DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING

VELAGAPUDI RAMAKRISHNA SIDDHARTHA ENGINEERING COLLEGE SCHEME OF INSTRUCTION FOR FOUR YEAR UG PROGRAMME [VR17]

> Syllabus for Ist – VIth Semesters

VELAGAPUDI RAMAKRISHNA SIDDHARTHA ENGINEERING COLLEGE SCHEME OF INSTRUCTION FOR FOUR YEAR UG PROGRAMME [VR17] <u>ELECTRONICS & INSTRUMENTATION ENGINEERING</u>

SEMESTER I

Contact Hours: 26

S.No	Course Code	Title of the Course	L	Τ	P	Credits
1.	17MA1101	Matrices And Differential Calculus	3	1	0	4
2.	17PH1102	Engineering Physics	3	0	0	3
3.	17CS1103	Problem Solving Methods	2	1	0	3
4.	17EE1104	Basics of Electrical Engineering	3	0	0	3
5.	17HS1105	Technical English and Communication	2	0	2	3
		Skills				
6.	17PH1151	Engineering Physics Laboratory	0	0	3	1.5
7.	17CS1152	Computing and Peripherals Laboratory	0	0	2	1
8.	17ME1153	Basic Workshop	0	0	3	1.5
		Total	13	2	10	20
9.	17MC1106A	Technology and Society	1	0	0	-
10.	17MC1107	Induction Program				-

SEMESTER II

Contact Hours: 27

S.No	Course Code	Course	L	Τ	Р	Credits
1.	17MA1201	Laplace Transforms And Integral Calculus	3	1	0	4
2.	17CH1202	Engineering Chemistry	3	0	0	3
3.	17CS1203	Programming in C	3	0	0	3
4.	17EI1204	Electronic Devices and Circuits	3	0	0	3
5.	17ME1205	Engineering Graphics	2	0	4	4
6.	17CH1251	Engineering Chemistry Laboratory	0	0	3	1.5
7.	17CS1252	Computer Programming Laboratory	0	0	3	1.5
		Total	14	1	10	20
8.	17MC1206B	Professional Ethics& Human Values	2	0	0	-

Semester III

Contact Hours: 28

S.No	Course Code	Course	L	Т	Р	Credits
1.	17MA1301	Complex Analysis & Numerical Methods	3	1	0	4
2.	17EI3302	Network Theory	3	1	0	4
3.	17EI3303	Analog Electronic Circuits	3	1	0	4
4.	17EI3304	Sensors and Transducers	3	0	0	3
5.	17HS2305	Humanities Elective	1	0	0	1
6.	17TP1306	Logic & Reasoning	0	0	2	1
7.	17EI3351	Electronic Circuits Lab	0	0	3	1.5
8.	17EI3352	Transducers Lab	0	0	3	1.5
9.	17HS1353	Communication Skills Lab	0	0	2	1
	Total		13	3	10	21
10.	17MC1307B	Indian Constitution	2	0	0	-

List of Humanities Electives

Α	Yoga & Meditation	G	Film Appreciation
В	Music	Н	Sanskrit Bhasa
С	Human Rights and Legislative Procedures	Ι	Foreign Languages (German/French)
D	Philosophy	J	Law for Engineers
Е	Development of societies	Κ	Psychology
F	Visual Communication		

Semester IV

Contact Hours: 27

			001111011312					
S.No	Course Code	Course	L	Т	Р	Credits		
1.	17EI3401	Analytical	3	0	0	3		
		Instrumentation						
2.	17EI3402	Integrated Circuits and	3	1	0	4		
		Applications						
3.	17EI3403	Industrial Instrumentation	3	1	0	4		
4.	17EI3404	Electrical and Electronic	3	0	0	3		
		Measurements						
5.	17TP1405	English for Professionals	0	0	2	1		
6.	17EI3406	Digital Circuits and	3	0	0	3		
		Systems						
7.	17EI3451	Analog and Digital	0	0	3	1.5		
		Integrated Circuits Lab						
8.	17EI3452	Measurements Lab	0	0	3	1.5		
	Total		15	2	8	21		
9.	17MC1407A	Environmental Studies	2	0	0	-		

Semester V

Contact Hours: 25

				mact mours. 25			
S.No	Course Code	Course	L	Τ	P	Credits	
1.	17EI3501	Control Systems	3	1	0	4	
2.	17EI3502	Digital Signal Processing	3	1	0	4	
3.	17EI3503	Microcontrollers and Embedded Systems	3	0	0	3	
4.	17EI2504	Open Elective – I	3	0	0	3	
5.	17EI2505	Open Elective –II	3	0	0	3	
		(Inter Disciplinary Elective)					
6.	17EI2506	Open Elective-III	0	0	0	2	
		(Self-Learning Elective Course)*					
7.	17HS1507	Personality Development	0	0	2	1	
8.	17EI3551	Simulations Lab	0	0	3	1.5	
9.	17EI3552	Microcontrollers and Embedded Systems	0	0	3	1.5	
		Lab					
	Total			2	8	23	
10.	17MC1507	Biology for Engineers	2	0	0	-	

S.N	No	Course Code	Open Elective – I	L	Τ	P	Credits
	1.	17EI2504/A	Biomedical Electronics	3	0	0	3
	2.	17EI2504/B	Control System Components	3	0	0	3

S.No	Course Code	Open Elective – II (Inter Disciplinary Elective)		Т	Р	Credits
1.	17EI2505/A	Instrumentation Engineering	3	0	0	3
2.	17EI2505/B	Fundamentals of Industrial Automation	3	0	0	3

S.No	Course Code	Open Elective – III (Self-Learning Elective Course)	L	Т	Р	Credits
1.	17EI2506/A	Food Process Engineering	0	0	0	2
2.	17EI2506/B	Principles of Communication	0	0	0	2

*Students can opt any one of the self-learning courses prescribed by the Department. Students register and complete the opted course in approved MOOCS platform on or before the Last Instruction Day of <u>V semester</u>. They have to submit the certificate before the Last Instruction Day of <u>V semester</u>

Semester VI

Contact Hours: 27

S.No	Course	Course	L	Т	Р	Credits
	Code					
1.	17EI3601	Process Control	3	1	0	4
2.	17EI3602	Computer Control of	3	1	0	4
		Processes				
3.	17EI4603	Programme Elective-1	3	0	0	3
4.	17EI4604	Programme Elective -2	3	0	0	3
5.	17EI2605	Open Elective-IV	3	0	0	3
6.	17TP1606	Quantitative Aptitude	1	0	0	1
7.	17EI3651	Process Control Lab	0	0	3	1.5
8.	17EI3652	Virtual Instrumentation Lab	0	0	3	1.5
9.	17EI5653	Engineering Project for	0	1	2	2
		Community services*				
	Total			3	8	23

S.No	Course Code	Program Elective – I	L	Τ	P	Credits
1.	17EI4603/A	Fiber Optic Sensors	3	0	0	3
2.	17EI4603/B	Digital System Design using Verilog	3	0	0	3
3.	17EI4603/C	Robotics &Control	3	0	0	3
4.	17EI4603/D	Industrial Communication Networks	3	0	0	3

S.No	Course Code	Program Elective – II	L	Τ	P	Credits
1.	17EI4604/A	Renewable Energy	3	0	0	3
2.	17EI4604/B	Industrial Electronics	3	0	0	3
3.	17EI4604/C	Process Modelling and Simulation	3	0	0	3
4.	17EI4604/D	Biomedical Signal Processing	3	0	0	3

S.No	Course Code	Open Elective – IV	L	Τ	Р	Credits
1.	17EI2605/A	Virtual Instrumentation	3	0	0	3
2.	17EI2605/B	Intelligent Instrumentation Principles and	3	0	0	3
		Application				

* Students will go to the society (Villages/ Hospitals / Towns etc,.) to identify the problem and survey the literature for a feasible solution. The work will be carried out during summer vacation after IV Semester. The student is encouraged to take up real life problems leading to innovative model building

Semester VII

Contact Hours: 26

S.No	Course	Course	L	Т	Р	Credits
	Code					
1.	17EI3701	Industrial Automation	3	0	2	4
2.	17EI4702	Programme Elective -3	3	0	0	3
3.	17EI4703	Programme Elective -4	3	0	0	3
4.	17EI4704	Programme Elective -5	3	0	0	3
5.	17HS1705	Engineering Economics and	2	0	0	2
		Finance				
6.	17EI4751	PLC's Lab	0	0	3	1.5
7.	17EI4752	Advanced Instrumentation	0	0	3	1.5
		Lab				
8.	17EI5753	Mini Project *	0	0	4	2
9.	17EI6754	A Internship				2
		B Industry offered Course				
		C Global Professional				
		Certification				
		Total	14	0	12	22

S.No	Course Code	Program	L	Τ	P	Credits		
1.	17EI4702/A	Power Plant Instrumentation				0	0	3
2.	17EI4702/B	Integrated Circuit Fabrication				0	0	3
		Technology						
3.	17EI4702/C	Wireless Sensor Networks				0	0	3
4.	17EI4702/D	Data Communicat	Data Communication Networks				0	3

S.No	Course Code	Program Elective – IV	L	Τ	Р	Credits
1.	17EI4703/A	Instrumentation and Control in Paper	3	0	0	3
		Industries				
2.	17EI4703/B	Programmable Automation Controller	3	0	0	3
		Systems(PACS)				
3.	17EI4703/C	Intelligent Systems and Control	3	0	0	3
4.	17EI4703/D	Digital Image Processing	3	0	0	3

S.No	Course Code	Program Elective – V	L	Τ	P	Credits
1.	17EI4704/A	Instrumentation in Water treatment	3	0	0	3
		plants				
2.	17EI4704/B	Low Power VLSI Design	3	0	0	3
3.	17EI4704/C	Optimal and Nonlinear Control Systems	3	0	0	3
4.	17EI4704/D	Machine Learning	3	0	0	3

* Could be done in a group of students; involves working under a faculty member and carrying out a detailed feasibility study, literature survey and preparing a work plan for major project.

Contact Hours: 19

S.No	Course Code	Course	L	Т	Р	Credits
1.	17EI4801	Programme Elective – 6	3	0	0	3
2.	17EI2802	Open Elective –V*	3	0	0	3
3.	17EI5851	Major Project**	0	5	8	9
	To	6	5	8	15	

S.No	Course Code	Program Elective – VI	L	Τ	Р	Credits
1.	17EI4801/A	Measurement and Control in Food	3	0	0	3
		Processing				
2.	17EI4801/B	Biomedical Instrumentation	3	0	0	3
3.	17EI4801/C	System Identification	3	0	0	3
4.	17EI4801/D	Cloud Computing	3	0	0	3

S.No	Course Code	Open Elective – V	L	Τ	Р	Credits
1.	17EI2802/A	Advanced Sensors	3	0	0	3
2.	17EI2802/B	Industrial Safety and Environmental	3	0	0	3
		Management				

*Open Elective- V may also opt as self-learning course. Students register and complete the opted course in approved MOOCS platform on or before Last Instruction Day of VIII Semester. They have to submit the certificate before the last Instruction Day of VIII Semester. Students who have not opted as a self-learning are required to attend for the class work and internal assessment as per the regular theory course.

**Major project involves continuation of Mini Project. The objective is to complete the work as per the prepared work plan and prepare a detailed project report.

Semester VIII

SEMESTER - I

17MA1101

Course Category:	Institutional Core	Credits:	4
Course Type:	Theory	Lecture - Tutorial-Practice:	3 - 1 - 0
Prerequisites:	Fundamentals of	Continuous Evaluation:	30
	Matrices,	Semester end Evaluation:	70
	Fundamentals of	Total Marks:	100
	Calculus,		
	Integration,		
	Differentiation.		

MATRICES AND DIFFERENTIAL CALCULUS

COU	COURSE OUTCOMES								
Upon successful completion of the course, the student will be able to:									
CO1	Determine Eigen values, Eigen vectors of a matrix.								
CO2	Estimate Maxima and Minima of Multi Variable Functions.								
CO3	Solve the Linear differential equations with constant coefficients.								
CO4	Solve the Linear differential equations with variable coefficients.								
Contribution of Course Outcomes towards achievement of Program Outcomes (1 –									

Low, 2 - Medium, 3 – High)

	РО	PO	РО	PSO	PSO									
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3								2		1			
CO2	3								2		1			
CO3	3								2		1			
CO4	3								2		1			

COURSE CONTENT

UNIT I

Matrices: Rank of a Matrix, Elementary transformations, Inverse of a Matrix (Gauss Jordan Method), Consistency of Linear System of Equations, Linear Transformations, Vectors, Eigen values, Properties of Eigen values, Finding Inverse and Powers of a Matrix by Cayley-Hamilton Theorem. Reduction to Diagonal form, Reduction of Quadratic form to Canonical form, Nature of a Quadratic form, Complex matrices.

UNIT II

Differential Calculus: Rolle's Theorem, Lagrange's Mean Value Theorem, Cauchy's Mean Value Theorem, Taylor's Theorem, Maclaurin's Series.

Application: Curvature, Radius of Curvature.

Functions of two or more Variables: Partial Derivatives, Change of Variables, Jacobians, Taylor's Theorem for Function of two Variables, Maxima and Minima of Functions of two Variables, Lagrange's Method of Undetermined Multipliers.

UNIT III

Differential Equations of First Order: Formation of a Differential Equation, Solution of a Differential Equation, Linear Equations, Bernoulli's Equation, Exact Differential Equations, Equations Reducible to Exact Equations.

Applications: Orthogonal Trajectories, Newton's Law of Cooling.

Linear Differential Equations of Higher Order: Definitions, Operator D, Rules for Finding the Complementary Function, Inverse Operator, Rules for finding Particular Integral, Working Procedure to Solve the Equation.

UNIT IV

Linear Dependence of Solutions, Method of Variation of Parameters, Method of Undetermined Coefficients, Equations Reducible to Linear Equations with Constant Coefficients: Cauchy's Homogeneous Linear Equation, Legendre's Linear Equation, Simultaneous Linear Differential Equations with Constant Coefficients.

Applications: L-C-R Circuits.

TEXT BOOKS

[1] B.S.Grewal, "Higher Engineering Mathematics", Khanna Publishers, 43rd Edition, 2014.

REFERENCE BOOKS

- [1] Erwin Kreyszig, "Advanced Engineering Mathematics", John Wiley & Sons, 10th Edition,2015
- [2] B.V.Ramana, "Higher Engineering Mathematics", Tata MC Graw Hill, 1st Edition ,2007
- [3] N.P.Bali, Dr.Manish Goyal, "A Text Book of Engineering Mathematics", Laxmi Publications, 9th Edition,2014

E-RESOURCES AND OTHER DIGITAL MATERIAL

- [1] www.nptel videos.com/mathematics/ (Math Lectures from MIT,Stanford,IIT'S)
- [2] nptel.ac.in/courses/122104017
- [3] nptel.ac.in/courses/111105035
- [4] Engineering Mathematics Open Learning Project.

www.3.ul.ie/~mlc/support/Loughborough%20website/

17PH1102B

APPLIED PHYSICS

Course Category:	Institutional Core	Credits:	3
Course Type:	Theory	Lecture -Tutorial-Practice:	3 - 0 - 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

COU	RSE (OUTC	OME	S										
Upon	succe	ssful o	comple	etion o	of the	cours	e, the	studeı	nt will	be ab	le to:			
CO1	Unde	erstand	l the in	nporta	ince of	fquan	tum m	echan	ics.					
CO2	Anal	yse an	d und	erstand	d vario	ous typ	es of l	lasers	and th	eir app	olicatio	ons.		
CO3	Elab	Elaborate different types of optical fibers and understand holography.												
CO4	Unde	Understand the fabrication of nanomaterials and carbon Nanotubes.												
Contr	ibutio	on of (Course	e Outo	omes	towar	ds acl	hieven	nent o	f Prog	gram (Outcor	nes (1–	Low,
2 - Me	edium	, 3 – I	ligh)											1
	РО	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	РО	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3													
CO2	3													
CO3	3								2					
CO4	3								2					

COURSE CONTENT

UNIT-I

Quantum Mechanics: Dual nature of light, Matter waves and Debroglie's hypothesis, G. P. Thomson experiment, Heisenberg's uncertainty principle and its applications (Non existence of

electron in nucleus, Finite width of spectral lines), One dimensional time independent Schrödinger's wave equation, physical significance of wave function, Particle in a box (One dimension).

UNIT-II

Lasers: Introduction, Characteristics of laser, absorption, spontaneous emission, stimulated emission, pumping, population inversion, cavity resonance, Einstein's coefficients, different types of lasers: solid-state lasers (Ruby, Neodymium), gas lasers (He-Ne, CO₂), dye lasers, applications of lasers in science, engineering

and medicine.

UNIT- III

Fibre Optics: Introduction, Fundamental of optic fibre, Propagation of light through optical fiber, Types of optical fibers, Numerical aperture, Fractional Refractive Index change, V-number and cut-off Parameters of fibres, Fibre attenuation (losses), Fiber optics in communication and its advantages.

Holography: Basic Principle of Holography, construction of the hologram, reconstruction of the image, applications of holography.

UNIT-IV

Nanotechnology: Basic concepts of Nanotechnology, Nano scale, Introduction to nano materials, Surface to volume ratio, General properties of Nano materials, Fabrication of nano materials: Plasma Arcing, Chemical vapour deposition, Characterization of nano materials: AFM, SEM, TEM, STM, Carbon nano tubes: SWNT, MWNT, Formation of carbon nanotubes: Arc discharge, Laser ablation, Properties of carbon nano tubes, Applications of CNT's & Nanotechnology.

TEXT BOOKS

- M.N. Avadhanulu & P.G. Kshirsagar, Engineering Physics, S. Chand publications, Revised Edition, 2014
- [2] P.K. Palanisamy, "Applied Physics", Scitech Publications(INDIA) Pvt. Ltd., Fifth Print, 2008.

REFERENCE BOOKS

[1] B. K. Pandey and S. Chaturvedi, 'Engineering Physics' Cengage Learning', Delhi, 2012.

[2] O. Svelto, Principles of Lasers, 5th Edition, Springer, London, 2010

[3] M.R. Srinivasan, "Engineering Physics", New age international publishers, First Edition, 2011.

E-RESOURCES AND OTHER DIGITAL MATERIAL

- [1] https://ocw.mit.edu/courses/physics/8-04-quantum-physics-i-spring-2013/lecture-videos/
- [2] https://ocw.mit.edu/resources/res-6-005-understanding-lasers-and-fiberoptics-spring-2008/laser-fundamentals-i/
- [3] http://nptel.ac.in/courses/112106198/19
- [4] https://www.peterindia.net/NanoTechnologyResources.html

17CS1103 PROBLEM SOLVING METHODS

Course Category:	Institutional Core	Credits:	3
Course Type:	Theory	Lecture -Tutorial-Practice:	2 -1- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

COU	RSE (OUTC	COME	S										
Upon	succe	essful	compl	etion	of the	cours	e, the	studer	nt will	be ab	le to:			
CO1		lerstar prithm		Comp	outer p	problei	n solv	ving a	pproac	ches, e	efficier	ncy an	d analy	vsis of
CO2	App	oly the	factor	ring m	ethods	to sol	ve the	given	proble	em				
CO3	App	oly the	array	techni	ques t	o find	the so	lution	for the	given	probl	em		
CO4	Solv	ve the	proble	ems us	ing M.	ATLA	В							
Contr	ibuti	on of (Cours	e Outo	comes	towar	ds ac	hieven	nent o	f Prog	gram (Dutcor	nes (1 -	_
Low,	2 - M	ediun	n, 3 – I	High)										
	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2												
CO2	1		3											
CO3	1		3											
CO4	1	1							3					

COURSE CONTENT

UNIT - I

Introduction to Computer Problem Solving: Programs and Algorithms, characteristics of an algorithm, Requirements for solving problems by computer; Flowchart, pseudo-code The **Problem – Solving Aspect**: Problem definition phase, Getting started on a problem, Similarities among problems, Working backwards from the solution, General problem-solving strategies; **Top-Down design**: Breaking a problem into sub-problems, Construction of loops, Establishing initial conditions for loops, Finding the iterative construct, Termination of loops;

The Efficiency of Algorithms: Redundant Computations, Referencing array elements, Inefficiency due to late termination, Early detection of desired output conditions, Trading storage for efficiency gains;

Analysis of Algorithms: Computational complexity, The order notation, Worst and average case behavior.

UNIT - II

Fundamental Algorithms: Problem, Algorithm Development, Algorithm Description - Exchanging values of two variables, Counting, Summation of a set of numbers, Factorial computation, Generation of Fibonacci sequence, Reversing the digits of an Integer. Using pseudo-codes and flowcharts to represent fundamental algorithms.

Factoring Methods: Finding the Square Root of a number: Smallest Divisor of an Integer, GCD of two Integers, Generating Prime numbers, Computing the Prime Factors of an Integer, Raising a Number to a Large Power, Pseudo random number generation, Computing nth Fibonacci number.

$\mathbf{UNIT} - \mathbf{III}$

Array Techniques: Introduction, Array Order Reversal, Array counting, Finding the maximum number in a set, Removal of duplicates from an ordered array, Partitioning an array, Finding The Kth Smallest Element.

Merging, Sorting and Searching: Sorting By Selection, Sorting By Exchange, Linear Search, Binary search;

UNIT - IV

MATLAB Environment: User Interface, Syntax and Semantics Operators, Variables and constants: Simple arithmetic calculations. Data types, Control Structures: if...then, loops, Functions, Matrices and Vectors: Matrix manipulations and operations

MATLAB Programming: Reading and writing data, file handling, MATLAB Graphic

functions.

TEXT BOOKS

- R.G. Dromey, "How to Solve it By Computer", Prentice-Hall International Series in Computer Science, 1982.
- [2] Bansal.R.K, Goel.A.K, Sharma.M.K, "MATLAB and its Applications in Engineering", Pearson Education, 2012.

REFERENCE BOOKS

- [1] Michael Schneider, Steven W. Weingart, David M. Perlman, "An Introduction to Programming and Problem Solving With Pascal", John Wiley and Sons Inc ,1984.
- [2] David Gries, "The Science of Programming", Springer Verlag, 1981.
- [3] ReemaThareja, "Computer Fundamentals and C Programming", Oxford, 2012

E-RESOURCES AND OTHER DIGITAL MATERIAL

[1] MATLAB Getting Started Guide <u>http://www.mathworks.com/help/pdf_doc/</u> matlab/getstart.pdf

17EE1104

BASICS OF ELECTRICAL ENGINEERING

Course Category:	Engineering Sciences	Credits:	3
Course Type:	Theory	Lecture - Tutorial-Practice:	3 - 0 - 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

COUI	RSE O	UTC	OMES	5										
Upon	succes	ssful c	omple	etion o	of the o	course	e, the s	studen	t will	be abl	le to:			
CO1	Ana	lyze E	lectric	c Circu	iit fund	lamen	tals.							
CO2	Und	lerstan	d the b	pasic c	oncep	ts of A	lterna	ting Q	uantit	ies and	l Magi	netic C	Circuits	
CO3	Ana	lyze tł	ne basi	c conc	cepts o	of Elec	tric M	achine	es					
CO4	Und	lerstan	d Mea	suring	g Instru	iments	5 & So	lar Ph	oto Vo	ltaic S	System	conce	epts	
Contr Low, 2					omes	towar	ds ach	lievem	ent of	² Prog	ram C) utcor	nes (1 -	-
	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	1			2									
CO2	4	1												
CO3	2				2									
CO4	2													

COURSE CONTENT

UNIT I

Introduction to Electrical Engineering: Electric Current, Electromotive force, Electric power and energy, Basic circuit components- Resistors-Inductors-Capacitors. Electromagnetic Phenomenon and Related Laws, Kirchhoff's laws.

Network Analysis: Network sources-Ideal independent voltage source, Ideal independent current source, Dependent sources, Practical voltage and current sources, Source conversion, Voltage and Current division rule, series and parallel connection of R, L and C, Star-Delta or, Delta- Star transformation. Mesh and Nodal Analysis (with independent sources only).

UNIT II

Alternating Quantities: Introduction; Generation of a.c. voltages, Waveforms and Basic Definitions, Relationship between frequency, speed and number of poles, Root Mean Square and Average values of alternating current and voltages, Form Factor and Peak Factor, Phasor representation of alternating quantities.

Magnetic Circuits: Introduction, Magnetic Circuits, Magnetic Field Strength (H), Magneto motive Force, Permeability, Reluctance, Analogy between Electric and Magnetic Circuits, Magnetic potential drop, Magnetic circuit computations, Self and Mutual Inductance, Energy in Linear Magnetic Systems.

UNIT III

DC Machines: Introduction, Construction of dc machines, Armature Windings, Generation of dc voltage and torque production in a dc machine, Torque production in a dc Machine, Operation of a dc machine as a generator, Operation of dc machine as a motor.

Induction Motors: Introduction, Constructional features of three-phase induction motors, Principle of operation of three-phase induction motor- Slip and rotor frequency, Voltage and current equations and equivalent circuit of an induction motor.

UNIT IV

Measuring Instruments: Introduction, Classification of instruments, Operating Principles, Essential features of measuring instruments, Ammeters and Voltmeters, Measurement of power.

Solar photovoltaic Systems: Solar cell fundamentals, characteristics, classification, module, panel and array construction, Maximizing the solar PV output and load matching, Maximum Power Point Tracker(MPPT), Balance of system components, solar PV systems and solar PV applications.

TEXT BOOKS

 T.K. Nagasarkar and M.S. Sukhja, "Basic Electric Engineering", 2nd ed., Oxford University press 2011.

REFERENCE BOOKS

- B.H.Khan, "Non Conventional Energy Resources", 2nd ed., Mc.Graw Hill Education Pvt Ltd., New Delhi, 2013.
- [2] Ashfaq Husain, Haroon Ashfaq, "Fundamentals of Electrical Engineering", 4th ed., Dhanpat Rai & Co, 2014.
- [3] I.J.Nagrath and Kothari, "Theory and problems of Basic Electrical Engineering", 2nd ed., Prentice-Hall of India Pvt.Ltd., 2016.

E-RESOURCES AND OTHER DIGITAL MATERIAL

[1] http://nptel.ac.in/courses/108108076/

17HS1105

Course Category:	Institutional Core	Credits:	3
Course Type:	Theory	Lecture -Tutorial-Practice:	2 - 0 - 2
Prerequisites:	Basic understanding of the	Continuous Evaluation:	30
	language skills ,viz	Semester end Evaluation:	70
	Listening, Speaking,	Total Marks:	100
	Reading and Writing,		
	including Sentence		
	construction abilities		

TECHNICAL ENGLISH & COMMUNICATION SKILLS

COUR	RSE O	UTCO	OMES	•										
Upon	succes	sful co	omple	tion o	f the c	ourse	, the s	tuden	t will	be abl	e to:			
C01		evelop e) com				-			-	ons ir	ncludii	ng wel	o relate	ed(On-
CO2		emonst tterns o			•	n Inte	rperso	nal Co	ommui	nicatio	n, in a	dditio	n to sta	andard
CO3	-							-					rstandir nvironn	-
CO4	Ex	ecute 1	tasks	in Teo	chnica	l com	nunica	ation v	vith c	ompet	ence			
Contr Low, 2					omes t	oward	ds ach	ievem	ent of	Prog	ram C	Outcon	nes (1 –	-
	PO	РО	РО	РО	РО	PO	PO	PO	PO	РО	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1				2	3	3	3	3		2				
								1	-	-		-		

	РО	PO	PO	РО	PO	PO	PO	РО	PO	PO	РО	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1				2	3	3	3	3		2				
CO2				3	3	3	3	3		2				
CO3	2			3	3	3	3	3		2				

CO4	1	1	2	3	2	3	3	3		2					
-----	---	---	---	---	---	---	---	---	--	---	--	--	--	--	--

COURSE CONTENT

UNIT I

Professional Writing Skills

- Professional Letter- Business, Complaint and Transmittal
- Essay Writing- Descriptive and Analytical
- Administrative and On-line drafting skills –Minutes and Web notes including e-mail

UNIT II

Interpersonal Communication Skills

- Communicative Facet- Speech acts- Extending Invitation, Reciprocation, Acceptance, Concurrence, Disagreeing without being disagreeable
- Articulation-oriented Facet- Transcription using International Phonetic Alphabet, Primary Stress

UNIT III

Vocabulary and Functional English

- ➤ A basic List of 500 words Overview
- > Verbal analogies, Confusables, Idiomatic expressions and Phrasal Collocations
- Exposure through Reading Comprehension- Skimming, Scanning and Understanding the textual patterns for tackling different kinds of questions
- Functional Grammar with special reference to Concord, Prepositions, use of Gerund an Parallelism

UNIT IV

Technical Communication skills:

- Technical Proposal writing
- > Technical Vocabulary- a representative collection will be handled
- Introduction to Executive Summary
- > Technical Report writing(Informational Reports and Feasibility Report

TEXT BOOKS

- [1] Martin Cutts, "Oxford guide to Plain English", Oxford University Press, 7th Impression 2011.
- [2] TM Farhathullah, "Communication skills for Technical Students", Orient Longman, I Edition 2002
- [3] John Langan, "College Writing Skills", McGraw Hill, IX Edition, 2014."Eclectric Learning materials offered by the Department"

REFERENCE BOOKS

- [1] Randolph Quirk, "Use of English", Longman, I Edition (1968) Reprinted 2004.
- [2] Thomson A.J & A.V, Martinet, "Practical English Grammar", Oxford University Press, III Edition 2001
- [3] V.Sethi and P.V. Dhamija, "A Course in Phonetics and Spoken English", PHI, II Edition 2006

E-RESOURCES AND OTHER DIGITAL MATERIAL

[1] https://www.britishcouncil.org/english Accessed on 15th June 2017

www.natcorp.ox.ac.uk/Wkshops/Materials/specialising.xml?ID=online Accessed on 15th June 2017

[2]https://www.unimarburg.de/sprachenzentrum/selbstlernzentrum/.../apps_for_esl.pdf Accessed on 15th June 2017

17PH1151 APPLIED PHYSICS LABORATORY

Course Category:	Institutional Core	Credits:	1.5
Course Type:	Laboratory	Lecture -Tutorial-Practice:	0 - 0 - 3
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

COU	RSE (OUTC	OME	S										
Upon	succe	ssful o	compl	etion (of the	cours	e, the	studeı	nt will	be ab	le to:			
CO1		funct		genera	tor, s	spectro	ometer	and	travo	elling	micr	oscope	in v	various
CO2	Test	optica	l com	ponent	ts usin	g prin	ciples	of inte	erferen	ce and	l diffra	action of	of light	
CO3				-I cha		stics c	of sola	r cell a	ind ph	oto cel	ll and a	apprec	iate the	
Contr	ributio	on of (Course	e Outo	comes	towar	ds acl	hieven	nent o	f Prog	gram (Outcor	nes (1 -	-
Low,	2 - M	edium	, 3 – I	High)										
	PO	PO	РО	РО	PO	PO	РО	PO	PO	PO	РО	РО	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3										2			
CO2	3													
CO3	3													

COURSE CONTENT

- 1. Photo cell-Study of V-I Characteristics, determination of work function
- 2. Newton's Rings-Radius of curvature of plano convex lens.
- 3. Compound pendulum-Measurement of 'g'
- 4. LCR circuit- Study Resonance

- 5. AC Sonometer –Verification of vibrating laws
- 6. Solar cell-Determination of Fill Factor
- 7. Diffraction grating-Wavelength of laser light
- 8. Optical fiber- Study of attenuation and propagation characteristics
- 9. Diffraction grating-Measurement of wavelength of mercury source
- 10. Hall effect –Hall coefficient measurement
- 11. Figure of merit of a galvanometer
- 12. Variation of magnetic field along the axis of current-carrying circular coil

TEXT BOOKS

- [1] Madhusudhan Rao, "Engineering Physics Lab Manual", Ist ed., Scitech Publications, 2015
- [2] Ramarao Sri, Choudary Nityanand and Prasad Daruka, "Lab Manual of Engineering Physics"., Vth ed., Excell Books, 2010

E-RESOURCES

- [1] http://plato.stanford.edu/entries/physics-experiment
- [2] http://www.physicsclassroom.com/The-Laboratory
- [3] http://facstaff.cbu.edu/~jvarrian/physlabs.html

VIRTUAL LAB REFERENCES

[1] http://vlab.amrita.edu/?sub=1&brch=201&sim=366&cnt=1

[2] http://vlab.amrita.edu/?sub=1&brch=195&sim=840&cnt=1

[3] http://vlab.amrita.edu/?sub=1&brch=282&sim=879&cnt=1

17CS1152

COMPUTING AND PERIPHERALS LABORATORY

Course Category:	Institutional Core	Credits:	1
Course Type:	Laboratory	Lecture -Tutorial-Practice:	0 - 0 - 2
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

COU	RSE O	OUTCO	OMES	5										
Upon	succes	ssful c	omple	etion o	of the o	course	e, the s	studen	nt will	be ab	le to:			
CO1	Und	Understand and Apply MS Office tools												
CO2	Cont	Configure the components on the motherboard and install different operating systems												
CO3	Und	Understand and configure different storage media												
CO4	Perfe	Perform Networking, troubleshooting and system administration tasks												
Contr Low, 2					omes	towar	ds ach	lieven	nent of	f Prog	ram (Jutcor	nes (1 -	-
	РО	РО	РО	РО	РО	РО	РО	PO	РО	РО	РО	РО	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1								3					
CO2		3	1											
CO3	3		1											
CO4														

COURSE CONTENT

CYCLE - I:Word Processing, Presentations and Spread Sheets

1. Word Processing:

- a) Create personal letter using MS Word.
- b) Create a resume using MS Word.
- c) Creating project abstract: Features to be covered:- Table of Content, List of Tables, Formatting Styles, Inserting table, Bullets and Numbering, Changing Text Direction, Cell alignment, Footnote, Hyperlink, Symbols, Spell Check, Track Changes.
- d) Creating a Newsletter: Features to be covered:- Table of Content, List of figures, Newspaper columns, Images from files and clipart, Drawing toolbar and Word Art, Formatting Images, Textboxes, Paragraphsand Mail Merge in word.

2. Spread Sheets:

- a) Create a worksheet containing pay details of the employees.
- b) Creating a Scheduler: Features to be covered:- Gridlines, Format Cells, Summation, auto fill,Formatting Text
- c) Create a worksheet which contains student results: .Features to be covered:- Cell Referencing, Formulae in excel – average, Charts, Renaming and Inserting worksheets, Hyper linking, Count function, LOOKUP/VLOOKUP, Sorting, Conditional formatting
- d) Create a worksheet importing data from database and calculate sum of all the columns.

3. Presentations:

- a) Create a presentation using themes.
- b) Save, edit, print and import images/videos to a presentation.
- c) Create a power Point presentation on business by using master layouts, adding animation to a presentation and see the presentation in different views.

4. MS Access:

- a) Create simple table in MS Access for results processing.
- b) Create a query table for the results processing table.
- c) Create a form to update/modify the results processing table.
- d) Create a report to print the result sheet and marks card for the result.

CYCLE - II: Hardware Experiments

 Identification of System Layout: Front panel indicators & switches and Front side & rear side connectors. Familiarize the computer system Layout: Marking positions of SMPS, Motherboard, FDD,HDD, CD, DVD and add on cards. Install Hard Disk. Configure CMOS-Setup. Partition and Format Hard Disk.

- 2. Install and Configure a DVD Writer or a Blu-ray Disc writer.
- 3. Install windows operating system and check if all the device (graphics, sound, network etc.) drivers are installed.
- 4. Install Linux operating system and check the working of all devices (graphics, sound, network etc.) in the computer.
- 5. Assemble a Pentium IV or Pentium Dual Core Pentium Core2 Duo system with necessary peripherals and check the working condition of the PC.
- PC system layout: Draw a Computer system layout and Mark the positions of SMPS, Mother Board, FDD, HDD, and CD-Drive/DVDDrive add on cards in table top / tower model systems.
- Mother Board Layout: Draw the layout of Pentium IV or Pentium Dual core or Pentium Core2 DUO mother board and mark Processor, Chip set ICs. RAM, Cache, cooling fan, I/O slots and I/O ports and various jumper settings.
- 8. Configure BIOS setup program to change standard and advanced settings to troubleshoot typical problems.
- 9. Install and configure Printer/Scanner/Web cam/Cell phone/bio-metric device with system. Troubleshoot the problems

CYCLE – III : Networking

- 1. Prepare an Ethernet/UTP cable to connect a computer to network switch. Crimp the 4 pair cable with RJ45 connector and with appropriate color code.
- Manually configure TCP/IP parameters (Host IP, Subnet Mask andDefault Gateway) for a computer and verify them using IPCONFIG command. Test connectivity to a server system using PING command.
- 3. Creating a shared folder in the computer and connecting to that folder using Universal Naming Convention (UNC) format. (Ex: computername sharename)
- 4. Connects computers together via Switch/ Hub
- 5. Connect different devices via Switch/Hub
- 6. Statically configure IP address and subnet mask for each computer
- 7. Examine non-existent IP address and subnet conflicts
- 8. Configure a computer to connect to internet (using college internetsettings) and troubleshoot the problems using PING, TRACERT and NETSTAT commands.
- 9. Using scan disk, disk cleanup, disk Defragmenter, Virus Detectionand Rectifying

Software to troubleshoot typical computer problems.

- 10. Configure DNS to establish interconnection between systems and describe how a name is mapped to IP Address.
- 11. Remote desktop connections and file sharing.
- 12. Installation Antivirus and configure the antivirus.
- 13. Introducing Ethereal , a packet capture tool.

E-RESOURCES AND OTHER DIGITAL MATERIAL

- [1] Numerical Methods and Programing by Prof.P.B.Sunil Kumar, Department of Physics, IIT Madras https://www.youtube.com/ watch?v=zjyR9e-#1D4&list=PLC5DC6AD60D798FB7
- [2] Introduction to Coding ConceptsInstructor: Mitchell Peabody View the complete course: http://ocw.mit.edu/6-00SCS11

17ME1153

BASIC WORKSHOP

Course Category:	Engineering	Credits:	1.5
	Sciences		
Course Type:	Laboratory	Lecture -Tutorial-Practice:	0 - 0 - 3
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

COU	RSE (OUTC	OME	S										
Upon	succe	ssful o	comple	etion (of the	cours	e, the	stude	nt will	be ab	le to:			
CO1	Mod	Model and develop various basic prototypes in the Carpentry trade.												
CO2	Deve	Develop various basic prototypes in the trade of Welding.												
CO3	Model and develop various basic prototypes in the trade of Tin Smithy.													
CO4	Fami	Familiarize with various fundamental aspects of house wiring.												
Contr	ibutio	on of (Course	e Outo	comes	towar	ds ac	hieven	nent o	f Prog	gram (Outcor	mes (1 -	_
Low,	2 - Me	edium	, 3 – H	ligh)										
	РО	РО	РО	РО	PO	РО	РО	РО	РО	РО	РО	РО	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3			1										
CO2	2			1										
CO3	2			1										
CO4	1			1										

COURSE CONTENT

UNIT I

Carpentry:

- a. Study of tools & operations and various carpentry joints.
- b. Practice of open bridle joint, Cross half lap joint, Half LapT Joint, and Dove tail joint
- c. Simple group exercise like preparation of single widow frame.

UNIT II

Welding:

- a. Study of tools and operations of Gas welding and arc welding.
- b. Practice of various joints like weld layer practice, V- Butt Joint, Double parallel fillet joint, T-Joint, and Corner Joint.

UNIT III

Tin Smithy:

- a. Study of tools & operations
- b. Practice of various joints like Saw Edge, Wired Edge, Lap Seam, and Grooved Seam.
- c. Simple exercise like Fabrication of square tray.

UNIT IV

House Wiring:

- a. To connect one lamp with one switch.
- b. To connect two lamps with one switch.
- c. To connect a fluorescent Tube.
- d. Stair case wiring.
- e. Godown wiring.
- f. Study of single phase wiring for a office room.
- g. Nomenclature & measurement of wire gauges and cables.
- h. Estimation of cost of indoor wiring for a wiring diagram (plan of a building).
- i. Test procedure for continuity of wiring in a electric installation.
- j. Measurement of electric energy by using meter.

TEXT BOOKS

- Kannaiah P. & Narayana K. C., "Manual on Workshop Practice", Scitech Publications, Chennai, 1999.
- [2] Venkatachalapathy, V. S., "First year Engineering Workshop Practice", Ramalinga

Publications, Madurai, 1999.

REFERENCE BOOKS

[1] Gopal, T.V., Kumar, T., and Murali, G., "A first course on workshop practice – Theory, Practice and Work Book", Suma Publications, Chennai, 2005.

17MC1106A TECHNOLOGY AND SOCIETY

Course Category:	Institutional Core	Credits:	1
Course Type:	Theory	Lecture -Tutorial-Practice:	1 - 0 - 0
Prerequisites:		Continuous Evaluation:	100
		Semester end Evaluation:	0
		Total Marks:	100

U pon	succe	essful o	comple	etion o	of the c	course,	, the st	udent	will b	e able	to:			
CO)1	Unders	stand t	he orig	gins of	techno	ology a	nd its	role in	the his	story o	of hum	an prog	gress.
CO	02	Know the Industrial Revolution and its impact on Society												
CO	03	Interpret the developments in various fields of technology till Twentieth Century.												
CO	94	Distinguish the impacts of Technology on the Environemnt and achievements of great scientists.												
		on of (1, 3 – H		Outc	omes t	toward	ls achi	eveme	ent of]	Progra	am Ou	itcome	es (1 – 1	Low,
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSC

	PO	PO	PU	PU	PO	PO	PU	PU	PU	PO	PO	PO	P50	P30
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3							1						
CO2	3				2		1							
CO3	3							1						
CO4	3				2		1							

COURSE CONTENT

UNIT – I

Introduction: Origins of technology, The Agriculture revolution, Technological contributions of ancient civilizations- Mesopotamian, Egyptians, Greeks, Romans, Indians and Chinese.

UNIT - II

Industrial revolution: The social and political background, The technical background, Steam: The power behind the Indistrial Revolution, The revolution in Textile Indistry, The Imapact of Indutrial Revolution on Society.

UNIT - III

The Flowering of modern technology: Manufacturing Technologies, Prime Movers, Internal Combustion engines, Production of Metals and Allyos, The Birth of Electrical Technology, Twentieth Century: The Flowering of modern technology

UNIT - IV

Technology, Science and Society: Impact of technology on society, The Impacts of Technology on the environment, Sustainable development.

Achievements of famous scientists:

(World): Einestein, Newton, Faraday, Graham Bell, Edison, S.Hawking.

(**India**): CV Raman, S.Chandrasekhar, Aryabhatta, Homi J Bhabha, Vikram Sarabhai, APJ Abdulkalam, S.Ramanujan, M.Visweswarayya.

TEXT BOOKS

[1] Dr. R.V.G Menon, "Technology and Society", Pearson Education, 2011

REFERENCE BOOKS

 [1] Quan-Haase, A., "Technology and Society: Inequality, Power, and Social Networks", Oxford University Press, 2013.

SEMESTER - II

17MA1201

Course Category:	Institutional Core	Credits:	4
Course Type:	Theory	Lecture -Tutorial-Practice:	3 - 1 - 0
Prerequisites:	Vectors,	Continuous Evaluation:	30
	Curve Tracing.	Semester end Evaluation:	70
		Total Marks:	100

LAPLACE TRANSFORMS AND INTEGRAL CALCULUS

COU	RSE (OUTC	OME	S										
Upon	succe	ssful o	compl	etion	of the	cours	se, the	stude	ent wi	ll be a	ble to:			
C01	Solv	Solve Linear Differential Equations using Laplace Transforms.												
CO2	Exar	Examine the nature of the Infinite series.												
CO3	Eval	Evaluate areas and volumes using Double, Triple Integrals.												
CO4	Con	Convert Line Integrals to Area Integrals and Surface Integrals to Volume Integrals.												
Contr Low,					comes	towa	rds ac	hieve	ment	of Pro	gram	Outco	mes (1 -	_
	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	1												
CO2	3	1												
CO3	3	1												
CO4	3	1												

COURSE CONTENT

UNIT I

Laplace Transforms: Introduction, Definition, Conditions for Existence, Transforms of Elementary functions, Properties of Laplace Transforms, Transforms of Periodic functions, Transforms of Derivatives, Transforms of Integrals, Multiplication by tⁿ, Division by 't', Inverse Transforms, Method of partial fractions, Other methods of finding Inverse Transform, Convolution Theorem, Unit Step and Unit Impulse functions.

Applications: Evaluation of Improper Integrals, Solving Differential equations by Laplace Transform.

UNIT II

Partial Differential Equations: Introduction, Formation of Partial Differential Equations, Solutions of a Partial Differential Equations, Equations Solvable by Direct Integration, Linear Equations of First Order. **Sequence and Series**: Convergence of series, Comparison test, Integral test, D'Alembert's Ratio test, Cauchy's Root Test, Alternating series test, Absolute and Conditional convergence.

UNIT III

Integral Calculus: Double Integrals, Change of Order of Integration, Double Integrals in Polar Coordinates, Triple Integrals, Change of Variables. **Applications:** Area enclosed by Plane Curves, Volumes of Solids.

Special Functions: Beta Function, Gamma Function, Relation between Beta and Gamma Function, Error Function.

UNIT IV

Vector Calculus: Scalar and Vector point functions, Del applied to Scalar point functions, Del applied to Vector point functions, Physical interpretation of Divergence, Del applied twice to point functions, Del applied to products of point functions. Integration of Vectors, Line Integral, Surface Integral, Green's Theorem in a plane, Stokes's Theorem, Volume Integral, Gauss Divergence Theorem, Irrotational Fields.

TEXT BOOKS

[1] B.S.Grewal, "Higher Engineering Mathematics, Khanna Publishers", 43rd Edition, 2014.

REFERENCE BOOKS

[1] Erwin Kreyszig, "Advanced Engineering Mathematics", John Wiley & Sons, 10th
 Edition, 2015

[2] B.V.Ramana, "Higher Engineering Mathematics", Tata MC Graw Hill, 1st Edition, 2007

 [3] N.P.Bali, Dr.Manish Goyal, "A Text Book of Engineering Mathematics", Laxmi Publications, 9th Edition, 2014

E-RESOURCES AND OTHER DIGITAL MATERIAL

- [1] <u>www.nptel</u> videos.com/mathematics/ (Math Lectures from MIT,Stanford,IIT'S)
- [2] nptel.ac.in/courses/122104017
- [3] nptel.ac.in/courses/111105035
- [4] Engineering Mathematics Open Learning Project.

www.3.ul.ie/~mlc/support/Loughborough%20website/

17CH1202A

ENGINEEERING CHEMISTRY

Course Category:	Institutional Core	Credits:	3
Course Type:	Theory	Lecture-Tutorial-Practice:	3-0-0
Prerequisites:	Knowledge of	Continuous Evaluation:	30
	Chemistry at	Semester end Evaluation:	70
	Intermediate	Total Marks:	100
	level		

Upon successful completion of the course, the student will be able to:							
CO1	Analyze various water treatment methods and boiler troubles.						
CO2	Apply the principles of spectroscopic techniques to analyse different materials and apply the knowledge of conventional fuels for their effective utilisation.						
CO3	Apply the knowledge of working principles of conducting polymers, electrodes and batteries for their application in various technological fields.						
CO4	Evaluate corrosion processes as well as protection methods.						

2-Medium, 3- High)

	РО	PO	PSO	PSO										
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1		3												
CO2	2													
CO3														
CO4			2						3					

COURSE CONTENT

UNIT I

Water technology-I: WHO standards - Water treatment for drinking purpose -

sedimentation, coagulation, filtration, disinfection by chlorination, breakpoint chlorination and its significance - Desalination of brackish water - principle and process of electrodialysis and reverse osmosis, advantages and disadvantages.

Water technology-II: Boiler troubles - scales-formation, disadvantages and internal conditioning methods - phosphate conditioning, calgon conditioning and sodium aluminate, caustic embrittlement- reasons, mechanism and its control, and boiler corrosion – causes and control.

UNIT II

Spectroscopic Techniques and Applications: Interaction of electromagnetic radiation with matter - Ultraviolet-visible spectroscopy: Frank-Condon principle, types of electronic transitions, Lambert-Beer's law – definition and numerical problems, problems on interpretation of UV-visible spectra of simple molecules of arenes, aldehydes and ketones. Infrared (IR) spectroscopy: Principle, types of vibrations, problems on interpretation of IR spectra of simple molecules of amines, aldehydes and ketones.

Fuel Technology: Fuel-definition, calorific value- lower and higher calorific values, analysis of coal – proximate analysis and ultimate analysis, refining of petroleum, flue gas analysis by Orsat's apparatus, numericals based on calculation of air required for combustion

UNIT III

Conducting polymers: Definition, examples, classification-intrinsically conducting polymers and extrinsically conducting polymers- mechanism of conduction of undoped polyacetylene, doping of conducting polymers- mechanism of conduction of p-doped and n-doped polyacetylenes – applications of conducting polymers.

Electrochemistry: Construction and working of Calomel electrode, silver-silver chloride electrode and principle, construction and working of glass electrode, determination of pH using glass electrode - Chemistry of modern batteries - $Li/SOCl_2$ battery and $Li_xC/LiCoO_2$ battery - construction, working and advantages, Chemistry of H₂-O₂ fuel cell-advantages.

UNIT IV

Corrosion principles: Introduction, definition, reason for corrosion, examples – electrochemical theory of corrosion, types of electrochemical corrosion – hydrogen evolution and oxygen absorption – corrosion due to dissimilar metals, galvanic series – differential aeration corrosion – pitting corrosion and concept of passivity.

Corrosion control methods: Cathodic protection- principle and types - impressed current method and sacrificial anode method, anodic protection-principle and method, corrosion

inhibitors – types and mechanism of inhibition – principle, process and advantages of electroplating and electroless plating.

TEXT BOOKS

 Shikha Agarwal, "Engineering Chemistry – Fundamentals and Applications", Cambridge University Press, New Delhi, 1st edition (2015).

REFERENCE BOOKS:

- [1] Sunita Rattan, "A Textbook of Engineering Chemistry", S.K. Kataria & Sons, New Delhi, First edition 2012.
- P.C. Jain, "Engineering Chemistry", Dhanpat Rai Publishing Company (P) Limited, New Delhi, 15th edition.
- [3] B.S. Bahl, G. D. Tuli and Arun Bahl, "Essentials of Physical Chemistry", S. Chand and Company Limited, New Delhi.
- [4] O. G. Palanna, "Engineering Chemistry", Tata McGraw Hill Education Pvt. Ltd., New Delhi.
- [5] Y.Anjaneyulu, K. Chandrasekhar and Valli Manickam, Text book of Analytical Chemistry, Pharma Book Syndicate, Hyderabad.
- [6] H. Kaur, Spectroscopy, I Edition, 2001, Pragati Prakashan, Meerut.

E-RESOURCES AND OTHER DIGITAL MATERIAL

- [1] http://www.cip.ukcentre.com/steam.htm
- [2] http://corrosion-doctors.org/Modi;es/mod-basics.htm
- [3] http://nopr.niscair.res.in/bitstream/123456789/5475/1/JSIR%2063%289%29%20715-728.pdf
- [4] https://chem.libretexts.org/Core/Analytical_Chemistry/Electrochemistry/Basics_of_El ectrochemistry
- [5] http://www.filtronics.com/blog/tertiary-treatment/stages-in-typical-municipal-watertreatment/
- [6] https://www.khanacademy.org/test-prep/mcat/physical-processes/infrared-andultraviolet-visible-spectroscopy/e/infrared-and-ultraviolet-visible-spectroscopyquestions
- [7] NPTEL online course, "Analytical Chemistry", offered by MHRD and instructed by Prof. Debashis Ray of IIT Kharagpur.
- [8] NPTEL online course, "Corrosion Part-I" offered by MHRD and instructed by Prof. Kallol Mondal of IIT Kanpur

17CS1203

PROGRAMMING IN C

Course Category:	Institutional Core	Credits:	3
Course Type:	Theory	Lecture -Tutorial-Practice:	3-0-0
Prerequisites:	Problem Solving	Continuous Evaluation:	30
	Methods.	Semester end Evaluation:	70
		Total Marks:	100

COU	RSE (DUTC	OME	S										
Upon	succe	ssful o	comple	etion o	of the	course	e, the	studer	nt will	be ab	le to:			
CO1	Unde	erstanc	the f	fundan	nentals	s and s	tructu	re of a	C pro	gramn	ning la	nguag	e	
CO2	Appl	y the	loops,	arrays	, funct	tions a	nd stri	ng cor	ncepts	in C to	o solve	e the gi	ven pro	blem.
CO3		y the place	L	rs and	text ir	nput oi	utput f	iles co	ncept	to find	the so	olution	for the	given
CO4	Use	the Er	numera	ated, D	Datatyp	pes,Str	ucture	s and	Union	s.				
Contr	ibutio	on of (Course	e Outc	omes	towar	ds acl	nieven	nent of	f Prog	ram (Outcor	nes (1 -	-
Low,	2 - Me	edium	, 3 – F	ligh)										
	PO	РО	РО	РО	РО	РО	PO	РО	PO	РО	РО	РО	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3													
CO2		1	3											
CO3		1	3											
CO4	3	1												

COURSE CONTENT

UNIT - I

Introduction to the C Language : Background, C Programs, Identifiers, Types, Variables, Constants, Input/Output, Programming Examples.

Structure of a C Program: Expressions, Precedence and Associatively, Evaluating Expressions, Type Conversion, Statements, Sample Programs.

Selection: Storage Class,Logical Data and Operators, Two -Way Selection, Multiway Selection, More Standard Functions

UNIT - II

Repetition: Concept of a Loop Loops In C, Loop Examples, Recursion, The Calculator Program.

Arrays: Concepts, Using Array in C, Inter-Function Communication, Array Applications, Two Dimensional Arrays, Multidimensional Arrays.

Functions: Functions in C, User Defined Functions, Inter Function Communication, Standard Functions, Scope.

Strings: String Concepts, C Strings, String Input/Output Functions, Arrays of Strings, String Manipulation Functions, String- Data Conversion.

UNIT - III

Pointers: Introduction, Pointers For Inter Function Communications, Pointers to Pointers, Compatibility, Lvalue and Rvlaue.

Pointer Applications: Arrays and Pointers, Pointer Arithmetic and Arrays, Passing an Array to a Function, Memory Allocations Functions, Array of Pointers.

Text Input/output: Files, Streams, Standard Library Input/Output Functions, Formatting Input/output Functions and Character Input/Output Functions, Command-Line Arguments.

UNIT - IV

Enumerations: The Type Definition(Typedef), Enumerated Types: Declaring an Enumerated Type, Operations on Enumerated Types, Enumeration Type Conversion, Initializing Enumerated Constants, Anonymous Enumeration: Constants, Input/Output Operators.

Structures: Structure Type Declaration, Initialization, Accessing Structures, Operations on Structures, Complex Structures, Structures and Functions, Sending the Whole Structure, Passing Structures through Pointers.

Unions: Referencing Unions, Initializers, Unions and Structures, Internet Address, Programming Applications.

TEXT BOOKS

[1]Behrouz A. Forouzan & Richard F. Gilberg, "Computer Science A Structured Programming Approach using C", CENGAGE Learning, Third Edition.

REFERENCE BOOKS

- [1] Kernighan and Ritchie, "The C programming language", The (Ansi C Version), PHI, second edition.
- [2] Yashwant Kanetkar, "Let us C", BPB Publications, 2nd Edition 2001.
- [3] Paul J. Dietel and Dr. Harvey M. Deitel, "C: How to Program", Prentice Hall, 7th edition (March 4,2012).
- [4] Herbert Schildt, "C:The Complete reference", McGraw Hill, 4th Edition, 2002.
- [5] K.R.Venugopal, Sundeep R Prasad, "Mastering C", McGraw Hill, 2nd Edition, 2015

17EI1204C Electronic Devices and Circuits

Course Category:	Programme core	Credits:	3
Course Type:	Theory	Lecture- Tutorial -	3-0-0
		Practice:	
Prerequisites:	Engineering Physics	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Upon	succes	sful co	mpleti	on of	the co	urse, tl	he stud	lent wi	ll be a	ble to	•	
CO1	Deve											
CO2	Anal	Analyze and design basic diode circuits related to various applications										
CO3	Understand and analyze the operation of BJTs and FETs											
	PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	POj	PO k	PO 1
CO1	Н	L		Н								
CO2	Н	L		Н								
CO3	Н	L		L								
UNIT	I:											
Conde Conce Charg Semic p-n Ju depend Transi UNIT Diode DC in Clippe Rectifi rectific	uction ntratic e dens onduc unction dence tion C II: Appli puts, ers, Cla ïers: I ers wi	ons in a ities in ctor Di a as a 1 of P- apacita ication Paralle ampers Diode a thout t	an Intri a sem iode C Diode, N Ch ance, I as: Dio el and as a re filter a	insic S icondu Charao The aracte Diffusi ode app Serie ctifier	emico actor, 1 cterist Volt <i>A</i> ristics on cap proxin es – I	onducto Diffus ics : (Ampero , Dioo oacitan nations Paralle wave,	or, Dor ion, Qualita e Char de Re ces. Br s, Serie l conf Full w	tive th acteris sistanc reakdo es Dioc igurati	l Acce eory o stics, T e, Sp wn Die de com ons w Centre	ptor I of P-N The te ace (odes. figura ith E	mpuri J junc mpera Charge (12H tions C inj ed, Br r filte	ities, tion, ature e or (rs) with puts, ridge er, L
	CO1 CO2 CO3 CO3 CO1 CO2 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3	CO1DeveCO2AnalCO3UndoCO3PO aCO1HCO2HCO3HCO3HCO3HCO3HCO3HCO3HConcentration Concentration Charge densSemiconduction dependence Transition CUNIT II:Diode Apple DC inputs, Clippers, ClaRectifiers: I rectifiers with	CO1Develop a bCO2Analyze anCO3UnderstandCO3PO aPO bCO1HLCO2HLCO3HLCO3HLCO3HLCO3HLCO3HLCO3HLCO3HLCO3HLCO3HLCO3FLCO3H <th>CO1Develop a basic uCO2Analyze and desigCO3Understand and anPO aPO bPO cCO1HLCO2HLCO3HLCO3HLCO3HSemiconductionConcentrations in an Intri Charge densities in a semiSemiconductor Diode Op-n Junction as a Diode, dependence of P-N Ch Transition Capacitance, DUNIT II:Diode Applications: Diod DC inputs, Parallel and Clippers, Clampers.Rectifiers: Diode as a red</th> <th>CO1Develop a basic understCO2Analyze and design basicCO3Understand and analyzePO aPO bPO cPO dCO3IIPO aPO cPO dCO1IIPO aPO cPO dCO1IICO2IIICO2IIICO3IIICO3IICO3IICO3IICO3IICO3IICO3IICO3IICO3IICO3IIConcentrations in an Intrinsic SCharge densities in a semiconductorConductor Diode CharacteTransition Capacitance, DiffusitUNIT II:Diode A</th> <th>CO1 Develop a basic understanding CO2 Analyze and design basic diod CO3 Understand and analyze the op PO a PO b PO c PO d PO e CO1 H L H I CO2 H L H I CO3 H L H I CO3 H L I I Conduction in Semiconductors: Concentrations in an Intrinsic Semico I I Goncentrations as a Diode,</th> <th>CO1 Develop a basic understanding of se CO2 Analyze and design basic diode circle CO3 Understand and analyze the operation PO a PO b PO c PO d PO e PO f CO1 H L H Interstand Interstand CO2 H L H Interstand Interstand CO2 H L H Interstand Interstand CO3 H L Interstand Interstand Interstand Conduction in Semiconductors: Conductor, Diffusion Conductor, Diffusion Interstand</th> <th>CO1 Develop a basic understanding of semicond CO2 Analyze and design basic diode circuits rel CO3 Understand and analyze the operation of B. PO a PO b PO c PO d PO e PO f PO g CO1 H L H Inderstand Inderstand Inderstand CO3 Understand and analyze the operation of B. Inderstand Inderstand Inderstand Inderstand CO1 H L Inderstand Inderstand Inderstand Inderstand CO2 H L Inderstand Inderstand Inderstand Inderstand CO3 H L Inderstand Inderstand Inderstand Inderstand<th>CO1 Develop a basic understanding of semiconductor CO2 Analyze and design basic diode circuits related to CO3 Understand and analyze the operation of BJTs an PO a PO b PO c PO d PO e PO f PO g PO h CO1 H L H Inderstand Inderstand Inderstand Inderstand CO3 Understand and analyze the operation of BJTs an CO1 H L H Inderstand CO2 H L H Inderstand Inderstand CO3 H L H Inderstand Inderstand Inderstand CO3 H L Inderstand Inderstand Inderstand Inderstand CO4 PO e PO f PO g PO f PO g</th><th>CO1 Develop a basic understanding of semiconductor physic CO2 Analyze and design basic diode circuits related to variou CO3 Understand and analyze the operation of BJTs and FET PO a PO b PO c PO d PO e PO f PO g PO h PO i CO1 H L H Intervention Intervention Intervention CO2 H L H Intervention Intervention Intervention CO3 H L Intervention Intervention Intervention Intervention Conduction in Semiconductors: Conductor, Donor and Accee Charge densities in a semiconductor, Diffusion, Semiconductor properindence Interventin <t< th=""><th>CO1 Develop a basic understanding of semiconductor physics. CO2 Analyze and design basic diode circuits related to various approximation of BJTs and FETs CO3 Understand and analyze the operation of BJTs and FETs PO a PO b PO c PO d PO e PO f PO g PO h PO i PO j CO1 H L H Independence Independence Independence Independence CO2 H L H Independence Independence Independence CO3 H L Independence Independence Independence Independence CO3 H L Independence Independence Independence Independence Conductor Diode Applications: Diode approximations, Series Breakdown Diodes. UNIT II: Diode Applications: Diode approximations, Series Breakdown Diodes. UNIT II: Diode applications: Diode approximations, Series Breakdown Diodes. UNIT II: Rectifiers: Diode as a rectifier, Half wave, Full wave - Centre-tapperectifiers without filter and with filters - Inductor filter, Capacito</th><th>CO2 Analyze and design basic diode circuits related to various applicati CO3 Understand and analyze the operation of BJTs and FETs PO a PO b PO c PO d PO e PO f PO g PO h PO i PO j PO k CO1 H L H Image: Construct of the stand s</th></t<></th></th>	CO1Develop a basic uCO2Analyze and desigCO3Understand and anPO aPO bPO cCO1HLCO2HLCO3HLCO3HLCO3HSemiconductionConcentrations in an Intri Charge densities in a semiSemiconductor Diode Op-n Junction as a Diode, dependence of P-N Ch Transition Capacitance, DUNIT II:Diode Applications: Diod DC inputs, Parallel and Clippers, Clampers.Rectifiers: Diode as a red	CO1Develop a basic understCO2Analyze and design basicCO3Understand and analyzePO aPO bPO cPO dCO3IIPO aPO cPO dCO1IIPO aPO cPO dCO1IICO2IIICO2IIICO3IIICO3IICO3IICO3IICO3IICO3IICO3IICO3IICO3IICO3IIConcentrations in an Intrinsic SCharge densities in a semiconductorConductor Diode CharacteTransition Capacitance, DiffusitUNIT II:Diode A	CO1 Develop a basic understanding CO2 Analyze and design basic diod CO3 Understand and analyze the op PO a PO b PO c PO d PO e CO1 H L H I CO2 H L H I CO3 H L H I CO3 H L I I Conduction in Semiconductors: Concentrations in an Intrinsic Semico I I Goncentrations as a Diode,	CO1 Develop a basic understanding of se CO2 Analyze and design basic diode circle CO3 Understand and analyze the operation PO a PO b PO c PO d PO e PO f CO1 H L H Interstand Interstand CO2 H L H Interstand Interstand CO2 H L H Interstand Interstand CO3 H L Interstand Interstand Interstand Conduction in Semiconductors: Conductor, Diffusion Conductor, Diffusion Interstand	CO1 Develop a basic understanding of semicond CO2 Analyze and design basic diode circuits rel CO3 Understand and analyze the operation of B. PO a PO b PO c PO d PO e PO f PO g CO1 H L H Inderstand Inderstand Inderstand CO3 Understand and analyze the operation of B. Inderstand Inderstand Inderstand Inderstand CO1 H L Inderstand Inderstand Inderstand Inderstand CO2 H L Inderstand Inderstand Inderstand Inderstand CO3 H L Inderstand Inderstand Inderstand Inderstand <th>CO1 Develop a basic understanding of semiconductor CO2 Analyze and design basic diode circuits related to CO3 Understand and analyze the operation of BJTs an PO a PO b PO c PO d PO e PO f PO g PO h CO1 H L H Inderstand Inderstand Inderstand Inderstand CO3 Understand and analyze the operation of BJTs an CO1 H L H Inderstand CO2 H L H Inderstand Inderstand CO3 H L H Inderstand Inderstand Inderstand CO3 H L Inderstand Inderstand Inderstand Inderstand CO4 PO e PO f PO g PO f PO g</th> <th>CO1 Develop a basic understanding of semiconductor physic CO2 Analyze and design basic diode circuits related to variou CO3 Understand and analyze the operation of BJTs and FET PO a PO b PO c PO d PO e PO f PO g PO h PO i CO1 H L H Intervention Intervention Intervention CO2 H L H Intervention Intervention Intervention CO3 H L Intervention Intervention Intervention Intervention Conduction in Semiconductors: Conductor, Donor and Accee Charge densities in a semiconductor, Diffusion, Semiconductor properindence Interventin <t< th=""><th>CO1 Develop a basic understanding of semiconductor physics. CO2 Analyze and design basic diode circuits related to various approximation of BJTs and FETs CO3 Understand and analyze the operation of BJTs and FETs PO a PO b PO c PO d PO e PO f PO g PO h PO i PO j CO1 H L H Independence Independence Independence Independence CO2 H L H Independence Independence Independence CO3 H L Independence Independence Independence Independence CO3 H L Independence Independence Independence Independence Conductor Diode Applications: Diode approximations, Series Breakdown Diodes. UNIT II: Diode Applications: Diode approximations, Series Breakdown Diodes. UNIT II: Diode applications: Diode approximations, Series Breakdown Diodes. UNIT II: Rectifiers: Diode as a rectifier, Half wave, Full wave - Centre-tapperectifiers without filter and with filters - Inductor filter, Capacito</th><th>CO2 Analyze and design basic diode circuits related to various applicati CO3 Understand and analyze the operation of BJTs and FETs PO a PO b PO c PO d PO e PO f PO g PO h PO i PO j PO k CO1 H L H Image: Construct of the stand s</th></t<></th>	CO1 Develop a basic understanding of semiconductor CO2 Analyze and design basic diode circuits related to CO3 Understand and analyze the operation of BJTs an PO a PO b PO c PO d PO e PO f PO g PO h CO1 H L H Inderstand Inderstand Inderstand Inderstand CO3 Understand and analyze the operation of BJTs an CO1 H L H Inderstand CO2 H L H Inderstand Inderstand CO3 H L H Inderstand Inderstand Inderstand CO3 H L Inderstand Inderstand Inderstand Inderstand CO4 PO e PO f PO g PO f PO g	CO1 Develop a basic understanding of semiconductor physic CO2 Analyze and design basic diode circuits related to variou CO3 Understand and analyze the operation of BJTs and FET PO a PO b PO c PO d PO e PO f PO g PO h PO i CO1 H L H Intervention Intervention Intervention CO2 H L H Intervention Intervention Intervention CO3 H L Intervention Intervention Intervention Intervention Conduction in Semiconductors: Conductor, Donor and Accee Charge densities in a semiconductor, Diffusion, Semiconductor properindence Interventin <t< th=""><th>CO1 Develop a basic understanding of semiconductor physics. CO2 Analyze and design basic diode circuits related to various approximation of BJTs and FETs CO3 Understand and analyze the operation of BJTs and FETs PO a PO b PO c PO d PO e PO f PO g PO h PO i PO j CO1 H L H Independence Independence Independence Independence CO2 H L H Independence Independence Independence CO3 H L Independence Independence Independence Independence CO3 H L Independence Independence Independence Independence Conductor Diode Applications: Diode approximations, Series Breakdown Diodes. UNIT II: Diode Applications: Diode approximations, Series Breakdown Diodes. UNIT II: Diode applications: Diode approximations, Series Breakdown Diodes. UNIT II: Rectifiers: Diode as a rectifier, Half wave, Full wave - Centre-tapperectifiers without filter and with filters - Inductor filter, Capacito</th><th>CO2 Analyze and design basic diode circuits related to various applicati CO3 Understand and analyze the operation of BJTs and FETs PO a PO b PO c PO d PO e PO f PO g PO h PO i PO j PO k CO1 H L H Image: Construct of the stand s</th></t<>	CO1 Develop a basic understanding of semiconductor physics. CO2 Analyze and design basic diode circuits related to various approximation of BJTs and FETs CO3 Understand and analyze the operation of BJTs and FETs PO a PO b PO c PO d PO e PO f PO g PO h PO i PO j CO1 H L H Independence Independence Independence Independence CO2 H L H Independence Independence Independence CO3 H L Independence Independence Independence Independence CO3 H L Independence Independence Independence Independence Conductor Diode Applications: Diode approximations, Series Breakdown Diodes. UNIT II: Diode Applications: Diode approximations, Series Breakdown Diodes. UNIT II: Diode applications: Diode approximations, Series Breakdown Diodes. UNIT II: Rectifiers: Diode as a rectifier, Half wave, Full wave - Centre-tapperectifiers without filter and with filters - Inductor filter, Capacito	CO2 Analyze and design basic diode circuits related to various applicati CO3 Understand and analyze the operation of BJTs and FETs PO a PO b PO c PO d PO e PO f PO g PO h PO i PO j PO k CO1 H L H Image: Construct of the stand s

	UNIT III:
	Transistor Characteristics: The Junction Transistor, Characteristics of Common Base, Common Emitter and Common Collector Configuration.
	Transistor Biasing & Thermal Stabilization: The Operating Point, Bias Stability, Collector to Base Bias, Self Bias, Bias Compensation, Thermistor & Sensistor Compensation, Thermal Runaway and Thermal Stability. (12Hrs)
	UNIT – IV
	Filed Effect Transistors: Construction and Characteristics of JFETs, Transfer Characteristics, Specification Sheets (JFETs), Depletion-type MOSFET and Enhancement-type MOSFET.
	FET Biasing:Introduction, Fixed Bias Configuration, Self Bias Configuration, Voltage Divider Biasing, Depletion-type MOSFET and Enhancement-type MOSFET.(12Hrs)
Text books and	Text Books:
Reference books	 Jacob Millman, Christos C Halkias & Satyabrata JIT, "Millman's Electronic Devices and Circuits", 4th Edition, TMH, 2015. (Unit I, II& III).
	 Robert L Boylested and Louis Nashelsky, "Electronic Devices and Circuit Theory", 10th Edition, Pearson India, 2009. (UNIT IV).
	Reference Books:
	1. Nandita Das Gupta and Amitava Das Gupta, "Semiconductor Devices Modelling and Technology", PHI Learning Pvt. Ltd., 2013
	 David A Bell., "Electronic Devices and Circuits", 5th Edition, Oxford University Press, 2008.
E-resources and other digital	1. http://www.nptelvideos.in/2012/12/basic-electronics-drchitralekha- mahanta.html

17ME1205

ENGINEERING GRAPHICS

Course Category:	Institutional Core	Credits:	4
Course Type:	Theory & Practice	Lecture -Tutorial-Practice:	2-0-4
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

COUR	RSE O	OUTC	OME	S:										
Upon	succes	ssful c	omple	etion o	of the	course	e, the	studer	nt will	be ab	le to:			
CO1	Unde	erstand	l the S	cales,	conics	s and C	Cycloi	dal cu	rves.					
CO2	Draw	/ Orth	ograpł	nic pro	jection	ns of p	oints,	Lines	, Plane	es and	Solids	5		
CO3		erstand sentat		tional	view	vs of	Solid	ds, D	eveloj	oment	of	surfac	es and	their
CO4		truct i s to or					e proje	ctions	,isom	etric v	views	and co	nvert pi	ctorial
Contr Low, 2					omes	towar	ds acl	nieven	nent o	f Prog	gram (Outco	mes (1 -	-
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3			3							1			
CO2	2			3							2			
CO3	2			2							2			
CO4	1			3							2			
COUR	RSE C	CONT	ENT											
UNIT	-I													
Introd	luctio	n to	Eng	ineeri	ing l	Drawi	ng: Pr	incipl	es of	E Eng	gineeri	ing (Graphics	s and
their S	ignific	cance												
Scales	: Cons	struction	on of p	olain a	nd dia	gonal	Scales	5						
						-	parab	ola an	d hyp	erbola	(Trea	atment	t is lim	ited to
Eccent	ricity	or Ge	neral r	nethoo	d only))								
Engin	eering	g Curv	ves: C	ycloid	al curv	ves - C	Cycloid	l, Epic	ycloid	l and H	Нурос	ycloid		

UNIT-II

Orthographic Projections: Principles of Orthographic Projections –Projections of Points, Lines (Treatment is limited to First Angle Projection) and Projections of Plane regular geometric figures (Up to Plane Inclined to both of the Reference planes)

UNIT – III

Projections of Solids: Projections of simple solids such as Cubes, Prisms, Pyramids, Cylinders and Cones with varying positions (Limited to Solid Inclined to one of the Reference planes)

Sections of Solids: Sections of solids such as Cubes, Prisms, Pyramids, Cylinders and Cones. True shapes of sections(Limited tothe solids perpendicular to one of the Principal Planes)

UNIT – IV

Development of Surfaces: Lateral development of cut sections of Cubes, Prisms, Pyramids, Cylinders and Cones

Isometric Projections: Isometric Projection and conversion of isometric views into Orthographic Projections (Treatment is limited to simple objects only)

Conventions Auto CAD: Basic principles only (Internal assessment only)

Text Books

- [1] N.D. Bhatt & V.M. Panchal, "Elementary Engineering Drawing", Charotar Publishing House, Anand. 49th Edition – 2006
- [2] Basanth Agrawal & C M Agrawal," Engineering Drawing", McGraw Hill Education Private Limited, New Delhi

Reference Books

- K. L. Narayana & P. Kannaiah, "Text Book on Engineering Drawing", Scitech publications (India) Pvt. Ltd., Chennai, 2nd Edition - fifth reprint 2006
- [2] K. Venugopal, "Engineering Drawing and Graphics + Auto CAD", New Age International, New Delhi
- [3] D M Kulkarni, AP Rastogi, AK Sarkar, "Engineering Graphics with Auto CAD", PHI Learning Private Limited, Delhi Edition – 2013

E-Resources and other digital material

[1] http://www.youtube.com/watch?v=XCWJ XrkWco, Accessed On 01-06-2017.

[2]http://www.me.umn.edu/courses/me2011/handouts/drawing/blanco-tutorial.html is so drawing, Accessed On 01-06-2017.

[3] http://www.slideshare.net, Accessed On 01-06-2017.

[4] http://edpstuff.blogspot.in, Accessed On 01-06-2017.

17CH1251

ENGINEERING CHEMISTRY LABORATORY

Course Category:	Institutional Core	Credits:	1.5
Course Type:	Laboratory	Lecture -Tutorial-Practice:	0 - 0 - 3
Prerequisites:	Knowledge	Continuous Evaluation:	30
	of chemistry	Semester end Evaluation:	70
	practicals at	Total Marks:	100
	intermediate		
	level		

COUI	RSE O	UTCO	OMES											
Upon	succes	sful co	omplet	tion of	f the c	ourse	, the st	tudent	t will ł	oe abl	e to:			
CO1	Analyze quality parameters of water samples from different sources													
CO2	Perfo	Perform quantitative analysis using instrumental methods.												
CO3		y the l				chanis	m of a	corrosi	ion in	hibitic	on, me	etallic	coating	gs and
Outco (1 – L						owart	is acm	e veni		IIUgi	am			
	РО	РО	РО	PO	PO	PO	РО	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1			3											
CO2									2					
	1			1	1	1	1							

COURSE CONTENT

List of Experiments:

- 1. Determination of total alkalinity of water sample
- 2. Determination of chlorides in water sample
- 3. Determination of hardness of water sample
- 4. Determination of available chlorine in bleaching powder
- 5. Determination of copper in a given sample
- 6. Determination of Mohr's salt Dichrometry
- 7. Determination of Mohr's salt Permanganometry
- 8. Determination of purity of boric acid sample
- 9. Conductometric determination of a strong acid using a strong base
- 10. pH metric titration of a strong acid vs. a strong base
- 11. Determination of corrosion inhibition efficiency of an inhibitor for mild steel
- 12. Chemistry of Blue Printings
- 13. Preparation of Urea-Formaldehyde resin

REFERENCE BOOKS

- S.K. Bhasin and Sudha Rani, "Laboratory Manual on Engineering Chemistry", Dhanpat Rai Publishing Company, New Delhi, 2nd edition.
- [2] Sunitha Rattan, "Experiments in Applied Chemistry", S.K. Kataria & Sons, New Delhi, 2nd edition.

17CS1252

COMPUTER PROGRAMMING LABORATORY

Course Category:	Institutional Core	Credits:	1.5
Course Type:	Laboratory	Lecture -Tutorial-Practice:	0 - 0 - 3
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

COU	COURSE OUTCOMES Upon successful completion of the course, the student will be able to:													
Upon														
CO1		Implement the use of programming constructs in a structured oriented programming language												
CO2	Analyze and implement user defined functions to solve real time problems													
CO3	Impl	Implement the usage of pointers and file operations on data												
CO4	Implement the user defined data types via structures and unions to solve real life problems													
Contr (1 – L						towar	ds ach	nieven	nent of	f Prog	ram C	Jutcon	nes	
	PO	РО	PO	PO	РО	PO	PO	PO	PO	PO	РО	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1		3											
CO2		1	3											
CO3		1 3												
CO4			3								1			

COURSE CONTENT

CYCLE - I : PROGRAMMING CONSTRUCTS AND CONTROL STRUCTURES

- 1. Introduction to C Pogramming:
 - a) Use of Turbo C IDE
 - b) The Structure of C Program with Sample program
- 2. Data Types and Variables:
 - a) Programs to usage of keywords and identifiers in c
 - b) Programs on declaration of variables, rules for naming a variable, constants and different type of constants, data types
 - c) Programs to perform on various operators in C
- 3. Branching and Selection:
 - a) To specify the conditions under which a statement or group of statements should be executed.
 - b) To choose exactly one out of two statements (possibly compound statements) to be executed; specifies the conditions under which the first statement is to be executed and provides an alternative statement to execute if these conditions are not met.
 - c) To choose one statement (possibly compound) to be executed from among a group of state- ments (possibly compound); specifies the conditions under which each statement may be executed and may contain a default statement (in an else clause at the end) to be executed if none of these conditions are met. Note that in the absence of a final else clause, it may be the case that none of the statements are executed.
- 4. Unconditional control Transfer statements in C:
 - a) Design and develop programs that use of goto Statement
 - b) Design and develop programs that the use of Break Statement
 - c) Design and develop programs that use of Continue Statement
- 5. Looping constructs:
 - Design and develop programs based on
 - a) Iterative loops using While, Do While, For, Nested For
 - b) Selection Statement using the switch-case Statement
 - c) Multiple way selections that will branch into different code segments based on the value of a variable or expression
- 6. Arrays
 - a) Design and develop programs which illustrates the implementation of singledimensional arrays and Multi dimensional arrays

7. Strings

- a) Create programs to initialize strings and usage of them for various input, output operations.
- b) Design and develop programs to handle String functions

CYCLE - II: ADVANCED PROGRAMMING CONSTRUCTS

1.Concept of user defined functions

- a) Design and develop programs depending on functions both user defined and standard library functions in C with different approaches.
- 2. File handling operations
 - a) FILE structure
 - b) Opening and closing a file, file open modes
 - c) Reading and writing operations performed on a file
 - d) File Pointers: stdin, stdout and stderr
 - e) FILE handling functions: fgetc(), fputc(), fgets() and fputs() Functions
- 3. Pointers:
 - a) Programs on declaration of pointers and their usage in C
 - b) Programs to relate between arrays and pointers and use them efficiently in a program
 - c) To pass pointers as an argument to a function, and use it efficiently in program
- 4. Command Line Arguments
 - a) Design and develop programs that accept arguments from command line to perform different kinds of operations
- 5. Structures and Unions
 - a) Programs to define, declare and access structure and union variables
- b) Design and develop programs to work with pointers to access data within a structure Programs to pass structure as an argument to a function

TEXT BOOKS

[1] Ashok N Kamthane, "C And Data Structures", Pearson Education; First edition, 2008

REFERENCE BOOKS

[1] Brain W Kernighan and Dennis Ritchie, "The C Programming language", Pearson

Education India,2015

[2] David Griffiths and Dawn Griffiths, "Head First C": A Brain Friendly Guide, O:Reilly media, 2012

E-RESOURCES AND OTHER DIGITAL MATERIAL

[1] Introduction to Programming C: http://nptel.ac.in/courses/106104128/

C-Programming - IIT Kharagpur lectures

- [2]https://www.youtube.com/watch?v=S47aSEqm_0I&list=PLeCxvb23g7hrw27XlekHtfygU TQ0TmFfP
- [3] Numerical Methods and Programing by Prof.P.B.Sunil Kumar, Department of Physics, IIT Madras https://www.youtube.com/watch?v=zjyR9e-N1D4& list=PLC5DC6AD60D798FB7

17MC1206B PROFESSIONAL ETHICS & HUMAN VALUES

Course Category:	Mandatory Learning	Credits:	_
Course Type:	Theory	Lecture -Tutorial-Practice:	2 - 0 - 0
Prerequisites:		Continuous Evaluation:	100
		Semester end Evaluation:	0
		Total Marks:	100

COUR	RSE O	UTCO	MES											
Upon s	success	sful co	mplet	ion of	the co	ourse,	the st	udent	t will l	be abl	e to:			
CO1	Knov	v the n	noral a	utonoi	ny and	d uses	of eth	ical th	neories	5.				
CO2	Unde	Understand morals, Honesty and character.												
CO3	Unde	Understand about safety, risk and professional rights.												
CO4		Know the ethics regarding Global issues related to Environment, Computers and weapon's development.												
Contri Low, 2	2 - Mec	lium, :	3 – Hi	gh)	1		1		1					
	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	2												-	
CO2								2						
CO3					3									
CO4											2			

COURSE CONTENT

UNIT I

Engineering Ethics: Senses of 'Engineering Ethics' - variety of moral issues- types of inquiry - moral dilemmas - moral autonomy - Kohlberg's theory -Gilligan's theory - consensus and controversy - Models of Professional Roles -theories about right action - Self-interest - customs and religion- uses of ethical theories.

UNIT II

Human Values:Morals, Values and Ethics - Integrity- Work Ethic – Service Learning - Civic Virtue - Respect for Others - Living Peacefully - caring – Sharing - Honesty - Courage - Valuing Time - Co-operation - Commitment –Empathy - Self-Confidence - Character - Spirituality.

UNIT III

Engineering as Social Experimentation: Engineering as experimentation – engineers as responsible experimenters - codes of ethics - a balanced outlook on law - the challenger case study, Safety, Responsibilities and Rights: Safety and risk - assessment of safety and risk - risk benefit analysis and reducing risk – the three mile island and chernobyl case studies. Collegiality and loyalty – respect for authority - collective bargaining - confidentiality - conflicts of interest - occupational crime - professional rights - employee rights - Intellectual Property Rights (IPR) - discrimination.

UNIT IV

Global Issues: Multinational corporations- Environmental ethics- computer ethics - weapons development - engineers as managers-consulting engineers-engineers as expert witnesses and advisors -moral leadership-sample code of Ethics (Specific to a particular Engineering Discipline).

TEXT BOOKS

- [1] Mike Martin and Roland Schinzinger, "Ethics in engineering", McGraw Hill, New York (1996).
- [2] Govindarajan M, Natarajan S, Senthil Kumar V. S., "Engineering Ethics", Prentice Hall of India, New Delhi(2004).

REFERENCE BOOKS

- [1] Baum, R.J. and Flores, A., "Ethical Problems in Engineering, Center for the studyof the Human Dimensions of Science and Technology", Rensellae Polytechnic Institute, Troy, New York, 335 pp. eds. (1978)
- [2] Beabout, G.R., Wennemann, D.J., "Applied Professional Ethics: A Developmental Approach for Use with Case Studies", University Press of America Lanham, MD, 175 pp (1994).

DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING

VELAGAPUDI RAMAKRISHNA SIDDHARTHA ENGINEERING COLLEGE SCHEME OF INSTRUCTION FOR FOUR YEAR UG PROGRAMME [VR17]

> Syllabus for IIIrd – IVth Semesters

VELAGAPUDI RAMAKRISHNA SIDDHARTHA ENGINEERING COLLEGE SCHEME OF INSTRUCTION FOR FOUR YEAR UG PROGRAMME [VR17] <u>ELECTRONICS & INSTRUMENTATION ENGINEERING</u>

SEMESTER I

Contact Hours: 26

S.No	Course Code	Title of the Course	L	Τ	P	Credits
1.	17MA1101	Matrices And Differential Calculus	3	1	0	4
2.	17PH1102	Engineering Physics	3	0	0	3
3.	17CS1103	Problem Solving Methods	2	1	0	3
4.	17EE1104	Basics of Electrical Engineering	3	0	0	3
5.	17HS1105	Technical English and Communication	2	0	2	3
		Skills				
6.	17PH1151	Engineering Physics Laboratory	0	0	3	1.5
7.	17CS1152	Computing and Peripherals Laboratory	0	0	2	1
8.	17ME1153	Basic Workshop	0	0	3	1.5
		Total	13	2	10	20
9.	17MC1106A	Technology and Society	1	0	0	-
10.	17MC1107	Induction Program				-

SEMESTER II

Contact Hours: 27

S.No	Course Code	Course	L	Τ	Р	Credits
1.	17MA1201	Laplace Transforms And Integral Calculus	3	1	0	4
2.	17CH1202	Engineering Chemistry	3	0	0	3
3.	17CS1203	Programming in C	3	0	0	3
4.	17EC1204A	Basic Electronic Engineering (CSE/IT)	3	0	0	3
	17EC1204B	Electronic Devices(ECE)				
	17EI1204	Electronic Devices and Circuits (EIE)				
5.	17ME1205	Engineering Graphics	2	0	4	4
6.	17CH1251	Engineering Chemistry Laboratory	0	0	3	1.5
7.	17CS1252	Computer Programming Laboratory	0	0	3	1.5
		Total	14	1	10	20
8.	17MC1206B	Professional Ethics& Human Values	2	0	0	-

Semester III

Contact Hours: 28

S.No	Course Code	Course	L	Т	Р	Credits
1.	17MA1301	Complex Analysis & Numerical Methods	3	1	0	4
2.	17EI3302	Network Theory	3	1	0	4
3.	17EI3303	Analog Electronic Circuits	3	1	0	4
4.	17EI3304	Sensors and Transducers	3	0	0	3
5.	17HS2305	Humanities Elective	1	0	0	1
6.	17TP1306	Logic & Reasoning	0	0	2	1
7.	17EI3351	Electronic Circuits Lab	0	0	3	1.5
8.	17EI3352	Transducers Lab	0	0	3	1.5
9.	17HS1353	Communication Skills Lab	0	0	2	1
		Total	13	3	10	21
10.	17MC1307B	Indian Constitution	2	0	0	-

List of Humanities Electives

Α	Yoga & Meditation	G	Film Appreciation
В	Music	Н	Sanskrit Bhasa
С	Human Rights and Legislative Procedures	Ι	Foreign Languages (German/French)
D	Philosophy	J	Law for Engineers
Е	Development of societies	K	Psychology
F	Visual Communication		

Semester IV

Contact Hours: 27

S.No	Course Code	Course	L	Т	Р	Credits		
1.	17EI3401	Analytical	3	0	0	3		
		Instrumentation						
2.	17EI3402	Integrated Circuits and	3	1	0	4		
		Applications						
3.	17EI3403	Industrial Instrumentation	3	1	0	4		
4.	17EI3404	Electrical and Electronic	3	0	0	3		
		Measurements						
5.	17TP1405	English for Professionals	0	0	2	1		
6.	17EI3406	Digital Circuits and	3	0	0	3		
		Systems						
7.	17EI3451	Analog and Digital	0	0	3	1.5		
		Integrated Circuits Lab						
8.	17EI3452	Measurements Lab	0	0	3	1.5		
	r	Fotal	15	2	8	21		
9.	17MC1407A	Environmental Studies	2	0	0	-		

Semester V

Contact Hours: 24

S.No	Course Code	Course	L	Τ	P	Credits
1.	17EI3501	Control Systems	3	1	0	4
2.	17EI3502	Digital Signal Processing	3	1	0	4
3.	17EI3503	Microcontrollers and Embedded Systems	3	0	0	3
4.	17EI2504	Open Elective – I	3	0	0	3
5.	17EI2505	Open Elective –II	3	0	0	3
		(Inter Disciplinary Elective)				
6.	17EI2506	Open Elective-III	0	0	0	2
		(Self-Learning Elective Course)*				
7.	17HS1507	Personality Development & Campus	1	0	0	1
		Recruitment Training				
8.	17EI3551	Simulations Lab	0	0	3	1.5
9.	17EI3552	Microcontrollers and Embedded Systems	0	0	3	1.5
		Lab				
		16	2	6	23	
10.	17HS1405	Biology for Engineers	2	0	0	-

S.No	Course Code	Open Elective – I	L	Τ	P	Credits
1.	17EI2504A	Biomedical Electronics	3	0	0	3
2.	17EI2504B	Control System Components	3	0	0	3

S.No	Course Code	Open Elective – II	L	Т	Р	Credits
		(Inter Disciplinary Elective)				
1.	17EI2505A	Instrumentation Engineering	3	0	0	3
2.	17EI2505B	Fundamentals of Industrial Automation	3	0	0	3

S.No	Course Code	Open Elective – III		Т	Р	Credits
		(Self-Learning Elective Course)				
1.	17EI2506A	Food Process Engineering	0	0	0	2
2.	17EI2506B	Principles of Communication	0	0	0	2

*Students can opt any one of the self-learning courses prescribed by the Department. Students register and complete the opted course in approved MOOCS platform on or before the Last Instruction Day of <u>V semester</u>. They have to submit the certificate before the Last Instruction Day of <u>V semester</u>

Semester VI

```
Contact Hours: 27
```

Semest			Contact Hours, 27				
S.No	Course	Course	L	Т	Р	Credits	
	Code						
1.	17EI3601	Process Control	3	1	0	4	
2.	17EI3602	Computer Control of	3	1	0	4	
		Processes					
3.	17EI4603	Programme Elective-1	3	0	0	3	
4.	17EI4604	Programme Elective -2	3	0	0	3	
5.	17EI2605	Open Elective-IV	3	0	0	3	
6.	17HS3606	Quantitative Aptitude	1	0	0	1	
7.	17EI3651	Process Control Lab	0	0	3	1.5	
8.	17EI3652	Virtual Instrumentation Lab	0	0	3	1.5	
9.	17EI5653	Engineering Project for	0	1	2	2	
		Community services*					
	Total			3	8	23	

S.No	Course Code	Program Elective – I	L	Τ	P	Credits
1.	17EI4603A	Fiber Optic Sensors	3	0	0	3
2.	17EI4603B	Digital System Design using Verilog	3	0	0	3
3.	17EI4603C	Robotics &Control	3	0	0	3
4.	17EI4603D	Data Communications and Computer	3	0	0	3
		Networks				

S.No	Course Code	Program Elective – II	L	Τ	P	Credits
1.	17EI4604A	Renewable Energy	3	0	0	3
2.	17EI4604B	Industrial Electronics	3	0	0	3
3.	17EI4604C	Process Modelling and Simulation	3	0	0	3
4.	17EI4604D	Biomedical Signal Processing	3	0	0	3

S.No	Course Code	Open Elective – IV	L	Τ	Р	Credits
1.	17EI2605A	Virtual Instrumentation	3	0	0	3
2.	17EI2605B	Intelligent Instrumentation Principles and	3	0	0	3
		Application				

* Students will go to the society (Villages/ Hospitals / Towns etc,.) to identify the problem and survey the literature for a feasible solution. The work will be carried out during summer vacation after IV Semester. The student is encouraged to take up real life problems leading to innovative model building

Semester VII

Contact Hours: 26

S.No	Course	Course	L	Т	Р	Credits
	Code					
1.	17EI3701	Industrial Automation	3	0	2	4
2.	17EI4702	Programme Elective -3	3	0	0	3
3.	17EI4703	Programme Elective -4	3	0	0	3
4.	17EI4704	Programme Elective -5	3	0	0	3
5.	17HS1705	Engineering Economics and	2	0	0	2
		Finance				
6.	17EI4751	PLC's Lab	0	0	3	1.5
7.	17EI4752	Advanced Instrumentation	0	0	3	1.5
		Lab				
8.	17EI5753	Mini Project *	0	0	4	2
9.	17EI6754	A Internship				2
		B Industry offered Course				
		C Global Professional				
		Certification				
	Total			0	12	22

S.No	Course Code	Program Elective – III	L	Т	P	Credits
1.	17EI4702A	Power Plant Instrumentation	3	0	0	3
2.	17EI4702B	Integrated Circuit Fabricat	ion 3	0	0	3
		Technology				
3.	17EI4702C	Wireless Sensor Networks		0	0	3
4.	17EI4702D	Industrial Communication Networks	3	0	0	3

S.No	Course Code	Program Elective – IV	L	Τ	Р	Credits
1.	17EI4703A	Instrumentation and Control in Paper	3	0	0	3
		Industries				
2.	17EI4703B	Programmable Automation Controller		0	0	3
		Systems(PACS)				
3.	17EI4703C	Intelligent Systems and Control	3	0	0	3
4.	17EI4703D	Digital Image Processing	3	0	0	3

S.No	Course Code	Program Elective – V	L	Τ	Р	Credits
1.	17EI4704A	Instrumentation in Water treatment	3	0	0	3
		plants				
2.	17EI4704B	Low Power VLSI Design	3	0	0	3
3.	17EI4704C	Optimal and Nonlinear Control Systems		0	0	3
4.	17EI4704D	Machine Learning	3	0	0	3

* Could be done in a group of students; involves working under a faculty member and carrying out a detailed feasibility study, literature survey and preparing a work plan for major project.

Contact Hours: 19

S.No	Course Code	Course	L	Т	Р	Credits
1.	17EI4801	Programme Elective – 6	3	0	0	3
2.	17EI2802	Open Elective –V*	3	0	0	3
3.	17EI5851	Major Project**	0	5	8	9
	Total			5	8	15

S.No	Course Code	Program Elective – VI	L	Τ	Р	Credits
1.	17EI4801A	Measurement and Control in Food	3	0	0	3
		Processing				
2.	17EI4801B	Biomedical Instrumentation	3	0	0	3
3.	17EI4801C	System Identification	3	0	0	3
4.	17EI4801D	Cloud Computing	3	0	0	3

S.No	Course Code	Open Elective – V	L	Τ	Р	Credits
1.	17EI2802A	Advanced Sensors	3	0	0	3
2.	17EI2802B	Industrial Safety and Environmental	3	0	0	3
		Management				

*Open Elective- V may also opt as self-learning course. Students register and complete the opted course in approved MOOCS platform on or before Last Instruction Day of VIII Semester. They have to submit the certificate before the last Instruction Day of VIII Semester. Students who have not opted as a self-learning are required to attend for the class work and internal assessment as per the regular theory course.

**Major project involves continuation of Mini Project. The objective is to complete the work as per the prepared work plan and prepare a detailed project report.

Semester VIII

Second year (III Semester)

17MA1301 - Complex Analysis & Numerical Methods

Course Category:	Basic Sciences	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3 -1- 0
Prerequisites:	Algebra of Complex numbers,	Continuous Evaluation:	30
	convergence of infinite series,	Semester end Evaluation:	70
	theory of equations	Total Marks:	100

Course outcomes	Upon successful completion of the course, the student will be able to:												
	CO1 Determine analytic and non analytic functions and understand the concept of complex integration.												
	CO2Analyze Taylor and Laurent series and evaluation of real definite integrals using residue theorem and understand the concept transformations.CO3Solve Algebraic and transcendental, system of equations understand the concept of polynomial interpolation.												
											and		
	CO4	Understand the concept of Numerical differentiation and integration										ation.	
Contribution of		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	PO j	PO k	
Course Outcomes towards	CO1	Н						L					
achievement of Program Outcomes	CO2	н						L					
(L – Low, M -	CO3	Н			Μ	Μ		L					
Medium, H – High)	CO4	Н			Μ	Μ		L					
Course Content	CO4HMMLUNIT I: Complex Analysis:Introduction, continuity, Cauchy-Riemann equations. Analytic functions, Harmonic functions, Orthogonal systems, Complex integration, Cauchy's integral theorem, Cauchy's integral formulaUNIT II: Taylor's series, Laurent's series, Zeros and singularities. Residue theorem, calculation of residues, evaluation of real definite integrals (by applying the residue theorem). 								eorem, ng the ion – tions : linear l.				
	Interp Centra Newto	l Diff	erence	s, Syr	nbolic	Relat	ions,	Differe	ences	of a	polyno	omial,	

	 formulae –Gauss's, Sterling's, Bessel's formulae Interpolation with unequal intervals – Lagrange's and Newton's Interpolation formulae. UNIT – IV Numerical Differentiation And Integration : Finding first and second order differentials using Newton's formulae. Trapezoidal rule and Simpsons 1/3 Rule Numerical Solutions of Differential Equations: Taylor's series method Picard's method. Euler's method, Runge - Kutta method of 4th order, Boundary value problems, Solution of Laplace's and Poisson's equations by iteration.
Text books and Reference books	 Text Book: [1] B.S.Grewal, "Higher Engineering Mathematics", 42nd Edition Khanna Publishers, 2012. Reference Books: [1] Krezig, "Advanced Engineering Mathematics", 8th Edition, JohnWiley & Sons.2007, [2] R.K.Jain and S.R.K.Iyengar, "Advanced Engineering Mathematics", 3rd Edition, Narosa Publishers. [3] N.P.Bali, Manish Goyal, "A Text book of Engineering Mathematics", 1st Edition, Lakshmi Publications (P) Limited, 2011 [4] H.K.Das, Er. RajnishVerma, "Higher Engineering Mathematics", 1st Edition, S.Chand & Co., 2011. [5] S. S. Sastry, "Introductory Methods of Numerical Analysis", PHI, 2005.
E-resources and other digital material	

17EI3302 - Network Theory

Course Category:	Program Core	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 1 - 0
Prerequisites:	Calculus, Basics of Electrical	Continuous Evaluation:	30
	Engineering	Semester end Evaluation:	70
		Total Marks:	100

autoomog	Upon	Upon successful completion of the course, the student will be able to:											
outcomes	CO1	Deter	Determine the basic parameters in DC circuits.										
	CO2	theore	Analyze DC electrical circuit using-mesh analysis, Nodal analysis and network theorems.										
	CO3	-	Analyze AC electrical circuit using-mesh analysis, Nodal analysis and network theorems.										
	CO4		Analyze resonance and DC transient behavior of RLC circuits and calculate the parameters of two port network.										
Contribution of Course		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	РО ј	PO k	PO 1
Outcomes towards achievement	CO1	L	Н										
of Program Outcomes	CO2		Н		L								
(L – Low, M - Medium, H	CO3		Н		L								
– High	CO4		Н										
Course													
Course Content	eleme transfe and th Energ UNIT Netwo source	duction nts; Ide ormation heir se y store - II ork Th es with em, Th ems.	eal, Pra on, Vol ries / d in Ind neorem n prob	actical a ltage an paralle ductors as: Me lems;	and De nd Cur l coml and C sh and Applic	pender rent div oination apacito Nodal cation	nt sourd vision; n; Star ors, l analy of the	conce ces and V-I ch Delta sis hav corems Recipt	their V naracter transf ving in to D0	V-I cha ristics of formati depend C circ	uracteri of pass ons an lent an uits. S	stics, S ive eler d prob d depe uperpo	endent osition

 UNIT - IV Resonance and Transients: Series and Parallel resonance, Selectivity, Bandwidth and Q factor, Series and Parallel RLC circuits. Transient analysis of RL, RC, RLC circuits with DC using Laplace transforms. Two-port networks: Calculation of Z, Y and h parameters and their conversions.
Text Books:
[1]A Sudhakar and SP Shyam Mohan, "Circuits and Networks: Analysis and
Synthesis", II nd ed, TMH, 2002.
Reference Books:
[1] Fraklin F.Kuo, "Network Analysis and Synthesis", II nd ed, John Wiley & Sons, 2003
[2] William H. Hayt, Jack E. Kemmerly and Steven M. Durbin, "Engineering Circuit Analysis", VI th ed, TMH, 2002.

17EI3303 – Analog Electronic Circuits

Course Category:	Program Core	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3-1-0
Prerequisites:	Electronic Devices and Circuits	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon successful completion of the course, the student will be able to:												
outcomes	CO1	Analy	Analyze Multi stage amplifier circuits at low frequency frequencies.										
	CO2	Anal	Analyze various feedback amplifiers.										
	CO3	Analy	Analyze various oscillators.										
	CO4	Desig	Design various types of power amplifiers used in electronic applications.										
Contribution of Course		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	РО ј	PO k	PO 1
Outcomes towards	CO1	L	Н		М	L							
achievement of Program	CO2	L	Н		М	L							
Outcomes	CO3	L	Н		М	L							
(L – Low, M - Medium, H – High	CO4	L	Н		М	L							
Course Content	BJT A amplif calcul CB),D FET freque UNIT Feedb feedba feedba	sistor A Amplif fier u ations Darling Ampli encies - C- II Dack A ack An	iers: H Ising for C ton Pai fiers: CS/Cl Amplifien	Hybrid h para C & r(CC-C FET s D/CG c iers: 1 rs, Inp s - Vo	Low fr parame ameter CB co CC). small s configu Feedba ut resis ltage s	eter m mode onfigura signal rations ck con stance	nodel el, Sin ations, model, ncepts, & out	Anal Gene put res	l CE l ded st ysis of ral ch sistance	nybrid age(CF FET aracter e, Met	model E-CE), ampli istics hod of	, Simp Cascod fiers a of Neg analy	olified e(CE- t low gative sis of

	UNIT- III
	Oscillators: Classification of Oscillators, Sinusoidal oscillators, Barkhausen criteria,
	RC phase shift oscillator using BJT, Wein bridge oscillator, LC oscillators- Hartley
	and Colpitts Oscillator
	UNIT- IV
	Power Amplifiers: Classification of Power amplifiers, Class A series fed and
	Transformer Coupled, Second Harmonic distortion, Class B Transformer coupled
	Push-Pull and Complementary Symmetry Push-Pull, Cross over distortion.
Text books	Text Book
and	[1] Jacob Millman and Christos C Halkias, "Integrated Electronics: Analog and
Reference	Digital Circuits and Systems", XII th ed, TMH, 1991. (UNIT I,II & III)
books	[2] A.Anand kumar, "Pulse and Digital Circuits", II nd ed, PHI,2010. (UNIT IV)
	Reference Books
	[1] G.KMithal, "Electronic Devices and circuits", XXIII rd ed, Khanna Publishers
	[2] Robert Boylestad and Louis Nashelsky, "Electronic Devices and Circuit Theory",
	VI th ed, PHI 2000
E-resources	http://nptel.iitm.ac.in/courses.php?branch=Ece
and other	
digital	
material	

17EI3304 – Sensors and Transducers

Course Category:	Program Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Basics of Electronics Engineering,	Continuous Evaluation:	30
	Engineering Physics	Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	Upon successful completion of the course, the student will be able to:											
varcomes	CO1		ze the asurem		s perfo	ormanc	e chara	cteristi	ics of i	nstrum	ent an	d the q	uality
	CO2 Identify the type of transducer based on the transduction principles.												
	CO3	Select	elect the relevant transducer for measurement of displacement, velocity and cceleration to meet the requirements of industrial applications. dentify the additional attributes in advanced sensors.										
	CO4	Identi											
Contribution of Course		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	PO j	PO k	PO 1
Outcomes towards achievement	CO1		Н		L								
of Program Outcomes	CO2	Н	L										
(L – Low, M	CO3		Н		Н								
- Medium, H – High	CO4	L											
Course Content	charac Transf instrut Meas Comb UNIT Trans Passiv Varial Produ dielec	iment cteristic fer fun ments t urement ination - II sducers ve Tra ole ind ction of tric.	es - De action, to step nt Er a of lim s: Clas nsduce luctance of eddy	esirable Dynan input. rors iting en sificati er Prin e - C curre	e & Un nic resp and a rror, St on of tr nciples hange nts, Va	lock dia ndesira ponse Statistica atistica cansduc : Varia in self ariable : The	ble cha of Zero ical A l treatm cers, Ch ble rea induc capaci	aracteri o order Analysi nent, C naracter sistance ctance, itance	istics; r, First s: De urve fi ristics o e - Ch Chang - Char	Dynam order efinitio tting m of trans ange in ge in m	ic cha and S n of tethods sducers n lengt mutual area, I	param param	Area; tance, e and

	UNIT-III Displacement Measurement: Introduction, Pneumatic transducers – Flapper Nozzle transducer; Electrical transducers - resistive, inductive and capacitive; Digital displacement transducer.
	Velocity, Acceleration & Vibration Measurement: Electromagnetic tachometer, Digital Methods- Photo electric and toothed rotor variable reluctance tachometers, Principles of accelerometers, Types of accelerometers - LVDT, Strain guage and piezo electric accelerometers.
	UNIT- IV Developments in Sensor Technology: Introduction, Smart sensors, Micro Sensors, IR radiation Sensors, Ultrasonic Sensors, Fiber optic sensors, Chemical sensors and Bio Sensors.
Text books and Reference books	Text Book:[1] A.K.Ghosh, "Introduction to Measurements & Instrumentation", III rd ed, PHI,2009. (UNIT I)[2] A.K.Sawhney & Puneet Sawhney, "A Course in Mechnanical Measuremnets &Instrumentation", XII th ed, Dhanapat Rai & Co., 2012. (UNIT II & III)[3] D.V.S.Murty, "Transducers & Instrumentation", II ^{ed} , PHI. (UNIT IV)
	 Reference Books: [1] Raman Pallas-Arney & John G.Webster, "Sensors & Signal Conditioning", II nd ed., J. Wiley,2012. [2] D.Patranabis, "Sensors and Transducers" II nd ed., PHI, 2013.
E-resources and other digital material	[1] <u>http://nptel.ac.in/courses/112103174/4</u> [2] <u>http://nptel.ac.in/courses/112103174/3</u>

17HS2305 – Humanities Elective

Course Category:	Humanities and Social Sciences	Credits:	1
Course Type:	Theory	Lecture - Tutorial - Practice:	1 - 0- 0
Prerequisites:		Continuous Evaluation:	
		Semester end Evaluation:	
		Total Marks:	

List of Humanities Electives

Α	Yoga & Meditation	G	Film Appreciation
В	Music	Η	Sanskrit Bhasa
С	Human Rights and Legislative Procedures	Ι	Foreign Languages (German/French)
D	Philosophy	J	Law for Engineers
Е	Development of societies	K	Psychology
F	Visual Communication		

17HS2305 (A) – Yoga & Meditation

Course Category:	Humanities elective	Credits:	1
Course Type:	Practical	Lecture - Tutorial - Practice:	1 - 0- 0
Prerequisites:		Continuous Evaluation:	100
		Semester end Evaluation:	
		Total Marks:	100

Course	Upon	success	sful co	mpletio	on of th	e cours	se, the s	student	will b	e able t	:0:		
outcomes	CO1	Equip	Equip better attitude and behaviour.										
	CO2							d life fo	ocused	on an e	ethical	materia	al life
	CO3		Develop levels of concentration through mediation										
	CO4		1		or the r		U						
Contribution of Course		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	PO j	PO k	PO 1
Outcomes towards achievement	CO1												
of Program Outcomes	CO2												
(L – Low, M - Medium, H	CO3												
– High	CO4												
Course Content	yoga, (Lec-o system UNIT Yogic of yog (Activ UNIT Practi Conte (Activ demon UNIT Towa Manag (Lec-o	rstandi Applic lemo n relat - II Practi ga, Integ ity bas - III ice of mplatic rity k nstrati - IV rds p gement lemo p	ation o pattern ed pict aces: Y gration sed pro f Me on, Me ons w ons w rofess , Choid	f value n with corial v foga, Se of value occesses ditation ditation proce ill be in ional ces we	elf and ues in Y with A on: A n and C esses mplem excelle make, 1	ultima followo Ultima Yoga. Assasan art of concent involv ented) ence Excelle	Univers s repr ed) ate goa nas and Med ration ring throug	sal valu cesentin l of yo d Pran litation Media gh Yo	ies. ng Yo ga, Int ayama , Ob tion	gic Po roducti n will b servation session nd m	on to v or to v or impl	e impa and various ement ntrospe llowed ion:	value types ed) ction,
Text books and Reference books		Book: ommon urney o	0							ia			

	Reference Books: [1] Lectures from Colombo to Almora, Swami Vivekakanada, 2010 Ramakrishna Mission [2] Essays of Ralph Waldo Emerson, 1982, Eastern press [3] Eclectic materials Offered by English Dept.
E-resources	[1] <u>www.heartfulness.org</u>
and other	[2] <u>www.ayush.gov.in</u>
digital	[3] <u>www. belurmath.org</u>
material	

17HS2305 (D) – Philosophy

Course Category:	Humanities elective	Credits:	1
Course Type:	Practical	Lecture - Tutorial - Practice:	1 - 0- 0
Prerequisites:		Continuous Evaluation:	100
		Semester end Evaluation:	
		Total Marks:	100

Course	Upon	succes	sful co	mpletio	on of th	e cours	se, the	student	will b	e able t	to:			
outcomes	CO1	Under	stand	maior r	hiloso	phical	issues							
	CO2		preciate the philosophical doctrines of western thinkers derstand the eminence of Indian classical thought											
	CO3													
	CO4	Appre	Appreciate relation between science and values											
Contribution		PO a	PO h	PO c	PO d	POA	PO f	PO a	PO h	PO i	POi	POk	PO 1	
of Course		10 a	100	100	TOU	100	101	IUg	101	101	101	IUK	101	
Outcomes	COL													
	COI													
	CO2													
Outcomes														
(L – Low, M	CO3		Inderstand the eminence of Indian classical thought ppreciate relation between science and values O a PO b PO c PO d PO e PO f PO g PO h PO i PO j PO k PO i O a PO b PO c PO d PO e PO f PO g PO h PO i PO j PO k PO i I											
· · · ·	CO4													
Course Content	UNIT	'- I							vestern thinkers al thought alues O g PO h PO i PO j PO k PO i G G G D h PO i O J O K PO i G G G G H O H O I O I O I O I O I O I O I O I O					
	What'	s Philo	sophy	: Defin	ition, l	Nature,	Scope	and Br	anches	5				
CO3 Understand the eminence of Indian classical thought CO4 Appreciate relation between science and values Contribution of Course Outcomes towards achievement of Program Outcomes PO a PO b PO c PO f PO g PO h PO j PO k PO pO k PO pO k PO pO k PO k PO pO k P														
	Introd	uction	to Wes	stern pł	nilosop	hy : Ar	ncient (Greek a	nd Mo	dern pł	nilosop	hy		
	TINIT	'- TTT												
			to Indi	an Tho	ught: S	lix syst	ems –	Moder	n philo	sopher	s			
					~81101 ~		•••••		- po	o priori				
	Philos	ophy o	f scien	ce & T	echnol	ogy : F	Iuman	values	and pr	ofessio	nal Eth	nics		
Text books	Text l	Book:												
and	[1] Th	e story	of phi	losoph	y ",Wil	l Dura	nt, Sim	on & S	Schuste	r 1926				
Reference	[2] Ar	1 Introc	luction	to phil	losophy	,O.C	.Fletch	ner, Wo	ord Pub	lic Lib	rary,20	10		
books							1 doctrines of western thinkers Indian classical thought a science and values PO e PO f PO g PO h PO i PO j PO k PO 1 Image: PO e PO f PO g PO h PO i PO j PO k PO 1 Image: PO e PO f PO g PO h PO i PO j PO k PO 1 Image: PO e PO f PO g PO h PO i PO j PO k PO 1 Image: PO e PO f PO g PO h PO i PO j PO k PO 1 Image: PO e PO f PO g PO h PO i PO j PO k PO 1 Image: PO e PO f PO g PO h PO i PO j PO k PO i Image: PO e PO j Image: PO k PO j Image: PO k PO j PO k PO j Image: PO k PO a Image: PO k PO k </th <th></th>							
						_								
					1				~ 1		0			
	[2] The	e pleasi	ires of	philoso	ophy, V	v 111 Du	ran, Si	mon &	Schus	ter,192	9			
E-resources														
digital														
material														

17HS2305 (I) – Foreign Language (German)

Course Category:	Humanities elective	Credits:	1
Course Type:	Theory/Practical	Lecture - Tutorial - Practice:	1 - 0- 0
Prerequisites:		Continuous Evaluation:	100
		Semester end Evaluation:	
		Total Marks:	100

Course	Upon	Upon successful completion of the course, the student will be able to:											
outcomes	CO1	Learn b	basics of	German	Langua	ge							
	CO2	-		an Writ		<u> </u>							
	CO3		Understand German Hearing										
	CO4		Form sentence in present, past and future tense										
Contribution of Course		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	РО ј	PO k	PO 1
Outcomes towards	CO1												
achievement of Program Outcomes	CO2												
(L – Low, M	CO3												
- Medium, H – High	CO4												
Course Content Text books	Alpha UNIT Prepo UNIT Past T UNIT	UNIT-I Alphabets, Numbers, Exact articles and not exact Articles UNIT-II Prepositions, Present Tense UNIT-III Past Tense and about family UNIT-IV Future Tenses											
and		udio d .	A1Cor	nelsen	Goyala	as Pub	licatio	ns New	Delhi				
Reference books	Refer	ence B	ooks:										
E-resources and other digital material													

17HS2305 (K) – Psychology

Course Category:	Humanities elective	Credits:	1
Course Type:	Practical	Lecture - Tutorial - Practice:	1 - 0- 0
Prerequisites:	Introduction to philosophy,	Continuous Evaluation:	100
	psychological processes	Semester end Evaluation:	
		Total Marks:	100

Course	Upon	succes	sful co	mpletio	on of th	e cours	se, the	student	will b	e able 1	to:		
outcomes	CO1	Relate	e biolog	gical ar	nd soci	o-cultu	ral fact	ors in u	underst	anding	huma	n behav	iour
	CO2						1	sses, ty					
	CO3	differ	xplain different types of learning and the procedures, distinguishes between fferent types of memory										
	CO4		emonstrate an understanding of some cognitive processes involved in roblem solving and decision-making										
Contribution of Course		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	РО ј	PO k	PO 1
Outcomes towards achievement	CO1												
of Program Outcomes	CO2												
(L – Low, M - Medium, H	CO3												
– High	CO4												
Course Content	Introd cultur UNIT Senso UNIT Cogn UNIT Think	UNIT- II Cognition and Affect: Learning and memory. Emotion and motivation UNIT- IV Fhinking, problem solving and decision making, Personality and intelligence											
Text books and Reference books	[1] Zi Refer [1] Ba [2] Co and bo	 Text Book: [1] Zimbardo, P. G. (2013). Psychology and Life (20th Ed.).Pearson Education Reference Books: [1] Baron, R. A. (2006). Psychology (5th Ed.). New Delhi: Pearson Education. [2] Coon, D., & Mitterer, J. O. (2007). Introduction to Psychology: Gateway to mind and behaviour. New Delhi: Cengage. [3] Feldman, R. S. (2013). Psychology and your life (2nd Ed.). McGraw Hill 											
E-resources and other digital material													

17TP1306 – Logic & Reasoning

Course Category:	Humanities and Social Sciences	Credits:	1
Course Type:	Theory	Lecture - Tutorial - Practice:	0 - 0- 2
Prerequisites:		Continuous Evaluation:	100
		Semester end Evaluation:	0
		Total Marks:	100

Course	Upon	succes	sful co	mpletio	on of th	e cour	se, the	student	will b	e able i	to:		
outcomes	CO1	Think	reasor	logica	ally in a	any crit	ical sit	uation.					
	CO2							ct solu					
	CO3							tivities					
-	CO4		evelop time-management skills by approaching different shortcut methods se mathematical based reasoning to make decisions										
-	CO5												
	CO6		pply logical thinking to solve problems and puzzles in qualifying exams in y competitive exam										ms in
Contribution of Course		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	РО ј	PO k	PO 1
Outcomes towards achievement	CO1	Н			М								
of Program Outcomes	CO2	М			Η								
(L – Low, M - Medium, H	CO3	М				М							
– High	CO4	Н											
	CO5	Н			L								
	CO6	Н			Μ								
Course Content	1. 2. 3. 4. UNIT 1. 2. 3. 4. UNIT 1. 2.	CO6 H M UNIT- I 1. Series Completion, 2. Coding-Decoding, 3. Blood Relation Blood, 4. Puzzles test UNIT- II 1. Direction sense test, 2. Logical Venn diagrams, 3. Number test, ranking test, 4. Mathematical operations UNIT- III 1. Arithmetical Reasoning, 2. Inserting missing character, 3. Syllogism.											

	2. Mirror images,
	3. Paper folding,
	4. Paper cutting,
	5. Embedded Figures,
	6. Dot situation,
	7. Cubes & Dice
Text books	Text Book:
and	[1] R. S. Aggarwal, "Verbal and non-verbal reasoning", Revised Edition, S Chand
Reference	publication, 2017 ISBN:81-219-0551-6
books	
E-resources	
and other	
digital	
material	

17EI3351 - Electronic Circuits Lab

Course Category:	Program Core	Credits:	1.5
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0- 3
Prerequisites:	-	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succes	sful co	mpletio	on of th	e cour	se, the	student	t will b	e able	to:		
outcomes	CO1	Analy	halyze and design basic diode circuits related to various applications. Inderstand the working of BJT,FET and its application as an amplifier perimentally and infer their salient parameters halyze the working of BJT,FET and its application as an amplifier virtually d infer their salient parameters										
	CO2												plifier
	CO3	Analy											
Contribution of Course		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	РО ј	PO k	PO 1
Outcomes towards achievement	CO1	Н	Н		Н								
of Program Outcomes	CO2		Н		Н								
(L – Low, M - Medium, H – High	CO3	Н	L		L								
Course Content	List of Experiments A. Electronic Devices Module:												
	2. 3. 4. 5. 6. 7. 8. 9.	 Characteristics of transistor in common emitter configuration Design of transistor self-bias circuit. Drain and transfer characteristics of junction field effect transistor Design of Clippers with reference voltage. Design of unbiased clampers. Design of CE amplifier. Design of Voltage Series Feedback amplifier Design of RC Phase Shift Oscillator Design of Class A Power Amplifier. 											
	1. 2. 3. 4. 5. 6. 7.	 B. P-Spice Module: Characteristics of PN Junction diode and Zener diode Design Voltage regulator using Zener. Verification of half-wave rectifier operation with and without filter. Verification of full-wave rectifier operation with and without filter. Frequency response of CE amplifier. Frequency response of CS Amplifier Design of Voltage Shunt Feedback amplifier Design of Wien Oscillator 											
Text books and													

Reference	
books	
E-resources	
and other	
digital	
digital material	

17EI3352 – Transducers Lab

Course Category:	Program Core	Credits:	1.5
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0- 3
Prerequisites:	-	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succes	sful co	mpletio	on of th	e cours	se, the	student	t will b	e able	to:		
outcomes	CO1	Analy system		vario	us per	forman	ce cha	aracteri	stics c	of first	and s	econd	order
	CO2	Analy	nalyze the characteristics of displacement, velocity and acceleration ansducers to meet the requirements of industrial applications. ompare the characteristics of different temperature transducers.										
	CO3												
	CO4	-	halyze the characteristics of level, flow, pressure and humidity measurement insducers.										ement
Contribution of Course		PO a											PO 1
Outcomes towards achievement	CO1		Н			L							
of Program Outcomes	CO2				Н								
(L – Low, M - Medium, H	CO3				Н								
– High	CO4				Н								
Course Content	1.Tem 2.Tem 3.Cha 4.Mea 5.Hun 6.Stuc 7.Spec 8.Torc 9.Cha 10. Ca 11.Ch 12.Flc 13.Dis 14.An	List of Experiments 1. Temperature measurement using RTD and thermistor 2. Temperature measurement using thermocouple and IC temperature sensor 3. Characteristics of LDR, photodiode and phototransistor 4. Measurement of magnetic flux density using Hall transducer 5. Humidity measurement using dry wet hygrometer 6. Study of various pressure measuring devices 7. Speed measurement using strain gauge load cells 9. Characteristics of level transmitter 10. Calibration of pressure gauges using dead weight tester. 11. Characteristics of synchro transmitter and receiver 12. Flow measurement using ultrasonic flow meter 13. Displacement measurement using LVDT 14. Angular displacement measurement using capacitive pick-up											
Text books and Reference books		15.Dynamic Characteristics of first order and second order systems											

Course Category:	Humanities and Social Sciences	Credits:	1
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0 - 2
Prerequisites:	Technical English	Continuous Evaluation:	30
	&Communication skills	Semester end Evaluation:	70
		Total Marks:	100

Course	Upon successful completion of the course, the student will be able to:												
outcomes	CO1	Execu	ite ratio	onal pr	onuncia	ation of	f speec	h soun	ds inclu	uding a	ccentu	ation.	
	CO2	Apply	v eleme	ents of	listenin	g com	prehens	sion in	profess	sional e	environ	ments	
	CO3							ntation					
	CO4		nonstrate proficiency in the elements of professional communication uding the competitive examination .										
Contribution of Course		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	РО ј	PO k	PO 1
Outcomes towards achievement	CO1						Н			Н	Н	М	L
of Program Outcomes	CO2			М	М		Н	Н	М	Н	Н	М	М
(L – Low, M - Medium, H	CO3	Н		М	Н	L	М	Н	Η	Η	Н	М	Н
– High	CO4	М	L	М	М	L	Н	Н	Н	Н	Н	Н	М
Course Content									List	ening			
	> > VNIT Profes >	 Arti Patt Ty II Group Pyram PNI Semin III ssional Self A Advan Résum 	culatio erns of pes and Substa Discus id Discus ar Talk ar Talk Comr ffirmat aced Con	Accent l Procest ntiation ssion cussion and Po nunication	owels a tuation sses of n and ower Po tion: ion Ind	Listeni Refuta oint Pre	ng Con tion in sentatio Memo	npreher Publi	c Spea mail	king:			

	 UNIT - IV Life Skills and Vocabulary for Competitive Examinations: ➢ Select Life Skills(50) ➢ Select Logies, Isms, Phobias and Manias (25 each) ➢ Sentence Completion and Double Unit Verbal Analogies (50 items) ➢ Fundamentals of Syllogisms(Descriptive and Pictorial)
Text books and Reference books	 Text Books: [1] Martin Cutts, Oxford Guide to Plain English, 7th Impression, OUP, 2011 [2] Exercises in Spoken English, Prepared by Department of Phonetics and Spoken English, CIEFL, OUP, 21st Impression, 2003 Reference Books: [1] Stephen R Covey, The 7 Habits of Highly Effective people, II edition, (Pocket Books) Simon & Schuster UK Ltd, 2004 [2] Eclectic Learning Materials offered by the Department, "Network Analysis and Synthesis", IInd ed, John Wiley & Sons, 2003
E-resources and other digital material	 [1] ODll Language Learner's Software, 27-6-2012 Orell Techno Systems [2] Visionet Spears Digital Language Lab software Advance Pro, 28-01-2015 [3] www.natcorp.ox.ac.uk, British National Corpus accessed on 28-11-2017

17MC1307B – Indian Constitution

Course Category:	Humanities elective	Credits:	1
Course Type:	Theory	Lecture - Tutorial - Practice:	2 - 0- 0
Prerequisites:		Continuous Evaluation:	100
		Semester end Evaluation:	
		Total Marks:	100

Course	Upon	successful completion of the course, the student will be able to:											
outcomes	CO1	Know	he fund	amental	law of tl	ne land							
	CO2	Under	nderstand how fundamental rights are protected										
	CO3		erceive the structure and formation of the Indian Government system										
	CO4	-	xplain when and how an emergency can be imposed and what are the onsequences										
Contribution of Course		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	РО ј	PO k	PO 1
Outcomes towards achievement	CO1												
of Program Outcomes	CO2												
(L – Low, M - Medium, H	CO3												
– High	CO4												
Course Content	Const Const UNIT Fundaright 19, sc UNIT Natur and fir Parlia the P Histor Local UNIT	duction itutiona itution - II amenta to equa ope of - III re of the nancial menta residen - ical Pe Self G	llism, 1 of Indi al righ lity, so the righ power ry for t of In rspecti overn	Histori a. ts: Scheme nt of lif ian co s betw m of g ndia, A ves of ment:	cal per neme o of the fe and p nstitut een the overnm Amend the cor Constit	f the fu fundar persona ion: Fo Union ment in ment co stitutional	re of contract and amon and and and st and st	ental ri right to right to structur ates : The (Consti- nendme ne in Ir	ghts, so certain r Artic re and Constit tutiona ents in l adia	India, cheme in freed le 21, v distrib ution p l powo India	Salien of the doms u writs ju oution o owers ers and	on Law t featur fundan inder A risdiction of legis and sta l Proce	res of nental article on lative tus of edure,

Text books and Reference books	 Text Book: [1] Dr. J.N. Pandey, Constitutional Law of India published by Central law Agency, Allahabad, Edition 2018 Reference Books: [1] V.N Shukla's, Constitution of India Eastern Book Company, Lucknow. [2] M.P. jain, Indian Constitution Law, Wadhwa and Company, Nagpur. [3] D.D. basu, Constitution of India, Wadhwa and Company, Nagpur
E-resources and other digital material	

Second year (IV Semester)

17EI3401 - Analytical Instrumentation

Course Category:	Program Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Engineering Chemistry	Continuous Evaluation:	30
-		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon successful completion of the course, the student will be able to:												
outcomes	CO1	Identif	Identify the suitable spectrophotometer based on the application.										
	CO2	D2 Describe the principle and operation of Mass, NMR and ESR Spectrometers.										ſs.	
	CO3	Outlin	line the various radiation detectors and X-ray spectroscopic instruments										
	CO4		entify the use of chromatography and gas analyzers in real time industrial vironments.										
Contribution of Course		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	PO j	PO k	PO 1
Outcomes towards	CO1	Н	Н										
achievement of Program Outcomes	CO2	Н											
(L – Low, M - Medium, H – High	CO3		Н					L					
	CO4		Н					L					

Course Content

UNIT – I

SPECTROPHOTOMETERS: Introduction to analytical instruments- Radiation sources, Filters, Monochromators and Detectors, , Flame photometer – Basic and Clinical Types, UV-VIS Spectrophotometers- Single beam Null type, Double beam ratio recording, Microprocessor based, FTIR Spectrophotometer, Applications.

UNIT – II

MASS SPECTROSCOPY: Principle, Types of Mass Spectrometers- Magnetic Deflection, The Time-of Flight, Applications.

NMR AND ESR SPECTROSCOPY: Principle of NMR Spectroscopy, Types of NMR spectrometers- Continuous wave and FT NMR, Principle of ESR spectroscopy, ESR Spectrometer, Applications.

UNIT – III

RADIATION DETECTORS: Ionization chamber, Geiger Muller Counter, Proportional Counter, Scintillation Counter, Semiconductor Detectors

X-RAY SPECTROSCOPY: Production of X-Rays and X-Ray Spectra, Instrumentation, X-Ray Diffractometer, X-Ray Absorption meter, X-Ray Fluorescent Spectrometer, Applications.

 $\mathbf{UNIT} - \mathbf{IV}$

	 CHROMATOGRAPHY: Basic definitions, Classification of Chromatographic methods, Gas Chromatography- Introduction, Basic parts of Chromatograph, Liquid Chromatography- Introduction, Types, High Performance Liquid Chromatograph -Detection systems, Applications. INDUSTRIAL GAS ANALYSERS: Types, Paramagnetic Oxygen Analyser, Infrared Gas Analyser, Thermal Conductivity Analyser, Analysers based on Gas density
Text books and	Text Book
Reference books	 [1] R.S.Khandpur, "Handbook of Analytical Instruments", IInd ed, TMH, 2006. [2] Willard H.H, Merrit L.L, Dean J.A, "Instrumental Methods of Analysis", VIIth ed, CBS publishers and Distributors, 1988.
	Reference books
	[1] D.A.Skoog and James J.Leary, "Principles of Instrumental Analysis", V th ed , Holt-Saunders, 1997.
	[1] James W.Robinson, Eileen M.Skelly Frame, George M.Frame, "Undergraduate Instrumental Analysis", VII th ed , CRC Press, 2014.
E-resources	[1]
and other	http://www.srmuniv.ac.in/sites/default/files/files/IC0309%20Analytical%20Instumentation.pdf
digital material	[2] http://nptel.ac.in/courses/103108100
	[3] <u>http://nptel.ac.in/courses/102107028/34</u>
	https://sites.google.com/site/coolhemakumar/Home/winter-2013/analytical-instrumentation
	http://instruct.uwo.ca/chemistry/532/lectures.htm http://chemtach.org/cn/cn212/212 video.htm
	http://chemtech.org/cn/cn212/212-video.htm

Course Category:	Program Core	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 1- 0
Prerequisites:	Electronic Devices and Circuits	Continuous Evaluation:	30
	Analog Electronic Circuits,	Semester end Evaluation:	70
	Network Theory	Total Marks:	100

17EI3402– Integrated Circuits & Applications

Course	Upon s	success	sful co	mpletio	on of th	e cour	se, the	studen	t will t	be able	to:		
outcomes	CO1	Analyze various characteristics of op-amp and design different linear op- amp circuits.) —		
	CO2	-	yze an ators.	d desi	gn dif	ferent	non-li	near og	p-amp	circui	ts and	Wave	form
	CO3	Unde	Inderstand the concepts of various DACs, ADCs and design Active filters aitable for various applications. Design 555 Timer circuits, 565 PLL and µA723 voltage regulators based on oplications.										
	CO4	_											
Contribution of Course Outcomes	onPO aPO bPO cPO dPO ePO fPO gPO hPO i										РО ј	PO k	POl
towards achievement	CO1	L	Н										
of Program Outcomes (L – Low, M	CO2		Н		М								
- Medium, H – High	CO3		Н		М								
	CO4	L	Η		М								
Course Content	charac LINEA Negati	ATIO ated cir suppli p-amp teristic AR AF ve fee	rcuits-' es; Op featu s. PPLIC	Types, -amp E res ar ATIO I conce	Classi Block I nd spe NS OF pt in	ficatio Diagrar cificati OP-A Op-An	n, idea ons. (MPS: nps, Ir	l and p Op-amp	Types a ractica p char g and	and Te l Op-a cacteris	mp Spe tics-D(ture ra ecificat C and g ampl	ions, AC ifier,
	amplif	ier, V-				-		summ Differei	ntiator.	-			
	UNIT NON I Sample precisi	LINEA e and l	Hold ci	ircuit, I	Log an	d antil	og amp	olifiers	, Precis	sion di	ode, Aj	: 1&2]	-
								E NER A , Appl			-crossi	ng dete	ector,

	window detector, voltage limiters; Waveform generators- Oscillators, Schmitt Trigger, Square-wave Generator, Triangular wave Generator, saw tooth wave Generator.
	UNIT – III[Text Book No: 1&2]ACTIVE FILTERS:Active LP and HP filters, Sallen key LP and HP filters, Band pass filters – Wideband pass and multiple feedback Band pass filters; Band stop filters-Wide band stopand notch filter; All pass filters.
	D/A AND A/D CONVERTERS: Introduction, Basic DAC techniques - weighted resistor DAC, R-2R Ladder D/A converter; A/D conversion–parallel comparator type ADC, Tracking type A/D converters, successive approximation ADC and Dual slope ADC; DAC and ADC Specifications.
	UNIT – IV [Text Book No: 1&2] APPLICATIONS OF SPECIAL ICS: The 555 timer- 555 as Monostable and Astable Multivibrator and applications; voltage controlled oscillator; Phase Locked loops- operating principles, Monolithic PLLs, 565 PLL Applications; IC Voltage Regulators,723 IC Voltage Regulator.
Text books and Reference books	 Text books [1]. Roy and Chowdhary, "Linear Integrated Circuits", 4th Edn., New Age International,2003 [2]. Rama Kant A. Gayakwad, "Op-Amps and Linear Integrated Circuits",3rd ed., PHI, 1997 Reference Books [1] Jacob, "Applications and Design with Analog Integrated Circuits", 2nd Edn., PHI, 1996 [2] Denton J Dailey, "Operational Amplifiers and Linear Integrated Circuits: Theory and Applications", Mc Graw Hill Ltd, 1989
E- resources and other digital material	 www.analog.com nptel.ac.in/video.php?subjectId=108106068 www.linkwitzlab.com/filters.htm www.allaboutcircuits.com.

Course Category:	Program Core	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 1- 0
Prerequisites:	Sensors and Transducers	Continuous Evaluation:	30
_		Semester end Evaluation:	70
		Total Marks:	100

Г

17EI3403 – Industrial Instrumentation

Course outcomes	Upon	succes	accessful completion of the course, the student will be able to:										
outcomes	CO1				t transo lustrial			asurem	ent of	tempe	erature	to me	et the
	CO2	Apply		t suita				r press	sure r	nonitor	ring ir	n real	time
	CO3		elect the relevant transducer for the measurement of flow in industrial plications.										
	CO4	-	ompare and select suitable transducer for level, humidity, density and scosity measurement for real time applications.										
Contribution of Course		PO a											
Outcomes towards achievement	CO1		Н		Н								
of Program Outcomes	CO2		Н		L								
(L – Low, M - Medium, H	CO3		Н										
– High	CO4		Η		L								
Course Content	based electri sensor UNIT Press Diaph Capac Ioniza UNIT Flow tube measu Anem displa	eratur on cha cal pro- cs; Rad -II ure M ragms, titive, I tion ga - III Measu and urement ometer cement s- Wein	nge in operties iation p leasure Bellow Piezoel uges; (remen Pitot t t type rs; Mas t flow	dimens s - RT byrome ement: ws & B ectric; Calibra t: Intr ube; flow n ss flow meters	sions - D, The eters, Fi Jutro courdor Low p tion of oductic Variab neters measu	Bimeta ermisto ibre-op duction tubes pressure pressure on, He le area - Elect uremen	als & L r; The tic sen tic sen ; Secor e meas re gaus ead type romage it type	iquid-i rmo el- sors. nomete ndary tr uremer ges usin e flow flow r entic, 7 - Cori	n-Glas ectricit ers, Fo cansduo nt - Mo ng dead meters furbine iolis m	s therm y - Th orce su cers - F eleod, I l weigh s - Ori – Rot e, Ultra ass flo	amming Resistiv Knudsent tester fice pla ameter isonic	ate, V	nge in & IC ces - active, ani & enturi locity neters, ositive

	 Level Measurement: Introduction, Mechanical level indicators - Differential pressure type; Optical – Laser sensors, IR and visible light sensors; Electrical type - Resistive, inductive and Capacitive; Radiative methods - Ultrasonic, Gamma ray. Humidity, Density & Viscosity Measurement: Electrolytic hygrometers, Wet and dry bulb hygrometers; Moisture analyzer, Ultrasonic and gamma ray densitometers, Saybolt Viscometer, Float viscometers.
Text books	Text Books
and	[1] A.K.Ghosh, "Introduction to Measurements & Instrumentation", III rd ed, PHI,
Reference	2009.
books	[2] A.K.Sawhney & Puneet Sawhney, "A Course in Mechanical Measurements & Instrumentation", XII th ed, Dhanpat Rai & Co, 2012.
	 Reference Books [1] Ernest O Doebelin/Dhanesh, N Manik, "Measurement systems", VIth ed, Tata Mc Grawhill. [2] C.S.Rangan, G.R.Sarma & V.S.V.Mani "Instrumentation Devices & Systems", IInd ed, TMH, 2011.
E-resources and other digital	[1] <u>http://nptel.ac.in/courses/108105064</u> [2] <u>http://nptel.ac.in/courses/108106074</u>
material	

17EI3404 – Electrical and Electronic Measurements

Course Category:	Program Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Circuit analysis	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succes	sful co	mpletio	on of th	e cours	se, the	student	t will b	e able	to:			
outcomes	CO1							cating ergy and				sureme	ent of	
	CO2	Select	elect suitable analog and digital voltmeters, bridges and Q-Meters for easurement of A.C. & D.C. Voltages, Resistance, Inductance and apacitance.											
	CO3	Expla	xplain the constructional details and working principles of various scilloscopes for measurement of electrical parameters.											
	CO4	Expla	xplain the principles of working of various signal generators, wave analyzers and Frequency Counters.											
Contribution of Course		PO a											PO 1	
Outcomes towards achievement	CO1	Н	L		Н									
of Program Outcomes	CO2	Н			Н									
(L – Low, M	CO3	Н			Н									
- Medium, H – High	CO4	Н			Н									
Course Content	deflect mecha Temp Electr amme voltmo ohmm indica multir measu UNIT Bridg Practio Wien'	romech anisms; erature rical M ters, T eter, Vo heter, S ting i neter uremen Y – II ges: W cal Ke s bridg	the G Perm compe Ieasur The Ay oltmete Shunt ty nstrum circui ts, Wat	alvano: anent ensation ements yrton r sensi ype oh ents-El ts; T t hour t hour one's double gner's g	meter-s Magne h. s: DC shunt tivity- mmete ectrod hermo meter, bridge bridge ground	Steady t Mov amme , DC ohms r, Cali ynamou Instr Power (Mea e, Maxy connec	state d ing Co ters-shu voltm per v bration meter, uments Factor sureme well's ction.	unt res neters- olt ration of dc Rectifies, Ele meters ent of bridge,	on, Dy chanisr sistor, multij ing, lo instru fier ty ectrody Resis Hay's	namic n-D'A Ayrton plier r ading ment, pe ins namon	behavi rsonval shunt esistor, effect, Alterna strumen neters Kelv e, Scho	, Torqu or, Dar move , Multi Series ating cu nts, T in p in's b ering b	nping ment, range range type urrent ypical power ridge, ridge,	

	voltmeters - Ramp technique, Dual slope integrating type DVM, Staircase ramp DVM, Successive approximation type DVM, Q Meter- Impedance measurement using Q Meter.
	UNIT – III Oscilloscopes: Block diagram of oscilloscope, Vertical amplifier, Horizontal deflecting system, Delay line in triggered sweep, Typical CRT connections, High frequency CRT, Dual beam CRO, Dual trace oscilloscope (basic block diagram), Sampling oscilloscope, Storage oscilloscope, Probes for CRO – Direct probes, Passive voltage probe, Active probes, Attenuators - Uncompensated attenuators , Simple compensated attenuator.
	UNIT – IV Signal Generators: Basic standard sine wave generator, Standard signal generator, Function generator, Laboratory square wave and pulse generator.
	Wave Analyzers: Basic wave analyzer, Frequency selective wave analyzer, Heterodyne wave analyzer, Spectrum analyzer.
	Frequency Counters And Time–Interval Measurements: Digital frequency meter – Principle of operation, Basic circuit of a digital frequency meter, Digital measurement of time- Principle of operation, Time base selector, Period measurement.
Text books and Reference books	Text Book[1] W D Cooper & A D Helfrick, "Electronic Instrumentation and MeasurementTechniques", PHI, 1998 (Unit-I)[2] H.S.Kalsi, "Electronic Instrumentation", II nd ed, TMH. (Units-II, III and IV)
	 Reference books [1] A.K. Sawhhney, "A Course in Electrical and Electronic Measurements and Instrumentation", Dhanpat Rai & Co. [2] Oliver & Cage, "Electronic Measurements and Instrumentation", Mc Graw Hill, 1975
E-resources and other digital material	

17TP1405 – English for Professionals

Course Category:	Humanities and Social Sciences	Credits:	1
Course Type:	Theory	Lecture - Tutorial - Practice:	0 - 0- 2
Prerequisites:		Continuous Evaluation: Semester end Evaluation: Total Marks:	

Course outcomes	Upon	successi	ful com	pletion	of the co	ourse, th	ne stude	nt will ł	be able t	:													
outcomes	CO1	Preser	nt thems	elves ef	fectivel	y in the	profess	sional w	orld														
	CO2	Introduce themselves as well as others appropriately																					
	CO3	Use vocabulary to form sentences and narrate stories by using creative thinking skills																					
	CO4	Involve in practical activity oriented sessions																					
	CO5	Learn	about v	arious e	expressi	ons to b	e used i	n differ	ent situa	ations													
	CO6	Respo	Respond positively by developing their analytical thinking skills																				
Contribution of Course		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	PO j	PO k	PO 1										
Outcomes towards achievement	CO1										Н												
of Program Outcomes	CO2										L		М										
(L – Low, M - Medium, H –	CO3					L																	
High	CO4									L			L										
	CO5									М	L	М											
	CO6					М																	
Course Content	UNIT	1. 2.	 Beginners, Functional, Situational Conversations Practicing on Functional Conversations 																				
	 Errors in usage of Parts of Speech with a thrust on Verbs, Adjectives and Conjunctions, Idioms/Phrases. B. Introducing Basic Grammar C. Practicing on Functional Conversations 									ves and													
	UNIT	,	2. Struc 3. Telep	honic E	d Form tiquette	ing Sen e, Social	Etique	tte and 7 ons	Гable M	anners													
	UNIT	,	2. Publi	c Speak	ing Bas	ics	beech					4. Practicing on Functional Conversations UNIT – IV 1.Direct, Indirect/Reporting Speech 2. Public Speaking Basics 3. Versant Test Preparation											

	4. Practicing on Situational Conversations
Text books	Text Book
and Reference	[1] Swaroopa Polineni, "Strengthen Your Communication Skills", I ed., Maruthi Publications,
books	2013. ISBN:978-81-907052-2-6
	[2] Mamta Bhatnagar&Nitin Bhatnagar, "Communicative English", I ed., Pearson India, 2010. ISBN:8131732045
E-resources	
and other	
digital	
material	

17EI3406 – Digital Circuits and Systems

Course Category:	Program Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3-0-0
Prerequisites:	Electronic Devices and Circuits	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succes	sful co	mpletio	on of th	e cours	se, the	student	t will b	e able t			
outcomes	CO1		Perform binary arithmetic operations and explain the characteristics of ifferent logic families.										
	CO2	Simpli	mplify logical functions using Boolean algebra and K-map method.										
	CO3	Desig	esign various combinational logic circuits and realize using logic gates.										
	CO4	Design	esign and realize various sequential logic circuits using flip flops.										
Contribution		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	POj	PO k	PO 1
of Course		10 4	100	100	104	100	101	105	101	101	101	10 %	101
Outcomes	CO1	Н	Н			Н							
towards	001												
achievement	CO2	Н	H H H										
of Program	02	11	11			11							
Outcomes	CO3	Н	Н		М	Н							
(L - Low, M)													
- Medium, H	CO4	Н	Н		Μ	Н							
– High													
Course						•				•		•	
Content	UNIT	- I											
	Numb	ber Sy	stems	and (Codes:	Decin	nal, Bi	nary, (Octal a	and He	xadeci	mal nu	umber
	system	ns and	their c	onversi	ion. B	inarv A	dditio	n. Subt	raction	. Multi	plicati	on. Div	ision.

Number Systems and Codes: Decimal, Binary, Octal and Hexadecimal number systems and their conversion. Binary Addition, Subtraction, Multiplication, Division. Sign-magnitude representation, 1's & 2's complement representations, 2's complement arithmetic - Addition/Subtraction; Codes - Excess-3 code, Gray code, Octal code, Hexadecimal code.

Logic Gates & Logic Families: Logic gates, Characteristics of digital IC's, Directcoupled transistor logic, Resistor-transistor logic, Diode - Transistor logic, Transistor-Transistor logic, Schottky TTL, Emitter-coupled logic, MOS Inverter, MOSFET NAND and NOR Gates, CMOS Inverter, CMOS NAND and NOR gates

UNIT- II

Boolean Algebra: Boolean algebra laws & theorems, simplification of Boolean expression, implementation of Boolean expressions using logic gates, standard forms of Boolean expression.

Minimization of Switching Functions: Simplification of logical functions using

	Karnaugh map method (two, three and four variable), Don't-Care conditions.
	UNIT- III
	Combinational Logic Design: Half-Adder, Full-Adder, Half - Subtractor, Full -
	Subtractor, BCD to 7 segment decoder, Design of a Binary to Gray and Gray to
	Binary code converters.
	Combinational Logic Design Using MSI Circuits: Multiplexer, Combinational
	logic design using multiplexers, Demultiplexers / Decoders and their use in combinational logic design.
	UNIT- IV
	Flip-Flops: Clocked S-R flip-flop, Preset and Clear, J-K flip-flop, Race around condition, Master slave J-K flip-flop, D flip-flop, T flip-flop, Excitation table of flip-
	flop.
	Sequential Logic Design: Shift register, Bi-directional shift register, Applications of shift resisters, Ring counter, Twisted- Ring counter, Sequence generator.
	Asynchronous counters - UP/DOWN counters, Modulus of the counter, Design of Synchronous counters.
Text books	Text Book
and	[1] R P Jain "Modern Digital Electronic", IV th ed., TMH.
Reference	
books	Reference Books
	[1] A.Anand Kumar, "Fundamentals of Digital Circuits", PHI 2006.
	[2] M.Morris Mano, "Digital Logic and Computer Design", PHI,2003.
E-resources	
and other	
digital	
material	

17EI3451 – Analog and Digital Integrated Circuits Lab

Course Category:	Program Core	Credits:	1.5
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0- 3
Prerequisites:	-	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	Upon successful completion of the course, the student will be able to:											
outcomes	CO1	Analyze various characteristics of op-amp and design different linear and non-linear op- amp circuits and Waveform generators											
	CO2		Design filters circuits suitable for particular application using ICs										
	CO3	Realiz	ealize the basic gates using discrete components and universal gates										
	CO4	Desig	esign and test various combinational & sequential logic circuits sperimentally										
Contribution of Course		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	PO j	PO k	PO 1
Outcomes towards	CO1	L	М		Η								
achievement of Program Outcomes	CO2				Н								
(L – Low, M - Medium, H	CO3				Н								
– High	CO4		Μ										
Course Content	Analo 1. Ma 2. De 3. De 4. Wa 5. De 6. De 7. De 8. De Digita 1. Re 2. Ac 3. Va 4. Da 5. Ul 6. De 7. De 8. De 0. De 1. Re 2. Ac 3. Va 4. Da 5. Ul 6. De 7. De 8. De 0. De 0. De 1. Re 1. Re 2. Ac 3. Va 4. Da 5. Ul 6. De 0. DE 0	sign of sign of aveforr sign of sign of sign of alics ealizati ders/ S erificat esign o P/DOW esign o esign o	nent of Integr Instru n gener Wein active IC 55: a volta on of lo Subtract ion of l f synch /N cou f MUX f code f ring a	Op-an ator, di mentat ration u bridge filters 5 Time age Reg ogic ga ctor usi Flip-Flo ronous nters u and D conver	ifferent ion An using 7 e Oscill using 7 r Astab gulator tes usin ng IC 7 ops usi s and as sing IC PEMUX tors (bi nson c	ator us 741IC (ole circ using ng disc 7483 ng gate synchro 74193 X inary to ounters	sing 74 using 7 quare, ing 74 (LPF & cuit IC 723 rete con es onous c o gray a s using	741IC triangu IIC HPE- mpones counter and gra flip-flo	first or nts and s using by to bin ops.	univer flip flo nary co	ops and	l IC 74 nversio	n)
Text books and	-			•	'Princi	ples of	t Integ	rated (Circuit	$s'', 2^{nd}$	Edn.	, New	Age
allu	In	International,2003											

Reference	2.Rama Kant A. Gayakwad, "Op-Amps and Linear Integrated Circuits", 3rd Ed.,
books	PHI, 1997
E-resources	www.allaboutcircuits.com.
and other	
digital	
material	

17EI3452 – Measurements Lab

Course Category:	Program Core	Credits:	1.5
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0- 3
Prerequisites:	-	Continuous Evaluation:	30
-		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon successful completion of the course, the student will be able to:												
outcomes	CO1	Design and test the working of DC, AC meters, ohmmeters and Calibrate the Voltmeter, Ammeter and ohmmeter											
	CO2	Meas	leasure resistance, inductance and capacitance using bridges and Q-meter experimentally. Applain the function of function generator, true RMS Voltmeter, CRO and bectrum analyser										
	CO3	Expla											
Contribution of Course		PO a	Da POb POc POd POe POf POg POh POi POj POk POl										PO 1
Outcomes towards	CO1	Н			Н								
achievement of Program Outcomes	CO2	Н			Н								
(L – Low, M - Medium, H		IT			тт								
– High	CO3		H H H										
Course		-	rimen		1.0								
Content			•			alvano							
			•			alvano							
	3.Mea	surem	ent of	Voltag	e, Freq	uency,	phase	angle a	nd pha	se shif	t using	a CRO).
	4. Me	asurem	ent of	resistai	nce usi	ng Whe	eatston	e Bridg	ge				
	5.Mea	. Measurement of resistance using Wheatstone Bridge . Measurement of resistance of small resistors using Kelvin Double Bridge.											
						ng Max		-			C		
						ing She							
						ng a Sp							
		surem								Quali	ty fact	or usin	g a Q
	10.Measurement of amplitude and frequency of different types of waveforms usin Function generator.									sing a			
										6			
		-			tudes of	of diffe	rent ty	pes of	wave	forms	using a	a True	RMS
	voltm			Ĩ			5	-			C		
	12.Me	easuren	nent of	induct	ance of	f high () coils	using I	Hay Br	idge.			
						ing a W	-	0	-	2			
				-		g poten		0					
						potent							
Text books						-							
& Ref books													
E-resources													
and other													

digital	
uigitai	
· • •	
material	

17MC1407A – Environmental Studies

Course Category:	Mandatory Course	Credits:	-
Course Type:	Theory	Lecture - Tutorial - Practice:	2 - 0 - 0
Prerequisites:	Concern on Conservation and	Continuous Evaluation:	30
	Preservation of Environment	Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon successful completion of the course, the student will be able to:												
outcomes	CO1		nderstand the various natural resources, analyze and explore degradation anagement										
	CO2		Inderstand the Ecosystems and need of Biodiversity										
	CO3		Realize and explore the problems related to environmental pollution and nanagement apply the Role of Information Technology and analyze social issues, Acts ssociated with Environment.										
	CO4												
Contribution of Course		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	РО ј	PO k	PO 1
Outcomes towards achievement	CO1	L											
of Program Outcomes	CO2			Н					Н				
(L – Low, M - Medium, H	CO3						Н		Н				
– High	CO4		L	Н								Н	
Course Content	CO4 L H H UNIT- I The Multidisciplinary Nature of Environmental Studies: Definition, Scope and importance Need for public awareness. Natural Resources Renewable and Non-renewable Resources: Natural resources and associated problems. (a) Forest resources: Use and over-exploitation, Deforestation. Timber extraction, mining, dams and their effects on forests and tribal people. (b) Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems. (c) Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources. (d) Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity. (e) Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources.												

landslides, soil erosion and desertification.

Role of an individual in conservation of natural resources. Equitable use of resources for sustainable lifestyles.

UNIT- II

Ecosystems: Concept of an ecosystem.

Structure and function of an ecosystem.

Producers, consumers and decomposers.

Energy flow in the ecosystem.

Ecological succession.

Food chains, food webs and ecological pyramids.

Introduction, types, characteristic features, structure and function of the following ecosystem:

(a) Forest ecosystem

(b) Grassland ecosystem

(c) Desert ecosystem

(d) Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

Biodiversity and its Conservation:

Introduction, Definition: Genetic, Species and ecosystem diversity.

Biogeographically classification of India.

Value of biodiversity: Consumptive use, Productive use, Social, Ethical, Aesthetic and option values.

Biodiversity at global, National and local levels.

India as a mega-diversity nation.

Hot-spots of biodiversity.

Threats to biodiversity: Habitat loss, Poaching of wildlife, Man-wildlife conflicts. Endangered and Endemic species of India.

Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

UNIT- III

Environmental Pollution: Definition, Causes, effects and control measures of

(a)Air pollution (b) Water pollution

(c)Soil pollution (d) Marine pollution

(e)Noise pollution (f) Thermal pollution

(g) Nuclear hazards

Solid Waste Management: Causes, Effects and control measures of urban and industrial wastes.

Role of an individual in prevention of pollution.

Disaster Management: Floods, Earthquake, Cyclone and landslides.

UNIT- IV

Social Issues and the Environment:

From unsustainable to sustainable development.

Urban problems related to energy.

Water conservation, Rain water harvesting, Watershed management.

Resettlement and rehabilitation of people; Its problems and concerns.

Environmental ethics: Issues and possible solutions.

Climate change, Global warming, Acid rain, Ozone layer depletion, Nuclear accidents and holocaust.

Wasteland reclamation.

Consumerism and waste products.

	Environment Protection Act; Air (Prevention and Control of Pollution) act. Water (Prevention and Control of Pollution) act. Wildlife protection act. Forest conservation act. Issues involved in enforcement of environmental legislation. Public awareness.
	Human Population and the Environment: Population growth, Variation among nations. Population explosion—Family welfare programme Environment and human health, Human rights, Value education. HIV/AIDS, Women and child welfare. Role of information technology in environment and human health. Field Work/ Case Studies: {NOT TO BE INCLUDED IN SEMESTER END EXAMS} Visit to a local area to document environmental assets—river/forest/grassland/hill/ mountain. Visit to a local polluted site—Urban/Rural/Industrial/Agricultural. Study of common plants, insects, birds. Study of simple ecosystems—pond, river, hill slopes, etc.
Text books and Reference books	Text Book: [1] Erach Bharucha, "Text book for ENVIRONMENTAL STUDIES', for under graduate courses of all branches of higher education" University Grants Commission. Reference Book: [1] AnjaneyuluY "Introduction to Environmental Sciences", B S Publications PVT Ltd
E-resources and other digital material	

DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING

VELAGAPUDI RAMAKRISHNA SIDDHARTHA ENGINEERING COLLEGE SCHEME OF INSTRUCTION FOR FOUR YEAR UG PROGRAMME [VR17]

> Syllabus for Vth – VIth Semesters

VELAGAPUDI RAMAKRISHNA SIDDHARTHA ENGINEERING COLLEGE SCHEME OF INSTRUCTION FOR FOUR YEAR UG PROGRAMME [VR17] <u>ELECTRONICS & INSTRUMENTATION ENGINEERING</u>

SEMESTER I

Contact Hours: 26

S.No	Course Code	Title of the Course	L	Τ	P	Credits
1.	17MA1101	Matrices And Differential Calculus	3	1	0	4
2.	17PH1102	Engineering Physics	3	0	0	3
3.	17CS1103	Problem Solving Methods	2	1	0	3
4.	17EE1104	Basics of Electrical Engineering	3	0	0	3
5.	17HS1105	Technical English and Communication	2	0	2	3
		Skills				
6.	17PH1151	Engineering Physics Laboratory	0	0	3	1.5
7.	17CS1152	Computing and Peripherals Laboratory	0	0	2	1
8.	17ME1153	Basic Workshop	0	0	3	1.5
		Total	13	2	10	20
9.	17MC1106A	Technology and Society	1	0	0	-
10.	17MC1107	Induction Program				-

SEMESTER II

Contact Hours: 27

S.No	Course Code	Course	L	Τ	Р	Credits
1.	17MA1201	Laplace Transforms And Integral Calculus	3	1	0	4
2.	17CH1202	Engineering Chemistry	3	0	0	3
3.	17CS1203	Programming in C	3	0	0	3
4.	17EI1204	Electronic Devices and Circuits	3	0	0	3
5.	17ME1205	Engineering Graphics	2	0	4	4
6.	17CH1251	Engineering Chemistry Laboratory	0	0	3	1.5
7.	17CS1252	Computer Programming Laboratory	0	0	3	1.5
		Total	14	1	10	20
8.	17MC1206B	Professional Ethics& Human Values	2	0	0	-

Semester III

Contact Hours: 28

S.No	Course Code	Course	L	Т	Р	Credits
1.	17MA1301	Complex Analysis & Numerical Methods	3	1	0	4
2.	17EI3302	Network Theory	3	1	0	4
3.	17EI3303	Analog Electronic Circuits	3	1	0	4
4.	17EI3304	Sensors and Transducers	3	0	0	3
5.	17HS2305	Humanities Elective	1	0	0	1
6.	17TP1306	Logic & Reasoning	0	0	2	1
7.	17EI3351	Electronic Circuits Lab	0	0	3	1.5
8.	17EI3352	Transducers Lab	0	0	3	1.5
9.	17HS1353	Communication Skills Lab	0	0	2	1
	Total		13	3	10	21
10.	17MC1307B	Indian Constitution	2	0	0	-

List of Humanities Electives

Α	Yoga & Meditation	G	Film Appreciation
В	Music	Η	Sanskrit Bhasa
С	Human Rights and Legislative Procedures	Ι	Foreign Languages (German/French)
D	Philosophy	J	Law for Engineers
Е	Development of societies	Κ	Psychology
F	Visual Communication		

Semester IV

Contact Hours: 27

			001111011312					
S.No	Course Code	Course	L	Т	Р	Credits		
1.	17EI3401	Analytical	3	0	0	3		
		Instrumentation						
2.	17EI3402	Integrated Circuits and	3	1	0	4		
		Applications						
3.	17EI3403	Industrial Instrumentation	3	1	0	4		
4.	17EI3404	Electrical and Electronic	3	0	0	3		
		Measurements						
5.	17TP1405	English for Professionals	0	0	2	1		
6.	17EI3406	Digital Circuits and	3	0	0	3		
		Systems						
7.	17EI3451	Analog and Digital	0	0	3	1.5		
		Integrated Circuits Lab						
8.	17EI3452	Measurements Lab	0	0	3	1.5		
	Total		15	2	8	21		
9.	17MC1407A	Environmental Studies	2	0	0	-		

Semester V

Contact Hours: 25

				mact mours. 25			
S.No	Course Code	Course	L	Τ	P	Credits	
1.	17EI3501	Control Systems	3	1	0	4	
2.	17EI3502	Digital Signal Processing	3	1	0	4	
3.	17EI3503	Microcontrollers and Embedded Systems	3	0	0	3	
4.	17EI2504	Open Elective – I	3	0	0	3	
5.	17EI2505	Open Elective –II	3	0	0	3	
		(Inter Disciplinary Elective)					
6.	17EI2506	Open Elective-III	0	0	0	2	
		(Self-Learning Elective Course)*					
7.	17HS1507	Personality Development	0	0	2	1	
8.	17EI3551	Simulations Lab	0	0	3	1.5	
9.	17EI3552	Microcontrollers and Embedded Systems	0	0	3	1.5	
		Lab					
	Total			2	8	23	
10.	17MC1507	Biology for Engineers	2	0	0	-	

S.N	No	Course Code	Open Elective – I	L	Τ	P	Credits
	1.	17EI2504/A	Biomedical Electronics	3	0	0	3
	2.	17EI2504/B	Control System Components	3	0	0	3

S.No	Course Code	Open Elective – II (Inter Disciplinary Elective)		Т	Р	Credits
1.	17EI2505/A	Instrumentation Engineering	3	0	0	3
2.	17EI2505/B	Fundamentals of Industrial Automation	3	0	0	3

S.No	Course Code	Open Elective – III (Self-Learning Elective Course)	L	Т	Р	Credits
1.	17EI2506/A	Food Process Engineering	0	0	0	2
2.	17EI2506/B	Principles of Communication	0	0	0	2

*Students can opt any one of the self-learning courses prescribed by the Department. Students register and complete the opted course in approved MOOCS platform on or before the Last Instruction Day of <u>V semester</u>. They have to submit the certificate before the Last Instruction Day of <u>V semester</u>

Semester VI

Contact Hours: 27

S.No	Course	Course	L	Т	Р	Credits
	Code					
1.	17EI3601	Process Control	3	1	0	4
2.	17EI3602	Computer Control of	3	1	0	4
		Processes				
3.	17EI4603	Programme Elective-1	3	0	0	3
4.	17EI4604	Programme Elective -2	3	0	0	3
5.	17EI2605	Open Elective-IV	3	0	0	3
6.	17TP1606	Quantitative Aptitude	1	0	0	1
7.	17EI3651	Process Control Lab	0	0	3	1.5
8.	17EI3652	Virtual Instrumentation Lab	0	0	3	1.5
9.	17EI5653	Engineering Project for	0	1	2	2
		Community services*				
	Total			3	8	23

S.No	Course Code	Program Elective – I	L	Τ	P	Credits
1.	17EI4603/A	Fiber Optic Sensors	3	0	0	3
2.	17EI4603/B	Digital System Design using Verilog	3	0	0	3
3.	17EI4603/C	Robotics &Control	3	0	0	3
4.	17EI4603/D	Industrial Communication Networks	3	0	0	3

S.No	Course Code	Program Elective – II	L	Τ	P	Credits
1.	17EI4604/A	Renewable Energy	3	0	0	3
2.	17EI4604/B	Industrial Electronics	3	0	0	3
3.	17EI4604/C	Process Modelling and Simulation	3	0	0	3
4.	17EI4604/D	Biomedical Signal Processing	3	0	0	3

S.No	Course Code	Open Elective – IV		Τ	Р	Credits
1.	17EI2605/A	Virtual Instrumentation	3	0	0	3
2.	17EI2605/B	Intelligent Instrumentation Principles and	3	0	0	3
		Application				

* Students will go to the society (Villages/ Hospitals / Towns etc,.) to identify the problem and survey the literature for a feasible solution. The work will be carried out during summer vacation after IV Semester. The student is encouraged to take up real life problems leading to innovative model building

Semester VII

Contact Hours: 26

S.No	Course	Course	L	Т	Р	Credits
	Code					
1.	17EI3701	Industrial Automation	3	0	2	4
2.	17EI4702	Programme Elective -3	3	0	0	3
3.	17EI4703	Programme Elective -4	3	0	0	3
4.	17EI4704	Programme Elective -5	3	0	0	3
5.	17HS1705	Engineering Economics and	2	0	0	2
		Finance				
6.	17EI4751	PLC's Lab	0	0	3	1.5
7.	17EI4752	Advanced Instrumentation	0	0	3	1.5
		Lab				
8.	17EI5753	Mini Project *	0	0	4	2
9.	17EI6754	A Internship				2
		B Industry offered Course				
		C Global Professional				
		Certification				
		Total	14	0	12	22

S.No	Course Code	Program Elective – III				Τ	P	Credits
1.	17EI4702/A	Power Plant Instrumentation				0	0	3
2.	17EI4702/B	Integrated Circuit Fabrication				0	0	3
		Technology	Technology					
3.	17EI4702/C	Wireless Sensor Networks				0	0	3
4.	17EI4702/D	Data Communicat	Data Communication Networks			0	0	3

S.No	Course Code	Program Elective – IV	L	Т	Р	Credits
1.	17EI4703/A	Instrumentation and Control in Paper	3	0	0	3
		Industries				
2.	17EI4703/B	Programmable Automation Controller	3	0	0	3
		Systems(PACS)				
3.	17EI4703/C	Intelligent Systems and Control		0	0	3
4.	17EI4703/D	Digital Image Processing	3	0	0	3

S.No	Course Code	Program Elective – V	L	Τ	P	Credits
1.	17EI4704/A	Instrumentation in Water treatment	3	0	0	3
		plants				
2.	17EI4704/B	Low Power VLSI Design	3	0	0	3
3.	17EI4704/C	Optimal and Nonlinear Control Systems	3	0	0	3
4.	17EI4704/D	Machine Learning	3	0	0	3

* Could be done in a group of students; involves working under a faculty member and carrying out a detailed feasibility study, literature survey and preparing a work plan for major project.

Contact Hours: 19

S.No	Course Code	Course	L	Т	Р	Credits
1.	17EI4801	Programme Elective – 6	3	0	0	3
2.	17EI2802	Open Elective –V*	3	0	0	3
3.	17EI5851 Major Project**		0	5	8	9
	To	6	5	8	15	

S.No	Course Code	Program Elective – VI	L	Τ	Р	Credits
1.	17EI4801/A	Measurement and Control in Food	3	0	0	3
		Processing				
2.	17EI4801/B	Biomedical Instrumentation	3	0	0	3
3.	17EI4801/C	System Identification	3	0	0	3
4.	17EI4801/D	Cloud Computing	3	0	0	3

S.No	Course Code	Open Elective – V	L	Τ	Р	Credits
1.	17EI2802/A	Advanced Sensors	3	0	0	3
2.	17EI2802/B	Industrial Safety and Environmental	3	0	0	3
		Management				

*Open Elective- V may also opt as self-learning course. Students register and complete the opted course in approved MOOCS platform on or before Last Instruction Day of VIII Semester. They have to submit the certificate before the last Instruction Day of VIII Semester. Students who have not opted as a self-learning are required to attend for the class work and internal assessment as per the regular theory course.

**Major project involves continuation of Mini Project. The objective is to complete the work as per the prepared work plan and prepare a detailed project report.

Semester VIII

Third year (V Semester)

17EI3501 - Control Systems

Course Category:	Program Core	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 1 - 0
Prerequisites:	Linear algebra and differential	Continuous Evaluation:	30
	equations, Network theory	Semester end Evaluation:	70
		Total Marks:	100

Course	Upon successful completion of the course, the student will be able to:												
outcomes	CO1		rstand 1	*							.0.		
								<u> </u>	stems	using	block	diagram	n and
	CO2		Develop mathematical models of physical systems using block diagram a signal flow graph approaches.									ii and	
	Analyze the time response of first order and second order systems for sta										ndard		
	CO3	.	test sig		-								
	CO4	•	ze the us tech	-	•	ponse	and sta	bility o	of the g	given co	ontrol	system	using
	CO5	Deve	lop and	analyz	ze the s	tate spa	ace mo	dels of	SISO	and Ml	MO sy	vstems.	
Contribution of Course		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	РО ј	PO k	PO 1
Outcomes towards achievement	CO1		Н	L									
of Program Outcomes	CO2	Н	Н										
(L – Low, M - Medium, H	CO3		Н	L	Н	Н							
– High	CO4			Н		Н							
	CO5			Н		Н							
Course Content	Open Stabil Mathe electri	duction loop a ity, Sen ematic ical, m ical, m in rep ila.	and clo nsitivity al Mo o nechani	osed lo y and e dels of cal an	oop con xternal Physic d elec	ntrol s noise. al Sys t	ystems t ems: I hanical	, Effec Formul l syste	et of f ation o ms, A	eedbac f differ nalogo	k on o ential o us sys	ol syst overall equatio tems, Iason's	gain, ns for Block

Time Domain Analysis: Standard test signals - Step, ramp, parabolic and impulse, Time response of first-order system to standard test signals, Step response of second order systems, Time domain specifications, Steady state error and error constants.

Stability Analysis in Complex Plane: Stability definitions - Bounded Input and Bounded Output (BIBO) stability, Stability study based on poles of closed-loop transfer function, Absolute and relative stability, Routh–Hurwitz criterion.

	 UNIT – III Root Locus Technique: The root locus concept, Magnitude and angle conditions, Properties and construction of the root loci (For positive K only). Frequency Domain Analysis: Frequency domain specifications, Correlation between time and frequency response, Bode plot - Magnitude plot, Phase plot, Determination of phase margin and gain margin, Stability analysis from bode plots, Polar plots, Nyquist stability criterion, Nyquist Plot.
	UNIT – IV State Space Analysis: Concepts of state, State variables, State model of linear systems, State variable representation using phase variables, Derivation of transfer function from state model, Characteristic equation, Eigen values, Eigenvectors, Solution of state equations (derivations only), State transition matrix and its properties, Computation of state transition matrix by Laplace transform method, Controllability and observability.
Text books and Reference books	 Text Books: [1] A.Anand Kumar, "Control Systems", 2nd Ed., PHI, 2014. [2] I J Nagrath & M Gopal, "Control Systems Engineering", 5th Ed., New Age International, 2008. Reference Books: [1] Katsuhiko Ogata, "Modern Control Engineering", 4th Ed., Pearson Education, 2003 [2] A.Nagoor Kani, "Control Systems", 2nd Ed., RBA Publications, 2006.
E-resources and other digital material	1 <u>http://www.nptelvideos.com/control_systems/</u> 2 <u>https://nptel.ac.in/courses/108101037/</u>

17EI3502 - Digital Signal Processing

Course Category:	Program Core	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 1 - 0
Prerequisites:	Matrices and differential calculus,	Continuous Evaluation:	30
	Laplace transforms and integral	Semester end Evaluation:	70
	calculus, Complex analysis and	Total Marks:	100
	numerical methods		

Course	Upon	Upon successful completion of the course, the student will be able to:											
outcomes	CO1	Analy	ze the	signals	and sy	stems	using H	Fourier	Transf	orm an	d Z-Tr	ansfor	m.
	CO2		viscuss the properties of Discrete Fourier Transforms and use Fast Fourier ransform algorithms.										
	CO3	using	sign digital Infinite Impulse Response filters (Butterworth and Chebyshev) ng bilinear transformation and impulse invariance transformation methods.										
	CO4	Desig	ign the digital Finite Impulse Response filters using windowing techniques.										
Contribution of Course		PO a	POa POb POc POd POe POf POg POh POi POj										PO 1
Outcomes towards achievement	CO1			М									
of Program Outcomes	CO2			Н	Н	М							
(L – Low, M - Medium, H	CO3			Н	Н	М							
– High	CO4			Н	Н	М							
Content	system Classi Fouri Proper system Z-Tra Transt differe UNIT Discre convo	ete-Tin n, Clas fication er Tr rties of ns, Cor nsform, ence eq - II ete Fou lution	ssificat n of sys ansfor f Fouri relation n: The outions untions	ion of stems. m: Fo er Tran n of Di e Z-Tra ne sid s. S ransfo DFT, C	signal ourier nsform screte- ansforr ed Z-' orm (D 'ircular	s, San Transf s, Ana Time s n, Pro Transfo FT): I convo	orm, lysis o ignals. perties orm, S ntroduc lution,	eleme of ana Fourier of Discr of Z- Solution	log sig Tran rete-Ti Transfo of l DFT, ourier	digital gnals, sform me Lir orm, In inear o [Text Proper Transfo	l signa Sampli of ba near-Ti nversio constar Book I ties of prms (I	ng the asic si me-Inv n of ti nt-coeff No: 1& DFT, I FFT): F	essing orem, gnals, ariant he Z- ficient 2 Linear Radix-
	UNIT IIR F	' – III ilter D	esign:							[Te	xt Bool	k No: 1	[&2]

Analog Filter Approximations: Butter worth and Chebyshev, Design of IIR digital

	filters from analog filters - Impulse invariance method, Bilinear transformation method, Design examples, Frequency transformations, Basic structures for IIR systems: Direct-form structures, Cascade-form structures and Parallel-form structures. UNIT – IV [Text Book No: 1&2] FIR Filter Design: FIR filters: Design of linear phase FIR filters using windows, Design of linear phase FIR filters by the frequency sampling method, Comparison of FIR and IIR filters, Basic structures for FIR systems: Direct-form structures and Cascade-form structures.
Text books and Reference books	 Text Books: [1] John G. Proakis & Dimitris G. Manolakis, "Digital Signal Processing-Principles, Algorithms, and Applications", 4th Ed., Pearson Education, 2007. [2]. Emmanuel C. Ifeachor & Barrie W. Jervis, "Digital Signal Processing a Practical Approach", 2nd Ed., Pearson Education, 2004. Reference Books: [1] Alan V. Oppenheim, Ronald W. Schafer, Jhon R. Buck, "Discrete-Time Signal Processing", 2nd Ed., Pearson Education, 2004. [2] Sanjit K. Mitra, "Digital Signal Processing-A Computer Based Approach", 4th Ed., MaCrem Hill Education, 2012
E-resources and other digital material	McGraw Hill Education, 2013. 1 https://nptel.ac.in/courses/117102060/ 2. https://www.dspguide.com 3. https://www.coursera.org/learn/dsp 4. https://www.mathworks.com/solutions/dsp.html

17EI3503 - Microcontrollers and Embedded Systems

Course Category:	Program Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0 - 0
Prerequisites:	Computer organization	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succes	sful co	mpletio	on of th	e cours	se, the	student	will b	e able t	to:		
outcomes	CO1	Under	stand th	e basic	concept	s of an	embedd	ed syste	m and i	its desig	ın.		
	CO2	Select	ect the hardware components and software for embedded system design.										
	CO3	Descri	cribe the architecture of 8051 and its instruction set.										
	CO4	Use th	the assembly and C languages to interface the various peripherals with 8051.										
	CO5	Descri	scribe the ARM architecture and its instruction set.										
Contribution of Course		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	РО ј	PO k	PO 1
Outcomes towards	CO1			Н	Н								
achievement of Program	CO2			Н	Н								
Outcomes	CO3			Н	Н								
(L – Low, M - Medium, H	CO4				Н	Н							
– High	CO5			Н	Н								
Course Content	Classi Purpo system firmw UNIT 8051 comm	duction fication se of e n, Me are, Ch - II Micro	n of er mbedd mory, naracter ocontro on, Ad	nbedde ed syst Senso ristics o ollers: ddressi	ed syste ems, T rs and of an er Archi ng mo	ems, N he typi l actua nbedde	fajor a ical em ators, ed syste e, Tim nstructi	pplicat beddec Comm em ers ar on set	ion are l system unicati	eas of o m - Co on int	embedo re of th erface, Interr	ed sys ded sys ne emb Emb rupts, terrupt	stems, edded edded Serial

UNIT-III

Hardware interfacing: Interfacing with LEDs, Seven segment, Sensors, Basic concepts of LCD, ADC, DAC, Relays etc. and their interfacing to 8051 microcontrollers.

	 UNIT- IV ARM Processor Fundamentals: Registers, Current program status register, Pipeline, Exceptions, Interrupts and the vector table, Core extensions, ARM processor families. ARM Instruction Set: Data processing instructions, Branch instructions, Load – store instructions, Software interrupt instruction, Program status register instruction, Loading constants, Conditional execution.
Text books	Text Book
and	[1] Shibu.K.V, "Embedded Systems" 3 rd Ed., Tata McGraw Hill Education Private
Reference	Ltd. 2013. (Unit I).
books	[2] Muhammad Ali Mazidi, Janice Gillispie Mazidi, Rolin D. McKinlay "The 8051 Microcontroller and Embedded Systems using assembly and C", 2 nd Ed., Pearson. (Unit II, III & IV).
	Reference Books
	[1] Raj Kamal, "Microcontrollers Architecture, Programming, interfacing and system design" 2 nd Ed., Pearson Education, 2012.
E-resources	[1] <u>http://nptel.iitg.ernet.in</u>
and other	
digital	
material	

17EI2504/A - Biomedical Electronics

Course Category:	Open Elective I	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0 - 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succes	sful co	mpletio	on of th	e cour	se, the	student	t will b	e able	to:		
outcomes	CO1						bioelec	etric sig	gnals a	nd the	types of	of elect	rodes
	CO2				be used		cation o	f the bio	o-signals	S.			
	CO3		escribe the acquisition and amplification of the bio-signals. emonstrate about the systems and methods used to record and display the bio- gnals										
	CO4		scuss on electrical safety, hazards, protection against shock and testing of ectrical systems.										
Contribution of Course											PO k	PO 1	
Outcomes towards achievement	CO1	L		М	Н								
of Program Outcomes	CO2	L		Н	М								
(L – Low, M - Medium, H	CO3			Н	L	М							
– High	CO4				М	L							
Course Content		edical			-							face s man bo	-
			_		Restir Transc	-	l actio	on pot	entials,	, Prop	agation	n of a	action
	amplit amplit	gnal fiers, M fier, (/ledical Choppe	l prean er am	nplifier plifier,	, Bridg Sign	ge amp al rec	olifiers,	Line and	driving	ampli	rs, Iso fier, Cu ition,	urrent
	Displa used i	UNIT- III Display Systems and Recorders: Oscilloscopes for biomedical measurements, CRO used in medical equipment - Cardioscope, Bedside and central monitoring systems, Instrumentation tape recorders, ECG, EEG, EMG recorders.											
	param standa	rical S eters, 1 ards, 1	Macro Basic	shock approa	hazard iches	ls, Mic to pro	ro shootection	ck haza n agai	ards, E nst sh	lectrication	al safet Protect	susceptity ty code tion: I ne grou	es and Power

	system in patient-care areas, Tests of electric appliances.
Text books and Reference books	 Text Book: [1] Amshed F. Khan, "Biomedical Electronics", Chintan Publications, 2008 [2] Dr. M. Arumugam, "Biomedical Instrumentation", Anuradha Publications, 2nd Ed., 2006 [3] John G. Webster, "Medical Instrumentation-Application and Design", John Wiley & Sons Inc., 3rd Ed., 1998 Reference Books: [1] Khandpur R.S, "Hand-book of Biomedical Instrumentation", McGraw Hill Education, 3rd Ed., 2014 [2] Leslie Cromwell, Fred J. Weibell, Erich A. Pfeiffer, "Biomedical Instrumentation and Measurements", Prentice-Hall India, 2nd Ed., 2007
E-resources and other digital material	

17EI2504/B - Control System Components

Course Category:	Open Elective I	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Differential equations, Network	Continuous Evaluation:	30
	theory	Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succes	sful co	mpletio	on of th	e cours	se, the	student	will b	e able t	.0:		
outcomes	CO1	Devel servor	op th nechar		themat	ical r	nodels	of	basic	electri	cal s	ystems	and
	CO2	Select	and us	se the b	oasic sv	vitchin	g comp	onents	for ele	ectrical	system	ns	
	CO3		derstand the principle of operation and scope of use of three general type of ear actuators: electric, hydraulic, and pneumatic										
	CO4	.	plain the principles of relay logic control and describe the general operation I programming of the PLC										
Contribution of CoursePO aPO bPO cPO dPO ePO fPO gPO hPO iPO j									РО ј	PO k	PO 1		
Outcomes towards achievement	CO1	Н											
of Program Outcomes	CO2		Н										
(L – Low, M - Medium, H	CO3					Н							
– High	CO4					Н							
Course Content		rs: Tyj C mot	-	-		-						nodelir nerator	_
		hes: To	00			n-Butto nbrane			limit sv	witch,	DIP sv	vitch, F	Rotary
	Relay	s: Elec	tromec	hanica	l relays	s, Solid	-State	relays.					
	Trigg	er Dev	ices: U	JJTs, D	viac.								
					ric lin	ear act	uators,	Leads	crew li	near ao	ctuator	s, Sole	noids,
	pumps		raulic			•		-	-	•		es, Hyd Direc	
	Pneur regula		Actuat	ors: Pi	neumat	ic syste	ems, C	ompres	ssors, I	Oryers	and tar	nks, Pre	essure

	UNIT-IV Relay Logic, Programmable Logic and Motion Controllers: Relay logic control, Ladder diagrams, Timers, Counters and sequencers, Programmable logic controllers and motion controllers.
Text books and Reference books	Text Book: [1] Christopher T. Kilian "Modern Control Technology: Components and Systems", 2 nd Edition, (UNIT I, II, III & IV) [2] B. L. Theraja, "A text book of Electrical Technology", S. Chand & Company Ltd., Vol. II, 1 st Ed., 1959. (UNIT I)
	 Reference Books: [1] James R. Carstens, "Automatic Control Systems and Components", Prentice Hall Englewood cliffs, New Jersey. [2] Hasebrink J P & Kobler R, "Fundamentals of Pneumatic Control Engineering", FestoDidactic: Esslinger(W Germany),1989. [3] Meixner H & Sauer E, "Intro to Electro-Pneumatics", Festo didactic, 1st Ed., 1989.
E-resources and other digital material	

17EI2505/A - Instrumentation Engineering

Course Category:	Open Elective II	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0 - 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon successful completion of the course, the student will be able to:												
outcomes	CO1			1				the tra					
	CO2	Identify the transducer for measuring pressure to meet the industrial											
	CO3		Select the relevant transducer for measurement of temperature to meet the requirements of industrial applications										
	CO4 Compare and select suitable transducer for level and flow measurement for time applications.									or real			
Contribution of Course		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	РО ј	PO k	PO 1
Outcomes towards achievement	CO1												
of Program Outcomes	CO2												
(L – Low, M - Medium, H	CO3												
– High	CO4												
Content	instrum Dynam Trans Passiv and pa and pi mutua distan Active UNIT Pressu Mano	4 Image: Constraint of the state of t											

	 UNIT- III Temperature Measurement: Introduction, Classification of temperature sensors based on change in dimensions - Bimetals and Liquid-in-Glass thermometers; Change in electrical properties – RTD; Thermistors - NTC and PTC types; Thermo electricity – Thermocouple; Cold junction compensation and IC sensors - LM335, and AD592; Radiation pyrometers - Classification of radiation pyrometers - Broad band, Ratio and fiber optic pyrometers; Fibre-optic sensors - Micro bending type. UNIT- IV Level Measurement: Introduction, Mechanical level indicators - Differential pressure type; Optical - Laser sensors, IR and visible light sensors; Electrical type - Resistive, inductive and capacitive; Radioactive methods - Ultrasonic, Gamma ray. Flow Measurement: Introduction, Variable head flow meters for incompressible fluids; Variable head flow meters for compressible fluids; Rota meter, Electromagnetic flow
Text books and Reference books	 meters; Laser Doppler Anemometer. Text Book: [1] A.K.Ghosh, "Introduction to Measurements & Instrumentation", 3rd Ed., PHI, 2009. [2] A.K.Sawhney & Puneet Sawhney, "A Course in Mechanical Measurements & Instrumentation", 12th Ed., Dhanapat Rai & Co., 2012 Reference Books: [1] D.Patranabis " Sensors and Transducers", 2nd Ed., PHI, 2013 [2] D.S.Kumar, "Mechanical Measurement & Control", 5th Ed., Metropolitan Book. Co
E-resources and other digital material	1. http://nptel.ac.in/courses/112103174/4 2. http://nptel.ac.in/courses/108106074

17EI2505B – Fundamentals of Industrial Automation

Course Category:	Open Elective II	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0 - 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon successful completion of the course, the student will be able to:												
outcomes	CO1		Inderstand the basic concepts of programmable controllers and programming anguage										
	CO2		Outline the Architecture of Distributed Control Systems (DCS).										
	CO3	Under	nderstand the protocols of Industrial Automation										
	CO4	Case	se study of industrial control applications by DCS										
Contribution of Course		PO a											
Outcomes towards achievement	CO1		Н										
of Program Outcomes	CO2		Н										
(L – Low, M	CO3			Н									
- Medium, H – High	CO4				Н								
Content	Basic Progra Confi UNIT Distri contro Comm UNIT PLC Comm progra UNIT Case System	amma princ amming guratio '- II (buted ol sub nunicat '- III and I nunicat ess, Fie '- IV Study m for '	iples g langu n. Contr syster ion opt DCS P ion hie ld bus : Dist Water	of op ages, I ol Sys ms, Lo tions in Protoco erarchy archite ributed treatm	eration Ladder stem: bcal fi Distri ols: TC in fact cture ty Contri ent pla	n, Inp diagra Introdu eld st buted C CP/IP ory aut ypes, H col Sys ant, Dis	out/outj m instr action a ation, Control protoco tomatic (ART p stem f stribute	and his Presen Syster of intro on, I/O protoco	vstem, s, Boold storical atation ns, Cor oductio bus ne l introc ment p trol Sy	Progr ean mn backg and n figura n, Pro tworks luction	ammal emoni ground nonito tion. tocol , Field Distribu	Parts of ole de cs, Soft , Distri ring d Archite archite	vices, ware, buted evice, cture, ctural
Text books and Reference books	E	rishna dition 2	2010.		-							ern Eco ata McO	-

	Hill Edition 2010.
	[3] Gary A. Dunning, "Introduction to Programmable Logic Controllers", 3 rd Ed.,
	Thomson Delmar learning 2010.
	[4] Michael P. Lucas, "Distributed Control Systems", Their Evaluation and Design,
	Van Nostrand Reinhold Co., 1986.
	[5] Popovic D. and Bhatkar V.P., "Distributed Computer Control for industrial
	automation", Marcel Dekkar Inc., 1990.
	Reference Books:
	[1] Madhu Chandra MithraSamarithSen,"PLC & Industrial automation", 1 st Ed.,
	2009.
	[2] R. Bliesener, F.Ebel, C.Löffler, B. Plagemann, H.Regber, E.v.Terzi, A. Winter
	"Programmable Logic Controllers Basic Level" fetto, 2002.
E-resources	1.http://www.mikroe.com/old/books/plcbook/plcbook.htm
and other	2. <u>https://www.youtube.com/results?search_query=plc</u>
digital	3. <u>https://www.youtube.com/watch?v=PLYosK87D8E</u>
material	4. <u>https://www.youtube.com/watch?v=-8DVa3SBu38</u>

17EI2506/A - Food Process Engineering

Course Category:	Open Elective III	Credits:	2
Course Type:	Theory	Lecture - Tutorial - Practice:	0 - 0 - 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succes	sful co	mpletio	on of th	e cours	se, the	student	t will b	e able 1	to:		
outcomes	CO1		Describe the fundamental concepts of food rheology and thermal processing in ood processing Belect the suitable drying technique for food preservation										
	CO2												
	CO3	Identi	entify a suitable technique for freezing, size reduction and separation of food articles.										
	CO4		acidate the operation of mixing, leaching and extraction during food ocessing										
Contribution of Course		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	РО ј	PO k	PO 1
Outcomes towards achievement	CO1	Н											
of Program Outcomes	CO2		Н										
(L – Low, M - Medium, H	CO3		Н										
– High	CO4	L											
Course Content	food mater Classi proces Meas rheolo mecha Therr heat t solution UNIT Evapo Types biolog Heat Analy	ept of E particle ials, F fication ssing an uremen ogical anical r nal pr ransfer ons, Th - II oration of eva gical ma sis of	es, Foo luid bo n of nd hand nts of proper nodels, ocessin , Lum ermal and porator aterial. heat ex	od Rhe ehavion Rheo dling, F Rheolo tties, T , Dynan ng and ped pa process Conce rs, Des Defin xchang	ology, ology, Plas logy, Pump s ogical I Mechan mic tes mic tes mic tes mic tes mic tes mic tes mic tes mic tes mic tes ing modes ign of s	Elastic tic flow Rheolo election Proper nical f t. obial d er anal ethods, on: Ev single a f heat erms o	e prope w beha ogical n and p ties: V model eath k ysis. F Micro vaporat and mu exchar f Log	ements erties, f avior, models oipe siz viscosit to vi cinetics Fourier' bial des ion, Fa litiple enger, D Mean rerall he	Force of Time of s, App ing. y meas scoelas s: Ther s law ath kind actors of ffects of	deform depend plicatio sureme stic m mal pr of con etics. effectin of evap t type rature	ation of led flu n of nt, Mea laterial, cocessin iduction ng on orator, of hea Differe	of biolo id beh rheolog asurem , Com ng, Tra n, Graj evapor Evapo t excha	ogical avior, gy in ent of ibined nsient phical ration, ration anger, MTD,

	 Drying technology: Introduction, Aspects and mechanism of drying, Psychrometry-properties, Chart, Processes. Introduction to moisture content and its determination methods, Drying time calculations, Types of dryers. UNIT- III Freezing & Freeze Drying: Definition and concept of food freezing, Freezing time calculation by planks equation and Pham equation, Different types of freezer, Quality changes during freezing. Size Reduction: Introduction about size reduction, Particle size distribution, Energy requirement in size reduction, Types of size reduction equipments; Crushers, Grinders and ultrafine grinders, Cutting and slicing machine, Homogenizer for the liquid food. Mechanical Separation Techniques: Classification of mechanical separation methods, Screening, Filtration, Centrifugation, Sedimentation, Numerical problems. UNIT- IV
	 Mixing and Agitation: Introduction, Mechanism of solid mixing, Mixing index and mixing, Mixers for dry powders, Mixers for cohesive solids, Liquid mixing - Flow patterns, Types of agitator, Power requirement for liquid mixing. Leaching and Extraction: Leaching - Introduction, Classification, Equipments, Equilibrium leaching, Stages (single and multiple), Numerical problems. Extractor – Types, Operating modes, Washing and numerical problems, Liquid-liquid extraction, Phase diagrams, Equipments. Non Thermal Processing: Fundamental concepts, The high pressure processing, Non
Text books and Reference books	 thermal preservation technique, Pulse electric field technology, Pulse light technology, Irradiation, Ozone, Cold plasma technology, Hurdle technology. Text Book: [1] R T Toledo, "Fundamental of Food Process Engineering", CBS Publishers, 2nd Ed, 2000. [2] Christie. J Geankoplis, "Transport Process and Unit Operations", Prentice-Hall International, 1999.
	 [3] D.R. Heldman and R.P.Singh, "Food Process Engineering", Springer, 1981. Reference Books: [1] McCabe & J CSmith, "Unit Operations of Chemical Engineering", McGraw Hill, 1999. [2] MA Rao & SSH Rizvi, "Engineering Properties of Foods", Marcel Dekkar Inc, 1986
E-resources and other digital material	[1] <u>https://nptel.ac.in/courses/126105011/</u>

17EI2506/B - Principles of Communication

Course Category:	Open Elective III	Credits:	2
Course Type:	Theory	Lecture - Tutorial - Practice:	0 - 0 - 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Opon succession completion of the course, the student will be able to.												
outcomes	CO1	Under	Understand the concepts of amplitude modulation.										
	CO2		Explain the principles of angle modulation										
	CO3		ucidate the concepts of pulse amplitude modulation.										
	CO4		cuss the delta, differential pulse coded modulation and multiplexing techniques.										
Contribution		PO a	PO a PO b PO c PO d PO e PO f PO g PO h PO i PO j PO k PO l										
of Course		roa	100	roc	rou	roe	roi	rog	ron	POT	roj	FUK	roi
Outcomes towards achievement	CO1			Н	Н								
of Program Outcomes	CO2					Н							
(L – Low, M - Medium, H	CO3				Н								
– High	CO4				Н								
Content	comm repress Inverss Transs Ampl Over signal Carrie UNIT Angle Modu signal - Narr signal UNIT Pulse top sa signal	duction unicati entatio e Four form. itude M modula s, Enve r (SC) - II ation (, Insight rowban s, Dem - III Ampling	on, B n of si ier Tr Vlodula ation, elope modul ulation (PM) a nts of H d and odulati tude N c, Spec ization	asics gnals, ansforr ation (Spectru detection, S ation, S n: Intro wideba ion of H Mand trum of , Intro	of en Introd n of c AM): 1 um of c on for Spectru roducti quency l FM s md FM FM sign tion (f PAM duction	ergy a uction continue AM s AM s m of D on to y Modu ignals, I signa nals. PAM): signal	ind po to Disc ous sig ction, 1 ignals, ignals. SB-SC angle ilation Indirec 1, Spec	wer of crete For gnals, 1 Modula Powe Doub Signal signal e mod (FM), et meth trum o	of sign ourier s Modula ation in r and le Side s and C ulation FM w od for f FM s to PA ion of	nals, l series, ation p ndex, E power eband Coheres , Des ith sin genera ignals, M, San origina	Frequen Fourie Fourie oroperty Envelop efficie (DSB) nt dema cription usoidal ution of Band	rinciple ncy do r Trans y of Fo be disto ency of Suppr odulation h of 1 FM Si width of h hold l from npandin	omain form, ourier ortion, f AM ressed on. Phase lating ignals of FM

	UNIT- IV Delta Modulation (DM) : Introduction to Delta Modulation, One-bit quantizer, Signal reconstruction in DM, Schematic diagrams of DM, Slope overload distortion and granular noise
	Differential Pulse Coded Modulation (DPCM): Quantization and signal reconstruction, Schematic diagrams of DPCM.
	Multiplexing: Frequency Division Multiplexing (FDM), Carrier spacing in FDM, Time Division Multiplexing (TDM), Operation of TDM, Sample spacing in TDM, Bandwidth requirements of TDM.
Text books	Text Book:
and	[1] Wayne Tomasi, "Electronic Communication Systems", 4 th Ed., Pearson Education,
Reference	2003
books	2003
	Reference Books:
	[1] Simon Haykin, Analog and Digital Communication Systems, John Wiley & Sons, 2001
E-resources	[1] https://nptel.ac.in/courses/108104091/
and other	
digital	
material	

17HS1507 - Personality Development

Course Category:	Institutional Core	Credits:	1
Course Type:	Practice	Lecture - Tutorial - Practice:	0 - 0 - 2
Prerequisites:		Continuous Evaluation:	100
		Semester end Evaluation:	
		Total Marks:	100

Course	Upon	Upon successful completion of the course, the student will be able to:											
outcomes	CO1	Under	stand th	e corpo	rate etic	juette.							
	CO2		ake presentations effectively with appropriate body language.										
	CO3		e composed with positive attitude.										
Contribution	CO4	Under	erstand the core competencies to succeed in professional and personal life.										
of Course		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	PO j	PO k	PO 1
Outcomes towards achievement	CO1								М		Н		
of Program Outcomes	CO2									М	Н		
(L – Low, M - Medium, H	CO3										Н		
– High	CO4									М	Н		
Content	Premj Comr langua UNIT Self-M manag Etiqu UNIT Stand Email Verba senter Senter UNIT Job-C	rtical 7 i (Liste nunica age). f- II /Ianage gement ette: S f- III (ard O & lette al Abi aces - aces as f- IV Driente	ening A tion S ement , Six th ocial en operati er writi lity: S Analog sumpti d Skill	ctivity kills: Skill inking tiquette on Me ng. Synony gies, So ons, Se s-I: Gr), Self Verbal s: A hats, T e, Busin ethods ems, A potting entence	 Analy comm nger ream but ness eti note Antonyr argum scussio 	ysis, D unicati manag uilding quette, makin ns, On s, Sen ents, R n, Moc	evelop on, No ement, Leado Telepl ng, No ne wo tence ck grou	ing pos on vert Stre ership c none et te taki rd sub comple comple	sitive a bal cor ss m jualitie iquette iquette ing, M ostitute tion, M rehensi	ttitude, nmunio anager s. , Dinin finutes s - C Course on, Pra	alk by Perception (nent, g etiqu prepartion forrection of action w the second	Time ette. cation, on of tion -

Text books	Text Book:
and	[1] Barun K. Mitra, "Personality Development and Soft Skills", Oxford University
Reference	Press, 2011.
books	[2] S.P. Dhanavel, English and Soft Skills, Orient Blackswan, 2010'
	[3] R.S.Aggarwal, A Modern Approach to Verbal & Non-Verbal Reasoning, S.Chand
	& Company Ltd., 2018.
	[4] Raman, Meenakshi & Sharma, Sangeeta, Technical Communication Principles and
	Practice, Oxford University Press, 2011.
	Reference Books:
E-resources	1. <u>www. Indiabix.com</u>
and other digital	2. <u>www.freshersworld.com</u>
material	

17EI3551 - Simulations Lab

Course Category:	Program Core	Credits:	1.5
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0 - 3
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succes	sful co	mpletio	on of th	e cours	se, the	student	t will b	e able	to:		
outcomes	CO1	Make	use of	MATI	LAB en	vironn	nent.						
	CO2		n the tion tec			mode	ling of	f phys	ical sy	stems	by blo	ock dia	agram
	CO3	Analy	lyze the time, frequency response and stability of given control system.										
	CO4		nonstrate the properties of Fourier Transform.										
	CO5		FFT algorithms to compute DFT.										
	CO6	Desig	ign of digital filters.										
Contribution of Course		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	РО ј	PO k	PO 1
Outcomes towards achievement	CO1					Н							
of Program Outcomes	CO2					Н							
(L – Low, M - Medium, H – High	CO3					Н							
	CO4					Н							
	CO5					Н							
	CO6					Н							
Course	List o	f Expe	riment	ts									
Content	Cont												
		ol Syst Using		AB/SI	MITT	NK for	contro	1 eveta	me				
	1.	U			n to M			•					
					s in M				x .				
			•					rol in N	/IATLA	AB			
	2	Mathe									8.		
					-		•		-			functio	n of a
			-		MATL	-							
	4	Simul	•	-			s usino	MAT	LAB.				
						0	U			nd imi	oulse i	nputs	using
			LAB/S				J		1 34	- I		1	0
	6.					d orde	er svst	em fo	r step	and	ramp i	inputs	using
			LAB/S				5500	- 0	r		r	1	0
	7.	Root 1				transfe	er func	tion usi	ing MA	ATLAE	8.		
												sfer fui	nction

	using MATLAB.
	9. Simulation of P, PD, PI and PID controllers using MATLAB/SIMULINK.
	<u>Digital Signal Processing</u> 1. Graphical representation of discrete time signals and calculation of signal
	power.
	2. Properties of Fourier Transform.
	3. State and verify linear convolution
	4. State and verify circular convolution
	5. Evaluation of DFT & IDFT of a 8 sample sequence using DIT algorithm.
	6. Evaluation of DFT &IDET of a 8 sample sequence using DIF algorithm
	7. Design of digital IIR filters using Impulse invariant transformation technique.
	8. Design of digital IIR filters using bilinear transformation technique.
	9. Design of FIR filter using windowing methods
Text books and	Text Books: [1] A.Anand Kumar, "Control Systems", 2 nd Ed., PHI, 2014.
Reference	[2] S.Salivahanan. "Digital Signal Processing" TMH, 2000.
books	
	Reference Books:
	[1] Simulations lab manual.
E-resources	1 www.umu.se/en/education/courses/linear-control-systems2/
and other	2 <u>www.dsptutor.freeuk.com</u>
digital material	3 <u>http://nptel.iitm.ac.in/courses/Webcourse</u>
	contents/IITKANPUR/Digi_Sign_Pro/ui/About-Faculty.html

Note: Any 10 experiments from the above list covering 5 experiments from each group.

17EI3552 - Microcontrollers and Embedded Systems Lab

Course Category:	Program Core	Credits:	1.5
Course Type:	Lab	Lecture - Tutorial - Practice:	0 - 0 - 3
Prerequisites:	-	Continuous Evaluation:	30
-		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succes	sful co	mpletio	on of th	e cours	se, the	student	t will b	e able 1	to:		
outcomes	CO1	Use th	e instru	ction se	t of 805	1 to sol	ve prob	lems					
	CO2		lect and use various interfacing peripherals with 8051 Microcontroller										
	CO3		evelop coding in Embedded C										
	CO4	Select	elect and use various interfacing peripherals with ARM Microcontroller										
Contribution		PO a	PO b	POb POc POd POe POf POg POh POi POj POk PO1									
of Course Outcomes													
towards	CO1			Η	Н								
achievement													
of Program	CO2			Η	Η								
Outcomes	CO 2			TT	TT	TT							
	CO3			Η	Η	Η							
(L – Low, M - Medium, H	CO 1												
– High	CO4			Η	Η								
Course				I		I		I					
Content	List o	List of Experiments											
	PART	'A: Exp	perimer	nts usin	g 8051	Microc	ontrolle	r					
		ms on d						-					
	0	ms on a			0	nstructio	ons						
		ms on c											
	U	m on se											
		cing of cing of		0	•	0 0							
		cing of		-	-			ge					
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			j	80	5-					
		' B: Exp			g ARM	LPC21	48 Mic	roconti	roller				
		cing of		motor									
		cing of cing of		one con	erator								
		cing of		one gen	crator								
		cing of		ignals									
		cing of		0									
		cing of			_								
		cing of	DAC fo	or ADC	& temp	erature	sensor						
Text books and	Text		V "F*	nhedda	d Suct	eme"	Rrd Ed	Tata	McGro	w Hill	Educe	ation P	rivata
Reference	Ltd. 2		v, Ц	nocuut	a byst		J Liu.	, rata		LVV 1111			iivate
books			nad Al	i Mazi	di, Jani	ce Gil	lispie I	Mazidi.	, Rolin	D. M	cKinla	y "The	8051
												Pearson	
	[3] SI	oss An	drew 1	N. Svn	nes Do	minic :	and W	right (	bris. "	ARM	System	1 Deve	lopers
	1121 21	[3] Sloss Andrew N, Symes Dominic and Wright Chris, "ARM System Developers											

	guide: Designing and Optimizing", Morgan Kaufman Publication, 2004
	Reference books
	[1] Raj Kamal, "Microcontrollers Architecture, Programming, interfacing and system
	design", 2 nd Ed., Pearson Education, 2012.
<b>E-resources</b>	1. <u>http://nptel.iitg.ernet.in.</u>
and other	
digital	
material	

**Note:** Any 10 experiments from the above list covering 5 experiments from each part.

<b>Course Category:</b>	Humanities and Social Sciences	Credits:	0
<b>Course Type:</b>	Theory	Lecture - Tutorial - Practice:	2 - 0 - 0
Prerequisites:		<b>Continuous Evaluation:</b>	100
		Semester end Evaluation:	
		Total Marks:	100

Course	Upon successful completion of the course, the student will be able to:												
outcomes	CO1												
	CO2												
	CO3												
	CO4												
Contribution of Course		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	PO j	PO k	PO 1
Outcomes													
towards	CO1												
achievement													
of Program	CO2												
Outcomes													
(L – Low, M	CO3												
- Medium, H													
– High	CO4												
Course		I	I	I	1	1	1	1	1	I	I	1	
Content	UNIT	'- I											
							0	ganism					
										0	<u> </u>	g by dra	0
												ology	
												18th Ce	
												the origon the origon and	
	Mayor		mes by	icicii	ing to		gillar 0	USCI Va		Rober	L DIOW	ii and	Junus
						-	-				•	- Unice	
						-	-		-			and C	
				-		-		-	. ,			excreti	
					reotelic	. ,		t- acq	uatic,	terrest	rial (f	) Mol	ecular
	taxono	Jilly- ti		ijoi kili	iguoills	or me	•						
	UNIT	- II											
		olecule		-			c					、 、	
												e), starc	
									-	ds. Pro elemer		structu	re and
	runcu	0115- as	CIIZYII	105, U.d.	nsporte	15, 100	cpiors a	and sut	iciural	CICILICI	113		
	Enzyr	nes: E	Enzyme	classi	fication	n. Mecl	nanism	of enz	yme ac	tion. E	nzyme	kinetio	cs and
	kineti	c paran	neters.										
	UNIT	'- III											
		111											

	<ul> <li>Genetics and Gene information Transfer</li> <li>Genetics: "Genetics is to biology what Newton's laws are to Physical Sciences" Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Concepts of recessiveness and dominance. Gene interaction, Epistasis. Meiosis and Mitosis be taught as a part of genetics. Emphasis to be give not to the mechanics of cell division nor the phases but how genetic material passes from parent to offspring.</li> <li>Information Transfer: DNA as a genetic material. Hierarchy of DNA structure- from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Define gene in terms of complementation and recombination.</li> <li>UNIT- IV</li> <li>Metabolism and Microbiology</li> <li>Metabolism: Exothermic and endothermic versus endergonic and exergoinc reactions. Concept of glucose to CO2 + H2O (Glycolysis and Krebs cycle) and synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions.</li> <li>.</li> </ul>
	Microbiology: Concept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Growth kinetics. Ecological aspects of single celled organisms. Microscopy.
Text books and Reference books	<ul> <li>Text Book:</li> <li>[1] Biology: A global approach: Campbell, N. A.; Reece, J. B.; Urry, Lisa; Cain, M, L.; Wasserman, S. A.; Minorsky, P. V.; Jackson, R. B. Pearson Education Ltd.</li> <li>[2] Outlines of Biochemistry, Conn, E.E; Stumpf, P.K; Bruening, G; Doi, R.H., John Wiley and Sons.</li> <li>[3] Principles of Biochemistry (V Edition), By Nelson, D. L.; and Cox, M. M.W.H. Freeman and Company</li> <li>[4] Molecular Genetics (Second edition), Stent, G. S.; and Calender, R.W.H. Freeman and company, Distributed by Satish Kumar Jain for CBS Publisher.</li> <li>[5] Microbiology, Prescott, L.M J.P. Harley and C.A. Klein 1995. 2nd edition Wm, C. Brown Publishers</li> </ul>
E-resources and other digital material	

# **Third year** (VI Semester)

Course Category:	Program Core	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 1 - 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

outcomes	Upon s	Upon successful completion of the course, the student will be able to:												
	CO1	Develop mathematical models of various physical systems.												
	CO2	Select appropriate controllers and final control elements for various processes.												
	CO3	Design advanced control strategies and apply tuning procedures to design PID controllers.												
	CO4	Understand the operation of complex processes in industrial applications.												
Contribution of Course		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	PO j	PO k	PO 1	
Outcomes towards achievement	CO1	Н			L									
of Program Outcomes	CO2	Н												
(L – Low, M -	CO3	Н			L									
Medium, H – High	CO4	Н			L									
Content	<ul> <li>UNIT – I Introduction to Physical Processes and Modeling: Introduction to process control, Definition, Elements of process control, Characteristics of physical systems - Mathematical modeling of liquid, gas and thermal systems, Servo and regulatory operation. Process Identification - Step, frequency and pulse testing.</li> <li>Basic Controller Modes: Basic control actions - Characteristic of on-off, proportional, single speed floating, integral and derivative control modes, Comparison of PI, PD and PID control modes.</li> <li>UNIT – II Controlling Elements: Self-operated controllers, Pneumatic controllers, Hydraulic controllers, Electrical controllers and Electronic controllers.</li> <li>Actuators: Pneumatic actuators, Electro-pneumatic actuators, Hydraulic actuators, Electric motor actuators.</li> <li>Control Valves: Sliding stem control valves, Rotating shaft control valves, Control valve sizing.</li> <li>UNIT – III Advanced Control Strategies: Cascade control, Feed forward control, Ratio control, Smith predictor control, Internal model control, Model predictive control.</li> </ul>													

	<ul> <li>tuning, Cohen-Coon method of tuning.</li> <li>UNIT – IV</li> <li>Applications: pH control, Mass transfer operations- mathematical modeling and control of Distillation column, Evaporation, Drying.</li> </ul>
Text books	Text Book
and Reference books	<ul> <li>[1] Donald P. Eckman, "Automatic process control", Wiley India Pvt. Ltd. (UNIT I &amp; II)</li> <li>[2] Donald R. Coughanowr, "Process Systems Analysis and Control", 2nd Ed., Mc</li> </ul>
	<ul> <li>[2] Donald K. Cougnanowi, "Process Systems Analysis and Control , 2" Ed., Mc Graw-Hill International edition. (UNIT III)</li> <li>[3] Shinskey.F.G, "Process Control Systems - Application, Design and Tuning", 3rd Ed., Mc Graw-hill International edition. (UNIT IV)</li> </ul>
	<b>Reference Books</b> [1] D Patranabis, "Principles of Process Control" 2 nd Ed., TMH, 2007. [2] Stephanopoulos G, "Chemical Process Control", 3 rd Ed, PHI, 1994.
E-resources and other digital material	<ol> <li><u>www.freevideolectures.com /Course/3126/Process-Control-and-Instrumentation</u></li> <li><u>www.nptel.ac.in/courses/103105064/</u></li> </ol>

<b>Course Category:</b>	Program Core	Credits:	4
<b>Course Type:</b>	Theory	Lecture - Tutorial - Practice:	3 - 1 - 0
Prerequisites:	Control systems, Digital signal	<b>Continuous Evaluation:</b>	30
-	processing	Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	Upon successful completion of the course, the student will be able to:											
outcomes	CO1	Descri	be the r	ole of c	ompute	rs in ind	lustrial a	automat	ion				
	CO2	Develo	Develop the mathematical modeling of various processes in discrete time domain										
	CO3	-	Analyze the time response and stability of computer control system using pulse transfer										
	<u> </u>		function approach										
	CO4 CO5	-	Design the appropriate digital control algorithm for industrial processes Select suitable intelligent controllers for real time applications										
Contribution	005												
of Course		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	РО ј	PO k	PO 1
Outcomes towards	CO1	Н											
achievement of Program Outcomes	CO2		Н										
(L – Low, M	CO3		Н	Η		L							
- Medium, H – High	CO4			Н									
	CO5			L		Η							
Course Content	system	<b>duction</b> n, Func uters in	ctional	block	diagra	m of	a com	puter	contro	l syste	em, Ap	in a c plicatio lirect o	ons of
	model domai	ling, Pu	ulse tra st orde	nsfer f	unction	ns, Ma	themat	ical m	odel t	for pr	ocesses	nathem 5 in di elay , H	screte
	repres	v <b>sis of</b> 2 entatio	n of sa	mpler	and zer	ro orde	r hold,	Modif	ïed Z t	ransfo	rms, O	Mathem pen loo stabilit	p and
	algori effect	<b>n of</b> thm fo , Kalm	r set p an's a	oint ch lgorith	nanges, m, De	Deac sign of	l beat f digita	algoritl	hm, Da rol alg	ahlin's orithm	algorit for lo	igital c hm, Ri bad cha time.	nging
	UNIT	'- IV											

	<b>Intelligent Controllers:</b> Introduction, Model based controllers - Adaptive controller, Artificial intelligence(AI) based systems, Expert control system, Introduction to fuzzy control, Fuzzy control system, Artificial neural networks –introduction, Neural controllers and Neuro Fuzzy control system
Text books	Text Books:
and	[1] Pradeep B.Deshpande and Raymond H Ash, "Elements of Computer Process
Reference	Control with Advanced Applications", 2 nd Ed., Instrument Society of
books	America.,1981[Unit-I,II & III]
	<ul><li>[2] Krishna Kant, "Computer-based Industrial Control", 2nd Ed., PHI, Delhi, 2010.</li><li>[Unit-IV]</li></ul>
	<ul> <li>Reference Books:</li> <li>[1]C.D. Johnson, "Process Control Instrumentation Technology", 4th Ed., Prentice Hall Inc, 2000.</li> <li>[2] M.Gopal, "Digital Control and State Variable Methods", 3rd Ed., TMH, New Delhi, 2009.</li> </ul>
<b>E-resources</b>	[1] <u>http://nptel.ac.in/courses/112103174/4</u>
and other	[2] <u>http://nptel.ac.in/courses/112103174/3</u>
digital	
material	

<b>Course Category:</b>	Program Elective I	Credits:	3
<b>Course Type:</b>	Theory	Lecture - Tutorial - Practice:	3 - 0 - 0
Prerequisites:	Engineering physics, Electronic	<b>Continuous Evaluation:</b>	30
-	devices and circuits.	Semester end Evaluation:	70
		Total Marks:	100

Course	Upon successful completion of the course, the student will be able to:												
outcomes	CO1	Under	stand	the bas	ic conc	epts of	fiber o	optic se	nsors.				
	CO2		Identify wavelength modulated fiber optic sensors to detect physical parameters.										
	CO3	Choose suitable interferometric and frequency modulated fiber optic sensors to monitor physical parameters.											
	CO4		elect appropriate fiber optic sensors for various applications.										
Contribution of Course		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	РО ј	PO k	PO 1
Outcomes towards achievement	CO1	L											
of Program Outcomes	CO2		Н										
(L – Low, M - Medium, H	CO3		Н										
– High	CO4		Η										
Content	optica in opti Basic angle Optica UNIT Wave Temp Carbo UNIT Interfe Acous UNIT Freque effect Appli	al Fiber ical fiber ical fiber and N al fiber - II length erature n dioxi - III Ferometer stic sen - IV lency M based a cations	sensor, er sens Optics umeric s for se Modu senso de sen tric Sers ma sor, Gy Modula sensors s: Disp	, Class ors. s: Intro cal Ap- ensors, llated f r, Hun sor. Sensor gnetic yroscop ated So s, Ram	ificatio oductio erture Fiber s Sensor nidity s: Intr field/e oe, Ten ensors: an scat ent sen	n, Mod n, Ligh (NA), Selection selection sensor, roduction lectric nperatu : Introduction tering b sors, F sensor	lulation nt prop Fiber c n for so oductio Gluco on, In curren re sens luction, based so low mo	agation charact ensors. on, Lun ose sen terfere at sense or, Hyo , Dopp ensors. easurer	nes, Fie n in an eristics ninesce sor, pl nce p or, Ele drogen ler effe nent, A	elds of optica , Type nce, D H sense henome ctric fi gas sen ect, Ran	applica I fiber s of o isplace or, Ox enon, ield/vo nsor, S man eff c senso	Acceptions, i , Acception , Acception , Acception , Acception , State , Acception , State , Acception , State , Acception , State , Acception , Accept	Issues otance fibers, ensor, ensor, ensor, ensor. oppler ection

	haemoglobin concentration measurements.
Text books and Reference books	<ul> <li>Text Book:</li> <li>[1] B.D. Gupta, "Fiber Optic Sensors Principles and Applications", 1st Ed., New India publishing agency, 2006. (UNIT I,II,III &amp; IV)</li> <li>Reference Books:</li> <li>[1] Eric Udd, William B. Spillman, Jr., "Fiber Optic Sensors: An Introduction for Engineers and Scientists", 2nd Ed., John Wiley &amp; Sons, 2011.</li> </ul>
E-resources and other digital material	[1] <u>https://nptel.ac.in/courses/114106046/46</u>

<b>Course Category:</b>	Program Elective I	Credits:	3
<b>Course Type:</b>	Theory	Lecture - Tutorial - Practice:	3 - 0 - 0
Prerequisites:	Electronic devices and circuits, Digital	<b>Continuous Evaluation:</b>	30
	circuits and systems	Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succes	sful co	mpletio	on of th	ne cours	se, the	student	t will b	e able	to:		
outcomes	CO1	Under	stand th	e differ	ent fabr	ication	methods	s of inte	grated c	ircuits.			
	CO2	Analy	ze basic	electric	cal prop	erties of	MOSF	ET.					
	CO3		pply the design rules of mask layout for MOS and BiCMOS circuits.										
	CO4	Analy	nalyzing basic circuit concepts and scaling of MOS circuits.										
Contribution of Course		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	PO j	PO k	PO 1
Outcomes													
towards	CO1	Н											
achievement													
of Program	CO2		L										
Outcomes	002												
	CO3			L									
(L – Low, M - Medium, H	005												
– High	CO4		L										
Course Content	UNIT	T											
Content			ion• In	troduc	tion to	IC tec	hnolog	w MC	bre 20	related	I VI SI	techno	alogy
							-	•				or actic	0.
								-				techno	
		-			OS and			-		es, br	CIVIOS	teenno	Jiogy,
	Comp	anson	Detwee		JS and	Dipola		ologies	5.				
	UNIT	'- II											
	Basic	Elect	rical l	Proper	ties of	f MOS	S and	BiCM	10S (	Circuit	s: Ids	versus	s Vds
	relatio	onships	, Aspe	cts of	MOS	transis	tor thr	eshold	voltag	ge, MC	OS trai	nsistor	trans,
	Outpu	t cond	uctance	e and f	igure o	of merit	. The j	pass tra	ansisto	r, NMC	DS inve	erter, P	ull-up
	to pul	l-down	ratio 1	for NM	IOS in	verter d	lriven	by ano	ther N	MOS i	nverter	. Alter	native
	forms	of pu	ıll-up,	The C	CMOS	Inverte	er, MO	OS trai	nsistor	circui	t mode	el, BiC	CMOS
	invert	er, Late	ch-up i	n CMC	OS circu	uits and	l BiCM	IOS lat	ch-up	suscept	tibility.		
	UNIT MOS		CMO	S Cina	mit Da	cian D	000000	. MO	S love	ra Ctia	k dia~	rama F	Design
						-			•		-	rams, E	-
		-						-		-		netal, D	
						-				-		rules, L	-
	-				I NOR	gates	and (		invert	er, Sy	INDOIIC	diagra	ams -
	1 rans.	lation t	o mask	torm.									
	UNIT	- IV											
			it Con	cepts:	Sheet	resistai	nce, Sh	leet res	sistance	conce	ept app	lied to	MOS
	transis	stors ar	nd inve	rters, A	Area ca	pacitan	ce of la	ayers, S	Standar	d unit	of capa	acitance	e, The
						-		-			-	n-in an	
	-			-	-	-	-					f gates	
			,		~	<b>,</b> , –			- 7	-		0	0

	<ul> <li>NMOS, PMOS and CMOS technologies.</li> <li>Scaling of MOS Circuits: Scaling models, Scaling factors for device parameters, Limits due to sub threshold currents, current density limits on logic levels and supply voltage due to noise.</li> </ul>
Text books and Reference books	<ul> <li>Text Book:</li> <li>[1] Kamran Eshraghian, Douglas and A. Pucknell and Sholeh Eshraghian, "Essentials of VLSI Circuits and Systems", 1st Ed., Prentice-Hall of India Private Limited, 2005. (Unit I. II, III, IV)</li> <li>[2] Wayne Wolf, "Modern VLSI Design", 4th Ed., Pearson Education. (UNIT I, II, III &amp; IV)</li> <li>[3] Neil H. E. Weste and David Money Harris, "CMOS VLSI Design", 4th Ed.,Pearson Education. (UNIT I, II, III &amp; IV)</li> <li>[4] A.Albert Raj and T.Latha, "VLSI Design", PHI Learning Private Limited, 2010.</li> <li>[2] A.Shanthi and A.Kavita, "VLSI Design", 1st Ed., New Age International Private Limited, 2006.</li> </ul>
E-resources and other digital material	1. <u>http://nptel.iitg.ernet.in</u>

<b>Course Category:</b>	Program Core	Credits:	3
<b>Course Type:</b>	Theory	Lecture - Tutorial - Practice:	3 - 0 - 0
Prerequisites:		<b>Continuous Evaluation:</b>	30
-		Semester end Evaluation:	70
		Total Marks:	100

-														
Course	Upon	on successful completion of the course, the student will be able to:												
outcomes	CO1		Inderstand the fundamental concepts and working principles of robot anatomy.											
	CO2		escribe the kinematics and inverse kinematics of manipulators.											
	CO3		Apply various control strategies to manipulator design.											
	CO4	11 0	Explain the use of robots in industrial applications											
Contribution		-												
of Course		PO a	POb	POC	PO d	POe	POT	POg	POn	POI	POj	POK	POT	
Outcomes	001													
towards	CO1	Н												
achievement														
of Program	CO2		Η											
Outcomes														
(L – Low, M	CO3			Н										
- Medium, H														
– High	CO4			L										
Course													<u> </u>	
Content	UNIT	'- I	I											
	Intro	ductio	1 to Ro	botics	: Evol	ution of	of robot	ts and 1	obotic	s. Law	s of rol	ootics,	Robot	
	anator	my, Ma	nipula	tors, L	inks, T	ypes of	f joints	, Degre	ees of f	reedon	n, Requ	ired D	OF in	
	a man	ipulate	or, Arm	and v	wrist co	onfigur	ation, I	End eff	ectors,	Robo	t actua	tors, Se	ensors	
	and vi	ision.												
	UNIT													
		t Kine			Monni		d T	onafor	matio		loondin	oto fr		
		dinate			Mappi						coordin	dament	ames,	
		on mati		vectors	s, 11011	logened	Jus tra	lisioim	ation 1	liatifice	s, run	Jament		
	Totutio	Jii iiiati	1005.											
	Direc	t Kine	matic	Model	l: Mec	hanical	struct	ure and	d notat	ions, I	Descrip	tion of	links	
												nberg		
					1		5		,	-		ansforn		
												kinen		
	-			-		•						n techn	iques,	
	Close	d form	solutio	on, Cas	e study	- 3DO	F artic	ulated	arm inv	verse k	inemat	ICS.		
	UNIT	'- TTT												
			Manin	ulatore	· Bloc	k diam	am of	manin	ilator o	ontrol	system	n, Ope	n and	
			_			-		-			-	rol sch		
		-		-		-		-				DC r		
									0			lator, H	-	
					pedanc						I	,	-	
							-							
	UNIT													
	Appli	cation	s of Ro	bots:	Industr	ial app	lication	ns: Mat	erial h	andling	g - Mat	erial tr	ansfer	

	applications, Machine loading and unloading application, Picking and placing, Palletizing and depalletizing, Processing applications - Welding assembly applications, Peg in hole assembly, Inspection applications, An overview of non industrial applications, Work place design considerations for safety, Safety sensors and safety monitoring.
Text books	Text Books:
and	[1] R.K.Mittal &, I.J.Nagarath, "Robotics and Control", Tata McGraw Hill Pvt. Ltd,
Reference	15 th Ed., 2010.
books	<ul><li>[2] S.R.Deb, "Robotics Technology and Flexible Automation", Tata McGraw Hill Pvt. Ltd., 2002.</li></ul>
	<ul> <li>Reference Books:</li> <li>[1] R.D.Klafter, T.A.Chimielewski &amp; M. Negin, "Robotic Engineering - An Integrated Approach", Prentice Hall of India, New Delhi, 1994</li> <li>[2] P.J.Mc Kerrow, "Introduction to Robotics", Addison Wesley, USA, 1991</li> </ul>
E-resources and other digital material	[1] <u>http://nptel.ac.in/courses/112103174/4</u> [2] <u>http://nptel.ac.in/courses/112103174/3</u>

<b>Course Category:</b>	Program Elective I	Credits:	3
<b>Course Type:</b>	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Electronic devices and circuits	<b>Continuous Evaluation:</b>	30
	Analog electronic circuits,	Semester end Evaluation:	70
	Network theory	Total Marks:	100

	Upon	Upon successful completion of the course, the student will be able to:											
Course outcomes	CO1	-	re com	-								ks, top	ologies,
	CO2	Under	stand th	e techn	ical issu	les relat	ed to H	ART co	ommun	ication	protoco	ol	
	CO3	Identif bus.	entify various types of network devices and hardware suitable for foundation field										
	CO4	Explai	plain the features of PROFIBUS standard for process automation										
Contribution		PO a PO b PO c PO d PO e PO f PO g PO h PO i PO j PO k PO 1											
of Course	CO1	TT											
Outcomes	CO1	Н											
towards achievement	CO2			Н									
of Program Outcomes (L – Low, M	CO3			Н									
- Medium, H – High	CO4			Н									
Course Content	community impair Introductopolo referent <b>UNIT</b> <b>Netwo</b> I/O & <b>Highw</b> protoc Community <b>UNIT</b> <b>Found</b> data t fieldbu Found UNIT <b>Profib</b> classes Community	unication ments, uction f gy, Ne nce mod <b>– II</b> orks in field le vay Ac ol, H dunicati – III lation f unication F – IV ous: Inte s, OSI unication	on, Data Data ra to network del. <b>Proce</b> vels, C <b>Idressa</b> ART on mod <b>Field I</b> Archite ysical ieldbus rroduct model on pro erface,	ta type ate and vorks, 1 comp ess Au comp able H encod des, H Bus: 1 ecture, Layer s, Redu ion, Tr of PR file of , PR	s, Data bandy Data co onents tomati level, 1 Remote ing a ART no Introdu H1 b , Data indancy cansmis OFIBU PROF OFIBU	a flow vidth re ommur , Class on: In Enterpr e Tran nd w etwork ction, enefits a link y. ssion to US prot IBUS JS - H	metho elations nication sification sification troduc rise/Ma avefor s, HAF Defini a, HSE layer layer echnolo tocol s – DP, PA cha	ods, Traship. n stand on of tion, I anagen er (HA m, H RT con tion ar E bene , App ogy, C tack, F Physic aracter	ansmis lards a netwo /O bus nent le ART): IART nmunic d feat efits, C lication commu PROFI cal laye istics,	sion n nd org orks, ( [T netwo vel. Intr addre ation l [Tex ns, F DSI m n Lay [Tex nicatic BUS - er, Dat Redur	nodes, anizati DSI m ext Bo orks, N oductio essing, layers. <b>xt Bool</b> Founda odel co rer, To <b>xt Bool</b> on prot DP C a link ndancy	Transr ons, N odel, 7 ok No: Networf on to Arbir k No: 1 tion fie of four echnolo k No: 1 ocols, haracte layer, 1 , PRO	king at HART tration, [] eld bus ndation ogy in

Text books and Reference books	<b>Text books:</b> [1] S. Sunit Kumar "Fieldbus and Networking in Process Automation" CRC Press, Taylor and Francis Group, 1 st Ed., 2014 [2] S.Mackay, E.Wrijut, D.Reynders and J.Park, "Practical Industrial Data Networks Design, Installation and Troubleshooting", Newnes Publication, Elsevier, 1 st Ed., 2004
	<b>Reference books</b> [1] S. Mackay, J. Park and E. Wright, "Practical Data Communication for Instrumentation and Control", Newnes Elsevier,2002 [2] R. Bowden, 'HART application Guide', HART Communication Foundation,1999
E-resources and other digital	<ul> <li>[1] <u>https://www.youtube.com/watch?v=DgAwOJMN2N0</u></li> <li>[2] <u>http://nptel.iitg.ernet.in/Elec_Engg/IIT</u></li> <li>[3] <u>http://www.nptel.ac.in/courses/106105081</u></li> </ul>
material	

<b>Course Category:</b>	Program Elective II	Credits:	3
<b>Course Type:</b>	Theory	Lecture - Tutorial - Practice:	3 - 0 - 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon	succes	sful co	mpletio	on of th	ne cour	se, the	student	t will b	e able	to:		
outcomes	CO1 Describe the challenges and problems associated with the use of the current energy sources with regard to future supply and the environment, greenhous effect.												
	CO2	photovoltaic's.											
	CO3		Explicate about the wind renewable energy resource and its generation.										
	CO4	-	Explain about the tidal and geothermal renewable energy resources and generation.										
Contribution of Course		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	РО ј	PO k	PO 1
Outcomes towards achievement	CO1						Н	М	L				
of Program Outcomes	CO2						Н	М	L				
(L – Low, M - Medium, H	CO3						Н	М	L				
– High	CO4						Η	М	L				
Course Content	Renew and cl UNIT Solar Solar Dish/c Photo capac: UNIT Wind turbin perfor	duction vable e imatic -II Power resourcengine voltaid ity and - III Energ e, Tur mance	energies protect : Solar cce, Co system cs: Pho produc gy: Intr cbine , Elect	s, Glob ion. power poncentr , Point ptovolta ction, A roductio types rical a	n, Energenting focus, aic base Applica	of rend gy bala solar j Solar j sics, P tions. nd cha erms, and g	ewable nce of power: pond. erform tracteri Contro	energy the ear Powe ance, 1 stics an colling	th, Ear r towe Design nd reso and o	es, Fut th-Sun er, Lin consi ources, optimiz	Greenh ure end motion e or l deratio Power ting w	ergy de n, Insul linear ns, Ins transfe vind tu	emand lation, focus, stalled er to a urbine
		Energ	-		al and nal ene			-	er resou	irces, T	Fidal po	ower ai	nd the

	<b>Geothermal Energy:</b> Introduction, Resource, Types of geothermal resources, Direct use, Geothermal heat pumps, Electricity.
Text books	Text Books:
and	[1] Volker Quaschning, "Understanding Renewable Energy Systems", Earthscan,
Reference	2005.
books	<ul> <li>[2] Vaughn Nelson, "Introduction to Renewable Energy", CRC Press, 2011.</li> <li>[3] Robert Ehrlich, Harold A. Geller, "Renewable Energy, A First Course", 2nd Ed., CRC Press Taylor &amp; Francis Group, 2018.</li> </ul>
	<ul> <li>Reference Books:</li> <li>[1] John Twidell and Tony Weir, "Renewable Energy Resources", 3rd Ed., Routledge, 2015.</li> <li>[2] Dieter Seifried and Walter Witzel, "Renewable energy: the facts", Earthscan, 2010.</li> </ul>
E-resources and other digital material	https://nptel.ac.in/courses/108105058/

<b>Course Category:</b>	Program Core	Credits:	3
<b>Course Type:</b>	Theory	Lecture - Tutorial - Practice:	3 - 0 - 0
Prerequisites:	Basics of Electrical Engineering,	<b>Continuous Evaluation:</b>	30
	Electronic Devices and Circuits	Semester end Evaluation:	70
		Total Marks:	100

Course	Upon successful completion of the course, the student will be able to:												
outcomes	CO1 Understand the principles and characteristics of different power electronic devices												
	CO2 Analyze the operation of SCR converters, Inverters and Chopper circuits												
	CO3 Outline the operation of DC amplifiers and Voltage regulated power suppli industrial applications												es for
	CO4 Explain the various industrial applications of SCR												
Contribution of Course		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	PO j	PO k	PO 1
Outcomes towards achievement	CO1	Н		М									
of Program Outcomes (L – Low, M - Medium, H	CO2			М									
	CO3	Н	М										
– High	CO4	Н	М										
	charac metho GATT UNIT Thyri conver Thyri Murra chopp UNIT Ampl DC ar DC vo Suppl UNIT Indus types,	cteristic ods, SC rn sen F, DIAG <b>'- II</b> stor C rters, B stor In er, Chc <b>'- III</b> ifiers a nplifier oltage ies (SM <b>'- IV</b> strial A	es, Sw R com C and C and C and C anverter ford I ford I ford I ford I ford Re r, Chop regulat (PS).	itching mutation ductor TRIAC cers: S convert s and ( nverter onfigur gulated oper state or, Un ations: d dieled	<ul> <li>chara</li> <li>chara</li> <li>Powe</li> <li>charac</li> <li>ingle p</li> <li>ers.</li> <li>Choppe</li> <li>prince</li> <li>charace</li> <li>d Powe</li> <li>bilized</li> <li>Interres</li> <li>Induss</li> <li>charace</li> </ul>	er Electristic er Electristic er Electristic ohase c ers: Since ers: Since ersupp DC and apted H trial times ating: 1	cs and ctronic s. onvert ngle ph f step olies: D nplifier Power ming c Princip	d gate <b>Devia</b> ers: Ha hase inv down DC amp r, Regu Supply eircuits le, The	chara ces: A alf way verters, chopp lifier, I ilated p (UPS) , Elect cory an	cteristi symme ve con Mc M per, Pr Differe power s ), Swit ric we d appli	cs, SC etrical verters urray l inciple ntial an supplie ched M	Static CR turn SCR, I , Full ,	n on RCT, wave , Mc epup c as a ciple, ower s and lidyne

Text books	Text Book:
and Reference books	<ul> <li>G.K.Mithal and Dr.Maneesh Gupta, "Industrial and PowerElectronics," Khanna Publications, 9th Ed., 2007.</li> </ul>
	Reference Books:
	<ol> <li>M.Ramamurthy, Thyristors and their applications", East-WestPress, 2nd Ed., 1998.</li> <li>M.H.Rashid, Power Electronics-Devices, Circuits and Application, Prentice Hall of India, 2003.</li> <li>P.S.Bimbra, "PowerElectronics," Khanna Publications, 4th Ed., 2010.</li> </ol>
E-resources	<ol> <li>www.nptel.ac.in/downloads/108105066/</li> </ol>
and other	2. http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-334-
digital	powernelectronics-spring-2007/lecture-notes/
material	3. http://www.nptelvideos.in/2012/11/power-
	electronics.htmlhttp://onlinevideolecture.com/?course_id=510

<b>Course Category:</b>	Program Elective	Credits:	3
<b>Course Type:</b>	Theory	Lecture - Tutorial - Practice:	3 - 0 - 0
Prerequisites:	Process control	<b>Continuous Evaluation:</b>	30
_		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon successful completion of the course, the student will be able to:												
outcomes	CO1 Develop nonlinear and linear models for a given process.												
	CO2	O2 Design PID controller for a given process with suitable tuning method.											
	CO3	U					stable a		able pro	cesses.			
~	CO4	Outline the concepts of MPC for SISO systems.											
Contribution of Course		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	PO j	PO k	PO 1
Outcomes towards achievement	CO1		Н			L							
of Program Outcomes	CO2			Н		Н							
(L – Low, M - Medium, H –	CO3			Н		Н							
High	CO4			L									
	model dynam baland behav UNIT PID Close proces Antire UNIT Intern contro uncern design	ling eq nic beh ces, Fo iour, S - II Contro d-loop sses, D eset win - III nal Mo oller de tainty a n proce	quation naviour orm of tability oller T oscilla Direct s ndup, A odel C esign, ( and dis dure, E	s, Clar dynar of line <b>uning</b> ation l ynthes Auto tu ontrol Genera turbane	ssificat ons fo nic mo ear stat <b>and I</b> based is for ning te is Intro- lization ces, Th of mode	ion of r mode odels, e space Enhane tuning minim chniqu ductior n of th ne Inter el unce	mathe eling, N Lineari e model cement cement , Tunis um-pha es. to mo e open mal Mo rtainty	ematica Vateria ization ls, Emp ts: Intr ng rula ase and odel ba -loop o odel Co and dis	al mod l balar of no pirical r oductiones for l nonn used control control of sturban	lels, P nces, M nlinear models on, PII first-o ninimu ontrol, design (IMC) cces, In	Process Aateria mode D cont order - m phas Practic n proce structu	on, Typ model l and e els, Dy roller = + dead se proc al open edure, l ire, The d distur	s and energy namic forms t time cesses n-loop Mode e IMC bance
	UNIT Mode conce respon	e <b>l Pred</b> pt of N	<b>ictive (</b> /IPC, L d finit	least so te imp	quares oulse r	and ab espons	osolute e mod	values lels, S	object teps in	ive fui nvolve	nctions	MPC), , Finit mplem	e step

Text books and Reference books	<ul> <li>Text Books</li> <li>[1] Process Control - Modeling, Design and Simulation, Prentice Hall International Series in the Physical and Chemical Engineering Sciences, 1st Ed., 2003.</li> <li>[2] Amiya K.Jana, Chemical Process Modeling and Computer Simulation, PHI, 2nd Ed., 2011.</li> </ul>
	<b>Reference Book</b> [1] B.Wayne Bequette, "Process Dynamics - Modeling, Analysis, and Simulation", Prentice Hall International Series in the Physical and Chemical Engineering Sciences, 1 st Ed., 1998.
E-resources and other digital material	<ol> <li><u>https://nptel.ac.in/courses/108105062/13</u></li> <li><u>https://in.mathworks.com/help/control/examples/design-internal-model-controller-for-chemical-reactor-plant.html?requestedDomain=www.mathworks.com</u></li> <li><u>http://www.cc.ntut.edu.tw/~jcjeng/Model%20Predictive%20Control.pdf</u></li> <li><u>https://www.sheffield.ac.uk/acse/staff/jar/mpcmaster</u></li> </ol>

<b>Course Category:</b>	Program Elective II	Credits:	3
<b>Course Type:</b>	Theory	Lecture - Tutorial - Practice:	3 - 0 - 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon successful completion of the course, the student will be able to:													
outcomes	CO1			-	-	-	and l as EC		-	proces	sing te	echniqu	les in	
	CO2	Develo	op the n	nathema	tical m	odels re	levant to	o the fie	ld of bi	omedica	al signal	l proces	sing.	
	CO3		Develop a thorough understanding on basics of ECG signal compression algorithms.											
	CO4		Inderstand the promises and challenges of the cardio logical and neurological signal rocessing.											
Contribution of Course		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	РО ј	PO k	PO 1	
Outcomes towards	CO1	Н												
achievement of Program	CO2	Н			Н					Н				
Outcomes	CO3					Η				Η				
(L – Low, M - Medium, H – High	CO4					Н								
Course Content	biome Signa biome Signa typica UNIT Adap cance Data algori	duction edical si l Conve edical si l Avera l avera l avera l tive N lling us Comp thm, F lation,	ignals, version ignals, aging: ge, Sof loise ing a s ressior Iuffma	Object : Simp Signal Basics ftware f Cancel ine wa n Tech n cod	ives ar le sign conver s of sign for sign <b>ling:</b> ve moc <b>niques</b> ing, D	nd diffional com rsion ci gnal ave nal ave Princip lel, Oth s: Turr pata re	culties version rcuits. eraging raging, oal noi ner app ing pc ductior	in bion syster , Signa Limita se can lication oint algon	nedical ms, Co al avera ations of nceller as of ad gorithm	analys nversic aging a of signa mode laptive , AZT The	sis. on requ as a dig al avera al, 60H filterin EC alg Fourie	iremen gital fil ging. Iz Ada gorithm r trans	ter, A aptive , Fan	

	<ul> <li>UNIT III</li> <li>Cardiological Signal Processing: Basic electrocardiography, ECG data acquisition, ECG lead systems, ECG parameters and their estimation, ECG QRS detection techniques, Arrhythmia analysis monitor, Long term continuous ECG recording.</li> <li>UNIT IV</li> <li>Neurological Signal Processing: The brain and its potentials, The electrophysiological origin of brain waves, The EEG signal and its characteristics, EEG analysis, Linear prediction theory, Auto-Regressive (AR) method.</li> <li>Analysis of sleep EEG: Data acquisition and classification of sleep EEG, Markova model and Markova chains.</li> </ul>
Text books	Text Books
and	[1] Rangaraj M. Rangayyan, "Biomedical Signal Analysis A Case Study Approach",
Reference	John Wiley & Sons 2002.
books	[2] Willis J. Tompkins, "Biomedical Digital Signal Processing", Prentice Hall of
	India 2004.
	[3] D C Reddy, "Biomedical Signal Processing Principles and Techniques", Tata
	McGraw-Hill Publishing Co. Ltd, 2005.
	Reference Books
	[1] Akay M, "Biomedical Signal Processing", Academic: Press 1994.
	[2] Cohen.A, "Biomedical Signal Processing" Vol. I, CRC Press, 1986.
	[3] AV Oppenheim & RW Shafer, "Discrete-time Signal Processing" Prentice Hall,
	Englewood Cliffs, NJ, 1989.
E-resources	1. https://onlinecourses.nptel.ac.in/noc19_ee23//Biomedical Signal Processing
and other	
digital	
material	

#### 17EI2605/A - Virtual Instrumentation

<b>Course Category:</b>	Open Elective IV	Credits:	3
<b>Course Type:</b>	Theory	Lecture - Tutorial - Practice:	3 - 0 - 0
Prerequisites:		<b>Continuous Evaluation:</b>	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	successful completion of the course, the student will be able to:												
outcomes	CO1	Outlin	ne the a	rchited	ture of	a virtu	al inst	rument	and da	ta flow	v techn	iques.		
	CO2	Illustra	ate the c	levelopi	nent of	virtual	nstrum	ent usin	g graph	ical use	r interfa	ice.		
	CO3	Descr	ibe var	ious ba	asic pro	gramn	ning teo	chnique	es.					
	CO4	Elucid	lucidate data acquisition methods.											
Contribution		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	PO j	PO k	PO 1	
of Course		10 u	100	100	104	100	101	105	101	101	roj	TOK	101	
Outcomes towards	CO1					Η								
achievement of Program	CO2				М	Н								
Outcomes	CO3					Н								
(L – Low, M - Medium, H – High	CO4				Н	Н								
Course Content	instrui and tr VI Pr Creati loops, UNIT Modu Array dimen Creati handli UNIT	w of V ment, C aditiona cogram ng and Local ' – II llar Prove vs and sional ng clus ing.	Graphic al instr <b>uming</b> saving variabl ogram Clust array, sters, C	cal syst ument. <b>Techn</b> g VI, C les and <b>ming</b> : <b>ers:</b> In Array Cluster	iques: ontrols global Creatir ttroduc function operat	sign mo Introd and in variab ng Sub tion, C ons, A ions, C	odel, D uction dicator les VI's, C reating uto ind Convers	to Lat rs, Data Creating g one of lexing, sion be	w tech o VIEV a types, g a star dimens Matri tween	niques, V, Soft String idalone ional a x oper arrays	, Virtua tware o gs, For e applic array, ( rations and cl	Creating with a usters,	g two rrays, Error	

	Sequence structures, Formula nodes, Math script node.
	File I/O: Basics of file input/ output, Choosing a file format, File I/O VI's.
	UNIT – IV
	<b>Data Acquisition Basics:</b> Introduction to data acquisition on PC, Sampling fundamentals, Signal conditioning, DAQ hardware configuration, DAQ hardware, DAQ assistant, Channels and task configuration, Components of computer based measurement system
Text books	Text Books
and	[1] Jovitha Jerome, "Virtual Instrumentation using LabVIEW", 1 st Ed., PHI, 2013.
Reference	
books	<b>Reference Books</b> [1] Sanjay Gupta, Joseph John, "Virtual Instrumentation using LabVIEW", 1 st Ed.,
	Tata McGraw-Hill, 2005. [2] Gary Johnson, Richard Jennings, "LabVIEW Graphical Programming", Tata McGraw-Hill, 2006.
E-resources	1. <u>http://www.ni.com</u>
and other	
digital	
material	

### 17EI2605/B - Intelligent Instrumentation Principles and Application

<b>Course Category:</b>	Open Elective IV	Credits:	3
<b>Course Type:</b>	Theory	Lecture - Tutorial - Practice:	3 - 0 - 0
Prerequisites:	Instrumentation engineering	<b>Continuous Evaluation:</b>	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	pon successful completion of the course, the student will be able to:												
outcomes	CO1	Sumn	narize t	he clas	sificati	ion and	charac	cteristic	es of se	nsors.				
	CO2	Outlin	e the op	erative	princip	les of In	telligen	t sensor	s.					
	CO3	Able	ble to explain the linearization and calibration, standards and protocols.											
	CO4	Make	Make use of intelligent instrumentation in various industrial processes.											
Contribution of Course		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	РО ј	PO k	PO 1	
Outcomes towards	CO1	L		L										
achievement of Program	CO2	L		L										
Outcomes	CO3	L		L										
(L – Low, M - Medium, H – High	CO4			Н										
Course Content	transd transd Bioser charad UNIT Intellis sensor Sensor UNIT Linea sensor linear Senso	duction ucers ucers, nsors, cteristic - II igent S rs, Self rs with rs , AI f rization rs, Lin ization, r calib	<ul> <li>Cla Radio Sensor</li> <li>Sensor</li> <li>adapti</li> <li>Art</li> <li>for projon and</li> <li>neariza</li> <li>ration</li> </ul>	assifica active perfo at-Outp s: Cl ve sens tificial gnostic Calibi tion o - Conv	ation, transde ormance out imp assifica sors, Se <b>Intell</b> instrut ration: of neg	Self gucer, Self e char e char edance ation, Self-valie <b>igence</b> mentat Analo gative al calit	generat Semico acterist s. Smart s dating : Intro ion , Fu g linea coeffi	ing tr nducto tics - sensors sensors oductio uzzy lo urizatio cient circuit	ansduc r senso Static , Coge s. n, Mu gic bas n of po resistiv	ers, V ors, An charace nt sense ultidime ed sense ositive of ve sen tiplyin	Variable cray-ba cteristic cors, So ensiona sors coeffic nsors, g DAC	sensor e para sed se cs, Dyn oft or v al intel ient res ANN- C calibr libratio	meter nsors, namic 'irtual ligent sistive based ation,	

	<ul> <li>UNIT- IV</li> <li>Intelligent Sensor Standards and Protocols: Introduction, IEEE 1451 standard, Network topologies, CEBUS communication protocol for smart home, Plug - n - play smart sensor protocols.</li> <li>Case Studies: Tea fermentation process, Self adaptive pressure sensor system, Soft sensor for water treatment process, Oxygen sensor in industry and environment monitoring.</li> </ul>
Text books and Reference	<b>Text Books</b> [1] Manabendra Bhuyan, "Intelligent Instrumentation Principles and Applications", CRC Press.
books	<ul> <li>Reference Books</li> <li>[1] Barney G.C.V., "Intelligent Instrumentation", Prentice Hall of India Pvt. Ltd., New Delhi, 1988.</li> <li>[2] John G. Webster, Halit Eren, "Measurement, Instrumentation, and Sensors Handbook: Electromagnetic, Optical, Radiation, Chemical, and Biomedical Measurement", 2nd Ed.,</li> <li>[3] Krysztof Iniewski, "Smart Sensor for Industrial Applications", 1st Ed., CRC Press.</li> </ul>
E-resources and other digital material	

## 17TP1606 - Quantitative Aptitude

<b>Course Category:</b>	Institutional Core	Credits:	1
<b>Course Type:</b>	Learning by doing	Lecture - Tutorial - Practice:	0 - 0 - 2
Prerequisites:		<b>Continuous Evaluation:</b>	100
		Semester end Evaluation:	0
		Total Marks:	100

Course	Upon	succes	sful co	mpletio	on of th	e cour	se, the	student	will b	e able	to:		
outcomes	CO1	Solve	various	basic m	athema	tics pro	blems b	y follov	ving dif	ferent m	nethods.		
	CO2	methods to solve problems.											hortcut
	CO3	Confidently solve any mathematical problems and utilize these mathematical skills both in their professional as well as personal life.											
	CO4	CO4 Analyze, summarize and present information in quantitative forms including t graphs and formulas.											
Contribution of Course		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	РО ј	PO k	PO 1
Outcomes towards achievement	CO1	М											
of Program Outcomes	CO2		М										
(L – Low, M - Medium, H	CO3	М											
– High	CO4				М								
Course Content	Proble Nume UNIT Arith Rule. Arith Trains UNIT Arith Game Logic UNIT Mens	erical A ems on erical A f- II metica metica s of ski al Abil f- IV uration	numbe Ability I Abili I Abili Ils, Ca ity: Pe n: Geor	ers. II: Rat ity I: I ty II: 7 ty III: 7 ty II	tio & P Probler Fime & Allega and Cl ions an Areas,	roporti ns on tion, S ock. d Com	on, Par ages, 7 nce, Pr imple i binatic	rtnershi Fime & oblems nterest	ap, Perc Work on boa and co Probab	entage , Pipes ats &Si ompour ility.	es, Prof s & Ci teams, nd inter	ït & Lo istern, Proble	oss. Chain ms on

Text books	Text Book:
and	[1] R. S. Aggarwal "Quantitative Aptitude", Revised Ed., S Chand publication, 2017.
Reference	ISBN:8121924987
books	
	Reference Books:
<b>E-resources</b>	1. <u>www. Indiabix.com</u>
and other	2 more final and a second
digital	2. <u>www.freshersworld.com</u>
material	

#### 17EI3651 - Process Control Lab

<b>Course Category:</b>	Program Core	Credits:	1.5
<b>Course Type:</b>	Lab	Lecture - Tutorial - Practice:	0 - 0 - 3
Prerequisites:	-	<b>Continuous Evaluation:</b>	30
-		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon successful completion of the course, the student will be able to:												
vulcomes	CO1	D1 Investigate the characteristics of I/P converter control valves and various transmitters used in industrial processes.											mitters
	CO2		Understand the characteristics of controller modes in various process stations.										
	CO3		Analyze the characteristics of various advanced control strategies. Understand the operation of complex processes.										
	CO4												
Contribution of Course		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	РО ј	PO k	PO 1
Outcomes towards achievement	CO1			Н	Н								
of Program Outcomes	CO2			Н	Н								
(L – Low, M - Medium, H	CO3			Н	L								
– High	CO4				L								
Course Content	1. 2. 3. 4. 5. 6. 7. 8. 9. 10 11 12 13 14	<ul> <li>List of Experiments</li> <li>1. Characteristics of Chromel – Alumel thermo couple and temperature transmitter</li> <li>2. Characteristics of PID controller in temperature process station.</li> <li>3. Characteristics of level transmitter and I/P converter.</li> <li>4. Characteristics of PID controller in level process station.</li> <li>5. Characteristics of FID controller in level process station.</li> <li>6. Characteristics of PI controller in flow process station.</li> <li>7. Characteristics of pressure transmitter and I/P converter.</li> <li>8. Comparison of P, PI &amp; PID control modes in pressure process station.</li> <li>9. Characteristics of feed forward control.</li> <li>10. Characteristics of feed forward control.</li> <li>11. Characteristics of feed forward control.</li> <li>12. Study of pH control system.</li> <li>13. Study of temperature control in heat exchanger.</li> <li>14. Characteristics of PID controller in flow process station using LABVIEW.</li> <li>15. Characteristics of PID controller in level process station using LABVIEW.</li> </ul>											
Text books and Reference books	[1] Pr [2] D [3] D Mc G		contro P. Eck R. Cc fill inte	man, '' oughan ernatio	Auton owr, '	natic P Proces						vt. Ltd. rol, 2 ⁿ	

<b>E-resources</b>	1. www.freevideolectures.com /Course/3126/Process-Control-and-
and other	Instrumentation
digital	2. <u>www.nptel.ac.in/courses/103105064</u>
material	

Any 10 experiments from the above list.

## 17EI3652 - Virtual Instrumentation Lab

<b>Course Category:</b>	Program Core	Credits:	1.5
<b>Course Type:</b>	Lab	Lecture - Tutorial - Practice:	0 - 0 - 3
Prerequisites:	-	<b>Continuous Evaluation:</b>	30
-		Semester end Evaluation:	70
		Total Marks:	100

Course outcomes	Upon successful completion of the course, the student will be able to:												
outcomes	CO1		Understand the graphical programming terminology and able to create a virtual instruments for simple problems										
	CO2		Able to use the various looping constructs, arrays, matrices and clusters										
	CO3		Able to use various data plotting techniques and structures										
	CO4	Able	Able to use the data acquisition device to acquire the measurement data from										
		real w	real world into PC										
Contribution of Course		PO a	PO b	PO c	PO d	PO e	PO f	PO g	PO h	PO i	РО ј	PO k	PO 1
Outcomes towards achievement	CO1					Н							
of Program Outcomes (L – Low, M	CO2				М	Н							
- Medium, H – High	CO3				М	Н							
	CO4				М	Η							
Course Content	1. 2. 3. 4. 5. 6. 7. 8. 9. 10 11 12 13 14	st of Experiments         1. Programs on controls and indicators         2. Programs on Arithmetic operations         3. Programs on Boolean operations         4. Programs on Sub VI's         5. Programs on repetition and loops         6. Programs on Arrays         7. Programs on Matrices         8. Programs on Clusters         9. Programs on Data plotting         10. Programs on Structures         11. Programs on Strings, File I/O         13. Temperature acquisition using 3-wire RTD.         14. Programs on Data logging         15. Programs using NI myDAQ.											
Text books & Ref books		<b>Book</b> Jovitha Jerome, "Virtual Instrumentation using LabVIEW", 1 st Ed., PHI,											
	[1] Sa	r <b>ence</b> l anjay ( Fata M	Gupta,	Josep		n, "Vii	rtual Ir	nstrum	entatio	on usir	ng Lab	VIEW	7", 1 st

	[2] Gary Johnson, Richard Jennings, "LabVIEW Graphical Programming", Tata McGraw-Hill, 2006
E-resources and other digital material	1. <u>http://www.ni.com</u>

Any 10 experiments from the above list.

# **17EI5653 - Engineering Project for Community Services**

<b>Course Category:</b>	Program Core	Credits:	2
<b>Course Type:</b>	Practical	Lecture - Tutorial - Practice:	0 - 1 - 2
Prerequisites:		<b>Continuous Evaluation:</b>	100
		Semester end Evaluation:	0
		Total Marks:	100