: SEMICONDUCTOR DEVICE MODELING

Course Category:	Program Elective	Credits:	3
Course Type:	Theory	Lecture - Tutorial-Practice:	4-0-0
Prerequisites:	Electronic Devices,	Continuous Evaluation:	30
	Electronic Circuits	Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon successful completion of the course, the student will be able to:												
	CO1	Unc	lersta	nd the	e con	cepts	of se	mico	nduct	or de	vice	physi	cs.
	CO2	Ana chai	Analyze the BJT and FET device structure and haracteristics.										
	CO3	Unc	lersta	nd the	e seco	ond o	rder e	ffects	s of B	JT ai	nd M	OSFI	ET.
Contribution of		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	POi	PO j	POk	PO 1
towards achievement of Program	CO1	Н	Н										
Outcomes (L – Low,	CO2	М	М										
M - Medium, H – High)	CO3	М	M										
Course Content	UNI	T I:											
	Energy bands in solids, Electrons and holes densities in equilibrium, Excess carriers – Non-equilibrium situation, Mobility of carriers: Effect of electric filed on carrier movement, Effect of temperature and doping on carrier mobility, Effect of high electric field on mobility, Diffusion Current, Einstein's Relation connecting μ and D.(12hrs)										in ion, ent, t of in's		
	UNI	T II:											
	Bipolar Junction Transistors: Introduction, Principle of Operation, Current Components in a BJT, Approximal expressions for currents in Normal Active Mode of Operation Basic BJT parameters, The Ebers-Moll Model, Capacitances in BJT, Switching of Bipolar Transistors. Operation of BJT at hig frequencies, Design of high frequency transistors, Second order effects in BJTs, Variation of beta with collector current, hig										of nate ion, in a nigh rder nigh		

	injection in collector, heavy doping in emitter, Non-conventional BJTs, Hetero-junction Bipolar Transistors (HBT).(18hrs)
	UNIT III:
	Metal-semiconductor junction, Energy band diagram of M-S junction, Current-voltage characteristics of M-S junction, Ohmic contacts, The MESFETs, The Hetero- junction FETs.MOS Diode: Operation of the Ideal MOS Diode, Operation of the MOS Diode with $\Phi_{ms}\neq 0$, $Q_{ox}=0$, Operation of the MOS Diode with $\Phi_{ms}\neq 0$, $Q_{ox}=0$, Operation of the MOS Diode with $\Phi_{ms}\neq 0$, $Q_{ox}\neq 0$, C-V Characteristics of the MOS Diode (Capacitor)(14hrs)
	UNIT – IV
	The MOSFET, Threshold Voltage of MOSFET, Above Threshold I-V Characteristics of MOSFETs, Bulk Charge Model (Level 2 in SPICE), Square Law Model (Level 1 in SPICE), MOSFET Level 3 Model in SPICE,Effect of gate and drain voltages on carrier mobility in the inversion layer, Channel length modulation, MOSFET break down and punch-through, Subthreshold current, MOSFET scaling, Non-uniform doping in channel, Threshold voltage of short channel MOSFETs, Other MOSFETs configuration.(14hrs)
Text books and Reference books	 Text Books: 1. Nandita Das Gupta, Amitava Das Gupta (2004), "Semiconductor Devices Modelling and Technology", Prentice Hall India.(UNIT I - IV) Reference Books: B. G. Streetman and S. Banerjee, Solid State Electronic Devices, 6th Edition, PHI Private Limited, 2011. Y. Tsividis, Operation and Modeling of the MOS transistor, 2nd edition, TMH, 1999.
	 G. Massobrio and P. Antognetti, Semiconductor Device Modeling with SPICE, 2nd Edition, TMH, 2010. Introduction to Semiconductor Materials and Devices – Tyagi M. S, 2008, John Wiley StudentEdition. Introduction to Device Modeling and Circuit Simulation – Tor A. Fijedly, Wiley-Interscience, 1997. S. A. Neamen and D. Biswas, Semiconductor Physics and Devices, 4th Edition, TMH, 2012. S. M. Sze and K. K. Ng, <i>Physics of Semiconductor</i> <i>Devices</i>, 3rd Edition, Wiley India, 2010.
E-resources and other digital material	 <u>http://nptel.ac.in/courses/117106033/</u> <u>https://nanohub.org/resources/5749</u> <u>https://www.coursera.org/learn/mosfet</u>

14EC4802/2 LOW POWER VLSI DESIGN

Course	Program Elective	Credits:	3
Category:			
Course Type:	Theory	Lecture - Tutorial -Practice:	4-0-0
Prerequisites:	Electronic Devices,	Continuous Evaluation:	30
	Electronic Circuits	Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upor able	Upon successful completion of the course, the student will be able to:										l be	
	CO1	CO1 Apply different circuit techniques to manage the leakage currents										e	
	CO2	Con arch	Comprehend existing low power adder and multiplier architectures										
	CO3	Und for a	Understand the architectural and circuit level techniques for attaining low power consumption								8		
	CO4												
Contribution of		PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
Course Outcomes towards	CO1	a	D	c M	a	e M	I	g	n	1	J	К	1
achievement of	CO2			M		М							
Program Outcomes (L – Low, M - Medium, H – High)	CO3			М		М							
Course Content	UNI Low powe dissi	UNIT I Low power CMOS VLSI design - Introduction, sources of power dissipation, static power dissipation, active power dissipation.											
	Circ desig redu	Circuit techniques for low power design - Introduction, designing for low-power, circuit techniques for leakage power reduction. (12)											
	UNI	T II											
	Low cells	volt , CN	<mark>age l</mark> 10S	ow p adde	ower r's a	add rchite	e rs - ecture	Intro s, lo	ductions w vo	on, st oltage	anda lov	rd ac v po	lder wer

	design techniques, current mode adders.
	Low voltage low power multipliers - Introduction, overview of multiplication, types of multiplier architectures, braun multiplier, baugh-wooley multiplier, booth multiplier, wallance tree multiplier. (12)
	UNIT III
	Low voltage low power static RAM - Basics of SRAM, memory cell, precharge and equalization circuit, decoder, address transition detection, sense amplifier, output latch, low power SRAM technologies.
	Low voltage low power dynamic RAM - Types of DRAM, basics of DRAM, self refresh circuit, half voltage generator, voltage down converter, future trends and developments of DRAM. (14)
	UNIT IV
	Low- Voltage Low Power Read-Only Memories - introduction, types of ROM, basics physics of floating gate nonvolatile devices, floating gate memories, basics of ROM, low power ROM Technology. (10)
Text books and	Text Books
Reference books	 Kiat Seng Yeo, Kaushik Roy (2005), "Low Voltage, Low Power VLSI Subsystems", TATA McGraw-Hil.
	Reference Books
	 Yeo Rofail,Gohl (2002)," CMOS/BiCMOS ULSI Low Voltage, Low Power", Pearson Education Asia 1st Indian reprint.
	 J.Rabaey (1996), "Digital Integrated circuits: a Design Perspective", PHI.
E-resources and other digital material	1. http://www.facweb.iitkgp.ernet.in/~apal/LPVRG%20webs ite/resourses.htm

14EC4802/3 CMOS IC DESIGN

Course	Program elective	Credits:	3
Category:			
Course Type:		Lecture - Tutorial -Practice:	4
Prerequisites:	Electronic Devices,	Continuous Evaluation:	30
	Electronic Circuits	Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upo: able	Upon successful completion of the course, the student will be able to:											
	CO1	Evaluate the performance of CMOS Inverter in terms of area, power and speed.											
	CO2	Evaluate the performance and power consumption of contemporary gate logic families											
	CO3	CO3 Design and analyze single stage amplifiers and differential amplifiers											
	CO4												
Contribution of		PO	PO b	PO	PO d	PO	PO	PO	PO	PO	PO	PO	PO
Course Outcomes		a		c		e	f	g	h	1	J	k	
towards	CO1			M		M							
achievement of	CO2			M		Μ							
Program Outcomes	CO3			M		Μ							
(L – Low, M - Medium, H – High)	CO4												
Course Content	UNI	T I:I	UNIT	Ι									
	The Perfe Ener on th	The CMOS Inverter - Static CMOS Inverter, Static Behaviour, Performance of CMOS Inverter: Dynamic Behaviour, Power, Energy, and Energy- Delay, Technology Scaling and its Impacts on the Inverter Metrics.											
	UNI	T II											
	Desi CM Tran	gnin DS E sisto	g Co Design r Log	mbi – C gic, I	n atio r Compl Dynan	al I emen nic L	L ogic Itary Logic:	Gat CMC Basi	es ir DS, R ic Pri	n CN atioed incipl	108 d Lo e, Sj	- S gic, peed	tatic Pass and

	Power Dissipation of Dynamic Logic, Issues in Dynamic Design, Cascading Dynamic Gates.					
	UNIT III:					
	Designing Sequential Logic Circuits - Introduction, Static Latches and Registers, Dynamic Latches and Registers, Pipelining: An approach to Optimize Sequential Circuits, Timing Classification of Digital Systems, Synchronous Interconnect, Synchronous Design					
	UNIT – IV					
	MOS Single Stage and Differential Amplifiers - Basic concepts, Common-Source stage, Common-Source stage with resistive load, Common-Source with diode connected load, Common-Source Triode load, Common-Source stage with source degeneration, Source follower, common gate stage ,, Single ended and differential operation, Basic differential pair: Qualitative analysis and Quantitative analysis , Basic current mirrors					
	Text Books:					
Text books and	Text Books:					
Text books and Reference books	Text Books: 1. Jan M. Rabaey, Anantha P. Chandrakasan, Borivoje Nikolic, (2003) "Digital Integrated Circuits: a Design Perspective", 2nd Edition, Pearson Education.					
Text books and Reference books	 Text Books: 1. Jan M. Rabaey, Anantha P. Chandrakasan, Borivoje Nikolic, (2003) "Digital Integrated Circuits: a Design Perspective", 2nd Edition, Pearson Education. 2. Behzad Razavi (2002), 'Design of Analog CMOS Integrated Circuits' Tata-McGrawHill. 					
Text books and Reference books	 Text Books: 1. Jan M. Rabaey, Anantha P. Chandrakasan, Borivoje Nikolic, (2003) "Digital Integrated Circuits: a Design Perspective", 2nd Edition, Pearson Education. 2. Behzad Razavi (2002), 'Design of Analog CMOS Integrated Circuits' Tata-McGrawHill. Reference Books: 					
Text books and Reference books	 Text Books: 1. Jan M. Rabaey, Anantha P. Chandrakasan, Borivoje Nikolic, (2003) "Digital Integrated Circuits: a Design Perspective", 2nd Edition, Pearson Education. 2. Behzad Razavi (2002), 'Design of Analog CMOS Integrated Circuits' Tata-McGrawHill. Reference Books: 1. J. Uyemura (1992), Circuit Design for CMOS VLSI, Kluwer. 					
Text books and Reference books	 Text Books: 1. Jan M. Rabaey, Anantha P. Chandrakasan, Borivoje Nikolic, (2003) "Digital Integrated Circuits: a Design Perspective", 2nd Edition, Pearson Education. 2. Behzad Razavi (2002), 'Design of Analog CMOS Integrated Circuits' Tata-McGrawHill. Reference Books: 1. J. Uyemura (1992), Circuit Design for CMOS VLSI, Kluwer. 2. A. Kang and Leblebici, (1999) CMOS Digital Integrated Circuits, 2nd Ed., McGraw-Hill. 					
Text books and Reference books	 Text Books: 1. Jan M. Rabaey, Anantha P. Chandrakasan, Borivoje Nikolic, (2003) "Digital Integrated Circuits: a Design Perspective", 2nd Edition, Pearson Education. 2. Behzad Razavi (2002), 'Design of Analog CMOS Integrated Circuits' Tata-McGrawHill. Reference Books: 1. J. Uyemura (1992), Circuit Design for CMOS VLSI, Kluwer. 2. A. Kang and Leblebici, (1999) CMOS Digital Integrated Circuits, 2nd Ed., McGraw-Hill. 3. David A Johns & Ken Martin (2001), "Analog Integrated Circuit Design" John Wiley and Sons. 					

14EC4802/4: EMBEDDED SYSTEMS using RTOS

Course Category:	Program-Elective	Credits:	4
Course Type:	THEORY	Lecture-Tutorial-Practice:	4-0-0
Prerequisites:	CO, MP&MC	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon successful completion of the course, the student will be able to:													
outcomes	CO1	Get real	insigl time a	ht of applic	desig cation	gn me is to r	etrics natch	of E	mbedc nt tren	led synds in	ystems techn	s to de ology.	esign	
	CO2	Und	erstar	nd Re	al tim	ne sys	tems	conc	epts.					
	CO3	Und	Understand Linux operating system and device drivers.											
	CO4	Get to know the hardware – software co design issues and testing methodology for Embedded system.												
Contribution of Course Outcomes		PO a	P O b	P O c	P O d	P O e	P O f	P O g	PO h	P O i	PO j	PO k	PO 1	
towards achievement of Program Outcomes (L – Low, M - Medium, H – High)	CO1		М	М										
	CO2		М	М										
	CO3		М	М										
	CO4		М	M										
Course Content	Unit Intro Char Metr Emb Softv spira Unit Real Fore	Unit I: Introduction to Embedded Systems Introduction to Embedded Systems, Architecture, Classification and Characteristics of Embedded System, Design Process, Design Metrics and optimization of various parameters of embedded system. Embedded processor technology, IC technology, Design technology. Software development life cycle. Various models like waterfall, spiral, V, Rapid Prototyping models and Comparison. Unit II: Real Time Systems Concepts												

	Shared resource, multitasking, Task, Context switch, Kernel, Scheduler, Non-Preemptive Kernel, Preemptive Kernel, Reentrancy, Round robin scheduling, Task Priorities, Static & Dynamic Priority, Priority Inversion, Assigning task priorities, Mutual Exclusion, Deadlock, Clock Tick, Memory requirements, Advantages & disadvantages of real time kernels. μCOS II Features of μCOS II. Kernel structure, μCOS II RTOS services: Task
	management, Time management, Intertask Communication and Synchronization.
	Embedded Linux Development Environment
	Need of Linux, Embedded Linux Today, Open Source and the GPL, BIOS Versus Boot loader,
	Anatomy of an Embedded System, Storage Considerations, Embedded Linux Distributions. Embedded Development Environment, Cross-Development Environment, Host System Requirements, Hosting Target Boards. Development Tools, GNU Debugger, Tracing and Profiling Tools, Binary Utilities.
	Unit IV:
	Linux Kernel Construction, Linux Kernel Background, Linux Kernel Construction, Kernel Build System, Kernel Configuration. Role of a Bootloader, Bootloader Challenges. A Universal Bootloader: Das UBoot. Porting U-Boot. Device Driver Concepts, Module Utilities, Driver Methods. Linux File System & Concepts
	Embedded Software Development : Testing Process and Tools, Embedded Software development process and tools, Host and Target Machines, linking and Locating Software, Getting Embedded Software into the Target System.
Text books	Text Books:
and Reference books	 Jean J.Labrosse, "MicroC OS II, The Real-Time Kernel", 2nd edition, CMP Books.
	4. Christopher Hallinan, "Embedded Linux Primer -A Practical,

	Real-World Approach "2 nd edition, Prentice Hall.
	Reference Books
	3. Raj Kamal, "Embedded Systems- Architecture, Programming and Design" 2nd edition, McGraw Hill.
	 Frank Vahid and Tony Givargis, "Embedded System Design - A Unified hardware/Software introduction " 3rd edition, Wiley.
E-resources and other	5. http://nptel.ac.in/courses/Webcourse-contents/IIT%20Kharagpur /Embedded%20systems/New_index1.html
digital material	6. http://onlinevideolecture.com/?course_id=519
	7. http://www.nptelvideos.in/2012/11/real-time-systems.html
	8. www.cse.iitd.ernet.in/~suban/csl373/rtos.ppt

14EC3803/1: RADAR PRINCIPLES

Course outcomes	Upor able	Upon successful completion of the course, the student will be able to:												
	CO1	CO1 Know the principles and applications of RADAR												
	CO2	Inte mea	erpret asure	the ment	e co and d	ncept	ts o ion of	f D f sign	opple als in	er E noise	ffect e.	, ra	nge	
	CO3	CO3 Analyze tracking with radar and can choose receiver display and duplexer for the applications												
Contribution of Course		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	PO j	PO k	PO 1	
Outcomes towards	CO1	М		L										
Program Outcomes	CO2	М		L										
(L – Low, M - Medium, H – High)	<i>i</i> - Low, M - CO3 M <i>i</i> edium, H - CO3 M													
Course Content	UNIT I:													
	INTI form opera Dete Noise Dete Cross Tran Paran	INTRODUCTION TO RADAR : Basic Radar –The simple form of the Radar Equation- Radar Block Diagram and operation-Applications of Radar –The Radar Equation – Detection of Signals in Noise- Receiver Noise and the Signal-to- Noise Ratio-Probability Density Functions- Probabilities of Detection and False Alarm-Integration of Radar Pulses- Radar Cross Section of Targets- Radar cross Section Fluctuations- Transmitter Power-Pulse Repetition Frequency- Antenna Parameters-System losses												
	UNIT-II: MTI Radar: Introduction to Doppler and MTI Radar- Delay Line Cancelers- Staggered Pulse Repetition Frequencies Doppler Filter Banks - Digital MTI Processing - Moving Tary Detector - Limitations to MTI Performance - MTI from Moving Platform (AMTI)													

	UNIT III:
	Pulse Doppler Radar - Tracking with Radar –Monopulse Tracking –Conical Scan and Sequential Lobing - Limitations to Tracking Accuracy - Low-Angle Tracking - Tracking in Range - Other Tracking Radar Topics -Comparison of Trackers - Automatic Tracking with Surveillance Radars (ADT). Radar Antennas-
	UNIT IV:
	Detection of Signals in Noise –Introduction – Matched –Filter Receiver –Detection Criteria – Detectors –Automatic Detector - Integrators - Constant-False-Alarm Rate Receivers - The Radar operator - Signal Management - Propagation Radar Waves - Atmospheric Refraction -Standard propagation - Nonstandard Propagation - The Radar Receiver - Receiver noise Figure – Super heterodyne Receiver - Duplexers and Receiver Protectors- Radar Displays.
Text books and Reference books	1. Merrill I Skolnik, Introduction to Radar Systems, 3 rd edition, TMH, 2003
	Reference Books:
	 Roger J Suullivan, "Radar Foundations for Imaging and Advanced Topics". Peyton Z Peebles Jr. (2004), "Radar Principles", John Wiley Inc.,
E-resources and other digital material	1. http://ocw.mit.edu/resources/res-ll-003-build a small-radar- system-capable-of-sensing-range-doppler-and-synthetic- aperture-radar-imaging-january-iap-2011/lecture-notes/
	 http://www.radartutorial.eu/07.waves/wa04.e n.html

14EC4803/2: ADVANCED WIRELESS COMMUNICATIONS

Course	Program Elective	Credits:	3
Category:			
Course Type:	Theory	Lecture - Tutorial -Practice:	4-0-0
Prerequisites:	Mobile & Cellular	Continuous Evaluation:	30
	Communications	Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upo able	Upon successful completion of the course, the student will be able to:												
	CO1	Rea	lize V	Virele	ess L <i>i</i>	AN de	esign	and o	operat	tions.				
	r Moł	Mobile IP and												
	CO3	Dif imp	Differentiate Traditional TCP and Classical TCP improvements											
	CO4	CO4 Analyze the Fourth Generation systems and New Wire Technologies												
Contribution of		PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	
Course		a	b	c	d	e	f	g	h	i	j	k	1	
towards	CO1	M												
achievement of	CO2	Μ												
Program Outcomes	CO3	М												
(L – Low, M - Medium, H – High)	CO4	М												
Course Content	UNI	T I:	•	*		•			-		•	•		
	Wird UHF arch 802. Base WIN WIN	eless 7 na itectu 11b, band 1AX: 1AX.	LA rrowt re, p 802 layer Phy	N: In pand, rotoco .11a. r, Lin ysical	trodu spre ol arc Blu k ma lay	ction- ead chitec etoot nager er, 1	-WLA spectrature, h: A Prote MAC	AN rum phys Archit ocol, , Sp	techn -IEE fical 1 tectur secun	ologie E802 ayer, e, R rity – m al	es: .11: MA adio IEEI llocat	Infra Sys C la La E802 tion	red, tem yer, yer, .16- for	

1		UNIT II:										
1 4 E C 3		Mobile N delivery, Network protocol Sequence UNIT III	Mobile Network Layer: Introduction – Mobile IP: IP packet delivery, Agent discovery, tunnelling and encapsulation, IPV6- Network layer in the internet- Mobile IP session initiation protocol – mobile ad-hoc network: Routing, Destination Sequence distance vector, Dynamic source routing. UNIT III:									
0 3 / 3 :		Mobile 7 protocols retransmit TCP impi Time out TCP – TC UNIT – I	Transport Layer: TCP enhancements for wireless – Traditional TCP: Congestion control, fast /fast recovery, Implications of mobility – Classical rovements: Indirect TCP, Snooping TCP, Mobile TCP, freezing, Selective retransmission, Transaction oriented P over 3G wireless networks.									
E M I / E		Fourth Technolo challenge Modulatio Adaptive Cognitive	Generation Systems and New Wireless gies: Introduction – 4G vision, 4G features and s – Applications of 4G, 4G Technologies: Multicarrier on, Smart antenna techniques, OFDM-MIMO systems, Modulation and coding with time slot scheduler, Radio									
M C	Text books a Reference bo	nd Text Boo poks 1. Jo Pe 2. Vi No Referenc 1. Er Be	ks: chen Schiller, "Mobile Communications", II Edition, arson Education 2012. (Unit I, II, III). jay Garg , "Wireless Communications and etworking", I Edition, Elsevier 2007. (Unit IV) e Books: ik Dahlman, Stefan Parkvall, Johan Skold and Per eming, "3G Evolution HSPA and LTE for Mobile									
		Br 2. Ka of	oadband", Second Edition, Academic Press, 2008. web Pahlavan, Prasanth Krishnamoorthy, "Principles Wireless Networks", PHI/Pearson Education, 2003.									
	E-resources a other digital material	and 3. htt jf/ 4. htt 5. htt ge	ps://www.doc.ic.ac.uk/~nd/surprise_95/journal/vol2/m article2.html p://www.cisco.com/c/en/us/td/docs/ios/solutions_docs/ obile_ip/mobil_ip.html ps://www.eeweb.com/blog/purnendu_kumar/fourth- neration-wireless-technology									
Cours	e	Elective	Credits: 3									

Category:				
Course Type:	Theory		Lecture - Tutorial -Practice:	4
Prerequisites:	Electromagnetic	Field	Continuous Evaluation:	30
	Theory		Semester end Evaluation:	70
			Total Marks:	100

Course outcomes	Upo able	n suc to:	cessf	ul co	mplet	tion o	of the	cou	rse, t	he stu	udent	t will	be	
	CO1	Gair / EN	n eno ⁄IC re	ugh k lated	to p	ledge produ	to un ct des	derst sign &	and t & dev	he co elopn	ncep nent.	t of I	EMI	
	CO2	Ana imp	lyze act oi	the 1 perf	diffe forma	rent nce o	EM f elec	coupl troni	ling c syst	princi em.	iples	and	its	
	CO3know how to bring down the electromagnetic interferent highlighting the concepts of both susceptibility a immunity													
	CO4	Analyze various EM compatibility issues with regard to the design of PCBs and ways to improve the overall system performance.												
Contribution of		PO												
Course Outcomes		a	b	c	d	e	f	g	h	1	J	k	l	
towards	CO1	M												
achievement of	CO2		L											
Outcomes	CO3	M												
(L – Low, M - Medium, H – High)	CO4		L											
Course Content	UNI Unit Radi Radi	T:I s of p ated ation	EM oaram EMI Haza	[/ E eters, Emiss ards.	MC , Sour	Conc rces a and Su	cepts: and vi uscep	EM ctim tibilit	I-EM of EN y, Tr	C de MI, C ansier	efiniti ondu nt EN	ions cted ⁄II, E	and and SD,	
	UNI trans Com coup cable	T:II sient mon oling , e couj	EM coup mod Near pling	I Cor oling, e and r field ; Pow	uplin Cor d gro d cabl ver m	g Pri mmor und 1 e to c ains a	incipl n gro loop cable and Po	les: C ound coup coupl ower	Condu imp ling, ling, o suppl	icted, edano Diffe cross y cou	radi ce c renti talk , pling	ated coupl al m Fiel	and ing, ode d to	
	UNI Mate	T: Il erial-S	II E Shield	C MI ling	Cont integ	rol T grity	T echn at	i que disco	s: Sh ontinu	ieldir ities	ng- S F	Shield Filter	ling ing-	

	Characteristics of Filters-Impedance and Lumped element filters- Telephone line filter, Power line filter design, Filter installation and Evaluation, Grounding- Measurement of Ground resistance- system grounding for EMI/EMC-Cable shielded grounding, Bonding, Isolation transformer, Transient suppressors, Cable routing, Signal control. EMI gaskets. UNIT: IV EMC Design of PCBs: EMI Suppression Cables-
	Absorptive, ribbon cables-Devices-Transient protection hybrid circuits, Component selection and mounting, PCB trace impedance; Routing, Cross talk control Electromagnetic Pulse- Noise from relays and switches, Power distribution decoupling; Zoning, Grounding, VIAs connection, Terminations.
Text books and Reference books	 V.P.Kodali, "Engineering EMC Principles, Measurements and Technologies", IEEE Press, Newyork, 1996. REFERENCE BOOKS: Henry W.Ott., "Noise Reduction Techniques in Electronic Systems", A WileyInter Science Publications, John Wiley and Sons, Newyork, 1988. Bemhard Keiser, "Principles of Electromagnetic Compatibility", 3rd Ed, Artech house, Norwood, 1986. C.R.Paul,"Introduction to Electromagnetic Compatibility", John Wiley and Sons, Inc, 1992. Don R.J.White Consultant Incorporate, "Handbook of EMI/EMC", Vol I-V,1988.
E-resources and other digital material	1. http://www.nptel.ac.in/courses/117101057/

14EC3803/4: ELECTRONIC NAVIGATION

Course Catego	ory:	Cor	e Elec	tive						(Credi	its:	3		
Course Type:	•	The	ory				Lect	ure -	Tuto	rial -	Pract	ice:	3		
Prerequisites:		Ante	ennas	and v	vave		(on:	30						
		prop	agati	on			Sei	on:	70						
		& N	licro	wave]	Fotal	Mar	ks:	100		
		engi	neeri	ng, Ra	ıdar										
Course	Upor	n succe	ccessful completion of the course, the student will be able to:												
outcomes	CO1	CO1 Know the principles of Navigation and direction finding Techniques.													
	CO2	O2 Understand the operational principle of Navigation equi													
	CO3	Analy systen	Analyze the satellite navigation and hyperbolic navigation systems												
Contribution		РО	PO	РО	PO	PO	PO	PO	PO	PO	PO	PO	PO		
of Course		а	b	с	d	e	f	g	h	i	j	k	1		
Outcomes towards	CO1	М		L											
achievement						1							<u> </u>		
of Program Outcomes	CO2	М		L											
(L – Low, M -Medium, H – High)	CO3	М													
Course	UNI	T I:	Intro	ductio	n -	Fou	met	hods	of	Navig	ation	.R	adio		
Content	Dire Aura Find Freq Direc UNI VHF Rang Syste Equi	ction I ing - A uencies ction Fi T II: Omni ge and ems of pment-	Findin Direc dcock - Au inder Radio Direc Accu Nav Rang	ng - T tion F tomati - Rang Ran tomal racy o igation ge and	he Lo inder ction l c Dire ge and ges - Rang of VC n (Lo preci	Finde Finde ctio Acc The ge(Ve DR – ran	Antenr le Goi ers - D n Find uracy LF/M OR) - Rece and I of Sta	hious na - L niome Directi lers – of Di F Fou VOR nt De Decca andard	on Fi on Fi The (rection Reco velop) - L d Lor	Input Error nding Comr on Fin urse H eiving oment oran- an - I	Circu s in 1 g at V nutate iders Radio g Equ cs. Hy A - Loran	uits Direc ery ed A Rar upm yperl Lora -C -	- An ction High erial nge - ent - bolic an-A The		

Decca Navigation System -Decca Receivers - Range and Accuracy of

Decca - The Omega System.

	UNIT – III DME and TACAN - Distance Measuring Equipment - Operation of DME - TACAN -TACAN Equipment. Aids to Approach and Landing - Instrument Landing System - Ground Controlled Approach System - Microwave Landing system(MLS)
	UNIT IV: Doppler Navigation - The Doppler Effect - Beam Configurations -Doppler Frequency, Equations - Track Stabilization - Doppler Spectrum - Components of the Doppler Navigation System - Doppler range Equation - Accuracy of Doppler Navigation Systems. Inertial Navigation - Principles of Operation - Navigation Over the Earth – Components of an Inertial Navigation System - Earth Coordinate Mechanization - Strapped-Down Systems - Accuracy of Inertial Navigation Systems. Satellite Navigation System - The Transit System - Navstar Global Positioning System (GPS).
Text books and Reference books	 N S Nagaraja, "Elements of Electronic Navigation", 2nd Edition, TMH Reference Books: Dr A K Sen and Dr AB Bhattacharya, Radar Systems and Radio Aids to Navigation, Khanna Publishers, 1988.
E-resources and other digital material	 http://www.aimforhigh.in/2011/11/ec2049-radar and-navigational-aid anna.html#ixzz32nENDwDQ

14EC3851: MICROWAVE ENGINEERING LAB

Course	Program Core	Credits:	2
Category:			
Course Type:	Lab	Lecture - Tutorial -Practice:	0-0-3
Prerequisites:	Transmission lines and	Continuous Evaluation:	30
	Waveguides & Antennas	Semester end Evaluation:	70
	and wave propagation	Total Marks:	100

Course	Upon successful completion of the lab course, the student will be able to:												
outcomes	CO1	CO1 measure the characteristics of microwave oscillators											
	CO2	Deduce the characteristics and parameters of microwave passive components											
	CO3	Measure the characteristics of optical sources, detectors and measure the various losses of the fiber.											
Contribution		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	PO j	PO k	PO 1
of Course Outcomes towards achievement of Program Outcomes (L – Low, M – Medium, H – High)	CO1	Н	L									Н	
	CO2	Н	Н									Н	
	CO3	Н	L									Н	
Course	1. characteristics of Reflex klystron oscillator												
Content	2. characteristic of Gunn diode oscillator												
	 Obtain the properties of E and H Plane Tees. Measure the scattering parameters of directional coupler/magic Tee/ circulator 												
							Tee/						
5. Measurement of High and Low VSW					nd Low VSWR for the given load								
	6. Measurement of gain & directivity of the given horn antenna												
	7. Measurement of directional pattern & beam width of the horn antenna.												
	8. \	/erifica	ation o	of exp	ression	n 1/λ ₀	$^{2} = 1/2$	$\lambda_c^2 + 1$	$/{\lambda_g}^2$.				

9. Measurement of the input impedance and attenuation for the given device.
10. Obtain the V-I characteristics of Optical sources and detectors
11. Study of propagation and bending loss of the optical fibers
12. Study of numerical aperture and attenuation measurement
13. Measurement of dielectric constant of a given material
14. Set up of time division multiplexing using fiber optics