Velagapudi Ramakrishna Siddhartha Engineering College: Vijayawada - 7 Scheme of Instruction and Examination – VR14

	Schester 1										
	Sub. Code	Subject Title	L	Τ	Р	С	CE	SE	TM		
1	14MA1101	Linear Algebra and Differential Equations	4	1		4	30	70	100		
2	14CH1102	Engineering Chemistry	3	1		3	30	70	100		
3	14CS1103	Introduction to Computing	2			2	30	70	100		
4	14CE1104	Basics of Civil Engineering	4			4	30	70	100		
5	14HS1105	Professional Ethics	2			2	30	70	100		
6	14ME1106	Basics of Mechanical Engineering	2			2	30	70	100		
7	14ME1107	Mechanics for Engineers	2			2	30	70	100		
8	14CH1151	Engineering Chemistry Lab			3	2	30	70	100		
9	14CS1152	Basic Computing Lab			3	2	30	70	100		
10	14ME1153	Workshop Practice			3	2	30	70	100		
		Total	19	2	9	25	300	700	1000		

Group – A (CE, EEE, EIE and ME) Semester I

Semester II

S.No	Sub. Code	Subject Title	L	Т	Р	С	CE	SE	TM
1	14MA1201	Calculus	4	1		4	30	70	100
2	14PH1202	Engineering Physics	3	1		3	30	70	100
3	14CS1203	Programming in C	3	1		3	30	70	100
4	14HS1204	Technical English and Communication Skills	2		2	2	30	70	100
5	14EE1205	Basics of Electrical Engineering (Only for EEE and EIE)	2			2	30	70	100
6	14EC1206	Basics of Electronics Engineering (Only for EEE and EIE)	2			2	30	70	100
7	14PH1251	Engineering Physics lab			3	2	30	70	100
8	14CS1252	Programming in C Lab			3	2	30	70	100
9	14ME1253	Engineering Graphics	2		6	5	30	70	100
		Total	18	3	14	25	270	630	900

L – Lecture, T – Tutorial, P – Practical, C – Credits, CE - Continuous Evaluation, SE -Semester-end Evaluation, TM – Total Marks

	Sub. Code	Subject Title	L	Τ	Р	С	CE	SE	TM
1	14MA1301	Complex Analysis &	4	1		4	30	70	100
	141/171301	Numerical Methods (IC)	4	1	-	4	50	70	100
2	14EE3302	Electronic circuits-I	4	-	-	4	30	70	100
3	14EE3303	Network Analysis-I	4	1	-	4	30	70	100
4	14EE3304	Digital circuits and systems	3	-	-	3	30	70	100
5	14EE3305	DC Machines	4	1	-	4	30	70	100
6	14EN1306	Environmental Studies*	3	-	-	3	30	70	100
7	14EE3351	Electrical Networks &			3	2	30	70	100
	14EE5551	Machines Lab-I	-	-	5	2	30	70	100
8	14EE3352	Electronics Lab -I	-	-	3	2	30	70	100
		Total	22	3	6	26	240	560	800

Semester III

Semester IV

S.No	Sub. Code	Subject Title	L	Т	Р	С	CE	SE	ТМ
1	14MA1401	Transformations and Probability Distribution	3	1	-	3	30	70	100
2	14EE3402	Electronic circuits-II	3	-	-	3	30	70	100
3	14EE3403	EMF Theory	3		-	3	30	70	100
4	14EE3404	Network Analysis-II	4	1	-	4	30	70	100
5	14EE3405	Transformers and Induction Motors	4	1	-	4	30	70	100
6	14EE3406	Electrical Measurements	3	1	-	3	30	70	100
7	14EE3451	Electrical Networks and Machines Lab-II	-	-	3	2	30	70	100
8	14EE3452	Electrical Measurements Lab	-	-	3	2	30	70	100
9	14EE1453	Communication Skills Lab	-	-	2	2	30	70	100
		Total	20	4	8	26	270	630	900

L – Lecture, T – Tutorial, P – Practical, C – Credits, CE - Continuous Evaluation, SE -Semester-end Evaluation, TM – Total Marks.

Semester V												
	Sub. Code	Subject Title	L	Τ	Р	С	CE	SE	TM			
1	14EE3501	Linear Control Systems	3	1	-	3	30	70	100			
2	14EE3502/14EI3502	Integrated circuits & Applications	3	1	-	3	30	70	100			
3	14EE3503	Microcontrollers & Digital Signal Processors	3	1	-	3	30	70	100			
4	14EE3504	3	1	-	3	30	70	100				
	14EE2505	Institutional Elective [*]										
_	14EE2505/1	Generation And Utilization Of Energy	4			4	20	70	100			
5	14EE2505/2	Energy Auditing	4	-	-	4	30	70	100			
	14EE2505/3	Renewable Energy Systems										
	14EE2505/4	Solar Photovoltaic										
	14EE5506	Independent Learning (MOOCs)										
6	14EE5506A	Course A –Illumination Engineering	3	-	-	3	30	70	100			
	14EE5506B	Course B – Power Electronics and Distributed Generation										
7	14EE3507	Power Systems-I	3	-	-	3	30	70	100			
8	14EE3551	AC Machines Lab	-	-	3	2	30	70	100			
9	9 14EE3552 Electronics and Workshop Lab-II				3	2	30	70	100			
		Total	22	4	6	26	270	630	900			

L – Lecture, T – Tutorial, P – Practical, C – Credits, CE - Continuous Evaluation, SE -Semester-end Evaluation, TM – Total Marks.

S.No	Sub. Code	Subject Title	L	Τ	Р	С	CE	SE	TM		
1	14EE3601	Fundamentals of Digital Signal Processing	4	1	-	4	30	70	100		
2	14EE3602	Power Electronics	4	1	-	4	30	70	100		
3	14EE3603	Advanced Control Systems	3	1	-	3	30	70	100		
4	14HS1604	Engineering Economics and Finance (Institutional Core)	3	-	-	3	30	70	100		
5	14EE3605	Power Systems - II	3	1	-	3	30	70	100		
6	14EE3651	DSP Lab	-	-	3	2	30	70	100		
7	14EE3652	Control Systems & Microcontroller Lab	-	-	3	2	30	70	100		
8	14EE3653	Term Paper	-	1	-	2	30	70	100		
		Total	17	5	6	23	240	560	800		

Semester VI

Semester VII

	Sub. Code	Subject Title	L	Τ	P	С	CE	SE	TM
1.	14EE3701	Utilization of Electric Power	3	1		3	30	70	100
2.	14EE3702	Switch Gear and Protection	3	1		3	30	70	100
3.	14EE3703	Power System Analysis	3	1		3	30	70	100
4.	14EE3704	Industrial Drives	4	1		4	30	70	100
	14EE4705	Program Elective – I							
	14EE4705/1	HVDC Transmission							
5.	14EE4705/2	Computer Networks	3	1		3	30	70	100
	14EE4705/3	Optimization Techniques							
	14EE4705/4	Internet of Things							
	14EE4706	Program Elective – II							
	14EE4706/1	Electrical Distribution							
	14224/00/1	Systems							
6.	14EE4706/2	AI Techniques in Electrical	3	1		3	30	70	100
0.	14LL4/00/2	Engineering	2	-		U	20	, 0	100
	14EE4706/3	Data base Management							
		Systems							
	14EE4706/4	VLSI Design							
7.	14EE3751	Power Systems Lab			3	2	30	70	100
8.	14EE3752	Power Electronics Lab			3	2	30	70	100
0	14006752	Internship/ Industry offered			2	2		10	100
9.	14EE6753	Course			2	2	-	0	100
10.	14EE5754	Mini Project			1	2	30	70	100
		Total	19	6	9	27	270	730	1000

L- Lecture, T – Tutorial, P – Practical, C – Credits, CE - Continuous Evaluation, SE - Semester-end Evaluation, TM – Total Marks* Two credits may be added either in 6^{th} or 7^{th} semester.

	Semester VIII										
S.No	Sub. Code	Subject Title	L	Т	Р	С	CE	SE	TM		
1	14EE3801	Power system operation and control	4	1	-	4	30	70	100		
	14EE4802	Program Elective – III									
-	14EE4802/1	FACTS Controllers	_								
2	14EE4802/2	Computer Organization	3	1	-	3	30	70	100		
	14EE4802/3	Renewable Energy Systems									
	14EE4802/4	High Voltage Engineering									
	14EE4803	Program Elective - IV									
	14EE4803/1	Advanced Protection System									
3	14EE4803/2	Energy Conservation and Audit	3	1	-	3	30	70	100		
	14EE4803/3	Electrical Machine Design									
	14EE4803/4	Smart Grid Technology And Applications									
4	14EE3851	Simulation of Electrical Systems Lab	-	-	3	2	30	70	100		
5	14EE5852	Project	-	3	9	10	30	70	100		
		Total	10	6	12	22	150	350	500		

L – Lecture, T – Tutorial, P – Practical, C – Credits, CE - Continuous Evaluation, SE -Semester- End Evaluation, TM – Total Marks

14MA1101 - LINEAR ALGEBRA& DIFFERENTIAL EQUATIONS

Course	Institutional Core		
Category:	Institutional Cole	Credits:	4
Course Type:	Theory	Lecture- Tutorial- Practice:	4 -1 - 0
	Fundamentals of Matrices,	Continuous Evaluation:	30M
Proroalligitage	Integration, Differentiation.	Semester end Evaluation:	70M
	integration, Differentiation.	Total Marks:	100M

Course Outcomes		Upon suc	ccessful	complet	tion of	the cou	rse, the	e studer	nt will l	be able	to:		
	CO1	Underst quadrati		-	-		lues an	d eige	n vect	ors and	d able to	o reduce	a
	CO2	Able to	ble to solve the linear differential equations by using appropriate methods.										
	CO3	Able to	le to form Partial Differential equations and solve Partial Differential equations.										
	CO4		derstand the concepts of Laplace Transforms and able to apply to solve ferential Equations, Integral Equations by Transform method.										
Contribution of		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course Outcomes towards achievement of	CO1	Н	L			Н		М		М			
Program Outcomes	CO2	Н	H M H M M										
(M-Medium, H– High,L-Low)	CO3	Н	H M H M M										
	CO4	Н	Н			Н		М		М			

Course Content UNIT-I

Linear Algebra:

Rank of a Matrix, Elementary transformations, Inverse of a matrix (Gauss Jordan Method) Consistency of Linear System of Equations, Linear Transformations, Vectors, Eigen Properties of Eigen Values, Cayley- Hamilton Theorem (Without Values. Proof), Reduction to Diagonal Form, Reduction of quadratic form to canonical form, Nature of a Quadratic Form, Complex Matrices

UNIT-II

Differential Equations of First Order:

Formation of a Differential Equation, Solution of a Differential Equation, Linear Equations, Bernoulli's Equation, Exact Differential Equations, Equations Reducible to Exact Equations, Orthogonal Trajectories, Newton's Law of Cooling, Rate of Decay of Radio-Active Materials.

Linear Differential Equations of Higher Order: Definitions, Operator D, Rules for Finding the Complimentary Function, Inverse Operator, Rules for finding Particular Integral, Working Procedure to Solve the Equation.

UNIT –III

[Text Book-1] Linear Dependence of Solutions, Method of Variation of Parameters, Equations reducible to Linear Equations With Constant Coefficients: Cauchy's Homogeneous Linear Equation, Legendre's Linear equation, Simultaneous linear differential equations with constant coefficients.

[Text Book-1]

[Text Book - 1]

[
	Partial Differentiation:
	Total Derivative, Change of Variables, Jacobians.
	Partial Differential Equations:
	Introduction, Formation of Partial Differential Equations, Solutions of a Partial Differential
	Equations, Equations Solvable by Direct Integration, Linear Equations of First Order.
	UNIT IV [Text Book - 1]
	Laplace Transforms:
	Introduction, Definition, Conditions for Existence, Transforms of Elementary Functions,
	Properties of Laplace Transforms, Transforms of Periodic Functions, Transforms of
	Derivatives, Transforms of Integrals, Multiplication by t ⁿ , Division by 't', Evaluation of
	Integrals by Laplace Transforms, Inverse Transforms, Method of Partial Fractions, Other
	Methods of Finding Inverse, Convolution Theorem, Application to Differential Equations,
	Unit Step and Unit Impulse Functions.
Text books and	Text Book(s):
Reference	[1] B.S.Grewal, "Higher Engineering Mathematics", 42 nd edition Khanna
books	
	Reference Books:
	[1] Kreyszig, "Advanced Engineering Mathematics", 8 th edition, John Wiley & Sons.
	[2] Peter V.O.Neil, "Advanced Engineering Mathematics", Thomson, Canada.
	[3] R.K.Jain and S.R.K.Iyengar, "Advanced Engineering Mathematics", 3 rd edition
	Narosa Publishers.
	[4] N.P.Bali, Manish Goyal, "A Text Book of Engineering Mathematics", Laxmi
	Publications (P) Limited.
	[5] B.V.Ramana, "A text book of mathematics", Tata MC Graw Hill.
E-resources and	[1] mathworld.wolfram.com
other digital	[2] http://www.nptel.iitm.ac.in
material	

14CH1102 - ENGINEEERING CHEMISTRY

Course Category:	Institutional Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-1-0
Prerequisites:	Engineering Chemistry(14CH1102)	Continuous Evaluation:	30M
-		Semester end Evaluation:	70M
		Total Marks:	100M

Course Outcomes		Upo	Upon successful completion of the course, the student will be able to: Analyze various water treatment methods and boiler troubles										
	CO1	Anal	yze va	rious w	ater tre	eatmen	t metho	ds and	boiler	trouble	es		
	CO2		Apply the knowledge of different phases in materials, working principle of electrodes and batteries and their application in chemical and other engineering reas.										
	CO3		Evaluate corrosion processes as well as protection methods and apply the principles of UV-visible spectroscopy in chemical analysis.										
	CO4 Apply the knowledge of nature of polymeric materials for their application technological fields and of fuels for their conservation.									ication in	n		
Contribution of Course Outcomes		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
towards achievement of	CO1		Н										
Program Outcomes	CO2	М											
(L – Low, M - Medium, H –	CO3											Н	
High)	CO4			М									
Course Content	Water Source sedim break- electro Water Boiler disady	UNIT-I[Text Book-1]Water technology-I:Sources and impurities of water, WHO standards - Water treatment for drinking purpose - sedimentation, coagulation, filtration, various methods of disinfection and concept of break-point chlorination - Desalination of brakish water - principle and process of electrodialysis and reverse osmosis.Water technology-II:Boiler troubles - scales, sludges, caustic embrittlement and boiler corrosion - causes, disadvantages and prevention, Internal conditioning methods - phosphate, calgon and sodium aluminate - External treatment methods - zeolite and ion-exchange methods.											
	equili two-co advan	rule: pt of p orium ompon	of ent s limitat	one ystem ions an	compo – soc	onent lium c	– wa	ter s water	ystem	- p	rule defi hase eo I silver-	quilibriu	phase m of

	Calomel electrode, silver-silver chloride electrode and glass electrode, determination of pH using glass electrode - Electrochemical energy systems - Zinc-air battery, Lead-acid battery, Ni-Cd battery, Li _x C/LiCoO ₂ battery - Advantages of lithium batteries.
	UNIT-III [Text Book-1]
	Corrosion science: Introduction – chemical and electrochemical corrosion – electrochemical theory of corrosion – corrosion due to dissimilar metals, galvanic series – differential aeration corrosion – cathodic protection, anodic protection, corrosion inhibitors – types and mechanism of inhibition – principle and process of electroplating and electroless plating. Instrumental techniques of analysis: Introduction of spectroscopy – interaction of electromagnetic radiation with matter - UV-visible spectroscopy: Frank-Condon principle – types of electronic transitions. Lambert-Beer's law, numericals (simple substitution) – Instrumentation - single beam UV-visible spectrophotometer - applications-qualitative analysis, quantitative analysis, detection of impurities and determination of molecular weight.
	UNIT-IV [Text Book-1]
	 Polymer technology: Polymerization – Addition and condensation, thermoplastics and thermosettings – conducting polymers – examples, classification-intrinsically conducting polymers and extrinsically conducting polymers- mechanism of conduction of undoped, p-doped and n-doped polyacetylenes – applications of conducting polymers, Fibre reinforced plastics (FRP) - composition and applications. Fuel technology:
	Fuels – classification, calorific value, coal – proximate analysis and ultimate analysis, Petroleum – refining, concept of knocking, octane number and cetane number, flue gas analysis by Orsat's apparatus and numericals based on combustion.
Text books and Reference books	Text Book(s): [1] <i>P.C. Jain</i> , Engineering Chemistry, 15 th edition, DhanpatRai Publishing Company (P) Limited, New Delhi.
	 Reference Books: S. Dara, A text book of Engineering Chemistry, 10th edition, S. Chand & Company Limited, New Delhi. ShashiChawla, A text book of Engineering Chemistry, DhanpatRai& Company Pvt. Ltd., New Delhi. Sunita Rattan, A Textbook of Engineering Chemistry, First edition, S.K. Kataria& Sons, New Delhi,2012. B.S. Bahl, G. D. Tuli and ArunBahl, Essentials of Physical Chemistry, S. Chand and Company Limited, New Delhi. Y.Anjaneyulu, Text book of Analytical Chemistry, K. Chandrasekhar and ValliManickam, Pharma Book Syndicate, Hyderabad. O. G. Palanna, Engineering Chemistry, Tata McGraw Hill Education Pvt. Ltd., New Delhi.

E-resources and	[1] http://www.cip.ukcentre.com/steam.htm
other digital	[2] http://corrosion-doctors.org/Modi;es/mod-basics.htm
material	[3] http://chemwiki.ucdavis.edu/Analytical_Chemistry.htm
	[4] http://teaching.shu.ac.uk/hwb/chemistry/tutorials/molspec/uvvisabl.htm
	[5] http://www.prenhall.com/settle/chapters/ch15.pdf

14CS1103- INTRODUCTION TO COMPUTING

Course	Institutional Core	Credits:	2
Category:			
Course Type:	Theory	Lecture - Tutorial - Practice:	2 - 0 - 0
Prerequisites:		Continuous Evaluation:	30M
-		Semester end Evaluation:	70M
		Total Marks:	100M

Course		Upor	n succ	essful	comp	letion	of the	e cour	se, the	e stude	ent will b	be able	to:
outcomes	CO1	Unde	erstand	the ch	anges	in hard	ware a	nd sof	tware c	compor	nents.		
	CO2	Unde	erstand	the co	ncept o	of oper	ating s	ystem	and its	functi	onalities.		
	CO3		Understand types of networks and most common ways of transmitting data via networks and internet.										
	CO4		Identify the ways in which a program can work towards a solution by using some processes and tools.										
			Develop algorithms and prepare flow charts to simple mathematics and logical problems										
Contribution of Course Outcomes		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
towards achievement of	CO1	L	М										
Program Outcomes	CO2	М											
(L – Low, M - Medium, H –	CO3	М	L										
High)	CO4		L										
Course Content													
	defined society Lookir parts of hardwa Applica Input s	UNIT-I[Text Book-1]Exploring Computers and their uses Overview: Computers in our world, The computer defined, Computers for individual users, Computers for organizations, Computers in society, Why are computer so important.Looking inside the computer system Overview: Detecting the ultimate ma- chine, The parts of a computer system, The information processing cycle, Essential computer hardware: processing devices, memory devices, Storage devices, System software Application software, Computer data, Computer users.Input and Output devices Overview: Input devices and output devices, various types of input/output devices.								ters in ne, The mputer ftware,			

UNIT-II

Transforming data into information: Overview, The difference between data and information, How computers represent data, How computers process data, Machine cycles, Memory, Factors effecting processing speed, The computer's internal clock, The Bus, Cache memory.

Types of storage devices: Overview, An ever-growing need, Categorizing storage devices, Magnetic storage devices-How data is stored on a disk, How data is organized on a magnetic disk, How the operating system finds data on a disk, Diskettes, hard disks, Removable high-capacity magnetic disks, Tape drives, Optical storage devices, Solidstate storage devices, Smart cards, Solid-state disks. Operating systems basics: Overview, The purpose of operating systems, Types of operating systems, Providing a user interface. **Networking Basics**: Overview, Sharing data anywhere, anytime, The uses of a network, Common types of networks, Hybrid networks, How networks are structured, Network topologies and protocols, Network media, Network hardware.

UNIT-III

Data Communications: Overview, The local and global reach of networks, Data communications with standard telephone lines and modems, Modems, uses for a modem, Using digital data connections, Broad band connections, Wireless net- works. Productivity Software: Overview: Software to accomplish the work of life, Acquiring software, Commercial software, Freeware and public domain software, Open-source software, Word processing programs, Spreadsheet programs, Presentation programs, Presenting information managers.

Database management Systems: Overview, The mother of all computer applications, Databases and Database Management Systems, Flat-File and Relational Database Structure, DBMS, Working with a database.

UNIT-IV

[Text Book-2] **Programming languages and the programming process**: Overview, The keys to successful programming, The evolution of programming languages, World wide web development languages, The Systems development life cycle for programming. Creating Computer programs: Overview: What is a computer program, Hard- ware/Software interaction, Code, machine code, programming languages, Compilers and interpreters, planning a computer program, How programs solve problems, Purpose of flowcharts and algorithms, flow chart symbols, drawing flow charts, developing algorithms.

Text books and	Text Book(s):
Reference books	[1] Peter Norton, Introduction to Computers, sixth Edition, Tata McGraw Hill[2] Computer Fundamentals and C Programming by ReemaThareja.
E-resources and other digital material	 [1] Lecture Series on Computer Organization by Prof.S. Raman, Department of Computer Science and Engineering, IIT Madras <u>https://www.youtube.com/</u>watch?v=leWKvuZVUE8 [2] Lecture Series on Data Communication by Prof.A. Pal, Department of Computer Science Engineering, IIT Kharagpur. [3] <u>https://www.youtube.com/</u>watch?v=sG6WGvzmVaw

[Text Book-1]

[Text Book-1]

14CE1104 - BASICS OF CIVIL ENGINEERING								
Course	Institutional Core	Credits:	2					
Category:								
Course Type:	Theory	Lecture - Tutorial - Practice:	2 - 0 - 0					
Prerequisites:		Continuous Evaluation:	30M					
		Semester end Evaluation:	70M					
		Total Marks:	100M					

Course Outcomes		Upo	n succ	essful	comp	oletion	of the	e cour	se, the	e stude	ent will	be able	to:	
	CO1	1	n basic tures.	e know	ledge (on civi	l engin	eering	materi	als and	l civil en	gineerin	g	
	CO2	Attai	Attain basic knowledge on sub-structure and super structure of a building.											
	CO3	1	Attain basic knowledge on principles of surveying, various types of surveying and various types of transportation systems.											
	CO4	Attai	n basic	e know	ledge o	on wate	er supp	oly, sev	vage.					
Contribution of Course Outcomes		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
towards achievement of	CO1	Н												
Program Outcomes	CO2	Н												
(L – Low, M - Medium, H –	CO3	Н												
High)	CO4	Н												
Course Content										ations - es -uses. Steel -				
		ing Co	-		site -	classi	fication	n - co	ompone	ents. F	oundatio	[Text B		

	classifications - bearing capacity. Flooring - requirements - selection - types - cement concrete marble - terrazzo floorings. Roof - types and requirements.
	UNIT III [Text Book-1]
	Surveying And Transportation: Surveying - objectives - classification - principles of survey. Transportation - classification - cross section and components of road - classification of roads. Railway - cross section and components of permanent way -functions. Water way - docks and harbor - classifications - components. Bridge - components of bridge. UNIT - IV [Text Book-1] Water Supply And Sewage Disposal: [Text Book - 1] Dams - purpose - selection of site - types -gravity dam (cross section only). Water supply - objective - quantity of water - sources - standards of drinking water - distribution system. Sewage - classification - technical terms - septic tank - components and
	functions.
Text books and Reference books	 Text Book(s): [1] Raju .K.V.B, Ravichandran .P.T, "Basics of Civil Engineering", Ayyappa Publications, Chennai, 2012. [2] Rangwala .S.C, "Engineering Materials", Charotar Publishing House, Anand, 2012. [3] M.S.Palanichamy, "Basic Civil Engineering", Tata McGraw-Hill Publishing Company limited.
	 Reference Books: [1] Dr. K.N. Duggal, "Elements of Environmental Engineering", S. Chand and company LTD. Ram Nagar, New Delhi. [2] R.Srinivaas, "Elements of Environmental Engineering", Chartor Publishing House, Arand, 2012
E-resources and other digital material	[1] ncees.org/exmas/fe-exma/[2] www.aboutcivil.com/

14HS1105 - PROFESSIONAL ETHICS

Course	Institutional Core	Credits:	2
Category:			
Course Type:	Theory	Lecture - Tutorial - Practice:	2 - 0 - 0
Prerequisites:	Knowledge about Morals and	Continuous Evaluation:	30M
_	Values	Semester end Evaluation:	70M
		Total Marks:	100M

Course Outcomes		Upor	Upon successful completion of the course, the student will be able to: Known the Moral autonomy and uses of Ethical theories.											
	CO1	Knov	vn the l	Moral a	autonor	ny and	uses of	f Ethica	al theor	ries.				
	CO2	Unde	Understand Morals Honesty and Character.											
	CO3	Unde	Understand about Safety, Risk and Professional Rights.											
	CO4	Knov	vn the l	Ethics	regardi	ng Glo	bal issu	ies like	Enviro	onment	, Compu	iter and		
Contribution of Course Outcomes		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
towards achievement of Program Outcomes	CO1	M												
(L – Low, M - Medium, H – High)(L	CO2						Н							
– Low, M - Medium, H – High)	CO3					М								
	CO4								Н					
	Senses	Engineering Ethics : Senses of 'Engineering Ethics' - variety of moral issued - types of inquiry - moral dilemma - moral autonomy - Kohlberg's theory - Gilligan's theory - consensus and controversy – Models of Professional Roles - theories about right action - Self-interest - customs and religion- uses of ethical theories.									mmas			
	Models	s of Pro	fession	al Role	es - the	-	-		-			-	_	
	Models religion UNIT -	s of Pro n- uses - II	fession of ethic	al Role	es - the	-	-		-		est - cus	-	d	
	Models religion UNIT - Humar Morals, Respec	s of Pro n- uses - II n Value , Value t for Of	fession of ethic es : s and E thers –	al Role cal theo Ethics – Living	- Integr Peacet	ories at ity– W fully –	oout rig ork Eth caring	ght action nic – Se – Shari	on - Se ervice I ng – H	lf-inter Learnin onesty	est - cus	toms an `ext Boo c Virtue ge – Va	d bk-1,2] 	
	Models religion UNIT - Human Morals Respec Time – UNIT-	s of Pro n- uses - II n Value , Value t for Ot Co-op	fession of ethic es : s and E thers – eration	al Role cal theo Ethics – Living – Com	- Integr Peaced	ories al ity– W fully – nt –Em	ork Eth caring - pathy -	ght action nic – Se – Shari	on - Se ervice I ng – H	lf-inter Learnin onesty	est - cus [T g – Civi – Coura Characte	toms an `ext Boo c Virtue ge – Va	d k-1,2] luing ituality	
	Models religion UNIT - Humar Morals, Respec Time – UNIT- Engine	s of Pro - uses - II n Value t for Of Co-op III cering a ering a	fession of ethic es : s and E thers – eration as Soci s exper	al Role cal theo Ethics – Living – Com al Exp imenta	- Integr Peaced mitme erimer tion - e	ories al ity– W fully – nt –Em ntation	ork Eth caring - pathy - : rs as re	ght action nic – Se – Shari – Self-O sponsil	on - Se ervice I ng – H Confide	lf-inter Learnin onesty ence – (est - cus [T g – Civi – Coura Characte	toms an Fext Boo c Virtue ge – Va er – Spir F ext Boo	d k-1,2 luing itualit k-1,2	

	Safety, Responsibilities and Rights: Safety and risk - assessment of safety and risk - risk benefit analysis and reducing risk - the three mile island and chernobyl case studies. Collegiality and loyalty - respect for authority - collective bargaining - confidentiality - conflicts of interest - occupational crime - professional rights - employee rights - Intellectual Property Rights (IPR) - discrimination UNIT -IV [Text Book-1,2] Global Issues: Multinational corporations- Environmental ethics- computer ethics - weapons development - engineers as managers-consulting engineers-engineers as expert witnesses and advisors - moral leadership-sample code of Ethics (Specific to a particular Engineering Discipline).
Text books or Reference books	 Text Book(s): [1] Mike Martin and Roland Schinzinger. (1996), "Ethics in engineering", McGraw Hill, New York. [2] Govindarajan M, Natarajan S, Senthil Kumar V. S. (2004), "Engineering Ethics", Prentice Hall of India, New Delhi, Reference Books: [1] Baum, R.J. and Flores, A., eds. (1978), "Ethical Problems in Engineering, Center for the studyof the Human Dimensions ofScience and Technology", Rensellae Polytechnic Institute, Troy, New York, 335 pp.
	 [2] Beabout, G.R., Wennemann, D.J. (1994), "Applied Professional Ethics: A DevelopmentalApproach for Use with Case Studies", University Press of America Lanham, MD, 175 pp
E-resources and other digital material	 [1] <u>http://www.professionalethics.ca/</u> [2] <u>http://ethics.tamu.edu/</u> [3] <u>http://en.wikipedia.org/wiki/Professional_ethic</u>

14ME1106 - BASICS OF MECHANICAL ENGINEERING

Course Category:	Institutional Core	Credits:	2
Course Type:	Theory	Lecture - Tutorial - Practice:	2 - 0 - 0
	Knowledge of Mathematics,	Continuous Evaluation:	30M
Prerequisites:	Physics, Chemistry at	Semester end Evaluation:	70M
•	Intermediate Level	Total Marks:	100M

Course Outcomes		Understand the basic manufacturing methods and power transmission in mechanical engineering												
	CO1	Attain	basic	knowl	edge o	f simp	le stres	s and	strain					
	CO2	Realiz	ze the i	mporta	ance of	energ	y and i	dentify	vario	us sourc	ces of end	ergy		
	CO3	1	Understand the principle of operation of different I.C. engines and their applications											
	CO4	Descr	Describe the performance of different types of refrigeration systems											
	CO5	1	Understand the basic manufacturing methods and power transmission in mechanical engineering											
Contribution of Course Outcomes		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
towards achievement of	CO1	Н			М			Н						
Program Outcomes	CO2	Н			М	Н								
(L – Low, M – Medium, H –	CO3	Н			Н									
High)	CO4	Н			Н			Н						
Course Content	UNIT-I [Text Book-1,2] Manufacturing Methods : Casting: Principles of Casting, Advantages & disadvantages, Applications of casting, Green sand moulds Lathe : Description, Main components , Basic operations performed on a Lathe (Turning, Taper turning, Thread cutting, Drilling) Welding : Types : Equipments, Principles of Gas Welding and Arc Welding, Applications, Advantages & disadvantages of welding, Brazing & Soldering													
UNIT- II Simple Stress and Strain: Stress and Strain, definitions, Elasticity, Hooke's Law, Rel Transmission: Belt Drives Introduction, Types, Length of Open Belt drive ratio and difference between open belt drive & Cross belt d belts									t drive	and cro	tween el	rive, Ve	locity	

Text books and Reference	UNIT- III [Text Book-2] Energy Resources:							
books	Introduction, Energy Scenario, Classification of Energy Resources, Conventional Energy Resources : working principle of Steam power plant, Nuclear Power plant Non-conventional Energy Resources : Working principle of Solar Power plant, Wind power plant, Geo-Thermal and OTEC plant							
	UNIT IV [Text Book-1,2]							
	 Internal Combustion Engines: Introduction, Classification, Main components of an I.C. engine, Working principle of Two Stroke and Four Stroke Petrol and Diesel engine Refrigeration: Introduction, Classification, Types of Refrigeration, Units of Refrigeration, C.O.P., 							
	working of vapour compression refrigeration system, applications of refrigeration							
Text Books and Reference Books	 Text Book(s): [1] Basic Mechanical Engineering by T.S. RAJAN 3rd Edition, New Age International Ltd,First Reprint 1999. [2] Machine Design by R.S. KHURMI & J.K. GUPTA, Eurasia Publications House 2005. [3] Basic Mechanical Engineering by T.J. PRABHU & V. Jaiganesh, S.Jebaraj SCI Tech Publications (India) Pvt. Ltd. 							
	 Reference Books: [1] Thermal Engineering by R. Rudramoorthy, 4th Reprint 2006 Tata Mc-Graw Hill Publishing Company Ltd, New Delhi (2003). [2] Manufacturing Process by R.K. Rajput, Firewall media (2007). [3] Power Plant Engineering by P.K. Nag Tata McGraw Hill Publishing Company Ltd, New Delhi (2011). 							
E-Resources and other digital material	 [1] www.engliblogger.com/mechanical/mechan [2] www.indiastudychannel.com/resources [3] www.result.khatana.net/2010/07/ge2152 [4] www.scribd.com/doc/15653381/basic-mech 							

Course	Institutional Core	Credits:	4
Category:			
Course Type:	Theory	Lecture - Tutorial - Practice:	4-1-0
Prerequisites:		Continuous Evaluation:	30M
		Semester End Evaluation:	70M
		Total Marks:	100M

Course	Upon	succe	essful c	comple	etion o	f the c	ourse,	the stu	udent v	will be	able to	:		
Outcomes	CO1	Const	truct fre	ee body	v diagra	ms and	l develo	op appr	opriate	equilib	orium eq	uations.		
	CO2		Locate centroids and simplify the system of forces and moments to equivalent systems.											
	CO3	Analy	Analyze systems with friction.											
	CO4	Deter	Determine the kinematic relations of particles.											
	CO5	Apply	Apply equations of motions to particle motion.											
	CO6	Analy	ze mot	tion of	particle	es using	, the pr	inciple	of ener	gy and	momen	tum met	hods.	
Contribution		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
of Course Outcomes	CO1		L											
towards achievement of	CO2	L												
Program	CO3		L											
Outcomes (L – Low,	CO4		Н											
M - Medium, H – High)	CO5	L												
	CO6		L											
Course Content	Conc Princi resolu reactio Projec Paral Introd a coup Centr Detern UNIT Gene Com Frict									ypes of orces i and of r solution of Con	f Suppo n a plar noments n of forc nposite p	rts and he – Me · e into fo blane fig	support thod of orce and ures.	

	friction, Angle of friction, Angle of response, Cone of friction, Wedge friction. Kinematics of Rectilinear Translation : Introduction, displacement, velocity and acceleration, Motion with Uniform acceleration.
	UNIT-III Kinematics of Rectilinear Translation : Equations of rectilinear motion, Equations of Dynamic equilibrium: D'Alembert's Principle, Work and Energy Principle, Conservation of Energy Principle, Impulse and momentum principle, Impact-Direct central Impact.
	 UNIT-IV Kinematics of Curvilinear Motion: Introduction, Rectangular components of velocity and acceleration, Normal and Tangential acceleration, Motion of projectiles. Kinematics of Curvilinear Translation: D'Alembert's Principle in curvilinear motion:Rectangular components, Normal & tangential components, Work and Energy Principle.
Textbooks and Reference books	 Text Book(s): [1] A.K.Tayal "Engineering Mechanics Statics and dynamics", XIII^{the d}, Umesh Publication, 2006. (For numerical Problems using S.I. System of Units). [2] S.Timoshenko, D.H. Young, J.V. Rao & Sukumar Pati, "Engineering Mechanics" Vth ed, Mc Graw Hill Education (India) Pvt LTD,2013. (For Concepts and symbolic Problems using S.I System of Units).
	 Reference Books: [1] Beer & Johnston, "Vector Mechanics for Engineers Statics and Dynamics" IIIrd ed, Tata McGraw Hill Publishing Company, 2010. [2] SS Bhavikatti & KG Rajasekharappa, "Engineering Mechanics" IV^{the d}, New Age International Private Limited,2012. [3] K.Vijaya Kumar Reddy and J Suresh Kumar, "Singer's Engineering Mechanics Statics and Dynamics" IIIrd ed, BS Publications, 2010. [4] Andrew pytel & Jaan Kiwsalaas, "Engineering Mechanics: Statics and Dynamics" IIIrd edition, Cengage Learning, 2013.
E-resources and other digital material	 [1] <u>http://openlibrary.org/books/OL22136590M/Basic</u> engineering mechanics [2] <u>http://en.wikibooks.org/wiki/Engineering</u> Mechanics [3] <u>http://nptel.iitm.ac.in/vedio.php?courseId=1048</u> [4] <u>http://imechanica.org/node/1551</u> [5] <u>http://emweb.unl.edu</u> [6] <u>http://ebooks-freedownload.com/2009/11/engineering-mechanics-statics-12.html</u> [7] http://www.ebookee.com/Engineering-Mechanics-Statics37859.html

14CH1151- ENGINEEERING CHEMISTRY LAB

Course Category:	Institutional Core	Credits:	2
Course Type:	Practice	Lecture - Tutorial - Practice:	0 - 0 - 3
Prerequisites:	Knowledge of Chemistry Practical	Continuous Evaluation:	30M
	at Intermediate level	Semester end Evaluation:	70M
		Total Marks:	100M

Course Outcomes		Upon successful completion of the course, the student will be able to:												
	CO1	Anal	Analyze quality parameters of water samples from different sources.											
	CO2	Perfo	Perform quantitative analysis using instrumental methods.											
	CO3	Apply the knowledge of mechanism of corrosion inhibition, metallic coatings and photochemical reactions.												
Contribution of Course		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
Outcomes towards achievement of	CO1		Н											
Program Outcomes (L – Low, M – Medium, H –	CO2											М		
High)	CO3					М								
Course Content		-	riment			1					1		1	
			minatio			2		-	ole					
	2.		minatio											
	3.		minatio					-						
	4.								ng pow	der				
	5.	Deter	minatio	on of c	opper i	n a give	en sam	ple						
	6.	Estin	nation c	of Moh	r's salt	– Dich	rometr	У						
	7.	Estin	nation c	of Moh	r's salt	– Perm	angan	ometry						
	8.	Deter	minatio	on of z	inc in a	given	sample	e						
	9.	Cond	uctome	etric de	termina	ation of	a stro	ng acid	l using	a stron	g base			
	10	. pH m	etric tit	tration	of a str	ong ac	id vs. a	strong	g base					
	11	. Deter	minatio	on of o	corrosio	on rate	of mi	ld stee	el in th	e absei	nce and	presence	e of an	
		inhib	itor											
	12	. Chen	nistry o	f Blue	Printin	g								

	13. Colorimetric determination of potassium permanganate
	14. Preparation of Phenol-Formaldehyde resin
	15. Spectrophotometry
Text books and Reference books	 Text Book(s): [1] S.K. Bhasin and Sudha Rani, Laboratory Manual on Engineering Chemistry, 2nd edition, DhanpatRai Publishing Company, New Delhi. [2] Sunitha Rattan, Experiments in Applied Chemistry, 2nd edition, S.K. Kataria& Sons, New Delhi.
E-Resources and other digital material	

14CS1152- BASIC COMPUTING LAB								
Course	Institutional Core	Credits:	2					
Category:								
Course Type:	Practice	Lecture - Tutorial - Practice:	0 - 0 - 3					
Prerequisites:		Continuous Evaluation:	30M					
_		Semester end Evaluation:	70M					
		Total Marks:	100M					

Course Outcomes		Upon successful completion of the course, the student will be able to:												
	CO1	Understand the changes in hardware and software components.												
	CO2	Understand the concept of operating system and its functionalities.												
	CO3		Understand types of networks and most common ways of transmitting data via networks and internet.											
	CO4	D4 Identify the ways in which a program can work towards a solution by using some processes and tools.												
	CO5		-	lgorith oblems		d prep	are fl	ow ch	arts to	simple	e mathe	matics	and	
Contribution of Course		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
Outcomes towards	CO1	L	М											
achievement of Program	CO2	M												
Outcomes (L – Low, M -	CO3	M	L											
Medium, H – High)	CO4		L											
	CO5	M	Μ											
	 nt CYCLE - I Word Processing, Presentations and Spread Sheets: Word Processing: Create personal letter using MS Word. Create a resume using MS Word. 2.Spread Sheets: Create a worksheet containing pay details of the employees Create a worksheet which contains student results. Create a worksheet importing data from database a calculate sum of all the columns. 3.Presentations: Create a presentation using themes. Save, edit, print and import images/videos to a presentation c) Adding animation to a presentation. 									base ar	ıd			

	 b) Create a query table for the results processing table. c) Create a form to update/modify the results processing table. d) Create a report to print the result sheet and marks card for the result. CYCLE - II Hardware Experiments: Identification of System Layout: Front panel indicators & switches and Front side & rear side connectors. Familiarize the computer system Layout: Marking positions of SMPS, Motherboard, FDD, HDD, CD, DVD and add on cards. Install Hard Disk. Configure CMOS-Setup. Partition and Format Hard Disk. Install and Configure a DVD Writer or a Blu-ray Disc writer. Install windows operating system and check if all the device (graphics, sound, network etc.) drivers are installed. Install Linux operating system and check the working of all devices (graphics, sound, network etc.) in the computer. Assemble a Pentium IV or Pentium Dual Core Pentium Core2 Duo system with necessary peripherals and check the working condition of the PC. PC system layout: Draw a Computer system layout and Mark the positions of SMPS, Mother Board, FDD, HDD, and CD-Drive/DVD- Drive add on cards in table top / tower model systems.
E-Resources and other digital material	 [1] Numerical Methods and Programing by Prof.P.B.Sunil Kumar, Department of Physics, IIT Madras <u>https://www.youtube.com/</u>watch?v=zjyR9e- N1D4&list=PLC5DC6AD60D798FB7 [2] Introduction to Coding Concepts Instructor: Mitchell Peabody View the complete course: http://ocw.mit.edu/6-00SCS11

I4ME1153 - WORKSHOP PRACTICE Course Institutional Core Credits: 2 Category: Practice Lecture - Tutorial - Practice: 0 - 0 - 3 Prerequisites: Continuous Evaluation: 30M Semester end Evaluation: 70M Total Marks: 100M

Course Outcomes		Upon successful completion of the course, the student will be able to:											
	CO1				-		-	• •		-	ntry trade int, and C		-
	CO2		velop va pint, Edg		-		-			elding	such as 1	Lap Join	.t, Lap
	CO3	To develop various basic prototypes in the trade of Tin Smithy such as Saw Edge, Wired Edge, Lap Seam, Grooved Seam and Funnel Preparations											
	CO4	with o		tch, Co	onnectii	ng two	lamps	with o	-		as Conne nnecting	-	-
Contribution of Course		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Outcomes towards	CO1	Н	Н									L	
achievement of Program	CO2	М	Н									L	
Outcomes (L – Low, M -	CO3	M	Н									L	
Medium, H – High)	CO4	L	Н									L	
Course Content	UNIT	entry : T a. La b. La c. Do d. M e. Cu ing: To a. L b. T c. E d. E	ap Joint ap Tee ove Tai lortise a ross La	t. Joint. il Joint and Ten p Joint the follont. nt. nt. pint.	t. mon Jo t.	int.				lding 1	Process /	Gas We	ding.

	UNIT III
	Tin Smithy: To do Sheet Metal Operations with Hand Tools:
	a. Saw Edge.
	b. Wired Edge.
	c. Lap Seam.
	d. Grooved Seam.
	e. Funnel.
	UNIT IV
	House Wiring:
	a. To connect one lamp with one switch.
	b. To connect two lamps with one switch.
	c. To connect a fluorescent Tube.
	d. Stair case wiring.
	e. Godown Wiring.
Text books and Reference books	Text Book(s): [1] Kannaiah P. &Narayana K. C., "Manual on Workshop Practice", Scitech Publications, Chennai, 1999.

14MA1201 - CALCULUS

Course Category:	Institutional Core	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	4 - 1 - 0
Prerequisites:	Fundamentals of calculus, vectors and geometry.	Continuous Evaluation: Semester end Evaluation:	
	geometry.	Total Marks:	

Course Outcomes		Upon	Upon successful completion of the course, the student will be able to:											
	CO1		stand the		-					and ap	oply the	em to e	expand	
	CO2	Able to	o test the	conve	rgence	of infi	nite se	ries, tr	acing c	of the c	urves.			
	CO3		Understand the concept of multiple integrals and apply them to evaluate areas and volumes.											
	CO4		Apply the concepts of calculus to scalar and vector fields and establish the relation between the line ,surface and volume integrals.											
Contribution of Course Outcomes		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
towards achievement of	CO1	Н	L			М		L				M		
Program Outcomes	CO2	Н	L			М		L				M		
(L – Low, M - Medium, H –	CO3	Н	М			М		L				M		
High)	CO4	Н	М			М		L				Н		
Course Content	Rolle' Taylor Curva UNIT Asymj Lagran Seque Conve	ential C s Theor ture, Rad –II ptotes, m nge's Mo nce and ergence	Calculus: em, Lag em, Mac dius of C Curve T ethod of Series: of series series – A	range' claurin urvatu Tracing undete – Con	's Seri re. , Max rmined	es, Tay tima a l Multi on test	ylor's ' and M pliers. – D'Al	Theore inima lember	em for of Fu t's Rat	Functi inction	fean Va on of T	`wo Van [Text B ∉ wo Van	eorem, riables, bok-1] riables,	
	Doubl Area H Specia	al Calcu e Integra Enclosed al Funct	als, Char by Plan	e Curv	es, Trij	ple Inte	egrals,	Volun	nes of S	Solids,	in Pola Change	of Vari	linates, ables.	

	Function or Probability Integral.
	UNIT-IV [Text Book-1] Vector Calculus: Scalar and Vector Point Functions, Del Applied to Scalar point Functions, Gradient, Del Applied to Vector point Functions, Physical Interpretation of Divergence, Del Applied Twice to Point Functions, Del Applied to Products of Point Functions, Integration of Vectors, Line Integral, Surface Integrals, Green's Theorem in The Plane (without Proof), Stokes's Theorem (without proof), Volume Integral, Gauss Divergence Theorem (without proof), Irrotational Fields.
Text books and Reference books	 Text Book(s): [1] B.S.Grewal, "Higher Engineering Mathematics", 42ndedition Khanna Publishers, 2012. References Books: [1] Kreyszig, "Advanced Engineering Mathematics ", 8thedition, John Wiley & Sons.
	 [2] Peter V.O.Neil, "Advanced Engineering Mathematics ", Thomson, Canada. [3] R.K.Jain and S.R.K.Iyengar, "Advanced Engineering Mathematics ", 3rdedition Narosa Publishers. [4] N.P.Bali, Manish Goyal, "A Text Book of Engineering Mathematics", LaxmiPublications(P) Limited. [5] B.V.Ramana, "A text book of mathematics ", Tata MC Graw Hill
E-resources and other digital material	[1] mathworld.wolfram.com[2] http://www.nptel.iitm.ac.in

14PH1202 - ENGINEERING PHYSICS

Course Category:	Institutional Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 1 - 0
Prerequisites:	Programming in C (14CS1203)	Continuous Evaluation:	30M
_		Semester End Evaluation:	70M
		Total Marks:	100M

Course	Upon successful completion of the course, the student will be able to:												
Outcomes	CO1				fference chanics		veen cl	assical	and c	luantur	n mecha	inics an	d learn
	CO2	2 Understand various properties and applications of magnetic & dielectric materials and the theory of super conductivity											
	CO3		Analyze and understand semiconductor technology and various types of lasers & optical fibers.										
	CO4				àbricat ous fiel		nano	-materi	als, c	arbon	nano-tu	bes and	d their
Contribution		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
of Course Outcomes	CO1	Н				М			М	L			L
towards achievement of	CO2	Н	М	L		М				М			Н
Program Outcomes	CO3	Н	М	М						М			Н
(L – Low, M - Medium, H – High)	CO4	Н		L		М				М	L		Н
Course Content	Dual 1 Heiser nucleu dimen	tum M nature o nberg's 1s, Fini	of light uncer te wid time in	, Matte tainty th of a depend a box (princip spectra lent Scl	ole and l lines) nr [°] odin	l its a ,Classi ger's w	pplicat	ions (1 d quan	Non-ex tum as	P. Thoms istence spects o cal signif	of elec f particl	eriment tron ir le, One

	 Polarization vector, Electric displacement, Electric susceptibility, Types of Polarization: Electronic, Ionic, Orientation, Space charge polarization, Internal fields in solids (Lorentz method), Clausius-Mossotti equations, Frequency dependence of polarization, Ferroelectrics and their applications. Superconductivity: Introduction, Critical parameters, Flux quantization, Meissner effect, Types of Superconductors, BCS theory, Cooper pairs, London's equation penetration depth, high temperature super conductors, Applications of superconductors.
	UNIT III [Text Book-1,2]
	Semiconductor Physics: Classification of materials based on energy diagram, Fermi level in Intrinsic and extrinsic semiconductors ,Carrier drift and Carrier diffusion, Generation and recombination process (qualitative), Hall Effect. Lasers:
	Spontaneous emission, Stimulated emission, Population inversion, Solid state (Ruby) laser, Gas (He-Ne) laser, Semiconductor (Ga-As) laser, Applications of lasers. Fiber optics:
	Propagation of light through optical fiber, Types of optical fibers, Numerical aperture, Fiber optics in communication and its advantages.
	UNIT IV[Text Book-1]Nanotechnology:Basic concepts of Nanotechnology, Nano scale, Introduction to Nano-materials, Surface to volume ratio, General properties of Nano materials, Fabrication of Nano-materials: Plasma Arcing, Sol-gel, Chemical vapour deposition,Characterization of nano materials:AFM, SEM, TEM, STM, MRFM, Carbon nano tubes: SWNT, MWNT, Formation of carbon nano tubes: Arc discharge, Laser ablation, Properties of carbon nano tubes, Applications of CNT's& Nanotechnology.
Textbooks and Reference books	 Text Book(s): [1] M.N. Avadhanulu& P.G. Kshirsagar, "A text of Engineering Physics", S.Chand publications. [2] P.K. Palanisamy, "Applied Physics", Scitech Publishers. Reference Books: [1] R.K.Gaur and S.L.Gupta, "Engineering Physics", Dhanpatrai publishers. [2] S.O. Pillai, "Solid State Physics", New age international publishers. [3] M.R. Srinivasan, "Engineering Physics" New age international publishers. [4] M.Armugam, "Engineering Physics", Anuradha publishers.
E-resources and other digital material	 [1] http://www.light and matter.com/bk4.pdf [2] http://www.ifw-resden.de/institutes/itf/members/helmut/sc1.pdf [3] http://www.microscopy.ethz.ch/history.htm [4] http://nptel.ac.in/courses.php?disciplineId=115 [5] http://aph.huji.ac.il/courses/2008 9/83887/index.html http://freevideolectures.com/Course/3048/Physics-of-Materials/36

	14CS1203 - PROGRAMMING IN C								
Course	Institutional Core	Credits:	3						
Category:									
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 1 - 0						
Prerequisites:		Continuous Evaluation:	30M						
		Semester End Evaluation:	70M						
		Total Marks:	100M						

Course Outcomes	Upon	succe	essful o	comple	etion o	f the c	ourse,	the st	Upon successful completion of the course, the student will be able to:											
outcomes	CO1				gramm o solve				implen	nent va	rious- to	kens & i	nput-							
	CO2	Compare various looping & branching constructs and apply the best looping structure for a given problem.																		
	CO3		mplement arrays and structure/union for storing homogeneous and heterogeneous groups of data.																	
	CO4	Imple opera	-	orogran	ns using	g pointe	ers to di	rectly a	ascendi	ng mer	nory loca	ations &	file							
Contribution		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12							
of Course Outcomes towards	CO1	М																		
achievement of Program Outcomes	CO2		М																	
(L – Low, M - Medium,	CO3		М																	
H – High)	CO4	L	М																	
Course Content	Expre Stater	e ture o essions, nents, S	Prece Sample	dence Progra	and A ams. Se	lection	: Logi		•	-	ons, Ty ors, Two		version,							
	Repet Conce Array Conce Dimen Funct	Statements, Sample Programs. Selection: Logical Data and Operators, Two-Way Selection, Multiway Selection, More Standard Functions. UNIT II [Text Book-1] Repetition: Concept of a Loop, Loops in C, Loop Examples, Recursion, The Calculator Program. Arrays: Concepts, Using Array in C, Inter-Function Communication, Array Applications, Two Dimensional Arrays, Multidimensional Arrays. Functions: Functions in C, User Defined Functions, Inter Function Communication, and Scope. Strings:																		

	Manipulation Functions, String-Data Conversion.
	UNIT III[Text Book-1]Pointers:Introduction, Pointers For Inter Function Communications, Pointers to Pointers, Compatibility, L value and R vlaue. Pointer Applications: Arrays and Pointers, Pointer Arithmetic and Arrays, Passing an Array to a Function, Memory Allocations Functions, Array Of Pointers.Text Input/Output:Files, Streams, Standard Library Input/Output Functions, Formatting Input/Output Functions and Character Input/Output Functions.
	UNIT IV[Text Book-1]Enumerations:The Type Definition (Typedef), Enumerated Types: Declaringan Enumerated Type, Operationson Enumerated Types, Enumeration Type Conversion, Initializing Enumerated Constants, Anonymous Enumeration: Constants, Input/Output Operators.Structures:Structure Type Declaration, Initialization, Accessing Structures, Operationson Structures, Complex Structures, Structures and Functions, Sending the Whole Structure, Passing Structures Through Pointers.Unions:Referencing Unions, Initializers, Unions and Structures, Internet Address, Programming Applications.
Textbooks and Reference books	 Text Book(s): [1] Behrouz A.Forouzan & Richard F.Gilberg, Computer Science a Structured Programming Approach using C, Third Edition, CEN- GAGE Learning. Reference Books: [1] Balagurusamy, ProgramminginANSIC4ed.:TMH,2009 [2] B.Gottfried, Programming with C (Schaum's Outlines) Tata Mc graw- Hill. [3] Kernighan and Ritchie, The C programming language: Prentice Hall. [4] Venugopal, et.al. Programming with C:TMH. [5] A.S.Tanenbaum, Y.Langsam, and M.J.Augenstein, Data Structures Using C, PHI/Pearson education.
E-resources and other digital material	

14HS 1204 – TECHNICAL ENGLISH & COMMUNICATION SKILLS

Course Category:	Institutional Core	Credits:	2
Course Type:	Theory	Lecture - Tutorial - Practice:	2 - 0 - 2
Prerequisites:	Basic understanding of the language skills ,viz Listening, Speaking, Reading and Writing, including Sentence construction abilities	Continuous Evaluation: Semester End Evaluation: Total Marks:	30M 70M 100M

Course	Upon successful completion of the course, the student will be able to:												
Outcomes	CO1		roficien d comr			rative a	and pro	ofession	nal con	npilatio	on skills	includi	ng web
	CO2	CO2 Attain practice in Interpersonal Communication, in addition to standard patterns of Pronunciation											
	CO3 Be aware of the elements of functional English for authentic use of language in given academic and/or professional environment									e in any			
	CO4 Enhance Reading skills, along with a wide range of Vocabulary												
	CO5	Acqu	Acquire competence in Technical communication sills										
Contribution		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
of Course OutcomesCO1MMMHMMH							L	М					
towards achievement of	CO2			М	Н	L	Н	Н	Н	M	Н	L	М
Program Outcomes	CO3	М	M M H H H H H L M										
(L – Low, M - Medium,	m CO4 M M M L H H H M H									М			
H – High)	CO5	L M M H M H H H H L M											
Course Content	UNIT Inter 1.	ssional 1. P 2. E 3. A C – II person Com Acce	Essay W Adminis al Com <i>munica</i> ptance,	onal Le Vriting- strative munic <i>utive</i> D	etter- B - Desc draftin eation S Facet: rrence,	riptive, g and c Skills: Speec Disagi	Reflectorrespondent	etive an ondenc s- Ext without	d Anal e –Mer tending	ytical- nos, M g Invi disagre	· ·	nd Web	cation,

	Vowel and Consonant charts
	UNIT – III
	Vocabulary and Functional English:
	1. A basic List of 500 words – Over view
	2. Verbal analogies, Confusables, Idiomatic expressions and Phrasal Collocations
	3. Exposure through Reading Comprehension- Skimming, Scanning, Understanding
	the textual patterns for tackling different kinds of questions and Taming Regression
	4. Functional Grammar with special reference to Concord, Prepositions and Pronoun-
	referent analysis.
	UNIT IV
	Technical Communication Skills:
	1. Technical Proposal writing
	2. Technical Vocabulary- a representative collection will be handled
	3. Developing Abstract
	4. Introduction to Executive summary
	5. Technical Report writing(Informational Reports and Feasibility Reports)
Textbooks	Text Book(s):
and Reference	[1] TM Farhathullah, Communication skills for Technical Students, I Edition Orient Longman, 2002
books	[2] 'Krishna', English Language Communication Skills, I Edition, Duvvuri Publications, 2008
	[3] B.S. Sarma, Structural Patterns & Usage in English, IVEdition, Poosha Series, , 2008
	[4] Eclectic Learning materials offered by the Department
	Reference Books:
	 [1] Randolph Quirk, Use of English, Longman, I Edition (1968), Reprinted 2004. [2] Thomson A.J & A.V, Martinet, Practical English Grammar, III Edition, Oxford
	University Press,2001
	[3] Thomas Eliot Berry, The most Common Mistakes in English, TMH, First Paper
	Back 1971, (reprinted) 2010.
	[4] John Langan, College Writing Skills, McGraw Hill, IX Edition 2014.
	[5] Selinkar, Larry et al, English for Academic and Technical Purposes, I edition, Newbury House Publishers, 1981
	[6] Martin Cutts, Oxford guide to Plain English, 7 th Impression Oxford University
	Press, 2011
	[7] V.Sethi and P.V. Dhamija, A Course in Phonetics and Spoken English, II edition,
	PHI, 2006.

E-resources and other digital material	 [1] www.britishcouncil.org/learning-english-gateway.htm up dated 2014 [2] pdfstuff.blogspot.com/2013//the-oxford-guide-to-english-usage-pdf.ht. [3] www.cambridgeapps.org/ up dated 2014
---	--

Course Category:Institutional CoreCredits:2Course Type:TheoryLecture - Tutorial - Practice:2 - 0 - 0Prerequisites:Engineering Physics (14PH1202)Continuous Evaluation:30MSemester End Evaluation:70M	14EE1205 - BASICS OF ELECTRICAL ENGINEERING								
Course Type:TheoryLecture - Tutorial - Practice:2 - 0 - 0Prerequisites:Engineering Physics (14PH1202)Continuous Evaluation:30M		Institutional Core	Credits:	2					
	0.	Theory	Lecture - Tutorial - Practice:	2 - 0 - 0					
Semester End Evaluation: 70M	Prerequisites:	Engineering Physics (14PH1202)	Continuous Evaluation:	30M					
Semester End Evaluation, 7000	_		Semester End Evaluation:	70M					
Total Marks: 100M			Total Marks:	100M					

Course	Upon successful completion of the course, the student will be able to:												
Outcomes	CO1	Analy	yze elec	etric cir	cuit fu	ndamer	ntals.						
	CO2	Understand the basic concepts of Electromagnetism.											
	CO3	Analyze the basic concepts of Electric Machines											
	CO4	Unde	rstand	measur	ing ins	trumen	ts & uti	ilizatio	n conce	epts.			
Contribution of Course		PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO3								PO12			
Outcomes towards	CO1	M M											
achievement of Program Outcomes (L – Low, M – Medium, H – High)	CO2	М	M										
	CO3	L											
	CO4	L											
Course Content	Defin resisti AC C Gener UNIT Magn	ircuits itions of ve circ ircuits ration of F II etic eff	of work uits; St of sinus fect of	ar-delta oidal si an elec	a transf gnal ; l etric cu	ormatio RMS, <i>A</i> rrent; c	on; Average cross ar	e values	s, Form conven	factor	, Peak fa	[Text B of m.m.:	parallel Book-1] f., flux,
	Magnetic effect of an electric current; cross and dot conventions; concept of m.m.f., flux, flux density, reluctance, permeability and field strength; Self and Mutual inductances; Fleming's left hand rule; Faradays laws of electromagnetic induction, statically and dynamically induced e.m.f.,												
	UNI	ГШ										[Text B	ook-1]

	 D.C. Machines: Classification of dc machines; Principle of motor and generator; back emf; Torque of a dc machine; Load characteristics of shunt, series motors AC Machines: Classification of ac machines; Production of rotating field; Constructional features – principle of operation; Torque-slip characteristics.
	UNIT IV[Text Book-1]Measuring Instruments:Classification of instruments; Principle of operation of moving-coil and moving-ironinstruments; - Dynamometer -type watt meterUtilization:Principles of resistance and induction heating - principles of electrical traction - speed timecharacteristics.
Textbooks and Reference books	 Text Book(s): [1] I.J.Nagrath and Kothari, "Theory and problems of Basic Electrical Engineering", Prentice- Hall of India Pvt. Ltd. Reference Books: [1] Dr. K. Uma Rao, Dr. A. Jayalakshmi, "Basic Electric Engineering", Pearson Publications. [2] T.K. Nagasarkar and M.S. Sukhja, "Basic Electric Engineering":, Oxford University press.
E-resources and other digital material	

14EC1206 – BASICS OF ELECTRONICS ENGINEERING								
Course	Institutional Core	Credits:	2					
Category:								
Course Type:	Theory	Lecture - Tutorial - Practice:	2 - 0 - 0					
Prerequisites:		Continuous Evaluation:	30M					
		Semester End Evaluation:	70M					
		Total Marks:	100M					

						ourse,	the su	lucin	will be	able to	•	
201			edge a	about	the fu	ndame	ntals o	of elec	tronic	compoi	nents, c	levices,
202	Understand and apply principles of digital electronics											
203	Get fa	miliari	ty abou	ıt basic	comm	unicati	on syst	ems				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
201	L											
202	М											
203	L											
	02 03 01 02	 transd O2 Unde O3 Get fa PO1 O1 L O2 M 	transducers O2 Understand O3 Get familiari PO1 PO2 O1 L O2 M	transducers O2 Understand and app O3 Get familiarity abou PO1 PO2 PO3 O1 L O2 M	1 transducers O2 Understand and apply print O3 Get familiarity about basic PO1 PO2 PO3 PO1 L PO4 O2 M Image: Constraint of the second s	transducers O2 Understand and apply principles O3 Get familiarity about basic comm PO1 PO2 PO3 PO4 PO5 O1 L Image: Common set of the set of th	transducers O2 Understand and apply principles of digit O3 Get familiarity about basic communicati PO1 PO2 PO3 PO4 PO5 PO6 O1 L Image: Communication of the second	1 transducers O2 Understand and apply principles of digital elec O3 Get familiarity about basic communication syst PO1 PO2 PO3 PO4 PO5 PO6 PO7 O1 L Image: state	transducersO2Understand and apply principles of digital electronicsO3Get familiarity about basic communication systemsPO1PO2PO3PO4PO5PO6PO7PO8O1LIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	transducers O2 Understand and apply principles of digital electronics O3 Get familiarity about basic communication systems PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 O1 L Image: state sta	transducers O2 Understand and apply principles of digital electronics Get familiarity about basic communication systems PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 O1 L Image: state s	transducers O2 Understand and apply principles of digital electronics O3 Get familiarity about basic communication systems PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 O1 L

Course Content UNIT I

[Text Book-1]

[Text Book-1,2,3]

[Text Book-1,3]

Electronic Components:

Passive components – resistors, capacitors & inductors (properties, common types, I-V relationship and uses).

Semiconductor Devices:

Semiconductor Devices - Overview of Semiconductors - basic principle, operation and characteristics of PN diode, zener diode, BJT, JFET, optoelectronic devices (LDR, photodiode, phototransistor, solar cell, photo couplers)

UNIT II

Transducers:

Transducers - Instrumentation – general aspects, classification of transducers, basic requirements of transducers, passive transducers - strain gauge, thermistor, Hall-Effect transducer, LVDT, and active transducers – piezoelectric and thermocouple.

UNIT III

Digital Electronics:

Number systems – binary codes - logic gates - Boolean algebra, laws & theorems - simplification of Boolean expression - implementation of Boolean expressions using logic

	gates - standard forms of Boolean expression. [Text Book-3] UNIT IV [Text Book-3] Communication Systems: Block diagram of a basic communication system – frequency spectrum - need for modulation - methods of modulation - principles of AM, FM, pulse analog and pulse digital modulation – AM / FM transmitters & receivers (block diagram description only)
Textbooks and Reference books	 Text Book(s): [1] Thyagarajan. T, Sendur Chelvi. K. P, Rangaswamy. T. R, "Engineering Basics: Electrical, Electronics and Computer Engineering", New Age International, Third Edition, 2007. [2] Thomas L. Floyd, "Digital Fundamentals", 10th Edition, Pearson Education, 2013. [3] G.K.Mithal, "Radio Engineering", 20th Edition, Khanna Publishers, , 2011. Reference Books: [1] Somanathan Nair. B, Deepa. S. R, "Basic Electronics", I.K. International Pvt. Ltd., 2009. [2] S. Salivahanan, N.Suresh Kumar & A. Vallavaraj, "Electronic Devices & Circuits", 2nd Edition, Tata Mc Graw Hill,2008.
E-resources and other digital material	 [1] http://www.nptel.ac.in/courses/Webcourse-contents/IIT-ROORKEE/BASIC- ELECTRONICS/ home_page.htm [2] http://nptel.ac.in/video.php?subjectId=117102059

Course Categ	gory:	14ME1251 - ENGINE	Credits:	5							
Course Type	:	Practical	Lecture - Tutorial - Practice:	2 - 0 - 6							
Prerequisites	:		Continuous Evaluation: Semester end Evaluation:	30M 70M							
			Total Marks:	100M							
Course Outcomes		Upon successful completi	on of the course, the student will be able	e to:							
	CO	1 Represent various Conics and	Represent various Conics and Curves								
	CO	2 Construct Plain and Diagonal	Scales								

	CO1	Repr	esent va	arious (Conics	and Cu	urves							
	CO2	Cons	truct Pl	ain and	l Diago	onal Sc	ales							
	CO3	Draw	v Orthog	graphic	e projec	ctions of	of Line	s, Plan	es, and	Solids				
	CO4		Construct Isometric Scale, Isometric Projections and Views and also convert pictorial views to Orthographic Projections.											
	CO5	Draw	Draw Sectional views of the Solids											
	CO6	Unde	erstand	Develo	pment	of surf	aces an	nd thei	r repres	entation	1			
Contribution of Course Outcomes		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
towards achievement of	CO1	Н		Н				Н						
Program Outcomes	CO2	Н		Н				Н						
(L – Low, M - Medium, H –	CO3	Н		Н				Н						
High)	CO4	Н		Н				Н						
	CO5	М		М				М						
	CO6	М		M				М						
Course Content	Repres use of Conic Conic method Curve Curves UNIT Method	al: of Disentation plain a Section ds for of s used - II of of of ples of	on of va ind diag ons: ns - ger conic se in Engin Project project	arious f gonal so neral co ections. neering ions:	ype lin cales. onstruc g practi	nes - G etion m ice - C	eomet hethod ycloid,	rical C for elli Involu	onstruc ipse, pa ite of cir	tions. S rabola rcle.	tters, D cales: C and hyp	erbola.	tion and	

	Projection of Planes:
	Projections of planes of regular geometrical lamina:
	Introduction to Auto CAD software, drawing different two dimensional and three
	dimensional views.
	2 D Objects : Triangles, Square, Rectangle, Pentagon, Hexagon, Circle and Ellipse.
	 Projections of Solids: Projections of simple solids such as Cubes, Prisms, Pyramids, Cylinders and Cones - axis inclined to one of the reference plane. Sections of Solids: Sections of solids such as Cubes, Prisms, Pyramids, Cylin- ders and Cones. True shapes of sections. (Limited to the Section Planes perpen- dicular to one of the Principal Plane). <i>3 D Objects :</i> Priams, Pyramids, Cylinder and a Cone.
	Prisms, Pyramids, Cylinder and a Cone. Sectional view of a Prism, Pyramid, Cylinder and a Cone in simple posi- tions
	UNIT - IV
	Development of Surfaces:
	Lateral development of cut sections of Cubes, Prisms, Pyramids, Cylinders and Cones.
	Isometric Projections:
	Isometric Projection and conversion of Orthographic Projections into isometric views. (Treatment is limited to simple objects only). Introduction to Isometric Projections to
	Orthographic Projections.
	Isometric View of Prism, Pyramid, Cylinder and a Cone and also simple
	3 Dimensional Objects: * These topics are only for internal assessment
	* These topics are only for internal assessment.
Text books and Reference books	 Text Book(s): [1] N.D. Bhatt & V.M. Panchal, "Elementary Engineering Drawing", Charotar Publishing House, Anand. 49th Edition - 2006. [2] DM Kulkarni, AP Rastogi, AK Sarkar, "Engineering Graphics with Auto CAD", PHI Learning Private Limited, Delhi. Edition - 2013
	 Reference Books: [1] Prof. K. L. Narayana & Prof. P. Kannaiah, "Text Book on Engineering Drawing", Scitech publications (India) Pvt. Ltd., Chennai 2nd Edition - fifth reprint 2006. [2] K. Venugopal, "Engineering Drawing and Graphics + Auto CAD", New Age International, New Delhi.
E-resources	http://www.youtube.com/watch?v=XCWJXrkWco
and other	http://www.me.umn.edu/courses/me2011/handouts/drawing/blanco-tutorial.html#
digital	iso drawing
material	http://www.slideshare.net
	http://edpstuff.blogspot.in

14CS1252- PROGRAMMING IN C LAB								
Course Category:	Programme core	Credits:	2					
Course Type:	Practical	Lecture - Tutorial - Practice:	0 - 0 - 3					
Prerequisites:		Continuous Evaluation: Semester end Evaluation: Total Marks:	70M					

Course	Unon		actul (omnl	otion o	fthaa	011750	the et	udant	will be	abla to			
Outcomes	Opon		ssiul	compre			ourse,	the su	udent	will be	able to	· .		
	CO1						ninolog proble		implem	nent var	rious c- t	okens &	t input-	
	CO2				oping n probl		ching C	Constru	cts and	apply	the best]	looping		
	CO3		Implement arrays and structure/union for storing Homogeneous and heterogeneous groups of data											
	CO4	-	Implement programs using pointers to directly accenting memory locations & file operations											
	CO5	Identi types	-	necessi	ty of m	odulari	ity in pi	rogram	ming a	nd desi	gn vario	us funct	ion	
Contribution of Course		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
Outcomes towards	CO1	М												
achievement of Program Outcomes	CO2		М											
(L – Low, M - Medium,	CO3		М											
H – High)	CO4	L	M											
	CO5	L	M											
Course	CYC	LE-I:												
Content	Progr	ammi	ng con	structs	and co	ontrol s	structu	res:						
	a) b) c) d) 2. D	 Programming constructs and control structures: 1. Introduction to C programming: a) Use of Turbo C IDE b) The Structure of a C Program c) Writing C Programs d) Building an Executable Version of a C Program 2. Data Types and Variables: a) DataTypes b) Operands, Operators 												
	/			Express										

- 3. Branching and Selection:
 - a) Simple-if
 - b) Nested-if
- 4. Control statements:
 - a) Break
 - b) Continue
 - c) Goto
- 5. Looping constructs-I
 - a) While
 - b) Do-while
 - c) Case control structure: Switch
- 6. Looping constructs-II
 - a) Simple for
 - b) Nested for
- 7. Arrays
 - a) Single dimensional arrays
 - b) Multi-dimensional arrays
- 8. Strings
 - a) Declaration and initialization of string variables
 - b) Reading & Writing strings
 - c) String handling functions
 - d) Operations performed on strings without using string handling functions

CYCLE-II :

Advanced programming constructs:

1. Concept of user defined functions

- a) With arguments and no return value
- b) Without arguments and no return value
- c) Without arguments and return value
- d) With arguments and return value
- 2. File handling operations
 - a) FILE structure
 - b) Opening and closing a file, file open modes
 - c) Reading and writing operations performed on a file
 - d) File Pointers: std in, std out and std err
 - e) FILE handling functions: fgetc(), fputc(), fgets() and fputs()
 - f) Functions
- 3. Pointers
 - a) Uses of Pointers
 - b) Passing Arrays and Pointers as a function arguments
 - c) Pointers to Character Strings
- 4. User defined data types
- a) Type-def
 - b) Enumeration

E-resources and other Numerical Methods and Programing by Prof.P.B.Sunil Kumar, Department of Physics, IITMadras [1] https://www.youtube.com/watch?v=zjyR9e-N1D4& list=PLC5DC6AD60D798FB7

digital material	Introduction to Coding Concepts Instructor: Mitchell Peabody View the complete course: [2] <u>http://ocw.mit.edu/6-00SCS11</u>	
------------------	---	--

14PH1253- ENGINEERING PHYSICS LAB

Course Category:	Programme core	Credits:	2
Course Type:	Practical	Lecture - Tutorial - Practice:	0 - 0 - 3
Prerequisites:		Continuous Evaluation:	30M
_		Semester end Evaluation:	70M
		Total Marks:	100M

Course	Upon successful completion of the course, the student will be able to:													
Outcomes	CO1				cepts of l know		sics th	rough	involv	ement	in the	experim	ent by	
	CO2	CO2 Illustrate the basics of electro magnetism, optics, mechanics, and semi-conductors & quantum theory												
	CO3	Deve	lop an a	ability	to apply	y the ki	nowled	ge of p	hysics	experin	nents.			
Contribution of Course		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
Outcomes towards	CO1			Н	M								М	
achievement of Program Outcomes	CO2		М			М								
(L – Low, M - Medium, H – High)	CO3			Н									М	
Course Content	1.	AC S	onome	ter -Ve	rificati	on of v	ibrating	g laws.	1	1				
	2.	Meas	uremer	nt of th	ickness	of a fo	il using	g wedg	e meth	od.				
	3.	Photo	tube-S	Study o	of V-I C	Characte	eristics,	detern	ninatio	n of wo	ork funct	ion.		
	4.	Torsi	onal Pe	endulur	n-Rigio	lity mo	dulus c	alculat	ion.					
	5.			-		-			current	carryir	ng circul	ar coil.		
	6.	-				asurem	ent of '	g'.						
	7.		circuit				_							
					nation									
				2	of B &									
			-		-		calcula							
				-			ture of	-		lens.				
	12	2. Diffra	action g	grating	-Measu	rement	of way	velengt	h.					

	13. Lissajous figures- calibration of an audio oscillator.
	14. B-H curves- determination of hysteresis loss.
	15. Figure of merit of a galvanometer.
Text books and	Text Book(s):
Reference books	 Indu Prakash & Rama Krishna, "A text book of practical physics",25th ed., KitabMahal Publishers, Allahabad, 2003. J.C.Mohanty&D.K.Mishra, "University Practical Physics", Isted., Kalyani Publishers, 1990. D.P.Khandelwal, "A laboratory manual of Physics" Isted., Vani educational books , 1991. Dr.Y.Aparna & Dr.K.VenkateswaraRao, "Laboratory manual of engineering physics", Ist ed., VGS Publications,2010.
E-resources and other digital material	 [1] <u>http://plato.stanford.edu/entries/physics-experiment/[2]</u> [2] http://www.physicsclassroom.com/The-Laboratory[3] [3] http://facstaff.cbu.edu/~jvarrian/physlabs.html

14MA1301: COMPLEX ANALYSIS AND NUMERICAL METHODS

Course	Institutional Core		
Category:	Institutional Cole	Credits:	4
Course Type:	Theory	Lecture- Tutorial- Practice:	4 -1 - 0
	Algebra of Complex numbers,	Continuous Evaluation:	30M
Prerequisites:	Convergence of infinite series,	Semester end Evaluation:	70M
	Theory of equations.	Total Marks:	100M

		1											
Course		Upon suc	ccessful	complet	tion of	the cou	rse, the	e studer	nt will	be able	to:		
Outcomes	CO1	complex integration. Analyze Taylor and Laurent series and evaluation of real definite integrals using								the cor	ncept of		
	CO2									sing			
	CO3 Solve Algebraic and transcendental, system of equations and understand the concept of polynomial interpolation.							tand the					
	CO4		Understand the concept of Numerical differentiation and integration. Solve initial and boundary value problems numerically.										
Contribution of		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course Outcomes towards	CO1	Н				М		М					
achievement of	CO2	Н				М		M					
ProgramCO3HM						Н						М	
(M-Medium, H– High,L-Low)	CO4	Н	М			Н						М	
0 0 1 1													

Course Content

UNIT-I

Complex Analysis:

Introduction, continuity, Cauchy-Riemann equations. Analytic functions, Harmonic functions, Orthogonal systems, Complex integration, Cauchy's integral theorem, Cauchy's integral formula.

UNIT-II

[Text Book - 1]

[Text Book-1]

[Text Book-1]

Taylor's series, Laurent's series, Zeros and singularities. Residue theorem, calculation of residues, evaluation of real definite integrals (by applying the residue theorem). Standard transformations: Translation - Magnification and Rotation - Inversion and reflection - Bilinear transformation

UNIT –III

Numerical Methods:

Solution of Algebraic and Transcendental Equations : Introduction, Newton - Raphson method, Solution of simultaneous linear equations – Gauss Elimination Method - Gauss - Seidel iterative method.

Interpolation:

Introduction, Finite Differences - Forward, Backward, Central Differences, Symbolic

	Relations, Differences of a polynomial, Newton's formulae for interpolation, Central
	difference interpolation formulae –Gauss's, Sterling's, Bessel's formulae Interpolation with
	unequal intervals – Lagrange's and Newton's Interpolation formulae.
	UNIT IV [Text Book - 1]
	Numerical Differentiation And Integration:
	Finding first and second order differentials using Newton's formulae. Trapezoidal rule and
	Simpsons 1/3rd Rule ,3/8 th rule.
	Numerical Solutions of Differential Equations:
	Taylor's series method Picard's method. Euler's method, Runge - Kutta method of 4th
	order, Boundary value problems, Solution of Laplace's and Poisson's equations by iteration.
Text books and Reference books	Text Book(s): [1] B.S.Grewal ,'Higher Engineering Mathematics', 42 nd Edition, Khanna Publishers, 2012.
	Reference Books:
	 [1] Krezig ,"Advanced Engineering Mathematics",8th Edition, JohnWiley& sons,2007. [2] R.K.Jain and S.R.K.Iyengar ,"Advanced Engineering Mathematics", 3rd Edition, Narosa Publishers.
	[3] N.P.Bali, Manish Goyal ,"Engineering Mathematics", 1st Edition Lakshmi Publications (P) Limited,2011.
	[4] H.K.Das, Er. RajnishVerma, "Higher Engineering Mathematics" 1st Edition, S.Chand ,2011.
	[5] S. S. Sastry, "Introductory Methods of Numerical Analysis", Print ice Hall of India,
	2005.
E-resources and other digital material	

14EE3302 – ELECTRONIC CIRCUITS - I

Course Category:	Programme core	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	4-0-0
Prerequisites:	Engineering Physics(14PH1202), Basics of Electronics Engineering (14EC1206).	Continuous Evaluation: Semester end Evaluation: Total Marks:	30M 70M 100M

Course		Upon successful completion of the course, the student will be able to:											
Outcomes	CO1	Anal	Analyze and design basic diode circuits related to various applications .										
	CO2		Analyze and design different transistor biasing circuits, stabilization and compensation circuits										
	CO3	Anal	yze the	e behav	vior of 1	BJT an	d FET :	at low :	frequer	ncies.			
	CO4	Anal	yze the	e behav	vior of 1	BJT an	d FET :	at high	freque	ncies.			
Contribution of Course Outcomes		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
towards achievement of	CO1	Н	M	L		L							
Program Outcomes	CO2	Н	L			Н							
(L – Low, M - Medium, H –	CO3			М		Н							
High)	CO4			М		Н							
Course Content	UNIT- I [Text Book-1,2]												
	Semiconductor-Diode Characteristics:												
	Review of Semi conductor technology, the temperature dependence of p-n characteristics,												
	Diode resistance, Space charge or transition capacitance, Diffusion capacitances, Diode												
	switching circuits, Zener diode, Schottky diode, and Tunnel diode.												
	Special-purpose diodes:												
	Light-emitting diodes, Laser diodes, Photodiodes, Solar cells, Varactor diode, PIN diode.												
	Applications of Diodes: Diode Approximations, Series Diode configurations with DC inputs, parallel and series –												
	parallel configurations with DC inputs, Diode as a Rectifier, Half wave, Full wave												
	(Centre-tapped) and Bridge Rectifiers without filter and with inductor filter, Capacitor												
	· ·		,		-							- section	-
	Clippe	ers, Cla	ampers	s, Zene	r diode	as Vol	tage re	gulator			-		
	UNIT	- II										[Text B	ook-2
			& FE1	Biasi	ng:							[-]
					0	Biasing	g Circu	its- Fix	ked Bia	as, Col	lector to	base bi	as, Sel
			-	-		-						for V _{BE} a	

bias, Stability factors, Bias Compensation circuits- Diode compensation for V_{BE} and I_{CO} , Thermistor and Sensistor Compensation, Thermal runaway and thermal stability, JFET

	biasing Circuits- Fixed Bias, Self Bias, Voltage Divider Bias.				
	UNIT- III [Text Book-2]				
	Transistor Amplifiers at Low frequencies				
	BJT Amplifiers: Hybrid parameter model of transistor, Determination of h-parameters				
	from Characteristics, Measurement of h-parameters, Analysis of transistor amplifier using h- Parameter model.				
	<i>FET Amplifiers:</i> FET Amplifiers at low frequencies, CS/CD/CG configurations at low frequencies.				
	UNIT- IV [Text Book-2]				
	Transistor Amplifiers at High frequencies:				
	BJT Amplifiers: BJT at high frequencies, Hybrid π - model, CE short circuit current gain without load, CE short circuit current gain with resistive load, single stage CE transistor amplifier response, Emitter follower at high frequencies, gain bandwidth product. FET Amplifiers: FET amplifier at high frequencies – CS/CD amplifiers.				
Text books and Reference books	 Text Book(s): [1] Robert L Boylested and Louis Nashelsky, "Electronic Devices and Circuit Theory", PHI, Eighth edition, 2003. [2] Jacob Millman, Christos C Halkias&Satyabrata JIT, "Millman's Electronic Devices and Circuits", 3rd edition, Tata Mc Graw Hill Ltd, 2007. 				
	Reference Books:				
	[1] Jacob Millman and Christos C Halkias, "Integrated Electronics: Analog and Digital Circuits and Systems", TMH, 2003.				
	[2] G.K. Mithal" Electronic Devices and Circuits" Khanna Publishers				
	[3] S Salivahana" Electronic Devices and Circuits" TMH, 2nd Edition.				
	[4] David A Bell "Electronic Devices and Circuits" 4th edition, PHI, 2003				
	Note: Special purpose diodes content available in e-book.				
E-resources and other digital material	 [1] Tony R. Kuphaldt, "Electric Circuits, Volume III –Semiconductors ",5th Edition, 2009 (e-book). [2] <u>http://nptel.iitm.ac.in/courses.php?branch=Ece</u> 				
	[3] www.ibiblio.org/obp/electricCircuits				

14EE3303 - NETWORK	ANALYSIS-I
--------------------	------------

Course Category:	Programme core	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	4 - 1 - 0
Prerequisites:	Basics of Electrical Engineering	Continuous Evaluation:	30M
	(14EE1205)	Semester end Evaluation:	70M
		Total Marks:	100M

~	1									. 1			
Course		Upor	Jpon successful completion of the course, the student will be able to:								to:		
outcomes	CO1	-	Analyze DC circuits using different methods and formulate network matrices using graph theory.										
	CO2	-	Analyze AC circuits and apply appropriate Network theorem for solving electric circuits										
	CO3	Unde	Understand series and parallel resonance concepts and analyze coupled circuits.										
	CO4	Anal	Analyze poly phase circuits and demonstrate power measurement techniques.										
Contribution of Course Outcomes		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
towards achievement of	CO1	Н	Н			H						L	
Program Outcomes	CO2	Н	Н			Н						L	
(L – Low, M - Medium, H – High)	CO3	M	Н			M							
	CO4	M	Н			H							
		<u>.</u>		-									

Course Content | UNIT-I

[Text Book-1]

Electric Circuits:

Review of basics of Electrical circuits and Star-Delta Transformations, Source Transformations, Kirchhoff's laws, Mesh and Super mesh analysis. Node and super node analysis, power & energy calculations.

Network Topology:

Graph of a Network, Definitions associated with graph, formation of incidence matrix, loop matrix and cut - set matrices. Relationship between Branch Voltage Matrix, Twig Voltage matrix and Node voltage matrix. Relationship between branch current Matrix and Loop current matrix, Duality.

UNIT-II

[Text Book-1]

Single Phase AC Circuits: Review of AC circuits, Phasor representation of alternating quantities- Mathematical representation of Phasors–Behavior of pure resistor, Inductor and capacitor in ac circuits. Series RL circuit, RC circuit and RLC circuit – Parallel AC circuits - , instantaneous power, average power, calculation of average power for periodic non-sinusoidal wave forms. Complex Power, Comparison of Power Terminology.

Network Theorems (Application To DC & AC Networks): Nodal and Mesh Analysis, Superposition Theorem, Thevenin's Theorem, Norton's Theorem, Maximum power transfer theorem, Reciprocity theorem, Millman's theorem, Tellegen's theorem and Compensation Theorem.

	UNIT-III[Text Book-2]Series and Parallel Resonance: Series Resonance, Impedance and Phase angle of a Series Resonant circuit, Voltages and Currents in a Series Resonant circuit, Bandwidth of an RLC circuit, The Quality factor (Q) and its effect on Bandwidth, Magnification in Series Resonance. Parallel Resonance, Resonant frequency for a tank circuit, Variation of Impedance with frequency, Q factor of Parallel Resonance. Locus diagrams-current locus diagrams for RL and RC series circuits.Coupled Circuits:Introduction, Conductively coupled circuits and mutual Impedance, Mutual Inductance, Dot convention, Coefficient of Coupling, Ideal Transformer, Analysis of Multi-Winding Coupled Circuits, Series connection of coupled Inductors, Parallel connection of coupled coils. Tuned circuits – Single tuned and double tuned circuits.UNIT-IV[Text Book-2]
	 Polyphase Circuits: Polyphase System, Advantages of Three-Phase System, Generation of Three-Phase Voltages, Phase Sequence, Inter Connection of Three-Phase Sources and Loads, Voltage, Current and Power in a Star Connected System. Voltage, Current and Power in a Delta Connected System. Three-phase balanced and unbalanced circuits. Power Measurement in Three-Phase Circuits: Power in three phase circuits – Three wattmeter and Two wattmeter methods, Power Factor of balanced circuits by two wattmeter method, Variation in wattmeter readings with load power factor (lag and lead p.f. loads), Measurement of reactive power with two watt meter and single wattmeter. Power factor of an unbalanced system.
Text books and Reference books	 Text Book(s): [1] Ravish R Singh," Network Analysis and Synthesis", Tata Mc.Graw Hill,1st edition, 2011. [2] A.Sudhakar and ShyammohanS.Palli, "Circuits &Networks Analysis and Synthesis", 3rd ed., Tata McGraw-Hill, New Delhi, 2007 [3] W.D.Stevenson. Jr, "Elements of Power System Analysis", by, Mc.Graw Hill, 4th Edition, 1982. Reference Books: [1] W.H.Hayt, J.E.kemmerly and S.M.Durbin, Engineering Circuit Analysis, 8th Edition, Teta McGram Hill, New Delhi, 2012
	 Edition, Tata McGraw-Hill, New Delhi, 2012. [2] Charles K. Alexander, Matthew N. O. Sadiku, Fundamentals of Electric Circuits, 5th Edition, McGraw-Hill, 2012. [3] A. Chakrabarti, "Circuit Theory (Analysis and Synthesis)", 5th Edition, Dhanpat Rai& Co. Delhi, 2008.

E-resources	http://nptel.ac.in/courses.php?branch=eee
and other	http://en.wikipedia.org/wiki/Electrical
digital material	http://ocw.mit.edu/courses/audio-video-courses/#electrical-engineering-and-
	<u>computer-science</u>

14HS1304: ENVIRONMENTAL STUDIES								
Course	Programme Core Credits: 3							
Category:								
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0 - 0					
Prerequisites:	Conservation and Preservation of	Continuous Evaluation:	30M					
	Environment	Semester end Evaluation:	70M					
		Total Marks:	100M					

Course	Upon successful completion of the course, the student will be al									be able	to:		
Outcomes	CO1	Unde	erstand	the va	rious r	atural	resour	ces, an	alyze a	ind exp	olore.		
	CO2	Unde	erstand	the Ec	cosyste	ms and	d need	of Bio	diversi	ty			
	CO3	Reali	Realize and Explore the Problems related to Environmental pollution										
	CO4		-							•	ocial issu vironme	les degra nt.	dation
Contribution of		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course Outcomes towards	CO1	L							Н				L
achievement of Program Outcomes	CO2			L				L	Н				
(L – Low, M - Medium, H –	CO3				L		Н						
High)	CO4				L				Н	Н			
Course Content	Def Natu	Multion inition ral Ro tural ro (i	a, scop esource esource a)Force extripeo b)Wat prol c)Min extri d)Foo agri	be and ces: 1 ces and est res caction ple. ter res er, flo blems heral re cacting d reso icultur	impo: Renew d asso ources n, min ources ods, d esourc g and to purces: re and	rtance vable ciated s: Use ing, da s: Use rough es: Us using : Worl overg	, Need and N probl and o ams an and o t, con se and minera d food trazing	l for p lon-ro ems. ver-ex nd the ver-ut flicts o explo al reso l prob g, effe	ublic a enewa cploita ir effe dilizati over w bitation burces. lems, cts of	ation, o cts on on of s vater, o n, envi chang moder	ness. esource deforest forests surface dams-be	ation. T and trib and gro enefits a tal effe ed by ulture,	imber al und

(e)Energy resources: Growing energy needs, renewable and nonrenewable energy sources, use of alternate energy sources.

(f) Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification.

Role of an individual in conservation of natural resources. Equitable use of resources for sustainable lifestyles.

UNIT II

Ecosystems:

Concept of an ecosystem, Structure and function of an ecosystem, Producers, consumers and decomposers, Energy flow in the ecosystem, Ecological succession, Food chains, food webs and ecological pyramids. Introduction, types, characteristic features, structure and function of the following ecosystem-Forest ecosystem ,Grassland ecosystem, Desert ecosystem ,Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

Biodiversity and Its Conservation:

Introduction, definition- genetic, species and ecosystem diversity, Biogeographical classification of India, Value of biodiversity- consumptive use, productive use, social, ethical, aesthetic and option values, Biodiversity at global, National and local levels, India as a mega-diversity nation, Hot-spots of biodiversity, Threats to biodiversity: habitat loss, poaching of wildlife, manwildlife conflicts, Endangered and endemic species of India, Conservation of biodiversity: in-situ and ex-situ conservation of biodiversity.

UNIT III

Environmental Pollution

Definition ,Causes, effects and control measures of

- (a) Air pollution
- (b) Water pollution(d) Marine pollution
- (c) Soil pollution (e) Noise pollution
- (f) Thermal pollution

(g) Nuclear hazards

Solid waste management-Causes, effects and control measures of urban and industrial wastes. Role of an individual in prevention of pollution, Disaster management: Floods, earthquake, cyclone and landslides

UNIT – IV

Social Issues and the Environment

From unsustainable to sustainable development, Urban problems related to energy, Water conservation, rain water harvesting, watershed management, Resettlement and rehabilitation of people; its problems and concerns, Environmental ethics- Issues and possible solutions.

Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust, Wastel and reclamation, Consumerism and waste products.

Environment Protection Act: Air (Prevention and Control of Pollution) Act., Water (Prevention and Control of Pollution) Act, Wildlife Protection Act, Forest Conservation Act, Issues involved in enforcement of environmental legislation, Public awareness.

[Text Book-1]

[Text Book-1]

[Text Book-1]

	 Human Population and the Environment: Population growth, variation among nations, Population explosion—Family Welfare Program., Environment and human health, Human rights, Value education, HIV/AIDS, Women and Child Welfare, Role of Information Technology in environment and human health. Field Work/Case Studies (NOT TO BE INCLUDED IN SEMESTER END EXAMS) Visit to a local area to document environmental assets - river/ forest/ grassland/ hill/ mountain. Visit to a local polluted site—Urban/Rural/Industrial/Agricultural.
Text books and Reference books	 Study of common plants, insects, birds. Study of simple ecosystems—pond, river, hill slopes, etc. Text Book(s): [1] Text book for "Environmental Studies" for under graduate courses of all branches of higher education – Erach Bharucha For University Grants Commission Reference Books:
	[1] AnjaneyuluY,"Introduction to Environmental sciences", B S Publications PVT Ltd, Hyderabad
E-resources and other digital material	colleges@edu.ac.in/UG/Envinromental%20 Studies_ ebook. pdf

14EE3305: DC MACHINES

Course	Programme core	Credits:	4
Category:			
Course Type:	Theory	Lecture - Tutorial - Practice:	4 - 1 - 0
Prerequisites:	Basics of Electrical	Continuous Evaluation:	30M
_	Engineering	Semester end Evaluation:	70M
	(14EE1205)	Total Marks:	100M

Course		Upon successful completion of the course, the student will be able to:												
Outcomes	CO1	Expla	in the	concep	ts of El	lectrom	nechani	cal Ene	ergy Co	onversi	on.			
	CO2	Discu	iss and	analyz	e const	ruction	i, opera	tion an	d perfo	ormanc	e of DC	Genera	tor	
	CO3	Analy	yze the	speed	control	of dc r	notors,	, paralle	el opera	ation of	f DC gei	nerators		
	CO4	-	Analyze the performance of DC motor and understand the basic concepts of BLDC Motor.										BLDC	
Contribution of		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
Course Outcomes towards achievement of Program	CO1	М	Н	M		Н		Н						
Dutcomes L – Low, M -	CO2	М	Н	Н		Н		Н						
Medium, H – High)(L - Low, M - Medium,	CO3	М	Н	Н		Н		Н						
H – High)	CO4	M	Н	L		Н		Н						
Course Content	UNIT– Princi Energy	ples of					0.			lechan	ical Fo	[Text B orce, E	-	
Course Content	Princip Energy Excited Energy System UNIT- DC Ge Princip Method DUPL Armate EMF-C Chara	ples of / In M d Syst / Conv ns -II enerat ole, cost ds of EX on ture R ure rea Critical oterist id and	Magne tems, version cors - (nstruct Excita ly) ceaction l resist tics an load c	ctic Sy Force a via E Constr tional ation, on: & con tance & od Par charac	ystems s and clectric ruction feature Types mpensa & Criti	s, Fiel Torq c Field n & O es and s of V ations, ical Sp Opera t	d End ues ir , Dyna perat operat Vindir comn beed fo tion:	ergy a n Syst amical ion An ation o ngs – nutatic or shur	and Mathems were requared to the second seco	with H tions of genera nd wa interp series		orce, I ent Ma romech [Text B MF equ MPLE: wuilding tors.	Doubly agnets, aanical Book-1] ation, X and y up of	

	Principle, operation of DC motors, Torque equation, Characteristics of different types of DC motors, applications, speed control of DC shunt, series and compound motors, DC motor starters and their design
	UNIT-IV [Text Book-1]
	 Performance Testing: Losses, efficiency and testing of DC machines - Brake test, Swinburne's, Hopkinson's, Retardation test and Field's Test. BLDC Motor: Introduction to BLDC motor, comparison of BLDC with DC motor, Schematic and operation, circuit model and characteristics.
Text books or Reference books	Text Book(s):[1] D.P. Kothari and I.J.Nagrath, "Electric Machines"4thedition,,TataMcGraw-Hill,2006
	 Reference Books: [1] A.E.Clayton, "The Performance & design of D.C.Machines",1st edition,CBS publisher& Distributors,2003 [2] Fitzgerald &Kingsley,S.D. Umans"Electric Machinery", 6thedition, McGraw-Hill,2005 [3] AshfaqHussain,"Electric Machines" 2ndedition, Dhanpathrai & Co,2014 [4] Dr.P.S.Bhimbra,"Electrical Machinery", 7th edition, Khanna Publishers,2009.
E-resources and other digital material	http://nptel.ac.in/courses/108105017/

14EE3306: DIGITAL CIRCUITS AND SYSTEMS

Course Category:	Programme Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0 - 0
Prerequisites:	Linear Algebra and Differential Equations (14MA1101) Basics of Electronics Engineering(14EC1206)	Continuous Evaluation: Semester end Evaluation: Total Marks:	30M 70M 100M

Course Outcomes													
	CO1	Elucio functi		ne bin	ary co	odes, l	Boolea	n alge	bra a	nd sim	plifying	the sw	ritching
	CO2	Desig	n and i	mplen	nent co	mbina	tional l	ogic ci	ircuits.				
	CO3	Desig	Design and implement flip flops and sequential logic circuits.										
	CO4	Expla	in vari	ous log	gic farr	ilies a	nd thei	r impo	rtance	in digit	al IC cha	racterist	ics.
Contribution of Course Outcomes		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
towards achievement of	CO1	Н	Н			М							
Program Outcomes	CO2	М	Н	Н		Н							
(L – Low, M - Medium, H –	CO3	L	Н	Н		Н					L		
High)	CO4	L	Н	М		L					Н		
Course Content	Sign-N Repre Divisi code, Error Minin Simpl variab and Fo UNIT Comb Half-A Design	vagnitu sentatio on. 2's Gray co detectin nization ification le), Do our vari	ide Reg on, Bir s comp ode, O ig Cod n of Sv n of Lo n't-Car able), 1 nal Log Full-A Binary-	hary A liment ctal Co es, Err vitchir ogical re conc Detern gic Des dder, 1 -to-Gra	ddition Arithu ode, H or Cor ng Fun function litions, ninatio sign: Half-S ay code	n, Bina netic - exadec recting ctions ons usi , Quine n of pr ubtract e conve	ary Su Additi imal C Codes ng Ka -Mc C ime im	btracti ion/Sul Code, E s. rnaugh luskey plican	on, btractic Error de Minin ts, Sele	Binary on in 2' etecting method nization ection o	on, Two Multipli s compli and Con (Two, T techniq f prime i	ication, ment, E: rrecting Three an ue (Two mplican Text Bo gment d	olement Binary xcess-3 Codes- d Four , Three ts. ok - 1] ecoder,

	 Combinational Logic Circuits Using MSI Circuits: Multiplexers and their use in combinational logic design- Multiplexer, combinational logic design using Multiplexers, DeMultiplexers / Decoders and their use in combinational logic design, Carry Look-Ahead adder, Parity Generator, Priority Encoders- decimal to BCD Encoder, Octal to Binary Encoder, ALU. Programmable Logic Devices: Read Only Memory, ROM Organization, Design of a combinational circuit using a ROM, Programmable Logic Array (PLA), PLA Programming Table, Programmable Array Logic (PAL).
	UNIT-III [Text Book - 1] Flip-Flops: Flip-Flops – Clocked SR flip-flop, Preset and Clear, JK flip-flop- Race Around Condition, Master Slave JK flip-flop, D-Type flip-flop, T -Type flip-flop, Excitation table of flip- flop, flip flop conversions.
	Sequential Logic Design: Shift register, Bi-directional Shift register, Applications of Shift Registers, Ring counter, Johnson counter, Sequence generator, Universal Shift Register, Asynchronous Counters- UP/DOWN Counters, Modulus of the Counter, Design of Asynchronous Counters, Synchronous counters- Synchronous counter design, Lock-Out, Clocked Sequential Circuit Design using State diagrams and Excitation tables.
	UNIT – IV [Text Book - 1] Logic Families: Characteristics of Digital IC's, Direct-Coupled Transistor logic, Resistor-Transistor logic, Diode-Transistor logic, Transistor-Transistor logic, Schottky TTL, Emitter-Coupled logic, Integrated-Injection logic, High Threshold logic (HTL), MOSFET Characteristics –
	Switching action of MOSFET, NMOSFET as a Resistor, NMOS as an Inverter, NAND and NOR gates, CMOS Logic – CMOS as an Inverter, NAND and NOR gates .
Text books and Reference books	

14EE3351: ELECTRICAL NETWORKS AND MACHINES LABORATORY – I

Course Category:	Programme core	Credits:	2
Course Type:	Practical	Lecture - Tutorial - Practice:	0 - 0 - 3
Prerequisites:	DC Machines(14EE3305),	Continuous Evaluation:	30M
-	Network Analysis I	Semester end Evaluation:	70M
	(14EE3303)	Total Marks:	100M

Course	Upon	succe	ssful c	comple	etion o	f the c	ourse,	the sta	udent v	will be	able to):	
Outcomes	CO1	Desig	n and c	conduct	experi	iment.							
	CO2	Analyze and present experimental results.											
	CO3	Exhit	Exhibit professional behavior										
Contribution of Course		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Outcomes towards	CO1		Н	L	Н								
achievement of Program Outcomes	CO2				Н			Н					
(L – Low, M - Medium, H – High)	CO3				Н			Н					
Course Content	Netwo	orks L	ab:										
	1	l. Verif	ication	of KC	L & K'	VL							
		2. Veri	ficatior	n of The	evenin'	s & Ma	aximun	n powe	r transf	er theo	rems		
		3. Verif		1			1	2	eorems	•			
	ے د	4. Detei	minati	on of p	aramet	ers of c	hoke co	oil					
	5	5. Locu	s Diagr	ams of	R-Ca	nd R-L	circuit	S					
		6.Measi			gle pha	ise pow	ver in a	n RL ci	rcuit				
		7. Serie											
		8. Estin				al indu	ctance	of coup	oled cir	cuits			
		rical M											
		I. No					-	ately e	xcited g	generat	or.		
	2	2. Loa	d test o	n DC s	eries g	enerato	r.						
	3	3. Loa	d test o	n DC c	compou	ind Ger	nerator						

4. Speed control of DC shunt motor
5. Brake test on DC shunt motor
6. Brake test on DC compound Motor
7. Field's test on DC Series Motor
8. Swinburne's Test
9. Hopkinsson's Test
10. Retardation Test
11. Trouble shooting of DC motor

NOTE: In all laboratories a minimum of 10 experiments are to be completed. (Minimum five experiments from networks and Minimum five from Machines)

Г

14EE3352 - ELECTRONICS LABORATORY – I									
Course Category:	Programme core	Credits:	2						
Course Type:	Practical	Lecture - Tutorial - Practice:	0 - 0 - 3						
Prerequisites:	Basics Of Electronics	Continuous Evaluation:	30M						
	Engineering(14EC1206)	Semester end Evaluation:	70M						
		Total Marks:	100M						

Course Outcomes		Upoi	Jpon successful completion of the course, the student will be able to:												
	CO1	Desig	gn and c	conduc	t expe	riment.									
	CO2	Analyze and present experimental results.													
	CO3	Exhil	xhibit professional behavior												
Contribution of Course Outcomes		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
towards achievement of	CO1		Н		Н										
Program Outcomes	CO2				Н			Н							
(L – Low, M - Medium, H – High)	CO3				Н			Н							
Course Content	ELE	CLECTRONIC DEVICES LAB:													
	4. 5. 6. 7. 8. DIGI 1. 2. 3. 4.	 Analysis of Half Wave & Full Wave Rectifiers with and without filter. Characteristics of Transistor in Common Base Configuration. Characteristics of Transistor in Common Emitter Configuration. Verification of Transistor Self-Bias Circuit. Characteristics of Junction Field Effect Transistor Characteristics of Unijunction Transistor. ITAL ELECTRONICS LAB: Realization of logic gates Using Discrete Components and Universal gates. Implementation of the given Boolean Function Using Logic Gates in both SOP and POS forms. Implementation of 4-bit Parallel Adder/ Subtract or Using IC 7483. 													
	6. 7. 1.	Desig flip f Verif Desig	Design of Binary to Gray and Gray to Binary Converters. Verification of Flip-Flops Using Logic Gates. Design and Verification of Synchronous and Asynchronous counters using lip flops and IC 74163. Verification of UP/DOWN Counters using IC 74193. Design and Verification of MUX and DEMUX.												
NOTE: In Minimum												nics			

14MA1401: TRANSFORMATIONS AND PROBABILITY DISTRIBUTION

Course Category:	Institutional Core	Credits:	3
Course Type:	Theory	Lecture- Tutorial- Practice:	3 -1 - 0
Prerequisites:	Pagia concents of probability and	Continuous Evaluation:	30M
	Basic concepts of probability and statistics	Semester end Evaluation:	70M
	statistics	Total Marks:	100M

Course Outcomes		Upon su	ccessful	comple	tion of	the cou	rse, the	e studei	nt will	be able	to:				
	CO1	Analyze general periodic functions in the form of an infinite convergence series of sines and cosines.													
	CO2	Apply Fourier Transforms and Z- Transforms to evaluate indefinite integrals and engineering problems.													
	CO3	distributions													
	CO4		nderstand the concept of sampling distribution, estimate correlation, regression efficients												
Contribution of Course Outcomes		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
towards achievement of	CO1	Н	М			М		М				М			
Program Outcomes	CO2	Н	M			M		M				М			
(M-Medium, H– High,L-Low)	CO3	Н	Н			Н		Н		L		М			
	CO4	Н	H			Н		Н		L		М			
Course Content	Fourie Functio Expans	CO4 H H H L M UNIT-I [Text Book-1]] Fourier Series: Introduction, Euler's Formulae, Conditions for a Fourier expansion, Functions having points of discontinuity, change of interval, odd and even functions, Expansions of odd and even periodic functions, Half - range series, Parseval's formula, complex form of Fourier series. Practical harmonic analysis.													

UNIT-II

[Text Book - 1]

Fourier Transforms: Introduction, Definition, Fourier integrals, Fourier sine and cosine integrals - complex form of Fourier integrals. Fourier transforms, Fourier sine and cosine transforms - Finite Fourier sine and cosine transforms, Fourier transforms of the derivatives of a function, Parseval's Identity for Fourier Transforms.

Z-Transforms: Definition, Some Standard Z-Transforms, Linearity Property, Damping Rule, Some Standard Results, Shifting μ_n to the Right, Multiplication by 'n', Two Basic Theorems.

UNIT –III

[Text Book-2]

Probability Densities: Continuous random variables – Normal distribution – Normal approximation to the binomial distribution – Other probability densities – Uniform distribution – Log – Normal distribution – Gamma distribution – Beta distribution – Weibull distribution – joint distributions – Discrete and continuous checking if the data are normal – Transforming observations to near normally.

	UNIT IV [Text Book – 1,2] Sampling Distributions: Populations and samples – Sampling distribution of the mean (SD known) – Sampling distribution of the mean (SD unknown) – Sampling distribution of the variance.
	Statistics: Method of Least Squares – correlation – Regression
Text books and Reference books	 Text Book(s): [1] B.S. Grewal , "Higher Engineering Mathematics" by, 42nd edition ,Khanna Publishers, New Delhi, 2012 [2] Richard A.Johnson , "Probability and statistics for Engineers",Prentice Hall of India. Reference Books: [1] Krezig, "Advanced Engineering Mathematics" 8th Edition, JohnWileyand sons,2007. [2] H.K.Das, Er. RajnishVerma ,"Higher Engineering Mathematics", 1st edition, S.Chand,2011. [3] T.K.V.Iyengar, "Probability and Statistics" 4th edition, S.Chandand Company, 2012 [4] Rukmangadachari E, "Probability and Statistics", Pearson, 2012
E-resources and other digital material	 [1] probweb.berkekey.edu/teaching.html [2]statsci.org/teaching.html [3] mathworld.wolfram.com/fourierseries.html [4] www.thefouriertransform.com .

14EE3402: ELECTRONIC CIRCUITS-II

Course Category:	Programme core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:	Engineering Physics(14PH1202) Basics of Electronics Engineering(14EC1206) Electronic Circuits-I(14EE3302)	Continuous Evaluation: Semester end Evaluation: Total Marks:	70M

Course Outcomes		Upo	n succ	essful	comp	letion	of the	course	e, the s	studen	t will be	e able to):	
	CO1	Anal	yse Mi	ulti stag	ge amp	lifier ci	rcuits a	at low f	requen	cy and	high fre	quencies	}.	
	CO2	Design power amplifiers.												
	CO3	Desig	Design Feedback amplifiers.											
	CO4	Anal	yze tur	ned am	plifiers	•								
Contribution of Course Outcomes		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
towards achievement of	CO1	М				Н								
Program Outcomes	CO2	М				Н								
(L – Low, M – Medium, H –	CO3					Н								
High)	CO4					Н								
Course Content	Freque amplif respon Darlin UNIT Power Classi Transf Pull, o amplif UNIT Feedb	stage A ficatio ency re ier, Ef ise of gton p -II ficatio former Compl fier, ar -III ack A	n of A espons ffect o two air. lifiers n of Coup lement d Harr mplifi	mplifie e of an f emitte cascad Power led Cla ary Sy monic o	ampli er bypa ed CE amplif ass A, o mmetr distorti	fier to a uss capa transi fiers, E Class E y Push on in an	Step inj acitors stor st Design B, Direc -Pull, 0 mplifie	out, Lo on low ages, (and an ct Coup Class (rs.	w freque CE-CB nalysis oled, an C powe	uency re ency re Casca of Di nd Tran er amp	response, ade Am rect-Cou nsformer	High fre	aplifier, coupled equency CC-CC Cook-1] lass A, l Push- power ook-2]	

	Connection types, Analysis of Voltage series, Current series, Voltage shunt, Current shunt feedback amplifiers.
	UNIT-IV [Text Book-2]
	Tuned Amplifiers The parallel resonance circuit, Single tuned amplifier, Tuned primary amplifier, Tuned secondary FET amplifier, Double tuned transformer coupled amplifier, Stagger tuned amplifier and synchronously tuned amplifier.
Text books and Reference books	 Text Book(s): [1] G.KMithal, "Electronic Devices and circuits", Khanna Publishers [2] John D Ryder, "Electronic Fundamentals and Applications: Integrated and Discrete Systems", 5th edition, PHI, 2003.
	 Reference Books: [1] Jacob Millman and Christos C Halkias, "Integrated Electronics: Analog and Digital Circuits and Systems", TMH, 2003 [2] Robert Boylestad and Louis Nashelsky, "Electronic Devices and circuits", 9th edition, PHI.
E-resources and other digital material	 [1] http://nptel.iitm.ac.in/courses.php?branch=Ece [2] http://en.wikipedia.org/wiki/Electronics [3] www.allaboutcircuits.com [4] www.tomsic.biz [5] http://www.electronics-tutorials.ws/amplifier/amp_1.

14EE3403 NETWORK ANALYSIS - II

Course Category:	Programme core	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	4 - 1 - 0
Prerequisites:	Linear Algebra and differential	Continuous Evaluation:	30M
	Equations(14MA1101)	Semester end Evaluation:	70M
	Basics of Electrical Engineering	Total Marks:	100M
	(14EE1205)		

Course		Upor	n succ	essful	comr	letion	of the	e cour	se, the	e stude	ent will l	be able	to:
outcomes	CO1	-			1			circuit	-				
	CO2				_								
	CO3		Find network functions and two-port parameters. Apply Fourier analysis to analyze electric circuits and design the filters.										
	CO4		Synthesize one port and two port networks.										
Contribution of Course Outcomes		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
towards achievement of	CO1	Н	M			Н						M	
Program Outcomes	CO2	Н	М	L		Н							
(L – Low, M - Medium, H –	CO3	Н				Н						L	
High)	CO4	Н		Н		Н							
	CO4 H H H H IText Book-1] UNIT-I [Text Book-1] Transients: [Text Book-1] Review of Laplace transforms- Introduction, Direct current Transients – RL Transient, RC Transient, RLC Transient, twomesh transients. Alternating Current Transients - RL, RC, and RLC circuits, two mesh transients. (Both Differential equation and Laplace Transform approaches).Response of RL,RC and RLC circuits to Periodic functions. UNIT-II Introduction, Concept of complex frequency, Driving point functions, Transfer functions-Definition of operational/ transformed impedances and admittances of L, C and transform with initial conditions; development of transformed networks incorporating initial conditions as sources and solution of transformed networks. Analysis of ladder and non-ladder networks; Poles and Zeros of network functions; Restrictions on poles and zeros for driving- point and transfer functions. Time domain behavior from pole zero plot, Graphical method for determination of residue Two Port Networks: [Text book-1]												

	parameters, Condition of symmetry and reciprocity in two port parameter representation, interrelation between parameters of two port networks, inter connection of 2-port networks, image parameters, Network functions for the Two-Port bridged – T, π , Ladder and Lattice networks.
	UNIT–III Fourier Circuit Analysis:[Text Book 2] Introduction, Trigonometric form of the Fourier series, Exponential form of the Fourier series , Wave form symmetry, Average Value and RMS value of a periodic Complex wave, Power supplied by complex wave, Definition of the Fourier Transform, Some properties of the Fourier Transform, The Fourier Transform of some useful functions and periodic function, Energy density spectrum.Filters: [Text Book 1] Introduction, Classification of Filters, Filter networks-Low pass, high pass, band pass and band stop, Analysis and design of prototype Filter networks both T and π configurations, Analysis of m-Derived Filter networks.
	UNIT-IV [Text Book-1] Network Synthesis: Concept of stability of a system- Hurwitz polynomials and properties – Positive real functions and its properties – concept of Network Synthesis ,Summary of procedure of synthesis, Reactive networks-properties, pole zero interpretation and Synthesis of LC, RL and RC of one port and two port networks-Foster form , Cauer form.
Text books and Reference books	 Text Book(s): [1] A.Chakrabarthi, "Circuit Theory (Analysis and Synthesis),", 6th ed., DhanpatRaiand Co.(PVT) Ltd., 2013. [2] Ravish R Singh , "Network Analysis and Synthesis", 1st ed., McGraw-Hill Education (India) Pvt. Ltd., New Delhi.
	 Reference Books: [1] M.E Van Valkenburg, Network Analysis, 3rd edition Prentice Hall of India, PvtLtd,New Delhi. [2] W.H.Hayt, J.E.kemmerly and S.M.Durbin, Engineering Circuit Analysis, 8th Edition, Tata McGraw-Hill, New Delhi, 2012. [3] Charles K. Alexander, Matthew N. O. Sadiku, Fundamentals of Electric Circuits, 5th Edition, McGraw-Hill, 2012. [4] A.Sudhakar and P.Shyam Mohan, Circuits and Networks Analysis and Synthesis, 3nd Edition, Basic Electrical Engineering, Tata McGraw-Hill, New Delhi, 2007
E-resources and other digital material	[1] <u>http://nptel.ac.in/courses/108102042/</u>

14EE3404 – ELECTROMAGNETIC FIELD THEORY

Course	Programme Core	Credits:	3
Category:			
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0 - 0
Prerequisites:	Engineering Physics (14PH1202),	Continuous Evaluation:	30M
	Calculus (14MA1201)	Semester end Evaluation:	70M
	Linear Algebra and Differential	Total Marks:	100M
	Equations (14MA1101)		

Course Outcomes		Upo	n succ	essful	comp	oletior	of the	e cour	se, the	e stude	ent will	be able	to:	
	CO1				-			-			timate el distribu		eld	
	CO2		Understand the concepts of Electric fields in material space and solve electrostatic boundary value problems											
	CO3		Estimate Magnetic field intensity due to various current configurations and understand the concepts of magnetic forces in material space.											
	CO4			Maxw ms inv		-			-		e propag	gation an	d solve	
Contribution of Course Outcomes		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
towards achievement of	CO1	Н				Н		Н						
Program Outcomes	CO2	Н				Н		Н						
(L – Low, M – Medium, H –	CO3	Н				Н		Н						
High)	CO4	Н				H		Н						
Course Content	Intro Carte and v scalar Stoke Elect Could distri applie Maxy	UNIT I[Text Book-1]Introduction to Coordinate Systems and Vector Calculus: Cartesian, cylindrical and spherical coordinate systems. Differential length, area and volume. Line, surface and volume integrals. Del operator, gradient of a scalar, divergence of a vector and divergence theorem. Curl of a vector and Stokes Theorem. Laplacian of a scalar.Electrostatics: Coulomb's law and field intensity, Electric fields due to continuous charge distributions, Electric flux density. Gauss's law – Maxwell's Equation, applications of Gauss's law, Electric potential, relationship between E and V – Maxwell's Equation, an electric dipole and flux lines, energy density in electrostatic fields.												
	Prope	ric Fi erties	of n		uls, co	onvec	tion a				currents 1, conti		uctors,	

	and relaxation time, boundary conditions. Electrostatic Boundary Value Problems: Poisson's and Laplace's equations, Uniqueness theorem, general procedures for solving Poisson's and Laplace's equations, resistance and capacitance, method of Images. UNIT III [Text Book-1] Magneto Static Fields: Biot-Savart's law, Ampere's circuit law – Maxwell's equation, applications of Ampere's law, Magnetic flux density – Maxwell's equation, Magnetic scalar and vector potentials. Magnetic Forces, Materials and Devices: Forces due to magnetic fields, magnetic torque and moment, magnetic dipole, magnetization in materials, magnetic boundary conditions, inductors and inductances, magnetic energy. UNIT – IV [Text Book-1] Maxwell's Equations: Faraday's law, transformer and motional electromotive forces, displacement current, Maxwell's equations in final forms, time harmonic fields. Electromagnetic Wave Propagation: Wave propagation in lossy dielectrics, plane waves in lossless dielectrics, plane waves in free space, plane waves in good conductors, power and Poynting vector.
Text books and Reference books	 Text Book(s): [1] Matthew N.O.Sadiku, "Principles of Electromagnetics", 4th edition, Oxford University Press, New Delhi, 2009 Reference Books: [1] W.H.Hayt and J.A.Buck, "Engineering Electromagnetics", 7th edition, Tata McGraw Hill, New Delhi, 2006 [2] Joseph A.Edminister, "Electromagnetics – Theory and problems", 2nd edition, Schaum's outline series, MCGraw Hill, 1993 [3] K.A.Gangadhar and P.M. Ramanathan, "Field Theory", 15th edition, Khanna Publications, 2002.
E-resources and other digital material	

14EE3405: TRANSFORMERS AND INDUCTION MOTORS

Course	Programme core	Credits:	4					
Category:								
Course Type:	Theory	Lecture - Tutorial - Practice:	4 - 1 - 0					
Prerequisites:	Basics of Electrical Engineering,	Continuous Evaluation:	30M					
_	(14EE1205);	Semester end Evaluation:	70M					
	Network Analysis I(14EE3303);	Total Marks:	100M					

Course Outcomes		Upon	succes	sful co	mpleti	on of tl	ne cour	se, the	studen	t will b	e able to):	
	CO1		Describe the construction, operation and Estimate performance of single phase transformer										
	CO2		Discriminate different winding connections of three phase transformer and Explain the operation of Auto transformer										
	CO3		Understand the construction, operation, testing and analysis of different types of three phase induction motors and associated starters										
	CO4		Discuss the speed control methods of 3-phase induction motor and understand the principle, starting methods of single phase induction motors										
Contribution of Course Outcomes towards achievement of Program Outcomes (L – Low, M – Medium, H – High)(L – Low, M - Medium, H – High)		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	М	Н	Н		Н		Н					
	CO2	М	Н	Н		L		Н					
	CO3	М	Н	Н		Н		Н					
	CO4		Н	Н		М		Н					
Course Content	UNIT-I[Text Book-I]Transformers:Constructional features and methods of cooling of transformers, ideal transformerEMF equation, no load and load phasor diagram, equivalent circuit of single phase transformers, losses, per unitsystems, auto transformers.Testing: OC and SC tests, Sumpner's test, Regulation, efficiency and all day efficiency							ormer, single					
	UNIT-II [Text Book-2] Three Phase Transformers Three phase transformer windings and its connections star-star, star-delta, delta- star, delta-delta, zig-zag and Vector grouping. Open delta, Tertiary transformer winding, Scott connected transformers, Parallel operation of transformer with equal and unequal voltage ratios and its load sharing. Tap changing.												

	UNIT-III [[Text Book-1]
	Polyphase Induction Motors: Construction, Rotating magnetic field in three phase systems, squirrel cage and slip ring 3-phase induction motors, torque equation slip characteristics, equivalent circuit, losses, efficiency, testing motors and circle diagram. Types of starters, Crawling, Cogging, Protors, Induction generators and their applications.	of induction
	UNIT-IV [[Text Book-1]
	 Speed Control of Three Phase Induction Motor: Speed control of induction motors-Stator voltage control, frequency control, pole changing and cascading, injection of EMF into (qualitative treatment only). Single Phase Induction Motors: Double field revolving theory, starting methods – split phase, capace run, shaded pole motors and their characteristics and applications, blocked rotor test, equivalent Circuit 	rotor circuit
Text books or Reference books	Text Book(s):[1] D.P.Kothariand I.J.Nagrath, "Electrical Machinery"4thMcGraw-Hill-2006.	dition ,Tata
	Reference Books: [1] Alexander S.Langsdorf, "Theory of Alternating current machine reprint, Tata McGraw-Hill, 1999. [2] Dr.P.S.Bhimbra, "Electric Machinery", 7 th edition, Khanna Put 2009. [3] AshfaqHussain, "Electric Machines", 2 nd edition, DhanpathRaia	blishers,
E-resources and other digital material		

14EE3406: ELECTRICAL MEASUREMENTS

Course	Programme core	Credits:	3
Category:			
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 1 - 0
Prerequisites:	Basics of Electrical Engineering	Continuous Evaluation:	30M
	(14EE1205A),	Semester end Evaluation:	70M
		Total Marks:	100M

Outcomes CO1 Elucidate the basic laws governing the operation of electrical measuring instruments and measure electrical quantities like Voltage and Current CO2 Understand the concepts used in watt meters and Industrial metering CO3 Understand the significance and working of instrument transformers and bridges used for electrical measurements CO4 Elucidate the concepts of potentiometers, digital voltmeters and transducers used for electric measurements CO4 Elucidate the concepts of potentiometers, digital voltmeters and transducers used for electric measurements CO4 Elucidate the concepts of potentiometers, digital voltmeters and transducers used for electric measurements CO4 Elucidate the concepts of PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 Co4 Elucidate the concepts of potentiometers, digital voltmeters and transducers used for electric measurements Image: CO1 H L M Image: CO1 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 Co1 H L M Image: CO1 Image:														
C01 Flucidate the basic laws governing the operation of electrical measuring instruments and measure clectrical quantities like Voltage and Current C02 Understand the concepts used in watt meters and Industrial metering C03 Understand the significance and working of instrument transformers and bridges used for electrical measurements C04 Elucidate the concepts of potentiometers, digital voltmeters and transducers used for electric measurements C04 Elucidate the concepts of potentiometers, digital voltmeters and transducers used for electric measurements C04 P01 P02 P03 P04 P05 P06 P07 P08 P09 P01	Course		Upon	succes	ssful co	ompleti	on of t	he cour	se, the	studen	t will t	e able to	o:	
Understand the significance and working of instrument transformers and bridges used for electrical measurements Contribution of Course Outcomes or action of PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 H L M Contribution of Course Outcomes or action achievements CO2 M H L M L -Low, M - Medium, I - High/L CO3 H H M M CO4 M M CO3 H H M M CO3 H H M M CO4 M M CO3 H H M M CO4 M M M CO4 M M M CO4 M M M CO4 M M M M M CO4 M M M M	Outcomes	CO1					-	-		-				asuring
used for electrical measurements cold Elucidate the concepts of potentiometers, digital voltmeters and transducers used for electric measurements Contribution of Course Outcomes ovards achievement of Program Outcomes to PO1 CO2 M H M		CO2	Understand the concepts used in watt meters and Industrial metering											
C04 for electric measurements Contribution of Course Outcomes owards achievement of Program PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 C01 H L M Image: Course Outcomes Image: Course Image: Course Outcomes		CO3												
Course Outcomes owards achievement of Program Ductomes CO1 H L M Image: CO1 Ima		CO4				-	-	tiomete	ers, dig	ital vo	ltmeter	rs and tr	ansduce	rs used
owards achievement of Program Dutcomes CO1 H L M Image: CO2 M H Image: CO2 Image:	Contribution of		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Dutcomes CO2 M H M M L - Low, M - Medium, H - High)(L. CO3 H H M M Low, M - Medium, H - High)(L. CO4 M M M L M CO1 CO4 M M M L L M Course Content UNIT-I Classification of analog Instruments, principles of operation. Electro-Mechanical indicating instruments – operating forces, control systems, damping systems Analog Ammeters and Voltmeters: Permanent Magnet Moving Coil Instruments. (Construction, General Torque equation, shape of scale, advantages, disadvantages and errors) Measurement of Power: Electrodynamometer wattmeters – Construction, theory, shape of scale, errors. Low power factor dynamometer wattmeters. Three phase wattmeters, Measurement of Reactive power. UNIT-II [Text Book-1] Measurement of Energy and Industrial Metering: [Text Book-1]	towards achievement	CO1	Н	L	М									
Medium, H – High)(L CO3 H H M Image: CO3 H H M Low, M - Medium, H – High) CO4 M M M M Image: CO3 L Image: CO3 Cow, M - Medium, H – High) CO4 M M M M Image: CO3 Image: CO3 </th <th>of Program Outcomes</th> <td>CO2</td> <td>М</td> <td>Н</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>L</td> <td></td> <td>М</td> <td></td>	of Program Outcomes	CO2	М	Н							L		М	
H - High) CO4 M M M M L Image: Construction of the	(L – Low, M - Medium, H – High)(L	CO3	Н	Н	М									
Analog Instruments: Classification of analog Instruments, principles of operation. Electro-Mechanical indicating instruments – operating forces, control systems, damping systemsAnalog Ammeters and Voltmeters: Permanent Magnet Moving Coil Instruments, Moving Iron Instruments, Electrodynamometer Instruments, Electrostatic Instruments.(Construction, General Torque equation, shape of scale, advantages, disadvantages and errors) Measurement of Power: Electrodynamometer wattmeters – Construction, theory, shape of scale, errors. Low power factor dynamometer wattmeters. Three phase wattmeters, Measurement of Reactive power.UNIT-II[Text Book-1]Measurement of Energy and Industrial Metering:	– Low, M - Medium, H – High)	CO4	М	М	M						L			
Classification of analog Instruments, principles of operation. Electro-Mechanical indicating instruments – operating forces, control systems, damping systems Analog Ammeters and Voltmeters: Permanent Magnet Moving Coil Instruments, Moving Iron Instruments, Electrodynamometer Instruments, Electrostatic Instruments.(Construction, General Torque equation, shape of scale, advantages, disadvantages and errors) Measurement of Power: Electrodynamometer wattmeters – Construction, theory, shape of scale, errors. Low power factor dynamometer wattmeters. Three phase wattmeters, Measurement of Reactive power. UNIT–II [Text Book-1] Measurement of Energy and Industrial Metering:	Course Content	UNIT-	UNIT–I [Text Book-1]											
Electro-Mechanical indicating instruments – operating forces, control systems, damping systemsAnalog Ammeters and Voltmeters: Permanent Magnet Moving Coil Instruments, Moving Iron Instruments, Electrodynamometer Instruments, Electrostatic Instruments.(Construction, General Torque equation, shape of scale, advantages, disadvantages and errors) Measurement of Power: Electrodynamometer wattmeters – Construction, theory, shape of scale, errors. Low power factor dynamometer wattmeters. Three phase wattmeters, Measurement of Reactive power.UNIT-II[Text Book-1]Measurement of Energy and Industrial Metering:			0			[+ -		-1	f	tion			
damping systemsAnalog Ammeters and Voltmeters:Permanent Magnet Moving Coil Instruments, Moving Iron Instruments, Electrodynamometer Instruments, Electrostatic Instruments.(Construction, General Torque equation, shape of scale, advantages, disadvantages and errors)Measurement of Power: Electrodynamometer wattmeters – Construction, theory, shape of scale, errors. Low power factor dynamometer wattmeters. Three phase wattmeters, Measurement of Reactive power.UNIT-II[Text Book-1]Measurement of Energy and Industrial Metering:					•		· ·		-	-		es, cor	ntrol sy	stems,
Permanent Magnet Moving Coil Instruments, Moving Iron Instruments, Electrodynamometer Instruments, Electrostatic Instruments.(Construction, General Torque equation, shape of scale, advantages, disadvantages and errors)Measurement of Power: Electrodynamometer wattmeters – Construction, theory, shape of scale, errors. Low power factor dynamometer wattmeters. Three phase wattmeters, Measurement of Reactive power.UNIT-II[Text Book-1]Measurement of Energy and Industrial Metering:		dampii	ng sys	tems		_			1		0	ŗ	2	ŕ
ElectrodynamometerInstruments,ElectrostaticInstruments.(Construction, General Torque equation, shape of scale, advantages, disadvantages and errors)Measurement of Power:Electrodynamometer wattmeters – Construction, theory, shape of scale, errors. Low power factor dynamometer wattmeters. Three phase wattmeters, Measurement of Reactive power.Image: Text Book-1UNIT-II[Text Book-1]Measurement of Energy and Industrial Metering:			0									_	_	
General Torque equation, shape of scale, advantages, disadvantages and errors)Measurement of Power:Electrodynamometer wattmeters – Construction, theory, shape of scale, errors.Low power factor dynamometer wattmeters. Three phase wattmeters, Measurement of Reactive power.UNIT-IIMeasurement of Energy and Industrial Metering:				-		-				, ,	Ũ			· ·
Measurement of Power:Electrodynamometer wattmeters – Construction, theory, shape of scale, errors.Low power factor dynamometer wattmeters. Three phase wattmeters, Measurement of Reactive power.UNIT-IIMeasurement of Energy and Industrial Metering:			2				-							-
Electrodynamometer wattmeters – Construction, theory, shape of scale, errors. Low power factor dynamometer wattmeters. Three phase wattmeters, Measurement of Reactive power. UNIT–II [Text Book-1] Measurement of Energy and Industrial Metering:						· •		uit, ut	i v unitu	505, ui	Jua va	1111203		,,
Low power factor dynamometer wattmeters. Three phase wattmeters, Measurement of Reactive power. UNIT–II [Text Book-1] Measurement of Energy and Industrial Metering:							rs – (Constr	uction	, theo	ry, sh	ape of	scale,	errors.
UNIT–II [Text Book-1] Measurement of Energy and Industrial Metering:										·		-	-	
Measurement of Energy and Industrial Metering:		Measu	remen	t of R	eactiv	e powe	er.							
		UNIT-	·II										[Text B	ook-1]
Single phase Induction type Watt-hour meters (Construction, theory of operation		Measu	ireme	nt of I	Energ	y and	Indus	trial N	/leteri	ng:			-	-
		Single	phase	Induc	ction t	ype W	att-ho	ur me	ters (C	Constr	uction	, theory	of ope	eration

69	Page		

	Wattmeter method.
	DC & AC Bridges:
	Measurement of Resistance - Wheatstone bridge, Kelvin double bridge.
	Measurement of Self Inductance - Maxwell's bridge, Hay's bridge, Anderson's
	bridge, Owen's bridge.
	Measurement of Capacitance – DeSauty's bridge, Schering bridge, High voltage
	Schering bridge.
	UNIT-IV [Text Book-1]
	Potentiometers:
	DC Potentiometers - Crompton's Potentiometer, Multiple-Range Potentiometer,
	Vernier Potentiometer, Brooks deflectional Potentiometer.
	AC Potentiometers - Drysdale Polar Potentiometer, Gall-Tinsley co-ordinate
	Potentiometer.
	Digital Voltmeters:
	Ramp, Integrating and potentiometric digital voltmeters.
	Cathode Ray Oscilloscopes:
	Basic CRO Circuits, Observation of Waveform on CRO, Measurement of
	Voltages and currents, measurement of phase and frequency (Lissajous Patterns),
	multi input oscilloscopes, dual trace oscilloscopes, dual beam oscilloscope, digital
	storage oscilloscope.
Text books or	Text Book(s):
Reference	[1] A.K.Sawhney, "A course in Electrical & Electronic Measurements and
books	Instrumentation", 19 th edition, Dhanapthirai& Co., New Delhi, 2013.

Current Transformers – Theory, Ratio error and phase angle errors, Reduction of errors, effect of Secondary open circuit, testing of Current Transformers using Mutual Inductance method and Silsbee's method.

Potential Transformers - Theory, Ratio error and phase angle errors, Reduction of errors, testing of Potential Transformers using Absolute null method and

UNIT-III Instrument Transformers:

indicators.

loading and phantom loading arrangements. **Measurement of Phase and Frequency:** [Text Book - 1] Power Factor meters - Electrodynamometer and Moving Iron Power Factor

meters. Frequency meters - Mechanical Resonance and Electrical Resonance Frequency meters. Synchroscopes - Electrodynamometer and Moving Iron Synchroscopes. Phase sequence Indicators – Rotating and Static Phase sequence

and adjustments), Industrial metering and Tariffs, Merz Price maximum demand indicator, measurement of VAh and VArh, testing of Energy meters by direct

[Text Book-1]

	Reference Books: [1] J.B.Gupta, "A course in Electronic & Electrical Measurements and Instrumentation", S.K.Kataria& Sons., New Delhi, 2009. [2] E.W.Golding and F.C.Widdis," Electrical Measurements and measuring instruments", 5 th edition, Wheeler Publishers, New Delhi, 2009.
E-resources and other digital material	

14EE3451: ELECTRICAL NETWORKS AND MACHINES LABORATORY-II

Course Category:	P	rograr	nme c	ore						redits:	2		
Course Type:	Pr	actica	1				Lectu	0 - 0 -	- 3				
Prerequisites:	Electrical Networks And Machines Laboratory – I (14EE3351)						Lecture - Tutorial - Practice:0 - 0Continuous Evaluation:30MSemester end Evaluation:70MTotal Marks:100						
Course	Upon successful completion of the course, the student will be able to:												
Outcomes	CO1	Desig	Design and conduct experiment.										
	CO2	2 Analyze and present experimental results.											
	CO3	Exhit	oit profe	essiona	l behav	rior							
Contribution of Course		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Outcomes towards achievement of Program Outcomes	CO1		Н	L	Н							M	
	CO2				Н			Н				М	
(L – Low, M - Medium, H – High)	CO3				Н			Н					
Course Content	Networks Lab – II 1. Simulation of RLC circuits using PSPICE												
	2. 3. 4. 5. 6. 7. 8. 9. 10 Elect 1. 2.	i) Stea Veri P-SP Dete Harn Gene Serie Meas Shor Volt three D. Four crical I OC	dy stat fication PICE rminat nonic a eration es and sureme t circu age, C e phase ier ana Machi and SO I test o	te anal n of M ion of analys of 6- Paralle ent of it anal urrent circu alysis o nes L a C tests n sing	ysis ii) [aximu Z, Y] is on s Phase I Reso voltage ysis of and Po its usin of an R ab - II on sin le - ph) trans im power barame ingle p using nance e and of f RLC ower n ag resi RLC ci l gle - p ase tra	ient an wer tra eters o bhase t Poly-p current circui neasur stors. rcuit u bhase t	alysis nsfer a f a giv ransfo bhase c bhase c t in RI it. ement sing P ransfo	and sup ren two ormer connec LC circ s in ba cSPICI	o port a etions o cuit alanceo	ition th network of transi	formers	

5. Parallel Operation of Two Single - Phase Transformers
6. Load test on 3-phase transformer
7. Load test on 3 - phase squirrel cage induction motor
8. Load test on 3 - phase slip ring induction motor
9. No load and Blocked rotor test on 3 - phase induction motor
10. Brake test on single - phase induction motor
11. Determination of Equivalent Circuit of Single - Phase Induction Motor
12. Separation of Core Loss of a Transformer

NOTE: In all laboratories a minimum of 10 experiments are to be completed. (At least five experiments from Networks Lab and five from Electrical Machines Lab)

Course Category:	Programme core	Credits:	2
Course Type:	Practical	Lecture - Tutorial - Practice:	0 - 0 - 3
Prerequisites:	Basics of Electrical	Continuous Evaluation:	30M
	Engineering, (14EE1205);	Semester end Evaluation:	70M
		Total Marks:	100M

Course Outcomes	Upon successful completion of the course, the student will be able to:):
outcomes	CO1	Desig	gn and o	conduc	t expe	riment.							
	CO2	Analyze and present experimental results.											
	CO3	Exhil	Exhibit professional behavior										
Contribution of Course Outcomes towards achievement of		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	Н	Н				L	М					
Program Outcomes	CO2	М	Н			L		М					
(L – Low, M - Medium, H – High)	CO3						L						
Course Content	LIST	T OF EXPERIMENTS											
	2. 3. 4. 5. 6. 7. 8. 9. 10 11 12 13 14	Meas Meas Calib Calib Meas Meas Meas . Meas . Tracin . Meas . Frequ	uremen uremen ration o ration o uremen uremen uremen ng of B uremen uremen	t low r t of cap t of Ind of singl of singl t of dis t of str t of did t of fre -H cur t of 3-p neasure t of po	esistar pacitar ductan e-phas e-phas placer ain usi electric equenc ve and phase r ment b wer su	ice usin ice and ce and se ener nent us ng stra e streng y / Cor measu reactive by Wie pply p	ng Kelv loss ta Qualit gy met sing LV in gau gth of nponen remen e powe n's Bri aramet	vin's D angent y facto ter by c ter by p VDT ge transfo nt testin t of hy er with idge	r using lirect lo bhantom rmer oi ng using	Bridge. Chering Anders ading. I loadin l g CRO loss us Wattme	ing CRC ter ılyzer	Ţ	Bridge.
NOTE: In	all labo	ratori	es a mi	nimun	1 of 10	exper	iment	s are t	o be co	mpleteo	ł.		

14HS1453: COMMUNICATION SKILLS LAB

Course Category:	Program core	Credits:	2
Course Type:	Practical	Lecture - Tutorial - Practice:	0 - 0 - 3
Prerequisites:	Technical English and	Continuous Evaluation:	30M
	Communication skills –(14HS1104)	Semester end Evaluation:	70M
		Total Marks:	100M

Course Outcomes		Upo	n succ	essful	comp	letion	of the	cours	se, the	studen	t will be	e able to	D:
	CO1	Be p	roficien	it in pro	onuncia	ation o	f speec	ch sour	nds incl	uding a	ccentuat	ion.	
	CO2	Enha	Enhance the awareness of the elements of listening comprehension.										
	CO3	Deve	Develop the abilities of rational argumentation and skills of public speaking.										
	CO4	Be av	ware of	the ele	ements	of pro	fession	al co	mmuni	cation			
	CO5	Be ex	xposed	to the i	items o	of vario	us con	npetitiv	ve exan	15.			
Contribution of Course Outcomes		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
towards achievement of	CO1							Н	Н	М			L
Program Outcomes	CO2		М		Н	М	М	Н	Н	М	Н		М
(L – Low, M - Medium, H – High)	CO3	Н	Н	М	Н		Н	Н	М	М	Н	L	Н
	CO4	М	М	M	Н	L	Н	Н	Н	Н	Н	L	Н
	CO5		Μ	M	М	М	Н	Н	L	Н	Н	L	L
Course Content	> > > UNIT Polem > >	ents o Spee Artic Patte Type II ics an Grouj Pyrar PNI Semi	ch Me culation erns of	chanis n of vo Accer proces ic Spea ission cussion	sm owels ntuationses of aking: n	and co on È Liste	onsona	ants compre	es of L		g comp	orehens	sion:
	Profe	ssion	al Con Affirm		icatio	n:							

	 Advanced Composition including Official letters and e-mail Résumé Preparation
	 Elements of Non-Verbal Communication.
	UNIT IV
	Life Skills and Vocabulary for Competitive Examinations:
	 Select Life Skills(50) Select Logies, Isms, Phobias and Manias (25 each)
	 Sentence Completion(50 items)
	Fundamentals of Syllogisms
Text books and	Text Book(s):
Reference books	 [1] Martin Cutts," Oxford Guide to Plain English", 7th Impression, OUP, 2011 [2] Exercises in Spoken English, Prepared by Department of Phonetics and Spoken English, CIEFL, OUP, 21st Impression, 2003
	Reference Books:
	[1] Stephen R Covey, "The 7 Habits of Highly Effective people", 2 nd edition, (Pocket Books) Simon and Schuster UK Ltd, 2004
	[2] Martin Cutts, "Oxford Guide to Plain English", 7 th Impression, OUP, 2011
	[3] Deborah. J. Bennett, "Logic made easy: How to know when Language Deceives you", 1 st edition(Reprint), 2005
	[4] Eclectic Learning Materials offered by the Department
E-resources and	[1] ODll Language Learner's Software, 27-6-2012 Orell Techno Systems,
other digital	[2] Visionet Spears Digital Language Lab software Advance Pro, 28-01-2015
material	[3] <u>www.natcorp.ox.ac.uk</u> , British National Corpus, XML edition 2007.

14EE3501-LINEAR CONTROL SYSTEMS

Course	Bro group of Cons		
Category:	Programme Core	Credits:	3
Course Type:	Theory	Lecture- Tutorial- Practice:	3 -1 - 0
	Notwork Analyzia II	Continuous Evaluation:	30M
Prerequisites:	Network Analysis II (14EE3404)	Semester end Evaluation:	70 M
	(14EE3404)	Total Marks:	100 M

Course Outcomes		Upon suc	Upon successful completion of the course, the student will be able to: Determine transfer function models of electrical, mechanical and electromechanical systems Analyze the behaviour of the system under time domain approach and graphical method. Apply various plots to analyze the behaviour of the system under frequency domain approach and design of compensators												
	CO1														
	CO2	-													
	CO3	11.2													
	CO4	Determi	ne State	e space	model	s of va	rious s	system	s and	analyz	e them				
Contribution of Course Outcomes		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
towards achievement of	CO1	H L H L H L H L													
Program Outcomes	CO2														
(M-Medium, H– High,L-Low)	CO3	Н	L			Н				L					
	CO4	Н	L			Н				L					

Course Content UNIT-I

Introduction:

Control system terminology, examples of simple control systems, open loop and closed loop control systems, effect of feedback on overall gain, stability, sensitivity, external noise; types of feedback control systems – linear, nonlinear, time invariant and time varying systems.

[Text Book-1]

[Text Book - 1]

Mathematical Models of Physical Systems:

Formulation of differential equations for electrical, mechanical and electromechanical systems-AC Servomotor and DC servomotor, transfer functions of systems ,analogous systems, characteristic equation of feedback systems, poles and zeros, block diagram representation of control systems, block diagram algebra, signal flow graph, Mason's gain formula.

UNIT-II

Time Domain Analysis:

Standard test signals – step, ramp, parabolic and impulse; Time response of first-order system to standard test signals, step response of second order system, time domain specifications, steady state error and static error constants.

Stability Analysis In Complex Plane:

Stability definitions, Stability study based on poles of closed-loop transfer function, Routh-

	Hurwitz criterion. Root locus concept, magnitude and angle conditions, properties and
	construction of the root loci (For positive K only)
	Basic Controllers :
	On-off, P, I, PI, PD and PID control actions, Designing of PID controllers – Ziegler-Nichols
	method.
	UNIT –III [Text Book-1]
	Frequency Domain Analysis:
	Introduction, frequency domain specifications, correlation between time and frequency
	response, polar plot, Bode plot, phase margin and gain margin - Principle of argument,
	Nyquist stability criterion
	Compensation Techniques :
	Introduction, Types of compensators, selection of compensator, Realization of basic
	compensators –Design of Lead and Lag Compensators
	UNIT IV [Text Book - 2]
	State Space Analysis:
	Concepts of state, state variables, State Model; State space equations, development of state
	models for Electrical, mechanical and electromechanical systems, State Space
	representation using Phase Variables, Decomposition of Transfer Functions,
	Diagonalization, solution of state equation, the state transition matrix and its properties,
	computation of STM by Laplace Transformation, Canonical Transformation, transfer
	function from state model, Eigen values and Eigenvectors ,Stability of a system by its State
	model, State Controllability and Observability of linear systems.
Text books and	Text Book(s):
Reference	[1] I.J.Nagrath & M.Gopal, "Control Systems Engineering", 5 th ed., New Age
books	publisher.
	[2] A.Ananda Kumar, "Control Systems", 2 nd ed., PHI, 2014.
	Reference Books:
	[1].K.Ogata, "Modern Control Engineering", 5 th ed., PHI publishers, 2010.
	[2].B.C.Kuo, "Automatic Control Systems with MATLAB programming", 7 th ed., PHI
	publishers.
E-resources and	[3] Schaum's Series, "Feedback and control systems", 2 nd ed., Tata Mc Graw Hill Ltd.
other digital	[1] www.nptel.ac.in/courses/108101037/
material	[2] www.dis.uniroma1.it/~lanai/controlsystems/cs_lectures_enhtml

Course Category:	Programme core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-1-0
Prerequisites:	Electronic Circuits–I	Continuous Evaluation:	30M
-	(14EE3302),	Semester end Evaluation:	70M
	Electronic Circuits–II	Total Marks:	100M
	(14EE3402), Network Analysis-		
	I (14EE3303)		

Course Outcomes		Upo	n succ	essful	comp	letion	of the	course	e, the s	studen	t will be	e able to):	
	CO1		lyze v circu		chara	cterist	ics of	op-am	p and	desigr	n differe	ent linea	ır op-	
	CO2		Analyze and design different nonlinear op-amp circuits and waveform generators.											
	CO3		Understand the concepts of various DACs and ADCs and design active filters suitable for various applications.											
	CO4		0	5 Tim tions.	er circ	uits,50	65PLL	and µ	A723	voltag	ge regul	ators ba	ised	
Contribution of Course Outcomes		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
towards achievement of	CO1	L	М		Н									
Program Outcomes	CO2		Н		Н									
(L – Low, M - Medium, H –	CO3		М		Н									
High)	CO4	L	Μ											
Course Content	Block Ideal of Op Outpurespo Lines Nega Volta opera	ration: c diag: Op-an o-Amp ut Off nse, st ar Ap tive fol age fol tion. ' conv	ram o mp, 7 o, Op- fset ve tabilit plicat eedbae llower The st	41 op Amp oltages y Freq ions o ck cor , Diffe ummir	ationa -amp a param s & cu uency f OP- ncept i erentian ng Am	& its f eters & urrents comp Amps n Op- ll amp plifier	eatures & Mea s, AC ensatio : Amps, lifier, o	s and s surem charac on and Inver commo	specif ent an cteristi Slew ting a on mo	icatior d com cs of rate. nd no de and	-types, hs, DC pensati Op-An n-invert l differe ier, AC	Cext Boo classifi characte on of In p, Free ting am ential m amplif	cation; eristics nput & quency plifier, iode of ier, V-	
			r App	olicati	ons of	OP-A	mps:				L	I CAT DU	5N-1,2J	

	Sample and Hold circuit, Log and antilog amplifiers, Precision diode, Applications- half-wave precision rectifier, full-wave precision rectifier, Peak value detector, clipper, clamper, Absolute value output circuit. Comparators and Wave Form Generators: Introduction to comparator, Basic comparator, comparator characteristics, Limitations of Op-Amps as comparators, Applications: zero-crossing detector, window detector, voltage limiters; Waveform generators- Oscillators, Schmitt Trigger, Square-wave Generator, Triangular wave Generator, saw tooth wave Generator.
	UNIT-III [Text Book-1,2]
	Active Filters: Active LP and HP filters, Sallen key LP and HP filters, Band pass filters – Wideband, Band pass and multiple feedback Band pass filters; Band stop filters, state variable filters, All pass filters. D/A and A/D Converters:
	Introduction, Basic DAC techniques - weighted resistor DAC, R-2R Ladder D/A converter; A/D conversion–parallel comparator type ADC, Counter type ADC, Tracking A/D converters, successive approximation ADC and Dual slope ADC,DAC and ADC Specifications.
	UNIT-IV [Text Book-1,2]
	Applications of Special ICS: The 555 timer- 555 as Mono-stable and Astable Multivibrator and applications; voltage controlled oscillator; Phase Locked loops- operating principles, Monolithic PLLs, 565 PLL Applications; IC Voltage Regulators.
Text books and	Text Book(s):
Reference books	 [1] Roy and Chowdhary, "Linear Integrated Circuits", 4th Edn., New Age International,2003 [2] Rama Kant A. Gayakwad, "Op-Amps and Linear Integrated Circuits",3rd ed., PHI, 1997
	 Reference Books: [1] Jacob, "Applications and Design with Analog Integrated Circuits", 2nd Edn., PHI, 1996 [2] Denton J Dailey, "Operational Amplifiers and Linear Integrated Circuits: Theory and Applications", Mc Graw Hill Ltd, 1989.
E-resources and other digital material	[1] www.analog.com[2] www.nptel.ac.in/video.php?subjectId=108106068[3] www.linkwitzlab.com/filters.htm

14EE3503- MICROCONTROLLERS AND DIGITAL SIGNAL PROCESSORS

Course Category:	Programme core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 1 - 0
Prerequisites:	Digital Circuits and Systems	Continuous Evaluation:	30M
	(14EE3306)	Semester end Evaluation:	70M
		Total Marks:	100M

Course outcomes	Upon successful completion of the course, the student will be able to:CO1Understand architecture and instruction set of 8051 Microcontroller												
outcomes	CO1	Unde	erstand	l archit	ecture	and ins	tructio	n set of	8051 1	Microc	ontroller		
	CO2	Develop code in embedded programming and interface various on-chip peripherals of 8051 Microcontroller											
	CO3 Program and Interface the various external peripherals to 8051Microcontroller												
	CO4	Unde	erstand	I the ar	chitect	ure of I	Digital	signal	process	or TM	S320F/C	28XX	
Contribution of Course Outcomes		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
towards achievement of	CO1		Н					М			L		
Program Outcomes	CO2	L	М					М					
(L – Low, M - Medium, H –	CO3	L	М					М					
High)	CO4		Н					М			L		
	Microp	process process	sor, Mor, Ov	licroco erview	ontrolle of 805	er and 51 fami	Gene	eral Co	ompari	son of	f Micro	f ext Boo	
	Microp Microp 8051 W Feature organiz Instruct Addres Instruct UNIT- 8051 A	process orocesso ficroco es of 80 zation. T ction S ssing M tion. A -II	sor, M or, Ove ontroll 051, A Pin de det of 8 fodes, ssemb	licrocc erview ler Ha rchitec scriptic 051: Data ler dire	ontrolle of 805 rdwar eture - on - inj Movin ectives	r and 51 fami e: On chi put/out g, Arit	Gene ily. p regis put pir thmetic ing :	sters ar as, port	nd spec s circu Logica	tial fun its and 1 Instr	f Microo ction reg function uctions,	controlle gisters, n ing. Jump ar Fext Bo o	er wit nemor nd Ca ok-1,2

	and control operation using SCON and SBUF registers, modes of operation of serial port and programming. Interrupts: Classification, priority, enabling/disabling of interrupts and programming.
	UNIT–III [Text Book-1,2] 8051 External Peripherals Interfacing:
	Data conversation device Interfacing: ADC-0808, DAC-0800, and programming. Interfacing of LED, Seven segment display, LCD, keyboard, stepper motor and sensors to 8051.
	UNIT–IV [Text Book-3]
	Basics of Digital Signal Processors: Basic architecture of TMS320F/C28XX, memory mapping and addressing modes, Key instruction set of TMS320F/C28XX, number format, peripherals, simple programming.
Text books and Reference books	Text Book(s): [1] Ayala, Kenneth J., 'The 8051 Microcontroller Architecture, Programming and Applications', Penram International.
	 [2] M.A.Mazidi, J.G.Mazidi, R.D.Mc Kinlay, 'The 8051 Microcontroller and Embedded Systems using Assembly and C', Pearson Education. [3] TMS 320F/C28XX users guide.
	Reference Books:
	[1] Subrata Ghoshal, '8051 Microcontroller: Internals, Instructions, Programming and Interfacing', Pearson Education.
	 [2] A.V.Deshmukh, "Microcontrollers Theory and Applications", Tata McGraw Hill. [3] B. Venkataramani, M. Bhaskar, Digital signal processors Architecture, programming and applications, TMH publications
E-resources and other digital material	www.ti.com/lit/ug/spru307a/spru307a.pdf

14EE3504 – SYNCHRONOUS & SPECIAL MACHINES

Course	Programme Core	Credits:	3
Category:			
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 1 - 0
Prerequisites:	DC Machines(14EE3305),	Continuous Evaluation:	30M
_	Transformers and Induction Motors	Semester end Evaluation:	70M
	(14EE3405),	Total Marks:	100M
	EMF Theory(14EE3404)		

Course Outcomes		Upon successful completion of the course, the student will be able to:												
	CO1	Unde	erstan	d the c	onstru	ctional	& ope	rationa	al featu	res of s	synchron	ious mac	hines	
	CO2		Analyze the winding factors, induced emf, factors effecting the regulation and regulation methods of synchronous generators											
	CO3	Analyze parallel operation of alternators												
	CO4	1		he star s moto	•	ethods	of syn	chrono	ous mo	tors &	analyze	the beh	avior of	
Contribution of Course Outcomes		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
towards achievement of	CO1		М	Н		Н		Н			М			
Program Outcomes	CO2	Μ	Н			Μ		Н						
(L – Low, M - Medium, H –	CO3	Н	Н			Н		Н						
High)	CO4	М	Н			Н		Н						
Course Content	Const factors armation of de efficies UNIT Analy Blond regula Paral Condi	Tronou ruction s, harm ure rea termin ency. TI vsis of el's tw tion of llel Op tions, c, expr	n, Diffe nonics ction, ing re Salien vo rea f salien Salien Synch ression	in ge synchr gulatic t Pole action at pole n: ronizin for p	Machi methoo machin machin machin	l volta impeda direct ne: d for nes. n infini power	ge and ance, v load, salient te bus c angle	d their rector o EMF, pole bars, e char	suppr liagran MMF machin synchr acteris	ession, n, load , ZPF ne, pha onizing tics, sl	armatur characte and A asor dia g curren hort circ	al flux, y re leakag eristics, r SA, loss [Text B gram, sl t, synchricuit on	ge flux, nethods ses and Book-1] lip test, conizing 3-phase	

	UNIT III [Text Book-1] Synchronous Motors: Theory of operation, starting methods, phasor diagrams, variation of current and power factor with excitation - minimum and maximum power for a given excitation and power circles (Qualitative treatment), V and inverted V curves, hunting – its prevention, synchronous condenser and its application. UNIT – IV [Text Book-1] Special Machines: Principle of operation, characteristics and applications of reluctance motor, hysteresis motor, AC series motors Stepper motors -Permanent magnet stepper motor, Variable reluctance stepper motor and hybrid stepper motor, static & dynamic characteristics of stepper motor and their applications.
Text books and Reference books	 Text Book(s): [1] J B Gupta , "Theory & Performance Of Electrical Machines" S. K. Kataria & Sons, 01-Jan-2009. [2] D.P.Nagarath & I.J.Kothari , "Electric Machines" ,7th ed., TMH, 2005 Reference Books: [1] A.E.Langsdorf , "Theory of A.C Machines by", TMH [2] P.S.Bimbra , "Electrical Machines ", Khanna Publishers [3] A.E.Fitzerald,Charles Kingsley,Jr."Electric Machinery" Tata Mc. Graw Hill Education Pvt. Ltd, New Delhi , 6th ed., 2009.
E-resources and other digital material	http://nptel.ac.in/courses/108102046/#

Institutional Elective

- 1. 14EE2505/1-GENERATION AND UTILIZATION OF ENERGY
- 2. 14EE2505/2 ENERGY AUDIT
- 3. 14EE2505/3- RENEWABLE ENERGY SYSTEMS
- 4. 14EE2505/4 SOLAR PHOTOVOLTAICS

14EE2505/1 – GENERATION AND UTILIZATION OF ENERGY

Course	Institutional Elective	Credits:	4
Category:			4
Course Type:	Theory	Lecture - Tutorial - Practice:	4 - 0 - 0
Prerequisites:		Continuous Evaluation:	30M
_		Semester end Evaluation:	70M
		Total Marks:	100M

Course Outcomes		Upor	n succ	essful	compl	etion	of the	course	e, the s	tudent	will be	e able to):
outcomes	CO1			d the Energ	-	pts of]	Non C	onven	tional	and	Conven	tional	
	CO2	Understand the concepts of Economics of generation											
	CO3	Und	Understand the concepts of Electric Heating and Welding										
	CO4	Und	erstan	d the	conce	pts of	Illumi	natior	n Engii	neerin	g		
Contribution of Course Outcomes		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
towards achievement of Program	CO1	M							М	L			
Outcomes (L – Low, M - Medium, H – High)(L	CO2	М				М							
– Low, M - Medium, H – High)	CO3	M				М				L			
	CO4	M				М				L			
Course Content	UNIT- Non Co Introd Steam	onvent uction,	Princi	ples of	Wind	power	, Geotl	hermal	Power	-	energy,	[Text B Hydro	_
	UNIT-											[Text B	ook-1]
	Econor Introdu Electric	uction,	Definit	tions, L						-		n units ,	Cost of
	UNIT– Electri		no and	l Weld	ino:							[Text B	ook-1]
	Introdu Design	ction , of he , Ind	Metho ating e uction	ods of elemen heating	Elect t, Tem	peratui	re cont	rol of	resista	ince fi	irnace ,	eating m Electric tance w	cal arc

	UNIT-IV [Text Book-1] Illumination Engineering: Introduction , The nature of radiation, definitions , polar curve, Law of Illumination, Luminous efficacy, Photometer , Lumen or flux method of calculations, The electric lamp flood lighting and calculations, Street lighting and Design of choke and capacitor.
Text books or Reference books	Text Book(s): [1] C. L. Wadhwa, "Generation, Distribution and Utilization of Electrical energy", Revised ed.,New Age International Pvt.Ltd Publishers, 2005.
	Reference Books: [1] S.Sivanagaraju, M.Bala Subba Reddy and D.Srilatha, " Generation and Utilization of Electrical Energy ", Pearson Publisher, 2010.
E-resources and other digital material	[1] <u>http://nptel.ac.in/video.php?subjectId=108102047</u> [2] <u>http://nptel.ac.in/courses/108105058/</u>

14EE2505/2 – ENERGY AUDIT

Course Category:	Institutional Elective	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	4 - 0 - 0
		Continuous Evaluation:	30M
Prerequisites:		Semester end Evaluation:	70M
1		Total Marks:	100M

Outcomes		Upon successful completion of the course, the student will be able to:											
	CO1	Unde	erstan	d the	conce	pts of	energ	y audi	t, inst	rument	S		
	CO2	Anal	yze de	eprecia	ation r	netho	ds.						
	CO3	Anal	Analyze energy efficient transformers & motors										
	CO4	Anal	yze di	stribu	tion sy	stems	s & en	ergy e	efficie	nt light	ting syst	tems	
Contribution of Course Outcomes		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
towards achievement of	CO1	Н			Н	Н	L				L		
Program Outcomes	CO2	Н			Н	Н	L				L		
(L – Low, M - Medium, H –	CO3	Н			Н	Н	L				L		
High)	CO4	Н			Н	Н	L				L		
	- Saili	cey diag	grams.				05	,	Ċŗ			lex – pie	
	UNIT Energ Introd	-II gy Econ luction-	omics Cost b	enefit Reduc	ing bal	nalysis ance d	-Payba	ck per ation-N	iod-Str Net pre	aight li	ne depre ue metho	[Text B ciation-S	ook-2 Sinking

Text books and Reference books	 Text Book(s): [1] Wayne C.Turner, "Energy management Hand book", 8th ed., John wiley and sons. [2] S.C. Tripathy, Electric "Energy Utilization and Conservation", Tata McGraw Hill, 1991.
	Reference Books:
	 [1] John C. Andreas, "Energy efficient electric motors selection and application". [2] Amit kumar Tyagi, "Hand book on Energy Audit and Management", TERI(Tata energy research Institute). [3] Paul W.O. Callaghan, "Energy Management", McGraw hill Book Company. [4] Rakosh Das Begamudre, "Energy conversion systems", xth ed., new age international publishers. [5] W.R.Murphy & G.Mckey Butterworths, "Energy Management", new age international publishers). [6] Kurose and Ross, "Computer Networks – A Top-down Approach Featuring the Internet", 'Pearson Education.
E-Resources and other digital material	[1] BEE Reference book: no.1/3/4. <u>www.bee-india.com</u>

14EE2505/3 RENEWABLE ENERGY SYSTEMS

Course Category:	Institutional Elective	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	4 - 0 - 0
Prerequisites:	Environmental Studies	Continuous Evaluation:	30M
		Semester end Evaluation:	70M
		Total Marks:	100M

Course		Upoi	n succe	essful	compl	etion o	of the	course	e, the s	tudent	will be	able to	•	
Outcomes	CO1	Und	Understand the concepts of Solar Energy											
	CO2	Und	Understand the concepts of Wind Energy											
	CO3	Und	Understand the concepts of Bio-Energy Understand the concepts OTEC, Tidal, Geothermal and Hydro											
	CO4	Und												
Contribution of Course		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
Outcomes	CO1	М					М		М					
towards achievement of	CO2	M					М		М					
Program Outcomes	CO3	Μ					М		М					
(L – Low, M - Medium, H – High)	CO4	М					М		М					
Course Content	UNIT Solar	Ğ−I Energ	y:	:	•	1	•	•	•	•	[Text Bo	ok-1,2]	

Solar Radiation – Measurements of solar Radiation and sunshine – Solar Thermal Collectors – Flat Plate and Concentrating Collectors – Solar Applications – fundamentals of photo Voltaic Conversion – Solar Cells – PV Systems – Solar PV Applications - Solar PV Power generation schemes.

UNIT – II

Wind Energy:

Energy available from wind, General formula, Lift and drag – Wind Energy Conversion Systems – Horizontal axis and Vertical axis rotors, Determination of torque coefficient, Wind Energy generators and its performance – Wind Energy Storage – Applications – Hybrid (WIND & SOLAR) systems.

[Text Book-1]

[Text Book-1]

UNIT – III

Bio-Energy:

Biomass, Biogas, Source, Composition, Technology for utilization – Biomass direct combustion – Biomass gasifier - pyrolysis and liquefaction – Biogas plant - biochemical conversion: anaerobic digestion, alcohol production from biomass - chemical conversion process: hydrolysis and hydrogenation – Digesters – Ethanol production – Bio diesel

	production and economics.
	UNIT-IV [Text Book-1]
	OTEC, Tidal, Geothermal and Hydro:
	Tidal energy – Wave energy – Data, Technology options – Open and closed OTEC Cycles
	- Small hydro, turbines - Geothermal energy sources, power plant and environmental
	issues.
	New Energy Sources:
	Hydrogen, generation, storage, transport and utilization, Applications: power generation, transport – Fuel cells – technologies, types – economics and the power generation
Text books and Reference books	 Text Book(s): [1] G.D. Rai, "Non Conventional Energy Sources", Khanna Publishers, New Delhi, 1999 [2] S.P. Sukhatme, "Solar Energy", Tata McGraw Hill Publishing Company Ltd., New Delhi, 1997.
	 Reference Books: [1] Godfrey Boyle, "Renewable Energy- Power for a Sustainable Future", Oxford University Press, U.K., 1996. [2] Twidell, J.W. & Weir, A., "Renewable Energy Sources", EFN Spon Ltd., UK, 1986. [3] G.N. Tiwari, "Solar Energy – Fundamentals Design, Modelling and applications", Narosa Publishing House, New Delhi, 2002. [4] L.L. Freris, "Wind Energy Conversion systems", Prentice Hall, UK, 1999
E-Resources and other digital material	

14EE2505/4 SOLAR PHOTOVOLTAICS

Course	Institutional Elective	Credits:	4
Category:			
Course Type:	Theory	Lecture - Tutorial - Practice:	4 - 0 - 0
Prerequisites:	Basic Electrical	Continuous Evaluation:	30M
	Engineering(14EE1205), Basic	Semester end Evaluation:	70M
	Electronics(14EC1206), Environmental	Total Marks:	100M
	Studies(14EN1306)		

Course Outcomes		Upor	Upon successful completion of the course, the student will be able to:										
	CO1	1 Understand the Concepts of Solar Cell											
	CO2	Unde	Understand the Solar Cell Characteristics										
	CO3	Unde	Jnderstand the concept of Solar Radiation and photovoltaic modules										
	CO4	Desi	gn cor	cepts o	of Sola	ar Phot	o Volta	aic Sys	tems				
Contribution of Course		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Outcomes towards	CO1	Н	L	L			М		L	M			
achievement of Program	CO2	Н	L	L			М		L	М			
Outcomes (L – Low, M -	CO3	Н	L	L			М		L	М			
Medium, H – High)	CO4	Н	L	L			М		L	М			

Course Content

Introduction to Solar Cells:

PN junction diode, PN junction equilibrium condition-Space charge region, Energy band diagram of PN junction, PN junction potential ,Width of depletion region. Carrier Movements and current densities. PN junction under illumination-Generation of photo voltage, light generated current, Types of Solar Cells.

UNIT II

UNIT I

Solar Cell Characteristics and Performance:

Solar cell characteristics - I-V relation of solar cells, P-V Characteristics. Limits of cell parameters-short circuit current, open circuit voltage, Maximum Voltage, Current Maximum, Power Maximum, Fill factor, Efficiency, losses in Solar cells – Simple Calculation in Efficiency of Solar Cell.

Unit III

Solar Radiation and photovoltaic modules:

Sun and earth movement- Declination angle, apparent motion of the sun and solar altitude. Angle of Sun rays on Solar Collector; **sun Tracking,** Solar PV modules from Solar Cells, Series connection, Parallel connection –Mismatch in Series and Parallel Connections,

[Text Book-1]

[Text book -1]

[Text book -1]

	Feedback diode, PV module power output.
	Unit IV [Text book -1] Solar Photo Voltaic System Design and Applications: Introduction to solar PV systems, Standalone PV system configuration, Standalone System with battery and AC (or) DC load, Grid connected PV systems Configuration - Working of a Grid Connected System. Example-single stage grid connected- Simple Problems related to Design of Standalone PV system and Grid connected PV systems
Text books and Reference books	Text Book(s): [1] Chetan Singh Solanki, "Solar Photovoltaics: Fundamentals, Technologies and Applications", 2 nd ed., PHI, 2011.
	Reference books: [1] B.H.Khan, " Non Conventional Energy Resources",2 nd ed.,McGraw Hill Education private limited,New Delhi,year 2009.
E-Resources and other digital material	www.nptel.ac.in Prof.S. Benerjee, "Solar PhotoVoltaics" Dept of Electrical Engineering I.I.T,Kharagpur

INDEPENDENT LEARNING

14EE5506A - ILLUMINATION ENGINEERING										
Course Category:	Independent Learning	Credits:	3							
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0 - 0							
Prerequisites:		Continuous Evaluation:	30M							
		Semester end Evaluation:	70M							
		Total Marks:	100M							

Course Outcomes		Upon successful completion of the course, the student will be able to:											
	CO1	Acqui	Acquire Knowledge on illumination.										
	CO2	Acquire Knowledge on various light sources.											
	CO3		Ability to apply the Knowledge of illumination to the design of interior and exterior lighting.										
	CO4	Under	rstand th	ie Kno	wledg	ge abo	ut the	meas	ureme	nts an	d prote	ctions.	
Contribution of Course Outcomes		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
towards achievement of	CO1	Н	L	L		Н			L	M			
Program Outcomes	CO2	Н	L	L		Н			L	М			
(L – Low, M - Medium, H –	CO3	Н	L	L		Н			L	М			
High)	CO4	Н	L	L		Н			L	M			
Course Content	UNIT	_I luction			<u> </u>		<u></u>		<u> </u>	<u> </u>	[T]	ext Boo	ok-1]
Course Content	UNIT Introd Radiat day lig UNIT Illumi Lumin point,	luction tion, color ght, incar –II fination S naries, w line a	or, eye a ndescent Sources: viring Sw and surf and glare	ind visi , electr vitching face s	ic disc g and c sources	fferent harge, control	fluores circuit	scent, a ts, Law y and	rc lam of illu d spee	ps and	ystems; Lasers. [T ion; illu	Light so ext Boo minatio	ources; ok-1] n from
Course Content	UNIT Introd Radiat day lig UNIT Illumi Lumin point, Enviro UNIT Lighti Interio theaten Exterio	luction tion, color ght, incar -II ination S naries, w line a onment a -III ing App or lighting r and hose or Light	or, eye a ndescent Sources: viring Sw and surf and glare lications ng- indu	und visi , electr vitching face s , Gener ustrial, d, stree	g and c sources ral illur reside	fferent harge, control , Pho minatio ential, ation a	fluores circuit otometr on and office nd tran	scent, a ts, Law y and design depar	rc lam 7 of illu d spect. tmenta lightin	aps and uminat ctropho al stor-	ystems; Lasers. [T ion; illu otometry es, indo	Light so e xt Boo minatio y; phot [Text B por st r displa	ources; ok-1] n from tocells, ook-2] adium,

	Measurement and Protections Utility services for Large building/office complex and layout of different meters and protection units. Different type of loads and their individual protections. Selection of cable/wire sizes; potential sources of fire hazards and precautions. Emergency supply- standby and UPS. a specific design problem on this aspect.
Text books and Reference books	 Text Book(s): [1] Joseph B. Murdoch, "Illumination Engineering from Edison's Lamp to the Laser", 2nd Edition, Visions Comm., 1994. [2] Ronald N. helms, M. Clay Beicher, "Lighting for Energy efficient Luminous Environments", Prentice Hall,1991. [3] Jack L. Lindsey, "Applied illumination Engineering" The Fairmont Press Inc., 1991 References Books: [1] Marc Schiler, "Simplified Design of Building Lighting" John Wiley and Sons, 1992. [2] IES Lighting Handbook, 8th Edition, 1993
E-resources and other digital material	[1] <u>http://www.nptel.ac.in</u> <u>Prof N.K.Kishore, "Illumination Engineering (web Course)", IIT Kharagpur.</u>

14EE5506B – POWER ELECTRONICS AND DISTRIBUTED GENERATION

Course Category:	Independent Learning	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0 - 0
Prerequisites:		Continuous Evaluation:	30M
		Semester end Evaluation:	70M
		Total Marks:	100M

Course Outcomes		Upon	Upon successful completion of the course, the student will be able to:										
outcomes	CO1	Unde	rstand th	ne Con	cepts	in dis	tributi	on sys	stems.				
	CO2	Unde	Understand the Behavior of Intentional and unintentional islanding,										
	CO3	Unde	Understand the Concepts of Selection of power converter components.										
	CO4		rstand t		-		ower	qualit	ty, an	d rece	ent tren	ds in	power
Contribution of Course Outcomes		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
towards achievement of	CO1	Н		L		L				M		М	
Program Outcomes	CO2	Н		L		L						М	
(L – Low, M - Medium, H –	CO3	Н		L		L						M	
High)	CO4	Н		L		L	i			M		М	
	Distrib distrib reclose sequer system SCR b	buted Coution services, second control of the second control of th		n (DC Radia rs. Per- istribut rdinatio	6) - C l distr -unit a ion sys	Overvie ibution nalysis stem c	n syst s, fault ompor	em pr analy nents. 1	rotectio sis, se Implica	on: Fu quence ations	ise, cire e compo of DG o ource sv	onent ar on distr witching	eakers nalysis ibutio g usin
	Relay Distrib	system protection coordination. Power quality requirements and source switching SCR based static switches. UNIT–II [Text Book Relaying and Protection] Distribution system loading, line drop model, series voltage regulators and on line changers. Loop and secondary network distribution grids and impact of DG oper Relaying and protection, distributed generation interconnection relaying, sensing CTs and PTs. Intentional and unintentional islanding of distribution systems. Passiv active detection of unintentional islands, non detection zones. DG planning, implications of power quality, cost of energy and net present value calculations											

	UNIT-III [Text Book-2] Power converter topologies Power converter topologies and model and specifications for DG applications. Capacitor selection, choice of DC bus voltage, current ripple, capacitor aging and lifetime calculations. Switching versus average model of the power converter and EMI considerations in DG applications. Semiconductor device selection, device aging due to thermal cycling, and lifetime calculations.
	UNIT-IV [Text Book-1,2]
	Power quality issues Issues in output ac filter design, filter inductor selection. Insulation aging issues. Packaging issues in the power converter. Calculation of damage due to thermal cycles. Thermal impedance models. Control of DG inverters, phase locked loops, current control and DC voltage control for stand alone and grid parallel operations. Protection of the converter. Complex transfer functions, VSI admittance model in DG applications. Power quality implication, acceptable ranges of voltage and frequency, flicker, reactive power compensation, and active filtering and low voltage ride through requirements.
Text books and Reference books	 Text Book(s): [4] Technical literature – papers published in power electronics related journals and IEEE standards. [5] Arthur R. Bergen, Vijay Vittal, Power Systems Analysis, Prentice Hall, 1999. References Books: [3] Ned Mohan, Tore M. Undeland, William P. Robbins, Power Electronics: Converters, Applications, and Design; Wiley, 2002.
E-resources and other digital material	[2] <u>http://www.nptel.ac.in/courses/108108034/</u> Dr. Vinod John," Power Electronics and Distributed Generation" Department of Electrical Engineering IISc Bangalore, India.

14EE3507 – POWER SYSTEMS-I

Course Category:	Programme Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0 - 0
Prerequisites:	Network Analysis I(14EE3303) &	Continuous Evaluation:	30M
-	Network Analysis II(14EE3403)	Semester End Evaluation:	70M
	, ()	Total Marks:	100M

Course Outcomes		Upon successful completion of the course, the student will be able to:											
	CO1	Unde	rstand	the con	ncepts	ofec	onomi	ic pow	ver gen	neratio	n		
	CO2	Eluci	Elucidate conventional generating plants										
	CO3	Descr	Describe the electrical substations and grounding										
	CO4	Analy	yze AC	and D	C dist	ributic	on syst	tems					
Contribution of Course Outcomes		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
towards achievement of	CO1	Μ				Н		Н	М				
Program Outcomes	CO2			Н				Н	М		L		
(L – Low, M -	CO3					Н		Н					
Medium, H – High)						тт							
	Econo	mical A mics of	Aspects: generatits. Signif			•		•	-		of gene	,	size of

	Introduction to nuclear physics-Nuclear reactions-feasibility of nuclear power station-main parts of reactors and their functions-types of reactors-BWR, PWR and CANDU reactors. Gas Power Stations: Simple gas turbine plant-methods to improve thermal efficiency.
	UNIT III [Text Book-1&2] Substations:
	Classification of substations: Air insulated substations - Indoor & Outdoor substation Sub-stations layout – location & description of all the substation equipment. Bus bar arrangements :
	Single bus bar, sectionalized single bus bar, main and transfer bus bar system with relevant diagrams. Grounding:
	Ungrounded neutral systems-other methods of non effective grounding-grounding practices-tolerable limits of body currents, soil resistivity and earth resistance.
	UNIT IV[Text Book-1&2]A.C & D.C. Distribution Systems:Introduction and Classification of Distribution Systems.D.C. Distribution Systems:
	 Voltage Drop Calculations (Numerical Problems) in D.C Distributors for the following cases: Radial D.C Distributor fed at one end and at both the ends (equal/unequal Voltages uniformly distributed loads and concentrated loads) and Ring Main Distributor. A.C. Distribution Systems: Voltage Drop Calculations (Numerical Problems) in A.C. Distributors for the following cases: Power Factors referred to receiving end voltage and with respect to load
Text books and	voltages.(only for concentrated loads). Text Book(s):
Reference books	 M.L.Soni, P.V.Gupta, U.S.Bhatnagar and A.Chakraborti, "Power System Engineering", Dhanpat Rai & Co. Pvt. Ltd. V.K Mehta and Rohit Mehta, "Principles of Power Systems" S.Chand & Company Ltd., New Delhi.
	 Reference Books: [1] S.N.Singh , "Electrical Power Generation, Transmission and Distribution", PHI 2003. [4] C.L.Wadhwa, "Electrical Power systems ", New Age international Publishers
E-resources and other digital material	[1] C.D. Wadnwa, Electrical Fower systems , New Age international Fublishers

14EE3551 - AC MACHINES LABORATORY

Course Category:	Programme core	Credits:	2
Course Type:	Practical	Lecture - Tutorial - Practice:	0 - 0 - 3
Prerequisites:	Transformers and Induction	Continuous Evaluation:	30M
	Machines(14EE3405)	Semester end Evaluation:	70M
	Synchronous and Special machines (14EE3504)	Total Marks:	100M

Course	Upon	succe	essful o	comple	etion o	f the c	ourse,	the st	udent	will be	able to	:	
Outcomes	CO1	Desig	n and o	conduct	t experi	iment.							
	CO2	CO2 Analyze and present experimental results.											
	CO3 Exhibit professional behavior												
Contribution of Course		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Outcomes towards	CO1		Н	L	Н								
achievement of Program Outcomes	CO2				Н			Н					
(L – Low, M - Medium, H – High)	CO3				Н			Н					
Course Content	List o	of Expe			14								
		2: 3: 4: 5: 6: 7: 8: 9: 10 11 12 12 14 13	 Regu Meason Synce Paral V and Synce conse Sepa Sepa Sepa Sepa Load Harn Paral Load Simu 	Ilation Ilation Sureme Ihroniza Ilel ope d inver Invertion tant loa ration ration cration cration l test or nonics Ilel ope I test or Ilation	of alter of alter nt of X ation of ration of ted V c is moto of core of losse n Induc analysi ration of of unive of ac m	nator b nator b and X f alternation of two a curves of r perfo e losses es in 3-j tion ge s of tra of two- ersal mo-	y ZPF X_q of a 2 ator with synchroeof synch of synch rmance in sing phase in nerator nsform 3phase	method 3 - phas th infin onous r hronou e i) Wit gle-phas nductic er transfo MULI	l se altern ite bus nachine s motor h const se trans on motor ormers	nator es ant exc former r	t mmf m		

NOTE: In all laboratories a minimum of 10 experiments are to be completed.

14EE3552 – ELECTRONICS & WORKSHOP LAB-II									
Course Category:	Program core		Credits:	2					
Course Type:	Practical	Lecture - T	Sutorial - Practice:	0 - 0 - 3					
Prerequisites:		Conti	nuous Evaluation:	30M					
		Semeste	er end Evaluation:	70M					
			Total Marks:	100M					

ECTRONICO & WORKSHORT AR

Course Outcomes		Upon successful completion of the course, the student will be able to:											
	CO1	Analyze various characteristics of op-amp and design different linear and non- linear op-amp circuits and Waveform generators.											
	CO2	Design active filter circuits suitable for particular application.											
	CO3	Design 555 Timer circuits and voltage regulators.											
	CO4	Design DAC using IC 741											
Contribution of Course Outcomes towards achievement of Program Outcomes (L – Low, M – Medium, H – High)		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	L	М		Н								
	CO2				Н								
	CO3				Н								
Course Content	LIST OF EXPERIMENTS												
	 Electronics Laboratory Measurement of Op-amp parameters Applications of Op-amp -Adder, subtractor, comparator Realization of Integrator & differentiator using opamp Realization of Instrumentation amplifier using opamp Waveform generation using opamp (square, triangular) Design of Clipper and Clamper circuits using opamp Design of active filters using opamp (LPF & HPF-first order) IC 555 Timer Monostable operation circuit IC 555 Timer Astable operation circuit Schmitt trigger using IC 555 Timer IC 565 PLL Applications Three terminal Voltage regulators IC 7805 Design of IC Regulator using 723 D/A converter(R-2R ladder) 												

 Workshop Laboratory: 1. Design and Fabrication of low rated transformers upto 500VA 2. PCB Fabrication 3. Trouble shooting of Relays 4. Trouble shooting of Heater , Electric iron and Fans 5. To Study DC motor starters 6. To Study AC motor starters 7. Trouble shooting of induction motor
 Text Book(s): [1] Roy and Chowdhary, "Principles of Integrated Circuits", 2nd Edn., New Age International, 2003. [2] Rama Kant A. Gayakwad, "Op-Amps and Linear Integrated Circuits", 3rd Ed., PHI, 1997.
www.allaboutcircuits.com.

NOTE: In all laboratories a minimum of 10 experiments are to be completed.

14EE3601 FUNDAMENTALS OF DIGITAL SIGNAL PROCESSING

Course	Programme core	Credits:	4
Category:			
Course Type:	Theory	Lecture - Tutorial - Practice:	4 - 1 - 0
Prerequisites:	Complex Analysis and	Continuous Evaluation:	30M
	Numerical	Semester end Evaluation:	70M
	Methods(14MA1301)	Total Marks:	100M

Course Outcomes		Upor	succe	essful	compl	etion o	of the o	course	, the s	tudent	will be	e able to	D:
Outcomes	CO1	Ident	ify and	Categ	orize (liscrete	time s	ystems	5.				
	CO2	Analyze discrete systems using Z transforms.											
	CO3	Appl	Apply DFT to discrete systems and evaluate DFT using Fast Fourier and Transforms.										
	CO4	Desig	Design FIR and IIR filters and Realize digital filters										
Contribution of Course Outcomes		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
towards achievement of	CO1	Н				Н		Н					
Program Outcomes	CO2	Н						Н					
(M-Medium, H– High,L-Low)	CO3	Н				Н		Н					
	CO4	Н				Н		Н					
	time s Z-Tra Z-trar betwe Cauch	signals ansform sforms en Z-tany's int	and sys ns : , Regi ransfor egratio	stems on of m and n theor	conver Fourie	rgence, er tran artial fr	Z-transform	nsform of a so methoo	theore equenc d, Long	ems an e, Inve g divisi	presenta ad prope erse Z-ti on meth nse of a	erties, R ransforn od, Solu	celation n using ution of
	DFT Discred DFT,	NIT II [Text Book - 2] FT and FFT: iscrete Fourier Series, Properties of DFS, Discrete Fourier Transform, Properties of FT, Linear convolution using DFT, Computations for evaluating DFT, Decimation in ne FFT algorithms, Decimation in frequency FFT algorithm, Computation of inverse FT.								rties of ation in			
	Introd impul biline	filter D luction, se Inva	Prope riance sforma	rties of metho tion, I	f IIR fi ds; De mpulse	sign of invar	Digita	al Butt	erwortł	n and C	[' lear tran Chebysh ods. De	ev filter	ion and s using

	UNIT – IV [Text Book - 2] FIR Filter Design Techniques:
	Introduction to characteristics of linear phase FIR filters, Frequency response, Designing FIR filters using windowing methods: Rectangular window, Hanning window, Hamming window, Generalized Hamming window, Bartlett triangular window, Comparison of IIR and FIR filters.
	Realization of Digital Filters:Direct, Canonic, Cascade, Transposed, Parallel and Ladder realizations
Text books and Reference books	 Text Book: [1] Alan V Oppenheim and Ronald W Schafer, "Digital Signal Processing, Pearson Education", PHI, 2004 (UNIT-I) [2] Proakis, J. Gard and D. G. Manolakis, "Digital Signal Processing : Principals Algorithms and applications", 3rd ed., PHI, 2003 (Unit-II, III, IV)
	 Reference Books: [1] M.H.Hayes, "Digital Signal Processing", TMH [2] P.Ramesh Babu, "Digital Signal Processing", 2nd ed., Scitech Publications, 2004. [3] S K Mitra, "Digital Signal Processing: A Computer Based Approach", 2nd., ed., TMH, 2003 [4] S.Salivahanan, "Digital Signal Processing", TMH,2000.
E-resources and other digital material	[1] www.dsptutor.freeuk.com [2] <u>https://nptel.iitm.ac.in/courses/Webcourse contents/ IITKANPUR/ Digi_Sign_Pro/</u> ui/ About-Faculty.html

14EE3602 – POWER ELECTRONICS

Course Category:	Programme core	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	4 - 1 - 0
Prerequisites:	Electronics Devices & Circuits	Continuous Evaluation:	30M
	(14EE3302),	Semester end Evaluation:	70M
	Network Analysis- I (14EE3303),	Total Marks:	100M
	Network Analysis- II		
	(14EE3403).		

Course Outcomes		Upo	n succ	essful	comp	letion	of the	cours	e, the	studen	t will be	e able to):
	CO1	Understand the theory of various power electronic devices.											
	CO2	Anal	Analyze the operation of phase controlled converters.										
	CO3	Eluc	Elucidate the operation of various DC & AC choppers.										
	CO4	Anal	yze the	e opera	tion of	various	Inverte	ers.					
Contribution of		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course Outcomes towards	CO1	Н	Н			M		М					
achievement of Program	CO2	Н	Н			Н		Н				Н	
Outcomes (L – Low, M -	CO3	Н	Н			Н		Н					
Medium, H – High)	CO4	Н	Н			Н		Н					
Course Content	UNIT	'I					-		-			[Text h	ook-1]
	charac circuit conne Chara	cteristie ts (U ctions cteristi	cs – T JT Fin of SC ics of u	wo tra ring ci R's – l unconti	nsistor rcuit)- Protecti rolled &	analog Dynar ion Tec & fully	gy - Tu mic ch chnique	urn on aracter s-Ratiu lled sw	and tristics	urn of of SC an SCR	tion of f methoo R -Seri L –Nume t diode, I	ds - SCl es and crical pro	R firing parallel oblems-
	UNIT											[Text b	ook -1]
	Introd single Freew contro	uction - phas heelin	- Per se Half g Dioo nidpoir	f wave de -Nu nt & b	nce par contro merica pridge	lled Re l probl convert	ectifier ems-Pr ters wit	with R inciple th R, l	, RL, a s of sin RL and	nd RL ngle ph l RLE	mutation E load w hase full load wi problem	vithout a wave an ithout an	nd with nd semi nd with

converters -Three pulse and six pulse converters with R, RL loads- Effect of source

	inductance- single phase Dual converters - Numerical Problems.
	UNIT III: [Text book -1]
	Choppers:
	<i>DC Choppers:</i> Introduction –Forced Commutation methods - Time ratio control and Current limit control strategies – chopper classification- Buck converter-Boost converter- Buck -Boost converter-minimization of ripple with volt-sec balance, Four quadrant Chopper operation. <i>AC Choppers:</i> AC voltage controllers – Single phase two SCRs in anti parallel– With R and RL loads– TRIAC ac voltage controller with R and RL loads – Derivation of RMS load voltage, current and power factor -Numerical problems.
	UNIT – IV [Text book -1] Inverters:
	Inverters. Inverters. –Classification of inverters (VSI & CSI) - single phase voltage source bridge inverters with R, RL and RLC loads- single phase current source inverters-comparison between VSI & CSI - Three phase VSI (180,120 Degree conduction modes) - Voltage control techniques for inverters Pulse width modulation techniques –Single pulse width modulation-Multiple pulse width modulation –sinusoidal PWM- comparison of PWM Techniques- Numerical problems.
Text books	Text Book:
and Reference books	 P.S.Bimbhra,"Power Electronics Circuits, Devices and Applications", Khanna Publishers M. D. Singh & K. B. Kanchandhani, "Power Electronics", TMH, 1998.
	 Reference Books: [1] Ned Mohan, Tore M. Undeland, William P. Robbins, "Power Electronics Converters, Applications, and Design," 3rd Edition, Wiley Publications. [2] M. H. Rashid, "Power Electronics: Circuits, Devices and Applications", 3rd ed., , Pearson publications [3] V.R.Murthy, "Power Electronics", 1st ed., Oxford University Press, 2005 [4] P.C.Sen, "Power Electronics", Tata Mc Graw-Hill Publishing.
E-resources and other digital material	www.nptel.ac.in/courses/108101038/

14EE3603 – ADVANCED CONTROL	SYSTEMS
-----------------------------	---------

Course	Programme core	Credits:	3
Category:			
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 1 - 0
Prerequisites:	Linear Control Systems(14EE3501)	Continuous Evaluation:	30M
		Semester end Evaluation:	70M
		Total Marks:	100M

outcomes		Upor	1 succ	essful	comp	oletion	of the	e cour	se, the	e stude	nt will b	be able	to:
	CO1	Desig	Design control systems using state feedback.										
	CO2	Ana	Analyze nonlinear control systems using describing function.										
	CO3	Dete	Determine the stability of nonlinear systems using Lyapunov's method.										
	CO4	Expla	ain fuz	zzy set	theory	and de	esign c	ontrol	lers usi	ng Fuz	zy logic.		
Contribution of Course Outcomes		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
towards achievement of	CO1	Н						Н					
Program Outcomes	CO2	Н						Η					
(L – Low, M - Medium, H –	CO3	Н						Н					
High)	CO4	Н		Н									
	Review	v of sta	ite spa	ce con	- ·	Contro	ollabili	ty, Ob		•	tate feed educed c		ntrolle
	Review design UNIT- Nonlin Introdu harmori nonline	y of sta through -II ear Co uction nic osc earities	nte spa h Pole ontrol – Cha cillation – rela	ce con Assign Syster racteri ns, sei ay, dea	ncepts, nment, ns - De stics: f lf - ex ad zon	Contro State of escribin frequer coited e, satu	ollabili observe ng Fun ncy-am oscilla uration	ty, Ob ers: Fu nction plitud- ntions , fricti	Il order Analy e depe or lim on, ba	r and R sis: ndence nit cyc cklash,	tate feed educed c , jump r les; Cor hystere	resonance nmon pr sis; Dese	ook-1 e, sub hysica cribing
	Review design UNIT- Nonlin Introdu harmori nonline	v of sta through -II ear Co uction nic osc earities ons of r -III	nte spa h Pole ontrol – Cha cillation – rela nonline	ce con Assign Syster racteri ns, sel ay, dea earities	ncepts, nment, ns - De stics: 1 lf - ez ad zon , Desci	Contro State of escribin frequer coited e, satu	ollabili observe ng Fun ncy-am oscilla uration	ty, Ob ers: Fu nction plitud- ntions , fricti	Il order Analy e depe or lim on, ba	r and R sis: ndence nit cyc cklash,	tate feed educed o , jump r les; Cor hystere: hear conti	resonance nmon pr sis; Dese	ook-1 e, sub hysica cribing ms.

	UNIT–IV [Text Book-1	1
	Fuzzy Control:	
	Introduction – model-based control (Vs) rule-based control, premise (antecedent) an	
	conclusion (consequent) rules; Fuzzy quantification of knowledge- Basic of Fuzzy logic	·
	Fuzzy sets, Fuzzy operations, Fuzzy relations. Fuzzy inference- Mamdani Fuzzy rules Takagi- Sugeno Fuzzy rules. Designing a Fuzzy logic controller - step-by-step procedur for designing an air conditioner.	·
Text books and Reference books	Text Books: [1] I.J.Nagrath & M.Gopal, "Control Systems Engineering ", New Age Int.(P), 5 th ,ed.	.,
	Reference Books:	
	 [1] K.Ogata, "Modern Control engineering ", PHI, 5th,ed., [2] M.Gopal, "Modern Control System Theory", New Age, 3rd,ed., 	
	[3] Rajasekharan and Vijaya lakshmi Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithms: Synthesis and applications", PHI	d
E-resources and other digital material		

14HS1604 ENGINEERING ECONOMICS AND FINANCE

Course	Institutional core	Credits:	3						
Category:									
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0 - 0						
Prerequisites:		Continuous Evaluation:	30M						
		Semester end Evaluation:	70M						
		Total Marks:	100M						

Outcomes		Upor	Jpon successful completion of the course, the student will be able to:												
	CO1	Unde	erstan	d vari	ous fo	rms of	forga	nizatio	ons an	d prin	ciples o	f manag	gement		
	CO2	Unde	erstan	d the	variou	s aspe	cts of	busin	ess ec	onomi	cs.				
	CO3	Acqu	Acquire knowledge on Human resources and Marketing functions												
	CO4				st alte			or vai	rious	invest	tment o	decisior	ns and		
Contribution of Course Outcomes		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
towards achievement of	CO1	М											М		
Program Outcomes	CO2	М				Н							М		
(L – Low, M - Medium, H –	CO3	М											М		
High)	CO4	М				Н							М		
	Form	' I s of Bi	isiness	Orga	nizatio	m:					[Text Bo	ok-1,2]		
	Salien Limite Mana Introc	s of Bu t Feat ed and gemen luction	ures o Public nt: to Ma	of Sole Limite	ed Con nent, M	rietors npanie lanage	s, Co-c ment a	operativ n Art c	ve Soc	iety and nce, Fu	[tock Co d Public unctions of Manager	mpany: Sector. of Mana	Private		

	competition.
	UNIT III [Text Book-1,2]
	 Human Resource Management: Meaning and difference between Personnel Management and Human Resource Management, Functions of Human Resource Management, Recruitment and Selection Process. Marketing Management: Concept of Selling And Marketing – Differences, Functions of Marketing, Product Life Cycle, Concept of Advertising, Sales Promotion, Types of Distribution Channels, Marketing Research, Break-Even Analysis - Problems.
	UNIT – IV [Text Book-1,2]
	 Financial Management: Functions of Financial Management, Time value of money with cash flow diagrams, Calculation of Simple and Compound Interest -Present worth, Future worth, Annual Equivalent, Methods of Evaluating Alternatives under Present worth method, Future worth method, Annual Equivalent method for choice of decision making among alternative projects. Production Management: An Overview and significance of Production Management, Objectives, Scope of production management, Production cycle. Depreciation, Causes of depreciation, Factors influencing depreciation, common methods of Depreciation: Straight Line Method, Declining Balance Method, Sum of Year's Digits Method –Problems
Text books and Reference books	 Text Book: [1] P.Premchand Babu and M.Madan Mohan," <i>Managerial Economics and Financial Analysis</i>", Himalaya publishing house, 2011 edition. [2] M. Mahajan, "<i>Industrial Engineering and Production Management</i>", 2nd, ed., Dhanpat Rai Publications.
	 Reference Books: [1] Theusen & Theusen, "Engineering economy". [2] Philip Kotler & Gary Armstrong "Principles of Marketing", pearson prentice Hall,New Delhi,2012 Edition. [3] B.B Mahapatro, "Human Resource Management".,New Age International ,2011. [4] IM Pandey, "Financial Management" Vikas Publications 11th Edition [5] R.Panneer selvam, "Production and operations management", PHI Learning pvt Ltd, New Delhi, 2012.
E-resources and other digital material	 [1] www.tectime.com [2] www.exinfm.com [3] www.slideshare.net [4] www.economywatch.com

14EE3605 – POWER SYSTEMS-II

Course	Programme core	Credits:	3
Category:			
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 1 - 0
Prerequisites:	Power System-I(14EE3507), EMF Theory(14EE3404),	Continuous Evaluation: Semester end Evaluation: Total Marks:	30M 70M 100M

Course		Upon successful completion of the course, the student will be able to:													
Outcomes	CO1	Eval	uate t	ransm	ission	line pa	arame	ters.							
	CO2	1	Analyze the performance of transmission lines and Understand the travelling wave phenomena.												
	CO3	Understand the concepts of corona, mechanical design of lines and overhead insulators.													
	CO4	1	ribe u uctors	-	round	cables	and H	Predic	t most	econo	omical s	size of			
Contribution of Course Outcomes		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
towards achievement of Program	CO1	Н	Н			Н		Н							
Outcomes (L – Low, M -	CO2	Н	Н			Н		Н							
Medium, H – High)(L – Low, M - Medium,	CO3	M	Н			Н		Н	M						
H – High)	CO4	M	Н			Н		Н							
Course Content	UNIT-	I		1							[]	Text Boo	ok-1,2]		
	and dist Transm Express symme	re of el tributio nission sions f trical as circuit	ectric p on – adv Line I for incond tran lines a	vantage Parame luctance sposed nd bun	e of hig eters: eters: config idled co	her ope capac uration	erating vitance us, conc ors, eff	voltage of si cept of	e for A ngle p self GN	C trans	eneratio mission and 3-p MR) and pacitance	bhase li I mutual	nes of GMD,		
	UNIT– Transn		Line	Гheory	7 :						[]	Fext Bo	ok-1,2]		
	solution diagran Travel	nsmission Line Theory: rt, medium and long lines, regulation and efficiency, Pie, T and rigorous methods of ition, ABCD constants, sending and receiving end power equations and power circle grams, surge impedance loading, Ferranti effect. velling Wave Phenomena :													
		-							-		Reflection tice Dia		action		

	UNIT-III [Text Book-1,2]
	 Corona: Definition, factors affecting corona, critical voltages and power loss, Radio interference due to Corona. Mechanical Design: Mechanical design, sag and stress in overhead conductors suspended at level supports and at different levels, effect of wind and ice on sag, use of sag templates and string charts, conductor vibration-dampers.
	Insulators: Types of insulators, voltage distribution in a string of suspension insulators, Grading of insulators - Failure of insulator and testing, arcing horns.
	UNIT-IV [Text Book-1,2] Underground Cables:
	Types of cables, laying of cables, insulation resistance, electric stress and capacitance of single core cable, use of inter sheath, capacitance grading, capacitance of three core belted type cable, stress in a three-core cable, sheath effects, currents in bonded sheaths, electrical equivalent of sheath circuit, thermal characteristics of cables. Comparison of copper efficiencies between DC, AC Single phase, 3-phase, 3-wire & 4-wire systems, choice of voltage and frequency, Kelvin's law for most economical cross section and most economical current density and its limitations.
Text books or Reference books	 Text Book: [1] M.L.Soni, P.V.Gupta, U. S. Bhatnagar and A. Chakraborti,"Power System Engineering", Dhanpat Rai & Co. Pvt. Ltd., 2001. [2] C L Wadhwa, "Electrical Power Systems", New Age Int. 4th, ed.,
	 Reference Books: [1] Sivanagaraju, S.Satyanarayana, "Electric power transmission and distribution", Pearson Education, 2009. [2] J.B. Gupta, "Transmission & Distribution of Electrical Power", S. K. Kataria & Sons. [3] W.D. Stevenson, "Elements of Power system analysis", TMH, 4th, ed., [4] Kothari & Nagrath, "Power System Engineering", TMH,2nd,ed., 2008
E-resources and other digital material	[1] <u>www.nptel.ac.in</u> [2] ocw.mit.edu

14EE3651 - DSP LABORATORY

Course Category:	Programme core	Credits:	2
Course Type:	Practical	Lecture - Tutorial - Practice:	0 - 0 - 3
Prerequisites:	Fundamentals Of Digital Signal	Continuous Evaluation:	30M
	Processing(14EE3601)	Semester end Evaluation:	70M
	Microcontrollers & Digital Signal	Total Marks:	100M
	Processors(14EE3503)		

Course	Upon	Upon successful completion of the course, the student will be able to:												
Outcomes	CO1	Design and conduct experiment.												
	CO2	Analy	analyze and present experimental results.											
	CO3	Exhit	xhibit professional behavior											
Contribution		PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11										PO12		
of Course Outcomes	CO1		М		Н									
towards achievement of	CO2				Н			Н						
Program Outcomes														
(L – Low,	CO3				Н			М						
M - Medium, H – High)														
Course Content	List o	ist of Experiments: <u>Programming</u> 1. Evaluation of DFT of a 16 sample sequence using DIT algorithm.												
					of a 1	1	1		0	0				
	3.				of a 16									
					of a 1	1	1		•	F algoi	rithm			
					r using					2				
			-	-	utterwo			-						
					hebysh						on. ariance	Transfor	mation	
	0.	meth	-	urgitai	Dutter	worui	mer	using	mpuis		intance	114115101	mation	
	9.			igital C	hebysh	ev filte	r using	Impuls	se Inva	riance '	Fransfor	mation r	nethod.	
					, freque									
				essors	_									
					Linear									
					Circula					idio				
		-	-		FFT op		-							
					Correla FIR filte					00				
					on using									
					PI contr									
		-			Filters									
NOTE · In	all lab	-					•		b a a a a		.]			

NOTE: In all laboratories a minimum of 10 experiments are to be completed.

14EE3652 - CONTROL SYSTEMS & MICROCONTROLLERS LABORATORY								
Course Category:	Programme core	Credits:	2					
Course Type:	Practical	Lecture - Tutorial - Practice:	0 - 0 - 3					
Prerequisites:	Linear Control Systems(14EE3501),	Continuous Evaluation:	30M					
	Microcontrollers & Digital Signal	Semester end Evaluation:	70M					
	Processors(14EE3503).	Total Marks:	100M					

Course Outcomes		Upor	Upon successful completion of the course, the student will be able to:											
	CO1	Desig	Design and conduct experiment.											
	CO2	Analy	Analyze and present experimental results.											
	CO3	Exhit	Exhibit professional behavior											
Contribution of		PO1	D1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO1											
Course Outcomes towards achievement of	CO1		М		Н									
Program Outcomes	CO2				Н			Н						
(L – Low, M - Medium, H – High)	CO3				Н			М						
Course Content	List of	f Expe	riment	5				1						
	1.		-				ystem	(MATI	LAB als	so)				
	2.		cteristi						_					
			,	·					ler syste					
		-		-			-	de and	phase	plot.				
	_		fer fund			-								
	6. 7.	-	erature cteristi			•								
								ino SIN	MULIN	К				
	9.		•			-		-		MATL	AB			
			Space A			-			using		12			
			llers La			0								
	1.	Findi	ng sum	of first	t 100 in	ntegers	using	8051						
	2.	Progra 8051	am to a	rrange	the give	ven ser	ies of o	data in	ascend	ing and	descend	ling orde	er using	
	3.	Interf	acing o	f keyb	oard us	sing 80	51							
	4.	Interf	acing o	f eleva	tor pro	ogram ι	using 8	051						
	5.	Interf	acing o	f stepp	er mot	or usin	g 8051	l						
	6.	Imple	mentati	ion of 1	raffic	signal	control	l using	8051					
			acing o		-									
	8.	Interf	acing o	f DAC	using	8051								
NOTE: In	all labo	ratori	es a mi	nimun	1 of 10	exper	iment	s are to	be co	mpleteo	l .			

14EE3701 – UTILIZATION OF ELECTRICAL POWER

Course Category:	Programme Core	Credits:	3
Course Type:	Theory	Lecture- Tutorial- Practice:	3 -1 - 0
	DC Machines(14EE3305)	Continuous Evaluation:	30M
	Transformers and Induction	Semester end Evaluation:	70M
Prerequisites:	Motors(14EE3405)	Total Marks:	100M
	Basics of Electronics		
	Engineering(14EC1205B)		

Course		Upon su	Jpon successful completion of the course, the student will be able to:											
Outcomes			spon successful completion of the course, the student will be uple to.											
	CO1	Illustrate	llustrate the concepts of electric traction & braking methods.											
	CO2	Demons element	Demonstrate the concepts of electric heating, welding and design of heating lement.											
	CO3	-	Explain the construction and working principle of different types of lights, lesigning of lightning system.											
	CO4	Demons	Demonstrate the concepts of refrigeration and air- conditioning.											
Contribution of		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
Course Outcomes														
towards	CO1	M				M		M						
achievement of														
Program	CO2	M		M		M		M						
Outcomes														
(M-Medium, H–	CO3	M		M		M		M	M					
High,L-Low)														
	CO4	L				M		M	L					
0 0 1 1														

Course Content

UNIT-I Electric Traction:

Systems of electric traction - mechanics of train movement, speed-time curves, effect of speed, acceleration and distance on schedule, Power and energy output from driving axles, specific energy output, series – parallel method of speed control, transition methods, collectors, different types of electric braking, plugging, rheostatic and regenerative braking.

UNIT-II

Electric Heating:

Modes of heat transfer, Stefan's law, electric furnaces, resistance heating, heating element properties, design of heating element, losses and efficiency, temperature control of resistance ovens, arc furnaces, induction heating - Construction and working of different types of induction furnaces. Dielectric heating.

Welding:

Types of welding, resistance and arc welding, Characteristics of carbon and metallic arc welding- comparison, ultrasonic welding, laser beam welding.

UNIT –III

Illumination:

Terms used in illumination, Laws of illumination – inverse square law and Lambert's cosine law, Polar curves, Gas discharge lamps- sodium vapour lamp, mercury vapour lamp,

[Text Book-1]

[Text Book - 1]

[Text Book-1]

119 | Page

	fluorescent lamp, CFL, LED lighting. Design of street lighting, flood lighting and factory lighting.
	UNIT IV [Text Book - 1]
	Refrigeration:
	Introduction to refrigeration, refrigeration cycle, vapour compression refrigeration system, domestic refrigerator.
	Air- Conditioning:
	Introduction to air conditioning, summer air conditioning systems, winter air conditioning systems , year-round air conditioning systems, room air conditioning systems, central air conditioning systems, sizing of air conditioning system .
Text books and	Text Book(s):
Reference books	[1] J.B Gupta," Utilization of Electric power and Electric Traction", S.k.kataria& sons, 10 th edition, 2013.
	[2] R.K.Rajput," <i>Utilization of Electrical Power</i> ", Laxmi Publications Pvt., Ltd., New Delhi, fifth edition: 2006.
	Reference Books: [1] Umesh Rathore "Energy management", S.K Kataria & sons, second edition
	2014
	 [2] H. Partab, "Art And Science Of Utilization Of Electrical Energy" Dhanpat Rai & Co.(P) Ltd, 3rd edition, 2011.
	[3] E. Openshaw Taylor, "Utilization of Electric Energy", Orient Longman Private Limited, SI edition 2006.
E-resources and other digital material	"Illumination Engineering and Electric Utility Services" by Prof. N.K.Kishore, Dept of Electrical Engineering, IIT-Kharagpur. <u>http://nptel.ac.in/courses/108105060/</u>

14EE3702 – SWITCHGEAR AND PROTECTION

Course	Programme core	Credits:	3		
Category:					
Course Type:	Theory	Lecture - Tutorial - Practice:	3-1-0		
Prerequisites:	Transformers and Induction	Continuous Evaluation:	30M		
	Motors(14EE3405), Electrical	Semester end Evaluation:	70M		
	Measurements (14EE3406),	Total Marks:	100M		
	Synchronous and Special				
	Machines (14EE3504), Power				
	Systems-I (14EE3507)				

Course Outcomes		Upo	Jpon successful completion of the course, the student will be able to:											
	CO1	Unde	erstand	the co	ncept a	nd wor	king pi	rinciple	e of var	ious ty	pes of ci	rcuit bre	akers.	
	CO2	Unde	Understand the working principle of different protective relays.											
	CO3		earn various protection schemes of major power system equipment; Understand the concepts of over voltage phenomenon and its protection methods.											
	CO4	Unde	erstand	the wo	orking	princip	le of di	fferent	static p	orotecti	ve relay	5.		
Contribution of Course Outcomes		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
towards achievement of	CO1	Н	Н	М		М		М	L	М				
Program Outcomes	CO2	Н	Н	М		М		М	L	М				
(L – Low, M - Medium, H –	CO3	Н		М		М		М	L	М				
High)	CO4	М	L	М		M		М	L	М				
Course Content	UNIT-I[Text Book-1]Fuses and Circuit Breakers:Introduction of fuses – characteristics – Types of fuses. Introduction to Circuit Breakers - Arc phenomenon, Arc interruption theories, Arc restriking and recovery voltages, current chopping, resistance switching, classification of circuit breakers, oil circuit breakers, Air Circuit Breakers, Vacuum circuit breakers, SF ₆ circuit breakers, ratings of circuit breakers, testing of circuit breakers, differences between MCCB, RCCB, MCB and ELCB. Auto recloser.													
UNIT-II [Tex Electromagnetic Relays: Introduction, functional characteristics of the protective relays, relay operating basic relay contact diagram, classification of relays, Electromagnetic attraction Thermal relay, Buchholz relay, Electromagnetic Induction type relays, different universal torque equation, Impedance relays, reactance relay and Mho relay.								ttraction ferential	inciple, relays,					

	UNIT-III [Text Book-1] Power System Protection: Types of faults, detection of faults and their effects, alternator protection schemes – Stator,
	rotor and reverse power protection. Transformer protection - external and internal faults protection. Bus bar protection schemes. Transmission line protection – current, time grading and distance protection schemes, Pilot relaying schemes – Circulating current and balanced voltage scheme. Power line carrier protection – Phase comparison carrier current protection.
	Protection Against Over Voltages: Causes of over voltages, Lightning Phenomena, Protection of Transmission Lines and Substations against Lightning strokes, Protection against travelling waves - Types of arrestors and surge absorbers.
	UNIT-IV [Text Book-2]
	Advance Protection Schemes: <i>Static Relays:</i> Introduction of static relays, merits and demerits, functional block diagram. Instantaneous, Definite time, Inverse time and Directional static over current relays. Static differential relay.
	<i>Comparators:</i> Amplitude and phase comparators, duality, static distance relay schemes – Impedance relay, reactance relay and Mho relays using amplitude and phase comparators; Realization of reactance and mho relay using sampling comparator. [Text Book-3]
Text books and	Text Book(s):
Reference books	 J.B Gupta, "Switchgear and Protection", S.K.Kataria & Sons, Third edition, 2013. C.L. Wadhwa, "Electrical power systems, New age international (P) Ltd., Tata McGraw Hill, Fourth edition, 2015. Badri Ram & D.N.Vishwakarma, "Power System Protection and Switchgear", Tata McGraw Hill, Second edition, 2011.
	Defenence Deeler
	Reference Books:
	[1] Sunil.S.Rao, "Switchgear Protection and Power Systems", Khanna Publishers, New Delhi, Dec 2008.
	[2] B.Ravindranath and M.Chander "Power System Protection and Switchgear ",New Age International publishers, Second edition ,2011.
E-resources and	http://nptel.ac.in/courses/108101039/
other digital material	(NPTEL lectures on Power System Protection by Prof. S.A. Soman ,IIT Bombay)

14EE3703 – POWER SYSTEM ANALYSIS

Course Category:	Programme core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 1 - 0
Prerequisites:	Complex Analysis and Numerical Methods(14MA1301) Network Analysis-I(14EE3303) Transformers and Induction Motors(14EE3405) Synchronous and Special machines(14EE3504) Power Systems –II(14EE3605)	Continuous Evaluation: Semester end Evaluation: Total Marks:	30M 70M 100M

Course		Upor	n succ	essful	comp	letion	of the	e cour	se, the	e stude	ent will l	be able	to:		
outcomes	CO1		Iodel the components of a power system, estimate per unit values and ormulate Y Bus												
	CO2	Perfe	Perform power flow analysis and analyze symmetrical faults.												
	CO3	App	Apply symmetrical components to analyze the unsymmetrical faults.												
	CO4			2	tate ai criter		nsient	stabil	ities; A	Analyz	ze transi	ent stab	ility		
Contribution of Course Outcomes		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
towards achievement of	CO1	Н	М					М							
Program Outcomes	CO2	Н	Н			Н		М			Н				
(L – Low, M - Medium, H –	CO3	Н	Н			Н		М			Н				
High)	CO4	Н	Н			Н		М			М				
Course Content	Repres Modeli Impeda Formul transfo UNIT- Power Introdu	CO4 H H M M M UNIT-I [Text Book-1] Representation of Power Systems: [Text Book-1] Modeling of power system components, per unit system, single line diagram. Impedance/Reactance diagrams. Formulation of bus admittance matrix (Y _{bus}) using inspection method and singulatransformation method. UNIT-II [Text Book-1] Power Flow Studies: [Text Book-1] Introduction – Significance of power flow study- Classification of buses –- Formulation of buses –- Formulation of buses for methods –Gauss-Seidel and Newton Raphson iteration								agram, ingular ook-1] ulation					

	methods (with Polar Coordinates only), decoupled and fast decoupled methods. Symmetrical Fault Analysis: [Text Books -1 & 2] Introduction – Short circuit analysis of unloaded & loaded synchronous machines - short circuit current computation through Thevenin's theorem, selection of circuit breakers.
	UNIT-III [Text Book-1]
	 Symmetrical Components : Introduction, Symmetrical component transformation, Power in terms of symmetrical components, phase shift in star/delta transformers, sequence impedances of power system components, construction of sequence networks of a power system. Unbalanced Faults Analysis: Introduction - single line to ground fault, line-to-line fault, double line - to - ground fault, open conductor faults.
	UNIT-IV[Text Book-2]Power System Stability:Introduction – Concept & definitions of power system stability - Power angle equation of Salient and Non-Salient pole synchronous machines - Dynamics of Synchronous machine - development of the swing equation for single machine connected to infinite bus and two machine systems swing curves. Equal area criterion, step by step method. Factors affecting stability, methods of improving stability.
Text books and Reference books	 Text Book(s): [1] D.P.Kothari & I.J.Nagrath, "Modern power system analysis", Tata Mc.Graw Hill, 4th edition, 2011. [2] W.D.Stevenson. Jr, "Elements of Power System Analysis", by, Mc.Graw Hill, 4th Edition, 1982. Reference Books: [1] Ashfaq Hussain, "Electrical Power Systems", CBS Publishers & Distributors, 5th edition, 2010. [2] [2]T.K.Nagsarkar, M.S.Sukhija, "Power System Analysis", by Oxford university press, 2007
E-resources and other digital material	http://freevideolectures.com/Course/2353/Power-Systems-Analysis

14EE3704 – INDUSTRIAL DRIVES

Course	Programme Core	Credits:	4
Category:			
Course Type:	Theory	Lecture - Tutorial - Practice:	4 - 1 - 0
Prerequisites:	DC Machines(14EE3305),	Continuous Evaluation:	30M
_	Transformers and Induction Motors	Semester end Evaluation:	70M
	(14EE3405),	Total Marks:	100M
	Synchronous and Special Machines		
	(14EE3504), Power		
	Electronics(14EE3602)		

Course Outcomes		Upo	n succ	essful	l comp	oletion	of th	e cour	se, the	e stude	ent will	be able	to:	
	CO1	Anal	yze the	e basic	concep	ots of e	lectric	drives	-					
	CO2		Analyze braking, speed control methods of dc drives and converter-fed and chopper-fed dc drives.											
	CO3	Anal	Analyze braking and speed control methods of induction motor drive.											
	CO4	Anal	yze the	e opera	tion of	synch	ronous	motor	drives	s and sp	pecial dr	ives.		
Contribution of Course Outcomes		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
towards achievement of	CO1	Н				L								
Program Outcomes	CO2	Н	Н	М		М					L			
(L – Low, M - Medium, H –	CO3	Н	Н	М		М					L			
High)	CO4		H	М		M					L			
Course Content	Introd quadra contro	r ic Dri luction ant op	- Adva eratior lrives-	n- Cor Thern	nponer nal mo	nts of	load t	orques	- Moc	les of	operatio	equation on- Close Determina	ed loop	
UNIT II [Text B DC Motor Drives: DC motors & their performance- Braking- Speed control- Methods of armature control- Transformer & rectifier control- Single Phase & Three Phase co converter fed dc separately excited motor- rectifier control of dc series motor- C controlled dc drives.								voltage ntrolled Chopper						
	UNIT Induc	' III ction N	lotor]	Drives	:							[Text H	500k-1]	

Introduction- Braking - Speed control - V/f Control- Pole Changing- Pole Amplitude modulation- Stator Voltage Control- Variable Frequency Control of Induction motor- Voltage Source Inverter& Current Source Inverter fed Induction motor drives- Eddy Current Drives- Rotor resistance control- Static rotor resistance control- Slip Power Recovery– DFIG (Elementary Treatment).
UNIT – IV [Text Book-1]
Synchronous Motor and Special Drives:
Introduction to Synchronous motor drives- True synchronous & Self control modes of
operation of synchronous motor drives – Principle & operation of brushless dc motor,
Stepper motors, PMSM, Switched Reluctance Motor.
Text Book(s): [1] "Fundamentals of Electrical Drives" by Gopal K. Dubey, Narosa Publishing House.
 Reference Books: [1] "Modern Power Electronics and AC Drives" by Bimal K.Bose, Prentice Hall of India, 2005 [2] "Thyristor control of Electrical Drives" by Vedam Subramanyan, Tata Mc Graw Hill Publications.
http://nptel.ac.in/courses/108102046/#

14EE4705/1 – HVDC TRANSMISSION

Course	Programme Elective – I	Credits:	3
Category:			
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 1 - 0
Prerequisites:	Power Electronics(14EE3602)	Continuous Evaluation:	30M
_		Semester end Evaluation:	70M
		Total Marks:	100M

Course Outcomes		Upon	succes	sful co	ompleti	on of t	he cour	se, the	studen	t will b	e able to):			
	CO1		rstand ower ti			lannin	g of DC	C powe	r transı	nissior	and con	mparisoi	n with		
	CO2	Analy	Analyze HVDC converters												
	CO3	Unde	Understand concept of control and converter fault												
	CO4	Unde	r the co	oncept	of harn	nonics	and dea	sign of	filters						
Contribution of Course Outcomes		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
towards achievement of Program	CO1	H		L		L			Н						
Outcomes (L – Low, M - Medium, H – High)(L	CO2	M		Н		Н			L						
– Low, M - Medium, H – High)	CO3	H		L		М			Н						
	CO4	L		Н		Н			Н						
Course Content	and rel HVDC	Concep ction to iable f transn	o DC p actors	of HV , Type	/DC tr es of H	ansmis IVDC	sion s Links,	ystems Appa	, Adva ratus 1	intages required	f econor and dia d for H in DC t	sadvanta VDC s	chnical ages of ystems,		
	UNIT-II[Text BooAnalysis of HVDC Converters:Introduction to converter technologies, Choice of optimal circuit configuration for HV converters, Detailed analysis of Graetz circuit (six-pulse converter bridge)- overlap a less than sixty degrees and greater than sixty degrees, Inverter operation, Comp equivalent circuit of HVDC link, Characteristic analysis of converter as rectifier/inver Introduction to twelve pulse converter.							HVDC p angle omplete							
	UNIT– Conver Basic p	rter an		•				onverte	r conti	rol cha	racterist	[Text B ics, Con			

	characteristics of rectifier and inverter, Firing angle control schemes - individual phase angle control, equidistant pulse control, Effect of source inductance on the system, Starting and stopping of DC link. Converter Faults and Protection: Nature and type of faults, Converter faults – arc through, arc back, misfire, quenching, commutation failure, short circuits in bridge, Protection against over currents and over voltages in converter station, Surge arresters, Smoothing reactors, Protection of DC line, DC breaker.
	UNIT-IV [Text Book-1]
	 Harmonics and Filters: Generation of harmonics, Characteristic harmonics, Non-characteristic harmonics, Adverse effects of harmonics, Calculation of voltage & current harmonics, Effect of Pulse number on harmonics. Types of filters, Design factors of filters, Design of single tuned filter, Design of minimum cost single tuned filter, DC filters. MTDC Systems: Multi terminal DC (MTDC) system, Potential applications of MTDC systems, Types of MTDC systems, Comparison of series and parallel MTDC systems, Introduction of control and protection of MTDC systems.
Text books or Reference books	 Text Book(s): [1] K. R. Padiyar, "HVDC power transmission system", Wiley Eastern Limited, New Delhi 1990. First edition. [2] E. W. Kimbark, "Direct Current Transmission", Vol. I, Wiley interscience, New York, London, Sydney, 1971.
	 Reference Books: [1] C. Adamson and N. G. Hingorani, "High Voltage Direct Current Power Transmission", Garraway Limited, London, 1960. [2] J. Arrillaga, "High Voltage Direct Current Transmission", Peter Pregrinus, London, 1983. [3] R. D. Begamudre, "Extra High Voltage AC Transmission Engineering", New Age Interantional (P) Ltd., New Delhi, 1990. [4] P. Kundur "Power System Stability and Control", McGraw-Hill, 1993. [5] S. Kamakshaiah, and V. Kamaraju, 'HVDC Transmission', Tata McGraw Hill Education Private Limited, 2011.
E-resources and other digital material	http://www.nptelvideos.in/2012/11/high-voltage-dc-transmission.html High Voltage DC Transmission by Prof. S. N. Singh, Department of Electrical Engineering, IIT Kanpur.

14EE4705/2: COMPUTER NETWORKS

Course Category:	Programme Elective – I	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 1 - 0
		Continuous Evaluation:	30M
Prerequisites:		Semester end Evaluation:	70M
		Total Marks:	100M

Course Outcomes		Upor	succe	essful	comp	letion	of the	cours	e, the	studen	ıt will be	e able to):
	CO1	Demo	onstrate	e vario	us stan	dard ne	etwork	model	s.				
	CO2	Analy	ze erro	or dete	ction a	nd erro	r corre	ection of	codes.				
	CO3	Under	Understand routing issues in network design.										
	CO4			underl in App				ansport	layer a	and Ide	ntify diff	erent	
Contribution of Course Outcomes		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
towards achievement of	CO1	Н											
Program Outcomes	CO2	М	М			Н							
(L – Low, M - Medium, H –	CO3	Н	L	L		Н							
High)	CO4	L	L			L							
	CO4 L L L I [Text Book-1] Introduction: UNIT-I IText Book-1] Introduction: Itext Book-1] Uses of Computer Networks, Network Hardware, LANs, MANs, WANs, Network Software. Reference Models: Itext Book-1] Reference Models: The OSI Reference Model, TCP/IP Reference Model, the comparison of the OSI and TCP/IP reference models. Physical Layer: Guided transmission media: Magnetic Media, Twisted Pair, Coaxial Cable, and Fibre Optics UNIT-II [Text Book-1] Data Link Layer: Ite Channel allocation problem, Multiple access protocols, ETHERNET. UNIT-III [Text Book-1] Network Layer: Ite Channel allocation problem, Multiple access protocols, ETHERNET.										SI and I Fibre Fook-1] ta link		

	Quality of Service: Techniques for achieving good quality of service, IP Protocol, IP addresses, Internet Control Protocols.
	UNIT-IV [Text Book-1]
	Transport Layer: The Transport Service, Elements of Transport Protocols, and the Internet Transport Protocols TCP and UDP. Application Layer: The Domain Name System (DNS), and E-Mail.
Text books and Reference books	Text Book(s): [1] Andrew S Tanenbaum, " <i>Computer Network</i> ", 4 ed, Pearson Education / PHI
DUURS	Reference Books:
	 [1] Kurose and Ross, "Computer Networks – A Top-down Approach Featuring the Internet", Pearson Education. [2] Behrouz A.Forouzan, "Data Communications and Networking". 4 ed, TATA McGraw Hill. Nader F.Mir, Computer and Communication Networks. PHI
E-Resources and other digital material	

14EE4705/3 – OPTIMIZATION TECHNIQUES

Course	Programme Elective – I	Credits:	3
Category:			
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 1 - 0
Prerequisites:	Linear Algebra and Differential	Continuous Evaluation:	30M
	Equations (14MA1101)	Semester end Evaluation:	70M
	Calculus (14MA1201)	Total Marks:	100M

Course Outcomes		Upor	1 succe	essful	compl	etion o	of the	course	e, the s	tudent	will be	able to	:
	CO1	Form	ulate ar	nd solv	e LP P	roblem							
	CO2	Solve	e non lii	near Pr	ogramı	ning P	roblem	is, Assi	ignmen	t & Tra	insportat	ion Prob	lems
	CO3	Appl	Apply search methods to solve optimization Problems										
	CO4		rstand t mic Pro			Nontrac	litional	optim	ization	Techni	iques, so	lve LPP	using
Contribution of Course		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Outcomes towards	CO1	Н				Н							
achievement of Program	CO2	Н				M				М			
Outcomes (L – Low, M -	CO3	Н				M							
Medium, H – High)	CO4	L								Н		Н	
	Introd in LP degen	uction P, Gra eracy i	phical	mulation Methoo lex me	d, simp thod, d	olex m luality	ethod, in L.P	simple	ex meth	nod usi	ng Artif	PP, assur icial Va itivity an	riables,
	Trans Vogel Non-l Uncor minim UNIT Searc	nment portat 's App inear I nstraine na. Lag – III h Met	rangian	blem: tion M mming lems c Metho	ethod, 1 ;; of max od, Kuł	MODI ima an in Tucl	Metho d min ker con	ima, C ditions	5.	-		[Text B of maxin [Text B thod, Fil	ma and ook-2]
	search								-		C	cent and	

	methods, Conjugate gradient (Fletcher – Reeves) method.
	UNIT-IV[Text Book-1 & 3]Dynamic Programming: Solution of linear programming problem, simple problems.Inear programming problem, simple problems.Heuristic optimization Techniques: based methods – genetic algorithm and swarm intelligence based algorithms – Particle swarm optimization. Advantages and disadvantages of Nontraditional optimization Techniques.
Text books and Reference books	 Text Book(s): [1] S. D. Sharma, "Operations Research", 12th edition, Kedar Nath Ram Nath & Co. [2] S. S. Rao, "Engineering Optimization: Theory and Practice", 3rd edition, New Age International, 1998. [3] Kalyanmoy Deb, "Optimization for Engineering Design: Algorithms and Examples", 2nd edition, PHI Learning Pvt. Ltd., 2012. Reference Books: [1] K.V.Mittal and C. Mohan, "Optimization Methods in Operations Research and Systems Analysis", 3rd edition, New Age International, 1996. [2] H.A.Taha, "Operations Research: An introduction", 6th Edition, PHI Learning Pvt. Ltd. [3] G.Hadley, "Linear Programming" Indian Student Edition, Narosa Publishing House, 1994. [4] D.P Kotari and J.S.Dhillon, "Power system optimization" 2nd edition, PHI Learning Pvt. Ltd., 2011.
E-Resources and other digital material	

14EE4705/4 – INTERNET OF THINGS (IOT)

Course Category:	Programme Elective – I	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 1 - 0
Prerequisites:	Microcontrollers and Digital Signal	Continuous Evaluation:	30M
	Processor(14EE3503)	Semester end Evaluation:	70M
		Total Marks:	100M

Course Outcomes		Upor	n succe	essful o	comple	Upon successful completion of the course, the student will be able to: Understand the concepts and components of Internet of Things											
	CO1	Unde	rstand f	the con	cepts a	nd com	ponent	ts of In	ternet o	of Thing	gs						
	CO2	Unde	rstand 1	the met	hods of	f comm	unicat	ing w i	th inter	net							
	CO3	Identify the Embedded platform for implementing Internet of Things															
	CO4	Apply the concepts of IOT in real time applications															
Contribution of Course		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12				
Outcomes towards	CO1				L				L	L	L	L					
achievement of Program	CO2	М		М													
Outcomes (L – Low, M -	CO3			М						Н							
Medium, H – High)	CO4			Н						M		M					
	Visior Major	luction n, defir compo	nition,	1	tual fra devices		-			verview	vs of IB		Oracle				
	Introd Visior Major UNIT Intern Intern Applio Cloud Defini	Huction h, defir compo II het Con ton I comp tion	nition, onents on nectiv nectivi Layer P outing: of clo	of IOT ty: ty, Int Protocol	devices ernet t ls. computi	s, Contr based	commu	ts, sens unicatio	ors	addres	vs of IB	M and [Text bo ` IOTs,	Oracle ook -1 MAC				
Course Content	Introd Visior Major UNIT Intern Applid Cloud Defini comm Unit I Embe Arduin Hardy Senso	Huction h, defir compo II het Con et con cation I Comp tion unicati II dded I dded C no, Net ware for ss sens	nition, onents of nective nectivi Layer P outing: of clo ng with Platform omputi Arduin or IOT jital se	of IOT ty, Int Protocol oud c n cloud ms For ing bas no, Ras rsors,	devices ernet te ls. computi using v • IOT: sics, Ospberry	s, Contr based ing-Con Web se verviev pi, Bea brs, rad	commu mponet rvices v of IQ ngle Bo dio fre	ts, sens unication nts-Mc OT sup one, Int equenc	ors on, IP odels el Galil y ident	addres and <i>A</i> Hardv eo boar	vs of IB ssing of Architect vare plat rds and A on (RFII	M and [Text bo ` IOTs, ure, B [Text bo tforms s ARM con	Oracle bok -1 MAC enefits bok -1 such a rtex. nology				

	Arduino platform boards anatomy, Arduino IDE, coding, using emulator, using libraries, additions in Arduino, programming the Arduino for IOT. Applications:						
	Smart metering, city automation, automotive applications, home automation, smart cards, Communicating data with hardware units, mobiles, tablets, designing of smart street lights in smart city.						
Text books and Reference books	Text Book(s): [1] Raj kamal, " <i>Embedded Systems Architecture, Programming and Design</i> ". 2 ed,						
DUUKS	 McGraw-Hill, 2008 [2] Kenneth J. Ayala, "8051 Micro Controller Architecture" Thomson Delmar Learning, 3RD Edition, 2005 [3] Raj Kamal "<i>Internet of Things</i>", McGraw-Hill, 1st, Edition, 2016. 						
	Reference books:						
	 [1] Arshdeep Bahga, Vijay Madisetti "Internet of Things(A hands on approach)" 1ST edition, VPI publications,2014 						
E-Resources	"Introduction to Internet of Things" by Prof. Raj Jain, Washington University,						
and other digital	https://www.youtube.com/watch?v=oc_qzTj26k&list=PLw5h0DiJ9PCxDZkP8pbgpyiDweF						
material	<u>3DJ8c</u> . (Accessed on 16 February 2016)						

Course Category:	Prog	ramme	Elect	ive –]	Π						Cred	lits:	3	
Course Type:	Theor	rv					I	ectur	e - Tu	torial	- Pract	ice:	3 - 1	- (
Prerequisites:		ower System – I(14EE3507) Continuous Evaluat Semester end Evaluat Total Ma								Evaluati Evaluati	ion: ion:	30M 70M 100N	[
Course Outcomes	CO1	-			-				·		will be	able	to:	
	CO2	Describe Design considerations of Sub Transmission I ines and												
	CO3	Descr	ibe D	esign	Consid	eration	s of Pi	rimary	System	s and s	econdary	y syste	ems	
	CO4	Analy	ze Volt	tage D	rop and	1 Powe	r Loss	Calcul	ations i	n distr	ibution s	ystem	S	
Contribution of Course		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 P	012
Outcomes towards	CO1			Н					Н					
achievement of Program	CO2			Н					Н					
Outcomes (L – Low, M -	CO3		M	Н					Н					
Medium, H – High)	CO4	М	Н			Н			М					
Course Content	Introd select distrib Load Types and ra UNIT Desig Introd descri	bution S luction, o ion. Dis pution pl Charac of load te struct `-II n of Sub luction, ption at	distribu tributic anning teristic charae ure. Tran sub trans	tion sy on plan , distri es: cteristi smissi unsmiss mparis	on Lin sion sy	olannin technic system ationsh es and ystems switc	g, fact lues (p auton ip bet Distri distri	ors affe present nation a ween t bution scheme	and fu and con he load Subst a substa	and lo and lo ations: tion, S	oss facto	, subs the co or. Loa [Tex n bus n, rat	omput ad gro t Boo l scher ing c	sit teri owt k- 1 me
	UNIT Desig	x feeder ⁻ -III n Considuction.	deratio	ons of [oon tv	ne nrim	arv fe	eders Pr	-	t Boo l	

	distributed load and non uniformly distributed loads
	 Design Considerations of Secondary Systems: Introduction, secondary voltage levels, Secondary banking, secondary networks - grid network, spot network, secondary mains. Distribution System Protection: Basic definitions, over current protection devices - fuses, automatic circuit reclosers, automatic line sectionalisers, automatic circuit breakers. Objectives of distribution system protection, coordination of protective devices - fuse to fuse co-ordination, recloser to fuse coordination, fuse to circuit breaker co-ordination, recloser to circuit breaker co-ordination
	UNIT-IV [Text Book-1] Voltage Drop and Power Loss Calculations: Voltage drop and loss calculation in single and three phase primary lines, and four wire multi grounded primary lines, distribution feeder costs. Applications of Capacitors in Distribution Systems: Effect of series and shunt capacitors, power factor correction, economic justification for capacitors, procedure to determine the best capacitor location. Distribution System Voltage Regulation- Quality of service, voltage control and line drop compensation.
Text books and Reference books	Text Book(s): [1] Turan Gonen," Electric Power Distribution system Engg ," CRC press, 3 rd edition, 2014. Defense Realist
	Reference Books:[1] A.S.Pabla .Jr.," <i>Electric Power Distribution</i> ", Tata Mc.Graw Hill Ltd, 4th ed., 1997
E-Resources and other digital material	

14EE4706/2-AI TECHNIQUES IN ELECTRICAL ENGINEERING

	E E		
Course	Programme Elective-II	Credits:	3
Category:			
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 1 - 0
Prerequisites:	Linear control Systems(14EE3501)	Continuous Evaluation:	30M
	Power Electronics(14EE3602)	Semester end Evaluation:	70M
		Total Marks:	100M

Course Outcomes		Upon successful completion of the course, the student will be able to:												
	CO1	Expla	Explain single layer and multi-layer neural networks.											
	CO2	Explain the concepts of Genetic Algorithms												
	CO3	Expla	Explain the concepts of Fuzzy logic systems											
	CO4	Apply	soft con	nputing	techni	ques to	o Elect	rical E	nginee	ring Pr	oblem.			
Contribution of Course Outcomes		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
towards	CO1	Н	М		Н	Н	Н	Н		Н	M			
achievement of Program Outcomes (L – Low, M - Medium, H – High)	CO2	Н	M		Н	Н	Н	Н		Н	M			
	CO3	Н	M		Н	Н	Н	Н		Н	M			
	CO4	Н	M	L	Н	Н	Н	Н		Н	М			
	Introduction, Humans and Computers, Organization of the Brain, Biological N Biological and Artificial Neuron Models. Introduction - neural network n architectures-knowledge representation-learning process-learning tasks. Perce Models: Discrete, Continuous and Multi-Category, Training Algorithms: Discree Continuous Perceptron Networks, Perception Convergence theorem, Limitations Perceptron Model, Back propagation-RBF algorithms-Hope field networks, Applicat UNIT-II [Text Be Genetic algorithms Introduction-encoding-fitness function-reproduction operators, genetic operator over and mutation-generational cycle- convergence of genetic algorithm. Genetic Algorithm applications: Economic Load dispatch, Multi variable Optim problems. UNIT-III [Text B Classical and Fuzzy Sets : Introduction to classical sets - properties, operations and relations; Fuzzy									ceptron ete and of the tions. ook-1] s-cross ization ook-1]				
	Membership, Uncertainty, Operations, properties, fuzzy relations, ruzzy sets, membership functions. Fuzzification, Membership value assignment, development of rule base and decision making system, Defuzzification to crisp sets, Defuzzification methods.													

	UNIT–IV [Text Book-2] Neural network applications: NN Application to Harmonic Minimization in Inverters, Load forecasting in power systems, Process control and estimation. Fuzzy logic applications: Fuzzy logic control and Fuzzy classification specific applications to power systems load frequency control, fault diagnosis.
Text books and Reference books	 Text Book(s): [1] Chennakesava RAlavala, "Fuzzy logic and neural networks", New Age International Publishers., [2] Rajasekharan and Pai, "Neural Networks, Fuzzy logic, Genetic algorithms: synthesis and applications" PHI Publication. [3] Jacek M. Zuarda," Introduction to Artificial Neural Systems", Jaico Publishing House, 1997
	 References Books: [1] N. Yadaiah and S. Bapi Raju, "Neural and Fuzzy Systems: Foundation, Architectures and Applications", - Pearson Education [2] C.Eliasmith and CH.Anderson, "Neural Engineering", PHI.
E-resources and other digital material	

14EE4706/3 DATABASE MANAGEMENT SYSTEMS									
Course Category:	Programme Elective-II	Credits:	3						
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 1 - 0						
Prerequisites:	Programming in C (14CS1203)	Continuous Evaluation:	30M						
		Semester End Evaluation:	70M						
		Total Marks:	100M						

Course Outcomes	Upon successful completion of the course, the student will be able to:												
	CO1	1 Understand different types of Database Concepts											
	CO2	2 Design E-R and Relational Model for an application.											
	CO3	Apply Normalization Process for Database Design											
	CO4	Understand Concurrency Control and Recovery Techniques of DBMS										5	
Contribution of Course Outcomes towards achievement of Program Outcomes (L – Low, M - Medium, H – High)		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	L											
	CO2		М	Н								L	
	CO3		М	Н								L	
	CO4		М	Н								L	
Course Content	Image: Number of the system Image: Text B Databases and Database Users: Characteristics of the database approach, advantages of using the dbms approach a brief history of database applications. database system concepts. Architecture: Data models, schemas, and instances, three-schema architecture and independence.								proach				
	UNIT II[Text Book-1]Data Modeling Using the Entity-Relationship (ER) Model:Using high-level conceptual data models for database design, entity types, entitysets, attributes, and keys, relationship types, relationship sets, roles, and structuralconstraints, weak entity types, er diagrams, naming conventions, and designissues, relationship types of degree higher than two.Relational Database Design by ER and EER-to-Relational Mapping:Relational database design using ER-to-relational mapping. the relational dataModel and Relational Database Constraints:Relational model concepts, relational model, constraints and relational databaseschemas. Relational algebra.												

	Unary Relational Operations: SELECT and PROJECT, relational algebra operations from set theory, binary relational operations: JOIN and DIVISION, additional relational operations, examples of queries in relational algebra.							
	UNIT III [Text Book-1] SQL:							
	The relational database standard. Data definition, constraints, and schema changes in SQL. basic queries in SQL. More complex SQL queries. Insert, delete, and update statements in SQL. Insert, delete, and update statements in SQL. Triggers and assertions.							
	basics of functional dependencies and normalization for relational databases: Functional dependencies, normal forms based on primary keys, general definitions of second and third normal forms, Boyce-Codd normal form, multi valued dependencies and fourth normal form, join dependencies and fifth normal form.							
	UNIT IV [Text Book-1]							
	Introduction to Transactions Processing: Introduction to transaction processing, transaction and system concepts, desirable properties of transactions. Concurrency Control Techniques and Database Recovery Techniques: Two phase locking techniques for concurrency control, The ARIES Recovery Algorithm.							
Textbooks and Reference books	 Text Book(s): [1] Elmasri and Navathe, "Fundamentals of Database Systems". 5 ed, Addison Wesley, Pearson Education Inc., 2000. 							
DUOKS	 Reference Books: [1] C. J Date, "An Introduction to Database Systems". Pearson Education. [2] Raghu Ramakrishnan, "Database Management Systems". Tata McGraw Hill. [3] AviSilberschatz Henry F. Korth and S. Sudarshan, "Database System Concepts". Tata McGraw-Hill Publications 							
E-resources and other	[1] DrS.Srinath IIT-Madras —Conceptual design process — http://nptel.iitm.ac.in/video.php?subjectId=106106093							
digital material	[2] Prof P.Srinivasa Kumar IIT-Madras — Normalization process http://nptel.iitm.ac.in/courses/IIT-MADRAS/Intro_to_Database_Systems_Design/							
	[3] Prof D.Janakiram IIT-Madras —Concurrency Control techniques http://nptel.iitm.ac.in/video.php?subjectId=106106093							

14EE4706/4 VLSI DESIGN

Course Category:	Programme Elective-II	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 1 - 0
Prerequisites:	Programming in C (14CS1203)	Continuous Evaluation:	30M
		Semester End Evaluation:	70M
		Total Marks:	100M

Course	Upon	succe	essful c	comple	etion o	f the c	ourse,	the stu	udent	will be	able to	:	
Outcomes	CO1	Unde	erstand	l IC Fa	bricat	ion pro	ocess s	steps re	equired	d for v	arious I	MOS ci	rcuits.
	CO2	Desig	gn E-R	and F	Relatio	nal M	odel fo	or an a	pplica	tion .			
	CO3	Appl	y Nor	maliza	tion P	rocess	for Da	atabase	e Desi	gn			
	CO4	Unde	erstand	rstand Concurrency Control and Recovery Techniques of DBMS									5
Contribution of Course		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Outcomes towards	CO1	L											
achievement of Program Outcomes	CO2		М	Н								L	
(L – Low, M - Medium,	CO3		М	Н								L	
H – High)	CO4		М	Н								L	
Course Content	Intro techn impla Basic relati transi down	ductio ologie intatio Elect Elect onship istor, 1	on to M rs, fab n, Met trical l trical os, MC NMOS	ricatio callizat Prope Prope S tran c inver Z _{pd}	n fund ion an rties: rties of sistor ter, V , CMO	damen d Enca of MC thresh arious	tals: (apsula)S ,Cl old V(pull -	Dxidat: tion. MOS pltage, ups, 1	ion, L and E gм, g Detern	ithogra BiCMC _{DS} , fig ninatic	[Te CMOS aphy, I OS Circ ure of r on of pu a, BiCM	Diffusio cuits: I ₁ merit wa all-up to	CMOS n, Ion DS-VDS o, Pass o pull-
	VLSI Lamb Layo	Circ Designda ba ut Dia	sed de grams	ow, M esign r for lo	OS La ules, (gic ga	ayers, Contac tes, Tr	et cuts ansiste	s , ČN or stru	1OS L ctures	ambda , wires	[To Rules a based s and vi factor	design as, Scal	youts, rules, ling of

	parameters, Limitations of Scaling
	UNIT III [Text Book-1&2] Gate Level Design And Layout: Architectural issues, Switch logic networks: Gate logic, Alternate gate circuit: Pseudo-NMOS Dynamic CMOS logic. Basic circuit concepts, Sheet Resistance R _s and its concept to MOS, Area Capacitance Units, Calculations, The delay unit T, Inverter Delays, Driving large Capacitive Loads, Wiring Capacitances, Fan-in and fan-out, Choice of layers
	UNIT IV [Text Book-1&2] Subsystem Design:
	 Subsystem Design. Subsystem Design, Shifters, Adders, ALUs, Multipliers: Array multiplier, Serial-Parallel multiplier, Parity generator, Comparators, Zero/One Detectors, Up/Down Counter, Memory elements. Semiconductor Integrated Circuit Design: PLDs, FPGAs, CPLDs, Standard Cells, Programmable Array Logic, Programmable Logic Array Design Approach.
Textbooks and Reference books	 Text Book(s): [1] Kamran Eshraghian, Dougles and A. Pucknell, "Essentials of VLSI circuits and systems", PHI Edition, 2005. [2] Wayne Wolf, "Modern VLSI Design", Pearson Education, 3rd Edition, 1997.
	 Reference Books: [1] Neil H.E Weste, David Harris, Ayan Banerjee, "CMOS VLSI Design – A circuits and systems perspective", Pearson Education, 2009. [2] John P. Uyemura, "CMOS logic circuit Design", Springer, 2007. [3] K. Lal Kishore, V S V Prabhakar, "VLSI Design", I.KInternational, 2009. [4] A.Albert Raj, Latha "VLSI Design", PHI, 2008. [5] Mead and Convey, "Introduction to VLSI Design", BS Publcations, 2010. [6] M. Michal Vai, "VLSI Design", CRC Press, 2009.
E-resources and other digital material	

14EE3751 – POWER SYSTEM LABORATORY

Course Category:	Programme core	Credits:	2
Course Type:	Practical	Lecture - Tutorial - Practice:	0 - 0 - 3
Prerequisites:	Switch gear and	Continuous Evaluation:	30M
-	Protection(14EE3702)	Semester end Evaluation:	70M
	Power System –I(14EE3507)	Total Marks:	100M

Course	Upon	succe	essful o	comple	etion o	f the c	ourse,	the st	udent	will be	able to	:	
Outcomes	CO1	Desig	n and o	conduct	t experi	iment.							
	CO2	Analy	ze and	presen	t exper	rimenta	l result	S.					
	CO3	Exhit	oit prof	essiona	l behav	vior							
Contribution of Course		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Outcomes towards	CO1		М		Н								
achievement of Program Outcomes	CO2				Н			Н					
(L – Low, M - Medium, H – High)	CO3				Н			М					
Course Content		Deterr			-		ers of tr	ansmis	sion lir	ne mod	el		
	2.			of tran									
	3.			cs of el			relay						
	4.			cs of St			1 1	1					
	5.			cs of m	-			relay					
	6. 7	-	-	pedanc									
	7. 8.	-	-	pedanco grouno				dad al	arnata	r			
		•		U							ce of an	altarnato	Nr.
						-	,	-			ictances		
	10.	Altern		11 01 50	o trans	ient un	eet une	quuui	uture u	115 100	letunees	(11 a 🕰	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	11.	Reacti		ver com	pensat	ion usii	ng tap c	hangir	g trans	former			
		Short	-		-			-	-				
		Devel								d			
											erative r	nethod.	
		Chara		-			-						
	16	. High v	voltage	testing	of insu	ulators	and cat	oles					
		. Study											
NOTE: In	all lab	orator	ies a m	inimu	m of 1() exper	iments	are to	be cor	nplete	d.		

14EE3752 – POWER ELECTRONICS LAB

Course Category:	Program core	Credits:	2
Course Type:	Practical	Lecture - Tutorial - Practice:	0 - 0 - 3
Prerequisites:	Power Electronics14EE3602,	Continuous Evaluation:	30M
	Electronic Circuits(14EE3402)	Semester end Evaluation:	70M
		Total Marks:	100M

Course Outcomes		Upor	n succe	essful	comp	letion	of the	cours	e, the	student	will be	able to):	
	CO1	Desig	gn and	conduc	et expe	riment								
	CO2	Analyze and present experimental results.												
	CO3	Exhil	oit prof	essiona	al beha	vior								
Contribution of Course Outcomes		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
towards achievement of	CO1		Μ		Н									
Program Outcomes	CO2				Н			Н						
(L – Low, M - Medium, H – High)	CO3				Н			M						
Course Content	LIST	OF EX	KPERI	MENT	TS .	1	1	1	1	1				
	1.	Static	charac	teristic	s of S	CR								
	2.	Static	Charae	cteristi	cs of N	10SFE	ET & IO	GBT.						
	3.	Single	e phase	fully c	control	led rec	tifier w	vith R,	R-L &	R-L-E	load			
		(With	or wit	hout fe	edbacl	c diode	;)							
	4.	Singl	e phase	Dual o	conver	ter with	h R & 1	RL loa	ds (Ciro	culating	& Non-			
		Circu	lating r	nodes)										
	5.	Three	e phase	fully/h	alf cor	trolled	l rectifi	ier witl	n R & R	R-L, R-I	L-E load	8.		
	6.	Singl	e phase	AC vo	oltage	control	ler wit	h R &	R-L loa	ıds				
	7.	IGBT	/MOSI	FET ba	sed H-	bridge	inverte	er with	R& RI	Loads				
	8.	Step o	down a	nd step	up M	OSFET	based	l chopp	oers					
	9.	Speed	l contro	ol of 3-	phase	inducti	on mo	tor by	using 3	-phase	voltage			
		sourc	e inver	ter										
	10	. Force	d comr	nutatio	n Tecł	nniques	s of SC	R						
	11	. Multi	-level i	nvertei	c (adva	nced E	xperin	nent)						
	12	. Frequ	iency C	ontrol	Single	phase	cyclo-	conver	ter (Ce	ntre tap	ped or B	ridge)		

	 13. Simulation of single phase fully controlled with R & R-L, R-L-E loads. 14. Simulation of single phase step down/step up chopper 15. Simulation of Single phase bridge inverter
Text books and Reference books	 Text Book(s): [1] Power Electronics: Circuits, Devices and Applications-by P.S.Bimbhra , khanna Publishers [2] Power Electronics- byM. D. Singh & K. B.Kanchandhani, Tata Mc Graw-Hil Publishing company, 1998.

NOTE: In all laboratories a minimum of 10 experiments are to be completed.

	14EE3753 – MINI PR	OJECT	
Course Category:	Program core	Credits:	2
Course Type:		Lecture - Tutorial - Practice:	0 - 1 - 0
Prerequisites:		Continuous Evaluation:	30M
		Semester end Evaluation:	70M
		Total Marks:	100M

Course Outcomes		Upor	n succe	essful	comp	letion	of the	cours	e, the s	student	will be	able to):		
	CO1	Ident	Identify and find solution/part of solution to the real world problems.												
	CO2	Propo	Propose a methodology for implementing the solution.												
	CO3		Get awareness on design methodologies/Programming Techniques using modern engineering tools.												
	CO4	Write	Write technical reports.												
Contribution of Course Outcomes		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
towards achievement of	CO1														
Program Outcomes	CO2														
(L – Low, M - Medium, H –	CO3														
High)	CO4														
Description	metho awaren metho implen end of the abo	dology ness or dology nentati the set	for the difference The s on met mester	e identi ent soft tudents hodolc in the j	fied pr ware/h s has to ogy and prescri e to pro	oblem nardwa o subm d also t bed for esent a	is to b re tool it a rep he sim rmat m power	e ident s neces oort wh ulation tention	ified. T ssary fo ich cov /Hardw ed by th	The stud or imple or the l or res ne depa	The so ent has t menting iterature ults obta rtment. I front of	to get the solu survey, ined by n additi	the on to		

Course	Prog	ramn	e cor	e							Credi	ts: 4			
Category: Course Type:	Theorem	~ 					Loo	t 11100	Tuto	mial	Practio	1	- 1 - 0		
Prerequisites:		-	em-I ((14FF	3507)		Lec				aluatio		M		
i i ci cquisites.			tronic								aluatio		M		
			em-II	· ·		/					l Marl		0M		
Course Outcomes		Upo	n succ	essful	comp	oletion	of th	e cour	se, the	e stude	ent will	be abl	e to:		
	CO1	Disp	atch lo	ad eco	nomica	ally am	ong T	hermal	plants	•					
	CO2	Model LFC and AGC for one and two area power systems.													
	CO3							-		-	n different methods of				
	CO4	voltage control in transmission and distribution systems. Explain the functions of nower system control centers and distribution													
Contribution of Course Outcomes		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
towards achievement of	CO1	Н				М		М			Н				
Program Outcomes	CO2	Н		Н				М							
(L – Low, M - Medium, H –	CO3	M		Н				M			Н				
High)	CO4	L						M			Н				
	Econo increm withou genera therma UNIT Power Import Basic Load f genera diagra	mic di nental it consi ition, di al plant -II • Syste tance do Contro requer itor, lo m repr	fuel an siderati calcula ts; unit m Cor of keep of keep of keep of cor of side cor ads, p esentat	n in in nd pro on to tion o comm ntrol bing vo s; Sch ntrol (I rime r tion, L	therma duction line lo f loss itment oltage a ematic LFC) si nover FC blo	I pown costs osses; coeffic t - cons and free diagra ngle and and sp ock dia	er sta s, econ transm cients, traints equenc m of L rea cas eed go gram of	omic ission optim , Prior y cons .FC an e, the l overno of an i	distribution line lo um ge ity List stant in d AVR P-δ loo r for I solated	a pow back of a sy p: math FC & power	curves, of load as a fun on alloc od.	between action o ation b Cext Bo em; Ge al mode ponding 1, stead	curves n units f plan etween $\mathbf{bk} - 1$ nerato erator ling o block		
	-			stem, l			-	-			for an i				

Thy TC Vo Tap UN Pov Ain acq	roduction to FACT devices - Series compensation, static VAR compensators yristor controlled reactors (TCR), Thyristor switched capacitors (TSC), combin CR and TSC. Itage control of distribution systems: p changing, booster transformers, synchronous phase modifiers. IT-IV wer System Control centers: [Ref Book -
Taj UN Po Air acq	p changing, booster transformers, synchronous phase modifiers.
Po Air acq	
Dis Flo	m of control centers, Functions of Control centers – Planning, Monitoring & Da quisition and System control. Setup, locations, central & civil facilities. Facilities ntrol room. Communication-PLCC. Emergency control. Stribution Automation: [Ref Book - ow diagram for man machine power system interface. Schematic diagram of Remo rminal Unit, SCADA system.
Reference[1]books[2]	 xt Book(s): H. Saadat, "Power system analysis" Tata McGraw Hill, edition 2003 C.L Wadhwa, "Electrical Power systems", New Age International Publications, s edition, 2009. D.P.Kothari & I.J.Nagrath, "Modern power system analysis by" Tata McGraw H Third edition, 2008.
[1 [2 [3	 ference Books: John J. Grainer and WD Stevenson, "Power system analysis" Tata McGraw Hill edition 2003 Abhijit Chakrabarti & Sunita Halder, "Power System Analysis operation and control" PHI Publications, 2009. CL Wadhwa, "Generation Distribution and utilization of Electrical Energy", New Age publications, Second edition. Allen J Wood, Bruce F. Wollenberg, "Power Generation Operation and Control" Wiley-India publication, Second edition, 2010.
	p://www.nptelvideos.in/2012/12/power-system-operations-and- ntrol.html

Course	Progra	amme	Electiv	re - III							Credi	ts: 3			
Category: Course Type:	Theor	rv					Lec	ce: 3	-1-0						
Prerequisites:	Powe Powe	r Elec r Syst	etronic em 4EE37		E3602	2)		on: 30)M)M)0M						
Course Outcomes		Upo	n succ	essful	comp	oletion	of the	e cour	se, the	e stude	ent will	be abl	e to:		
	CO1		nderstand necessity of various types of FACTS Devices in transmission stem and analysis voltage source converter(VSC)												
	CO2	Lear	earn principle and operation of static shunt compensators earn principle and operation series compensators cquire the concepts of multi- type FACTS controllers												
	CO3	Lear													
	CO4	Acqu													
Contribution of Course Outcomes		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
towards achievement of	CO1	CO1 M L H L L													
Program Outcomes	CO2	М	L			Н		L		L					
(L – Low, M - Medium, H –	CO3	M	L			Н		L		L					
High)	CO4	M	L			Н		L		L					
	Electri impori system FACT Volta Basic operation	tance n (FA S. ge Sou conce	of cor CTS) urce C opt of V Fundar Pulse	ssion M ntrollab Contro onvert oltage nental	Networ ole par ollers ers: source and H	k - Ne ameter -oppo e conve armon	ecessity rs - B rtunitie erter – cs, Tra	y - Pov asic ty es for Three ansforr	wer Flo pes o FAC phase ner Co	ow in f Flex FS - full-wa	AC Sys ible AC possible ave brid ons for nonic el	transr benef ge conv 6 and 12	nission its fo verter - 2 pulse		
	Objec config Thyris functi operat var Co	e Shun tives guratio stor S onal ting propen	n and witche control	nt cor operat d Rea sche e – coi	npensa ing ch actor (mes.	aracter (TSR) Static	ristics and Syncl	of Thy Thyrist nronou	yristor tor Sv 1s Col	Contr vitched mpensa	e VAR olled R Capac ator (S TATCC	eactor (T citor (T TATCC DM and	tion - (TCR) (SC) (M) - Stati		
	UNIT	-III									[Text B	ook-1		

UNIT- IV[Text Book-1]Multi Type FACTS Controllers: The unified Flow Power Controller (UPFC) – Operation and control, Comparison with other FACTS devices, control of P and Q, Dynamic Performance. Generalized Unified Power Flow Controller (GUPFC) - Operation and Control, Interline Power flow Controller - Operation and Control.Text books and Reference booksText Book(s): [1] N.G.Hingorani & L.Gyugyi, "Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems", Wiley IEEE Press, 2013.Reference Books: [1] T.J.E.Miller, "Reactive Power Control in Electric Systems", John Wiley & sons,2010 [2] K.R.Padiyar, "FACTS Controllers in power transmission and Distribution", New Age Int. Publisher,2007.		Objectives of Series Compensation – Gate Turn Off Thyristor-Controlled Series Capacitor (GCSC), Thyristor-Switched Series Capacitor (TSSC), Thyristor-Controlled Series Capacitor (TCSC) and Static Synchronous Series Compensator (SSSC) – Operation and Control, External System Control for series Compensators, Sub Synchronous Resonance (SSR) and its damping.
Reference books[1] N.G.Hingorani & L.Gyugyi, "Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems", Wiley IEEE Press, 2013.Reference Books: [1] T.J.E.Miller, "Reactive Power Control in Electric Systems", John Wiley & sons,2010 [2] K.R.Padiyar, "FACTS Controllers in power transmission and Distribution", New Age Int. Publisher,2007.E-resources and otherImage: Control of the system of the		The unified Flow Power Controller (UPFC) – Operation and control, Comparison with other FACTS devices, control of P and Q, Dynamic Performance. Generalized Unified Power Flow Controller (GUPFC) - Operation and Control, Interline Power flow
[1] T.J.E.Miller, "Reactive Power Control in Electric Systems", John Wiley & sons,2010[2] K.R.Padiyar, "FACTS Controllers in power transmission and Distribution", New Age Int. Publisher,2007.E-resources and other	Reference	[1] N.G.Hingorani & L.Gyugyi, "Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems", Wiley IEEE Press,
and other		 [1] T.J.E.Miller, "Reactive Power Control in Electric Systems", John Wiley & sons,2010 [2] K.R.Padiyar, "FACTS Controllers in power transmission and
	and other	

Course Category:	Progra	amme	Electiv	e-III							Crea	lits: 3			
Course Type:	Theor	у						Lectu	re - Tı	utorial	- Pract	tice: 3	- 1 - 0		
Prerequisites:	-	ll circu ns(14E					Continuous Evaluation: Semester End Evaluation: Total Marks:								
Course Outcomes		Upo	n succ	essful	l comp	oletior	of the	e cour	se, the	e stude	ent will	be abl	e to:		
	CO1	Desc	escribe Register transfer and micro operations. nderstand the design of basic computer and control unit. now the Organization and architecture of CPU.												
	CO2	Unde													
	CO3	Knov													
	CO4		oply algorithms to perform arithmetic operations on fixed point and flo int data. Understand Memory Hierarchy and I/O Organization												
Contribution of		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1		
Course Outcomes towards	CO1	Н													
achievement of Program	CO2	М	1 M H												
Outcomes (L – Low, M -	CO3		H H												
Medium, H – High)	CO4	Н	Н			L									
	Arithn Arithn Basic Instru of Bas UNIT	netic netic I Comp action ction c sic Con F- II	Micro Logic S outer (codes, cycle, 1 nputer	o-opera Shift U Drgan i Comp Memor , Desiş ed Co	ntions, nit. ization outer R cy Refe gn of A ntrol:	Logic and I egister erence ccumu	e Mic Design: rs, Cor Instruc Ilator I	nputer tions, ogic.	Instru Input-(s, Shi actions, Output	memo ift Mio Timing and Int	g and C errupt,	ontro Desig ook-1		
	Gener Mode	-	ister C a Tran) rganiz	ation,		-				Formated 1		on Se		

	point Arithmetic operations.
	Memory Organization:
	Memory Hierarchy, Main Memory, Auxiliary memory, Associative Memory, Cache
	Memory, Virtual Memory, Memory Management Hardware.
	UNIT- IV [Text Book-1]
	Input Output Organization:
	Peripheral Devices, Input-output Interface, Asynchronous Data Transfer, Modes of
	Transfer, Priority Interrupt, Direct Memory Access (DMA), Input-Output
	Processor, Serial Communication.
Text books and Reference books	Text Book(s): [1]. Morris M. Mano, <i>Computer Systems Architecture</i> . 3 rd Edition, Pearson/PHI
	Reference Books:
	[1].Carl Hamacher, ZvonkoVranesic, Safwat Zaky: Computer Organization, 5 th Edition, Tata McGraw Hill, 2002.
	[2]. John P. Hayes, Computer Architecture and Organization. TMH.
E-resources	[1]. <u>http://www.nptel.iitm.ac.in/video.php?subjectId=106106092</u>
and other digital material	[2]. <u>http://www.nptel.iitm.ac.in/video.php?subjectId=117105078</u>
1	

Course Category:	Progr	amme	e Elect	tive-II	Ι			(Credits	: 3				
Course Type:	Theorem						Lect	ture- '	Futor	ial- P	ractice	: 3-1	- 0	
Prerequisites:	Powe	er Syst	tems I	(14E)	E3507)	Continuous Evaluation:30MSemester end Evaluation:70MTotal Marks:100M							
Course Outcomes		Upo	n succ	essful	comp	oletion	of the	e cour	se, the	e stude	ent will	be abl	e to:	
	CO1		nderstand the basics of various Renewable Energy Systems and quire knowledge of Bio Mass.										l	
	CO2	1	erstan eratioi			ots and	d acqu	ire kn	owled	lge of	Wind	Energy		
	CO3	-	uire kı pplica		dge of	Solar	Radia	ation,	Colle	ction,	Energy	storag	ge and	
	CO4		w the versio		1	Geo	therma	al, Oc	ean E	nergy	and Di	rect Er	nergy	
Contribution of		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	
Course Outcomes towards	CO1	Н	L			L			Μ	M				
achievement of Program	CO2	Н	L			L			M	M			1	
Outcomes (L – Low, M -	CO3	Н	L			L			М	M				
Medium, H – High)	CO4	Н	L			L			М	М				
Course Content	Statist Conce Classi and th Bio- N	ducti tics or epts of ification reir con Mass:	n Conv NCES	5, Limi NCES: on.	tations Bioma	of RE ass, W	S, Crit ind, S	teria fo olar, C	or asse Beothe	ssing t rmal, (Developi he poter Ocean e	ntial of nergy s	untries NCES source	

Principles of Bio-Conversion, Anaerobic/aerobic digestion, types of Bio-gas digesters, utilization for cooking, I.C. Engine operation and economic aspects.

UNIT- II

Wind Energy:

Energy available from wind, General formula, Lift and drag. Basis of Wind energy conversion, Effect of density, Frequency variances, Angle of attack, Wind speed, Windmill rotors, Horizontal axis and Vertical axis rotors, Determination of torque coefficient, Induction type generators, Working principle of wind power plant, Betz criteria.

UNIT-III [Text Book-1&2] Principles of Solar Radiation And Collection: Introduction to solar energy, physics of the sun, the solar constant,

[Text Book-1&2]

	extraterrestrial and terrestrial solar radiation, solar radiation on titled surface, instruments for measuring solar radiation and sun shine, solar radiation data. Classification of concentrating collectors, orientation and thermal analysis (elementary treatment), advanced collectors. Solar Energy Storage and Applications: Different methods, Sensible, latent heat and stratified storage, solar ponds. Solar Applications- solar heating/cooling technique, solar distillation and drying, photovoltaic energy conversion.
	UNIT- IV[Text Book-1&2]Geothermal Energy:Definition and classification of resources, Utilization for electricitygeneration and direct heating, Wellhead power generating units. Basicfeatures: Atmospheric exhaust and condensing Exhaust types of conventionalsteam turbines, Resources, types of wells, methods of harnessing the energy,potential in India.Ocean Energy:OTEC, Principles utilization, setting of OTEC plants, thermodynamic cycles.Tidal and wave energy: Potential and conversion techniques, mini-hydelpower plants, and their economics.Direct Energy Conversion:Need for DEC, Carnot cycle, limitations, principles of DEC, Fuel cells.
Text books and Reference books	 Text Book(s): [1] Non-Conventional Energy Sources by G.D. Rai, Khanna Publishers, 2006 [2] Renewable Energy Resources – Twidell & Wier, CRC Press(Taylor & Francis), 2012 Reference Books: [1] Renewable energy resources by G. N. Tiwari, M. K. Ghosal, Alpha Science International, 2005. [2] Renewable Energy Technologies by R. Ramesh, K. Uday Kumar, M. Anandakrishnan, Narosa Publishing House, 1997 [3] Non-Conventional Energy Systems by K Mittal, A. H. Wheeler Publishing Company Limited, 01-Jan-1999. [4] Renewable energy sources and emerging technologies by R. Ramesh by R. Ramesh K. Company Limited, 01-Jan-1999.
E-resources and other digital material	D.P.Kothari,K.C.Singhal, P.H.I. [1] <u>http://www.solarenergy.org/online/</u> [2] <u>http://nptel.ac.in/courses/108105058/</u> [3] <u>http://freevideolectures.com/Course/2352/Power-System-Generation- Transmission-and-Distribution/6</u> [4] <u>http://www.nptelvideos.in/2012/11/energy-resources-and- technology.html</u>

Course	Prog	ramm	e Ele	ctive-]	III						Credi	ts: 3			
Category:															
Course Type:	Theor	-					Lect		3 - 1 - 0						
Prerequisites:	Syste	ms I(1	4EE3	4),Pov 507), I(14EI)	Continuous Evaluation: Semester end Evaluation: Total Marks:						0M 0M 00M		
Course Outcomes		Upo	n succ	essful	comp	oletion	of the	e cour	se, the	stude	ent will	be at	ole to:		
	CO1			ne con corresp	-			genera	tion of	` high	voltage	s and	nd currents		
	CO2			ne conc espond	-		the m	neasure	ement (of high	ı voltag	es and	l curre		
	CO3			gh vol n in Po	-	-	technio	ques o	f Pow	er app	aratus a	and Ir	sulatio		
	CO4			oreakdo ctrical	-				• •		sulating s.	mate	rials ar		
Contribution of Course Outcomes		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	PO		
towards achievement of	CO1	Н						Н			Н				
Program Outcomes	CO2	M						Н			Н				
(L – Low, M - Medium, H –	CO3	L						Н			Н				
High)	CO4	Н						Н			Н				
Course Content	Princi mathe Tesla Gener Standa expon Multis Gener Standa	ration ple of matica coil. ration ard sp ential stage in ration ard spe	Voltag l anal of Imp ecifica wave npulse of Imp	ysis; c oulse V tions,	blers c ascade voltage standa s, app ator, En Curren	ircuit, conn es: ard wa roxima nergy o ts:	Cockc ection ive sh ite est of impu	of tra apes i imate ilse ge	nsform for tes of wa nerator	ners, ro sting, ve sha	e arrang esonant properti ape cor	ement trans es of trol 1	former doub esistor		
	DC,	ureme AC an eters-sj	nd im phere	gaps-f	voltag actors	es an affect	d curr ing m	ents-C leasure	ments-	potent	ectrosta ial div	tic ai iders	- seri		

	measurements.
	UNIT- III[Text Book-1]High Voltage Testing Techniques: Testing of insulators, transformers, lightning arresters, bushings, Power cables, circuit breakers and isolators.Insulation Coordination: Principle of insulation coordination on high voltage and extra high voltage power systems.
	UNIT- IV[Text Book-1 & 2]Breakdown of Insulators - Solid, Liquid and Gasses Dielectrics:Introduction to solid, liquid and gaseous dielectrics. Breakdown of solid, liquid, amorphous, gasses and gas mixtures dielectrics - breakdown in uniform and non- uniform fields- Paschen's law-Townsend's criterion-streamer mechanism-corona discharge-breakdown in electro negative gases.
Text books and Reference books	 Text Book(s): [1] Naidu M. S. and Kamraju V., "<i>High voltage Engineering</i>",. TMH publications 5th edition.,2012 [2] C.L. Wadhwa, "<i>High voltage Engineering</i>",. New Age International, 01-Jan-2007
	 Reference book: [1] E. Kuffel, W. S. Zaengl and J. Kuffel., "<i>High Voltage Engineering Fundamentals</i>", 2nd edition, Elsevier Publication,2005 [2] Naidu M.S., "<i>Gas Insulated Substations</i>", I.K International Publishing House Pvt. Ltd.2008
E-resources and other digital material	http://nptel.ac.in/courses/108104048/ui/TOC.htm

Course Category:	Progr	amme	Elect	ive-IV	/					C	Credits	3					
Course Type:	Theor	ry					Lect	3-1-	0								
Prerequisites:		hgear ction(and 14EE3	3702)			Continuous Evaluation:3Semester end Evaluation:7Total Marks:1										
Course Outcomes		Upo	n succ	essful	comp	oletion	of the	e cour	se, the	e stude	ent will	be abl	e able to:				
Outcomes	CO1	Eluc	idate	variou	s mici	roproc	processor based relays.										
	CO2	Und	Inderstand basic Static relays and its operation.														
	CO3		now various static protection schemes of transmission li ransformers.														
	CO4	Acqu	Acquire Knowledge of various Digital relays and its operate														
Contribution of Course Outcomes		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12				
towards achievement of	CO1		H M														
Program Outcomes	CO2										М						
(L – Low, M - Medium, H –	CO3										Н	М					
High)	CO4	Н										Н					
	Micro direct UNIT Static protec schem UNIT Digita protec	oproce ional - II protection nes. S - III al rela	essor relay, ection schem tatic H tatic H	Based reacta of tra- nes – Iarmo Develong algo	ansmi ansmi 3–zoi nic Re	lays: elay, N ssion ne pro estrain nts in ns, Dif	Over Aho re lines otectio t relay comp ferent	Curr elay, o - Pilo n sch / for tr uter ro ial equ	ent 1 ffset M t rela emes cansfo elayin uation	g mat basec	[Text and Ca rier aid protecti	ance Book – rrier c ded dis on. ext Boo cal bas que; F	relay - 1&2 urren stance bk – 1 sis fo ourie				
	protec UNIT Artifi	ction s - IV cial In er cu	system ntellig rrent	ns. ence (protec	(AI) b tion,	ased M Trans	Numer missic	rical P on line	rotect e prot	ion: A ection	[To Applicat	e xt Boo tion of al Net	k – 1 ANP work				

	Fuzzy logic.
Text books and Reference books	Text Book(s): [1] Power System Protection and Switchgear 2/e, Badri Ram, TMH. [2] Power System Protection – Static relays T.S.Madhava Rao, TMH, 2010. Reference Books: [1] Digital Protection for Power Systems A.T.Johns and S.K.Salman, 1995.
E-resources and other digital material	 [1] www.nptel.ac.in/courses/108101039/20 [2] https://library.e.abb.com//Reprint%20%20ABB%20review %203_2011_lowres.pdf

Course Category:	Progr IV	amme	e Elect	tive-						Cree	dits:	3				
Course Type:	Theor	ry				Lecture - Tutorial - Practice: 3 -										
Prerequisites:		Semester end Evaluation: 70M										30M 70M 100M				
Course Outcomes		Upo	n succ	essful	comp	oletion	ofth	e cour	se, the	e stude	ent wil	l be abl	e to:			
	CO1	Und	erstai	nd the	conce	concepts of energy audit, instruments										
	CO2	Ana	lyze d	epreci	ation	methc	ds an	d Ener	rgy ef	ficient	t motor	controls.				
	CO3	Ana man	lyze ageme	energ ent.	gy e	fficier	nt tr	ansfor	mers	and	reac	tive	power			
	CO4	Ana	lyze d	eman	d side	mana	gemer	nt.								
Contribution of		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1			
Course Outcomes towards achievement of	CO1	М		М												
Program Outcomes (L – Low, M -	CO2	Μ		Н		Н										
Medium, H – High)	CO3	М		Н		Н										
	CO4	М		М												
	Defini cost i efficie	ndex - ent us	Need-c - pie c e of	harts - Electri	- Sank city;	tey dia Specifi	grams. c ene	. Syste ergy a	em app nalysis	oroach, , Min	end us	Energy in se appro energy study	ach 1			
	Introd Sinkir Intern Electr Energ Energ	gy Eco luction ng fund al rate ric mo y effic y effi ble spe	d depre of retu tors: cient co	benefi eciation urn met ontrols igh ef	h—Rec thod-P and st	lucing rofitab	balanc ility in efficie	e depr dex for ency, m	eciatio r benef notor e	n-Net	the line present ratio. cy and selectio	Fext Boo deprec value m Load an on of r	iation nethoo nalysi notor			
	Energ loss e ^r React	y effic valuati ive po vitor S	on, cas wer m	se stud anage	ies. ment:				0	2	analysi	s, feede	r/cab			

	loads, optimal Load scheduling, case studies; UNIT- IV [Text Book –1 & 2] Introduction to Demand Side Management, Concept of DSM, Benefits of DSM, Different Techniques of DSM – Time of Day Pricing, Multi-Utility Power Exchange Model, Time of Day Models for Planning Load Management, Load Priority Technique, Peak Clipping, Peak Shifting, Valley Filling, Strategic Conservation, Energy Efficient Equipment. Management and Organization of Energy Conservation Awareness Programs
Text books and Reference books	 Text Book(s): [1] Wayne C.Turner, "Energy management Hand book", 8th ed., John Wiley and son. [2] S.C. Tripathy, Electric "Energy Utilization and Conservation", Tata McGraw Hill, 1991. [3] Arry C. White, Philip S. Schmidt, David R. Brown, "Industrial Energy Management Systems", Hemisphere Publishing Corporation, New York, 1994.
	 Reference Books: [1] John C. Andreas, "Energy efficient electric motors selection and application". [2] Amit kumar Tyagi, "Hand book on Energy Audit and Management", TERI(Tata energy research Institute). [3] Paul W.O. Callaghan, "Energy Management", McGraw hill Book Company. [4] Rakosh Das Begamudre, "Energy conversion systems", xth ed., new age international publishers. [5] W.R.Murphy & G.Mckey Butterworths, "Energy Management", new age international publishers). [6] Kurose and Ross, "Computer Networks – A Top-down Approach Featuring the Internet", 'Pearson Education. [7] Economic Analysis of Demand Side Programs and Projects – California Standard Practice Manual, June 2002 – Free download available online.
E- resources and other digital material	BEE Reference book: no.1/3/4. www.bee-india.com

Course	Programme Elective - IV						Credits:						3	
Category: Course Type:	Theor	rw.				Lecture - Tutorial - Practice:						3 - 1	- 0	
Prerequisites:	D.C. N	Machin				Continuous Evaluation:							30M	
	Motor Synch	s(14El ronous	s and I E3405) s and S 4EE35	, pecial	on	Semester end Evaluation: Total Marks:						70M 100M		
Course outcomes		Upon successful completion of the course, the student will be able to:												
	CO1	Understand the basic concepts of machine design parameters, fainfluencing temperature raise and cooling methods.										facto		
	CO2	Design armature and field systems for D.C. machines.												
	CO3	Desig	gn the	main d	imensi	ons of	Transf	former	s, Indu	ction r	nachine	S.		
	CO4 Design the main dimensions of synchronous machines.													
Contribution of Course Outcomes		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	
towards achievement of	CO1	Н	Н					Н						
Program Outcomes (L – Low, M -	CO2	Н	Н	Н				Н		L		М		
Medium, H – High)	CO3	Н	Н	Н				Н		L		М		
	CO4	Н	Н	Н				Н		L		М		
Course Content	Basic desigr of hea (induc Calcu reacta UNIT D.C. I E.M.F windir	ductio conce n and M at dissi- ced & lation nce. 2- II Vlachi gene ngs -	pts of Manufa pation forced of tota nes: rated distribu	from	g techn nperatu l & ax and m full pi factor.	niques are rise ial), di agneti tch - Desig	- Class - time rect co zing cu fractio n of n	nal pi	on of i s - Me and qu - Spec tch w imensi	insulat ethods uantity cific po ith an ons fro	on - mo ing mate of cooli of cool ermeanc	erials - ing vent ling me be and l t Book but distribut equi	ends Mod tilatio dium eakag -1&2 ribute ation	
	comm UNIT Trans Deriva dimen	utator. - III sforme ation of sions 1	e rs: of outp	out eque	uation	- volt	per tu	urn im	portan	ce and	-	ation o	-1& : f ma	

	Induction Motors: Output equation - calculation of main dimensions – Stator design - number of slots - Design of rotor bars & slots - Rotor design for squirrel cage and slip ring type induction motors.
	UNIT – IV [Text Book -1&2]
	 Synchronous Machines: Derivation of output equation - Calculations of Main Dimensions for salient pole and cylindrical rotor alternators - Stator design - number of stator slots and slot dimensions Pole design for salient pole generators - pole winding calculations. Design of rotor for cylindrical rotor alternator - Design of rotor windings.
Text books and Reference books	Text Book(s): [1] A Course in Electrical machine Design by A.K. Sawhney, Dhanpatrai& Sons [2] Performance and Design of AC Machines by M.G. Say
	 Reference Books: [1] Performance and Design of AC Machines by A.E. Clayton [2] A.Shanmugasundaram, G.Gangadharan, R.Palani 'Electrical Machine Design Data Book', New Age Intenational Pvt. Ltd. [3] Design of Electrical Machines K G Upadhyay
E-resources and other digital material	

Course Category:	Progra	amme I	Electiv	e - IV						Credi	its: 3		
Course Type:	Theor	y					Lectu	re- Tu	torial-	Practi	ce: 3	-1 - 0	
Prerequisites:	None					Continuous Evaluation:30 MSemester end Evaluation:70MTotal Marks:100M							
Course outcomes	Upon successful completion of the course, the student will be able to:												
	CO1	Und	Understand the basics of Smart Grid architecture and its components.										
	CO2	Understand the Information & Communications Technology for The Smart Grid											
	CO3	Acquire Knowledge about Sensing and Measurement technologies and related measuring unit in Smart Grid.											
	CO4	Know the concept of Smart metering and demand-side integration.											
Contribution of		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course Outcomes towards achievement of	CO1	Н			М		L						
Program Outcomes (L – Low, M -	CO2				Н								
Medium, H – High)	CO3	M	Н									M	
	CO4				Н		Н		Н				
Course Content	UNIT-I[Text Book -1]Smart Grid Architectural Designs :Introduction – Comparison of Power grid with Smart grid – power systemenhancement – communication and standards - General View of the Smart GridMarket Drivers - Stakeholder Roles and Function - Measures - RepresentativeArchitecture - Functions of Smart Grid Components.UNIT - IIInformation and Communications Technology for the Smart Grid :Data communication:Introduction, Dedicated and shared communication channelsSwitching techniques, Communication channels, Layered architecture and protocols.Communication technologies for the Smart Grid:Introduction- Communication technologies-IEEE 802 series, Mobile communicationsMulti-protocol label switching, Power line communication. Standards for informationexchange-Standards for smart metering Modbus, DNP3, IEC 61850.												
	Information security for the Smart Grid: Encryption and decryption, authentication, Digital signatures, Cyber s UNIT - III Sensing and Measurement:										security standard		

	Monitoring Systems (WAMS), Phasor Measurement Units (PMU), Smart Meters, Smart Appliances, Advanced Metering Infrastructure. GPS and Mapping Tools. Multi Agent Systems (MAS) Technology.
	UNIT-IV [Text Book -2]]
	Smart metering and demand-side integration: Introduction, Smart metering-Evolution of electricity metering, Key components of smart metering, Smart meters- An overview of the hardware used, Communications infrastructure and protocols for smart metering, Demand-side integration.
Text books and Reference books	 Text Book(s): [1] Janaka Ekanayake, Kithsiri Liyanage, Jianzhong.Wu, Akihiko Yokoyama, Nick Jenkins, "Smart Grid: Technology and Applications"- Wiley, 2012. [2] James Momoh, "Smart Grid: Fundamentals of Design and analysis"- Wiley, IEEE Press, 2012.
	Reference Books: [1] Clark W Gellings, "The Smart Grid, Enabling Energy Efficiency and Demand Side Response"- CRC Press, 2009
E-resources and other digital material	

14EE4851- SIMULATION OF ELECTRICAL SYSTEMS LABORATORY

Prerequisites:Course outcomesCO1CO2CO3Contribution of Course Outcomes towards achievement of Program Outcomes (L - Low, M - Medium, H - High)Course ContentLIST 1.2.3.4.5.	1 Desig 2 Analy 3 Exhit PO1 1 2 3 T OF EX 1. Mode	gn and yze and oit prof PO2 M	conduct d prese fession PO3	ct expe	eriment erimen	s of the t.	Cont Semes e cour ults.	tinuou ter en	ıs Eva Id Eva Total	Practic luatio luatio Mark ent will PO10	n: 30 n: 70 s: 10	M 0M						
Course outcomesCO1CO2CO3Contribution of Course Outcomes towards achievement of Program Outcomes (L - Low, M - Medium, H - High)Course ContentLIST 1. 2. 3. 4. 5.	1 Desig 2 Analy 3 Exhit PO1 1 2 3 T OF EX 1. Mode	gn and yze and oit prof PO2 M	conduct d prese fession PO3	ct expe ent exp al beha PO4 H H	eriment erimen avior	t. t.	e cour ults.	se, the	d Eva Total	lluation Mark	n: 70 s: 10 be abl	M 0M e to:						
outcomes CO1 CO2 CO3 Contribution of Course Outcomes towards achievement of Program Outcomes (L – Low, M – Medium, H – High) CO3 CO2 CO3 CO1 CO2 CO3 CO1 CO2 CO3 CO1 CO2 CO3 CO1 CO2 CO3 CO1 CO2 CO3 CO1 CO2 CO3 CO1 CO2 CO3 CO1 CO3 CO1 CO2 CO3 CO1 CO2 CO3 CO1 CO3 CO1 CO2 CO3 CO1 CO3 CO3 CO1 CO3 CO3 CO1 CO3 CO3 CO1 CO3 CO3 CO3 CO1 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3	1 Desig 2 Analy 3 Exhit PO1 1 2 3 T OF EX 1. Mode	gn and yze and oit prof PO2 M	conduct d prese fession PO3	ct expe ent exp al beha PO4 H H	eriment erimen avior	t. Ital res	ults. PO7											
CO1CO2CO2CO3Contribution of Course Outcomes towards achievement of Program Outcomes (L - Low, M - Medium, H - High)CO2CO3Course ContentLIST1.2.3.4.5.	2 Analy 3 Exhit PO1 1 2 3 T OF EX 1. Mode	yze and pit prof PO2 M	d prese fession PO3	ent exp al beha PO4 H H	erimen avior	ital res	PO7	PO8	РО9	PO10	PO11	PO12						
Contribution of Course Outcomes towards achievement of Program Outcomes (L - Low, M - Medium, H - High)CO1CO2 CO3CO2Course ContentLIST1.2.3.4.5.5.	 3 Exhit PO1 1 2 3 T OF EX 1. Mode 	Dit prof PO2 M	fession PO3	al beha PO4 H H	avior		PO7	PO8	PO9	PO10	PO11	PO12						
Contribution of Course Outcomes towards achievement of Program Outcomes (L - Low, M - Medium, H - High)CO1CO2CO2CO3CO3Course ContentLIST1.2.3.4.5.5.	PO1 1 2 3 T OF EX 1. Mode	PO2 M	PO3	PO4 H H		PO6		PO8	PO9	PO10	PO11	PO12						
Course Outcomes towards achievement of Program Outcomes (L - Low, M - Medium, H - High)CO1Course ContentLIST1.2.3.4.5.	1 2 3 T OF EX 1. Mode	M		H H	PO5	PO6		PO8	PO9	PO10	PO11	PO12						
towards achievement of Program Outcomes (L - Low, M - Medium, H - High)CO1CO2CO2CO3CO3Course ContentLIST1.2.3.4.5.5.	2 3 T OF EX 1. Mode	XPERI		Н			Н					1						
Outcomes (L - Low, M - Medium, H - High) CO2 Course Content LIST 1. 2. 3. 4. 5. 5.	3 T OF EX 1. Mod						Н			M H								
Medium, H – High)CO3Course ContentLIST1.2.3.4.5.	T OF E 1. Mod			Н		1	CO2 H H H											
1. 2. 3. 4. 5.	1. Mod			1			М											
7. 8. 9. 10 11 12 12	 Simu Simu Simu Trans Fault Simu Simu 	d Cont ilation lation of sient Ar analys lation of response cesentation omic d ge stab flow si	of Tran trol of of Thr of three nalysis sis of a of 3-ph of sing se of s ion of ispatch pility a tudies t studie	nsmissi Three pha e-phas s of Ele simple hase poo le area second Transf n nalysis	Load	Inducti ifier w ter syster r AC s vstem n Freque Transfe ction fr	ith R & n ystem etwork ency Co er func om Blo	k R-L, k for di ontrol tion fo ock dia	ifferent		mping f	àctors						